|

) <

The University of Osaka
Institutional Knowledge Archive

Tale On the smoothing of a combinatorial n-manifold
immersed in the euclidean (n+1)-space

Author(s) |Tao, Junzo

Osaka Mathematical Journal. 1961, 13(2), p. 229-

Citation 249

Version Type|VoR

URL https://doi.org/10.18910/5625

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



Tao, J.
Osaka Math. J.
13 (1961), 229-249.

On the Smoothing of a Combinatorial n-Manifold
Immersed in the Euclidean (n+ 1)-Space

By Junzo Tao

§1. Introduction

By a manifold we shall always mean one which is a separable
Hausdorff space. A differentiable manifold will mean one which has a
C~-structure, defined in terms of a family of allowable coordinate sys-
tems [11].

We shall use R” to denote the n-dimensional euclidean vector space
whose points are sequences (x,, x,, -*- , x,,) of real numbers x; (=1, 2, -+, %)
and shall use |[x| to denote the norm /(x¥+x3+ .- +x2) of x=(x,, x,,
e, x,).

By a complex we shall mean a rectilinear, locally finite, simplicial
complex in R¢ for some ¢=0. If K is a complex, |K| denotes the
underlying polyhedron of K. If A is a (closed) simplex of K, then the
star St(A, K) of A in K is the union of all the simplexes of K which
contain A. The /ink L(A, K) of A in K is the union of all the simplexes
of St(A, K) which do not meet A. If x is a point in |K|, we define
St(x, |K|) as St(A, K), where A is the simplex of K which contains x
in its interior.

Let K, L be complexes in R?. They are said to be combinatorially
equivalent, if they have (rectilinear, simplicial) subdivisions which are
isomorphic to each other. By a combinatorial q-cell (q-sphere) we shall
mean a polyhedron combinatorially equivalent to a g-simplex (the boun-
dary of a (¢-+1)-simplex).

A complex K is called an (unbounded) combinatorial n-manifold if
the link of each vertex of K is a combinatorial (#—1)-sphere. A poly-
hedron is called a combinatorial #-manifold if it has a simplicial sub-
division which is a combinatorial #-manifold.

Let K” be a combinatorial #-manifold in R? whose polyhedron |K]|
has a differentiable structure. Let x be a point of an z-simplex A” in
K” and let (U,, @,) be an allowable C~-coordinate system about x where
U, is a neighborhood of x in |K| and @, is a homeomorphism ¢, : U,
—R". If there exists a neighborhood V, of x in R? and a map” f: V,—U,

1) By a map we shall always mean a “continuous” one.
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such that f]|A”"nV,»=the identity map and ¢.f: V,—R” is a map of
class C~ whose Jacobian matrix has the rank » at every point of A”NV,,
then we shall say that the differentiable structuve is compatible with the
complex K. Let a combinatorial manifold M have a differentiable struc-
ture. Then we shall say that the differentiable structure of M is com-
patible with the combinatorial structure of M, if some subdivision of M
is compatible with the differentiable structure of M.

Let X, Y be topological spaces. A one-one map f: X—Y is called
an imbedding. A map f: X—Y is called an immersion if every point
of X has a neighborhood U X such that f|U is an imbedding. A map
f from a complex K into R? is called a semi-linear map if f is linear
in every simplex in some subdivision of K.

The purpose of this paper is to prove the following

Theorem. If a combinatorial n-manifold M™ is immersed semi-linearly
into R"', then theve exists a differentiable structure on M"™ compatible
with the combinatorial structure of M?”, under the Schoenflies hypothesis
up to dimension n. Moreover, for any semi-linear immersion f. M"—R""
and a positive continuous function &(p) on M?", there exists a differentiable
immersion g: M"—R"™ with |f(p)—g(p)|< (D).

The Schoenflies hypothesis for dimension #z is as follows:

Every combinatorvial (n—1)-sphere S*' in R" is the boundary of a
combinatorial n-cell which is the closure of the bounded component of
R*»—-S",

It is well known that the Schoenflies hypothesis has been affirmatively
proved for n<<3 [1],[3], [6]. Recently the hypothesis was proved by
S. Smale [7] for n=6, n=="7.

We use G} to denote the Grassmann manifold consisting of k-planes
in R*** through the origin. If x, y are non-zero vectors in R”*% then
a(x, y) will denote the angle between them, on the understanding that
0a<n If PeG?}, then a(x, P) will denote the angle between x and its

orthogonal projection on P, with «f(x, P):% if x is orthogonal to P.

Thus 0 al(x, P)gfzi. If PeG:, QeGy, where n+k=m+/, 0<k</,

m_>0, then «(P, Q) will denote «a(P, Q)=max {a(x, @)|04=x€ P}. The
function « may be regarded as a metric for G;. If xe R*", PeG?,
then x+ P will denote the k-plane consisting of all the vectors x+ye R*+#

«—>
for every ye P. If x, y are non-zero vectors in R”, then xy will denote

2) If f:X—Y is a map and Z is a subset of X, then f|Z will always mean the restric-
tion of f on Z,
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L ad
xy={ty+(1—)x| — oo <#<+oo}.

A k-plane P*e G% is called a transversal k-plane to a set X in R™*%,
if there exists a positive numbe € such that

«—>
a(xy, P) >¢ for x,ye X, x=Fy,

where a(ka, P) will mean the angle between the line through O parallel
to ;c; and P.

Let M” be an #-manifold and let £ be an immersion f: M”—> R**%,
A k-plane P*e Gy is called a transversal plane at pe M™ with respect to
f, if there exists a neighborhood U of p in M" such that f|U is an
imbedding and P* is transversal to f(U). A map @: M”—G} is called
a transverse k-plane field (or simply a transverse field) if p(p) is trans-
versal at p with respect to f for any point p€ M. In this case f is also
called an immersion with a transverse field (or simply a normal immersion).

S. S. Cairns [2] and J. H. C. Whitehead [10] proved the following :

Let M” be a manifold. If there exists a normal imbedding f: M"—
R*+* then there exists a differentiable structure on M and for any given
positive continuous function E(p) on M?” there exists a differentiable im-
bedding g: M"— R"** with | f(p)—g(p)| < E(p).

On the other hand, H. Noguchi [ 6] proved the following :

Let M” be a compact combinatorial n-manifold without boundary in
R*. Suppose that the Schoenflies hypothesis is true for dimension = n.
Then arbitrarily near M there are a combinatorial n-manifold N and an
orientation preserving semi-linear homeomorphism onto r: R*"'— R such
that N admits a transverse field, and such that (M)=N.

We shall generalize the above two theorems from the case of imbed-
ding to that of “immersion”. Then we shall obtain our main theorem
which gives an answer to the problem of H. Noguchi [6]:

Let a combinatorial n-manifold be mapped into R"™ by a semi-linear
mapping f which is a local homeomorphism. Does there exists an analytic
n-manifold, and an immersion of it in R™ which approximates f in some
sense’?

§2. The definitions and the propositions.

The proof of the main theorem is reduced to the proofs of four
propositions, the outline of which will be stated in this section with
some necessary explanations.

The first step of the proof of the main theorem is to prove the
following proposition under the Schoenflies hypothesis up to dimension #.
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Proposition 1. Let M” be a combinatorial n-manifold and let f: M”
—R"™" be a semi-linear immersion. Then for any given positive continuous
Junction E(p) on M" there exists a semi-linear normal immersion g: M"
—R™" with |f(p)—g(D)|< E(p) for every point pe M.

Let X, Y be metric spaces and let py, py be metrics for X, Y. A
map f: X—Y is called a Lipschitz map with respect to py, py if for
any point x € X there exists a neighborhood U,—X of x and a positive
number «, such that

py(f(x,), f(x,)) < a.px(x,, x,)

for all x,, x,€ U,. The map f is called a regular Lipschitz map with
respect to py, py if for any x € X there exist a neighborhood U,—X and
a pair of positive numbers «,, B, such that

B.ZPX(xl’ xz) g PY(f(xl) f(xz)) é apr(xu xz)

for all x,, x,€ U,. Let f be a one-one Lipschitz map of X onto Y.
Then f': Y—X is a Lipschitz map if and only if f is regular. In this
case f ' is also regular.

Metrics p, p’ for X are called equivalent if the identical map of X
is a regular Lipschitz map with respect to p, p’. A collection{U;, p;} of
an open covering {U;} of X and a metric p; for U, is called a Lipschitz
system of X, if p;, p; is equivalent in U;nU; for every U, U;. A pair
(U, p) of a set U—X and a metric p for U is called an allowable pair
for a Lipschitz system {U;, p;} of X, if p, p; are equivalent in U;nU
for every U;. Two Lipschitz systems {U,, p;}, {U}, pj} are said to be
equivalent if (U}, pi) is an allowable pair for {U;, p;}. By a Lipschitz
space we shall mean a topological space X together with an equivalent
class of Lipschitz structures on X. If X, Y are Lipschitz spaces, then a
Lipschitz map f: X—Y (or a regular Lipschitz map f: X—Y) may be
defined by the local metrics {p;}, {pj} of X, Y respectively.

Let M” be an z-manifold which has a Lipschitz structure. Let U
be an open set of M and let ¢ : U— R” be a homeomorphism. We define
a metric py for U by

pu = p(D)—9(a)| for every p, g€ U.

Then (U, py) is called an allowable pair if (U, py) is an allowable
pair for the Lipschitz structure of M. A manifold M with a Lipschitz
structure is called a Lipschitz manifold, if M has a set of local coordinate
systems which are allowable pairs for the Lipschitz structure of M.

Let PeGh and let P*e G} be the n-plane orthogonal to P. Then
the vector space R”** is the direct sum R""*=P+P*, Let (u,, -, u,),
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(v, -+ ,v,) be rectangular cartesian coordinates for P*, P respectively.
If v is a positive number, let

N(P’ 7) = {QEGZ"O:(Q) P)<'7} .

T

Then a k-plane QeN(P; =

form

) is given by a set of equations of the

u; - Zka,]v] (l. - 1, b ,n) .

j=1
Conversely, if ||a;;|| is a given Xk matrix, then the above equation

represents a k-plane in N(P, th—) Therefore pp: @ —lla;;/| is a local

coordinate system
pp N<P, %)a R™.

The set of all such coordinate systems, for every P€G%, may be
used to define the differentiable structure of G%. On the other hand,

the local metric on N (P, %) induced by pp may give an allowable

Lipschitz structure for the global metric on G defined by «. Let M™
be an #-manifold and let f: M”— R""* be a normal immersion with a
transverse field @ : M” — G%. For any point p € M, there exists a
neighborhood U,—M of p and a positive number &, such that f|U, is
an imbedding with

aAp(p), F(5)F(5)>¢,

for every s, se U,, s=F+".

Let P,€ G}, be an n-plane orthogonal to the k-plane @(p)=Q,. Then
the vector space R"** is the direct sum R***=P,+Q,. Let (up, - ,up),
(vp, ++- , v5) be rectangular cartesian coordinates for P,, €,. Let =, be
the orthogonal projection of R"** onto P,. Since =,f: U,—P, is a
homeomorphism, we may introduce a local coordinate system on U, by
7,f with a local metric on U, defined by py,(s, s')= |7, f(s)—7,f(s')]
for every s,s' € U,.

Lemma 2.1. The set of all the local coordinate systems (U,, = ,f,
Pu,(s, s')) determines a Lipschitz structure on M”".

Proof. Let U,nU,=+¢ and let U, U,n U, be a neighborhood of
a point re U,nU,. It is sufficient to prove that the homeomorphism
mw,t s w, f(U,) —> 7, f(U,) is a regular Lipschitz map.
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Let F(U,) be given by the following equations of the rectangular
local coordinate systems (u}, v]) and (u!, v}) respectively

v;:g;h(u;n "',”2) 1= 1;"'yk
and
U‘é:gé(ué,-",uf}’) jzl""’k'
Let s,s’e U,. From the fact
[0, — 0, | = |up—u,| cot (a( f(s") £ (s), @))
<|u,—u,|coté&,
we obtain
| F(s")—fF(s)|<|up—up| V1+cot* &, ,

where f(s")=(uy, v;), f(s)=(u,, V,).
On the other hand, from |u,—u,| <|f(s)—f(s)|, we obtain

luy—u,| < |u,—u,| V1+cot®&,.
Therefore we obtain

1

b —u,| < |u,—u,) < V1+cot’E, |u,—u,|.
1+COt250 » » |y ol » | Up P

Thus =,7,' is a regular Lipschitz homeomorphism and the lemma
is proved.

The second step of the proof of the main theorem is to prove the
following proposition.

Proposition 2. Let f: M"—R"* be a normal immersion with a
transverse field @ : M"— Gy and let E(p) be a positive continuous function
on M?". Then there exists a Lipschitz map . M"— Gt with respect to
the above mentioned Lipschitz structures on M”, G% which is a transverse
field with respect to f and satisfies

a(p(), ¥(9)) < E(P) -

Y may be called a transverse Lipschitz field with respect to f.

Let f be a normal immersion with a transverse field ¢ : M”— G%.
Let E(p) be the k-plane bundle over M” which is induced by ¢. We
may take a point in E(®) to be the pairs (p, x) such that pe M, x € p(p).
Thus E(p)cMx R*t*. The projection map = : E(p)—M" is defined by
z(p, x)=p. Let {U,} be an open covering of M” such that f|U, is an
imbedding and let v, : E(p; U,)— R""*X R*** be an imbedding defined by
a(p, x)=(f(p), x), where E(p; U)==""(U,)TE(p). We may define a
metric p, on E(p; U,) by
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Pa(D, @) = |Ya(D)—¥\(9)] for every p, g€ E(p; U,).

Then {E(p; U,), py} defines a Lipschitz structure on E(p). If M is
identified with the zero cross section M,= {(p, 0) € E(p)} of E(), then the
above mentioned Lipschitz metric induces an equivalent metric with the
one introduced in Proposition 2. Whenever we refer to a Lipschitz map
to or from M and E(p), it will mean the Lipschitz map with respect to
these Lipschitz structures.

Now let f be a normal immersion with a transverse field @ : M”— G}
and let E(p) be the k-plane bundle over M which is induced by . We
define 0: E(p)—R"* by

0(p, x) = fF(p)+x for every pe M, x € p(p).

Then @ is called a transverse C~-field with respect to ¢, if the fol-
lowing conditions (i), (ii) are satisfied.

(i) There exists a positive continuous function p(p) on M” and
for any point p€ M there exists a neighborhood U,—M of p such that
g: TJ(p;U)—R"* is a regular Lipschitz homeomorphism, where
To(p; U)=A{(p, x)|pe U, x€p(p), |x|<p(D)}-

Since To(@p)={(p, x)|pe U, x€p(p), |x|< p(p)} is locally homeomor-
phically immersed in R”** by 6 we may introduce a differentiable structure
in T,(p). Then the second condition is as follows :

(ii) The map o= : T,(p)— G} is of class C~.

Now the third step of the proof of the main theorem is to prove
the following proposition.

Proposition 3. Let f be a normal immersion from an n-manifold
M?” into R*"* with a transverse Lipschitz field and let E(p) be a positive
continuous function on M". Then there exists a transverse C”-field
Y M"—G%Y with respect to f which satisfies

alp(p), ¥(p)) < &(p)  for every pe M.

The final step of the proof of the main theorem is to prove the
following proposition.

Proposition 4. Let M” be an n-manifold and let E(p) be a positive
continuous function on M”". [If there exists a normal immersion f: M”"—
R™* with a transverse C~-field, then a differentiable structure may be
introduced on M" and there exists a differventiable immersion g: M”"— R*+*
with | f(p)—&(p)|< (D).

Moreover, if M” is a combinatorial manifold and f: M"— R""* is a
semi-linear immersion, then the above introduced differentiable structure is
compatible with the combinatorial structure of M?”.
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The main ideas in this paper will be derived from J. H. C. Whitehead’s
paper [10] and H. Noguchi’s [6].

§3. The proof of Proposition 1.

Throughout this section we may assume the Schoenflies hypothesis
up to dimension #. Therefore the lemma 3.1 and Proposition 1 are
proved under that hypothesis.

Let M” be a combinatorial #-manifold and let f be a semi-linear
immersion of M” into R"*'. Let K be a subdivision of M such that f
is a linear imbedding on each simplex of K. Then f imbeds the star of
each simplex of K into R"*'. Let ¢¢ (/=1,---,n,--) be g-simplexes of
K” and let f(c?)=A!. Let o; be an interior point of A{ and let Ry **!
be an (rn—gq-+1)-plane through o; and orthogonal to A?. Let V7 **! be
an (n—gq+1)-simplex in R7~?*!, which contains o; in its interior such that

VN of(St(e;, K)) = ¢.

Then oV;N f(St(e?)) is a combinatorial (#—g—1)-sphere and separates
9V, into two connected (z—g)-polyhedra with the common boundary
oV,Nf(St(c?)). We denote one of them by B; which is a combinatorial
(n—q)-cell under the Schoenflies hypothesis.

Then, according to H. Noguchi ([6], p. 211), B;*A;® and 9B;xA;, B#0A;
are a combinatorial (#+1)-cell and combinatorial #n-cells respectively
which satisfy

O(BixA;) = (0B*A;) v (B*;0A,)
and
(aB,*Al) N (Bi*aAz) = aBz*aA; .

Therefore there exists a semi-linear homeomorphism [4]
h; . OBxA; — Bj#*0A,;

which is the identity map on the boundary of 2B;xA;.

Since 9B;xA,; is contained in f(S#(s;)) and f is an imbedding on S#(o;),
the inverse map f' of f is defined in 9BsA;. Let T;=7"'(0B*A,).

If the diameter diam. (V;) of V,; is sufficiently small, then Int. (7T;)n
Int. (T;)=¢ for i=j, where Int.(7;) is the interior of 7;. Then we
define a map g: M”— R"”" by

3) Let X, YCR" then XxY will mean the join of X and Y, that is, X*Y={xt+(1—8)y
lxeX, yeY, 011}
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gp) = f(p) if peM—\JInt.(T)
= hf(p) if peT;
which is a semi-linear immersion g: M”— R*"' satisfying
|g(p)—F(p)| < diam. (AxV,) for every ¢ .

The map g: M”—R""' is called a deformation of f with respect to
{a'gll.zl, see ’n’ ...}_

Lemma 3.1. Let a map f: M*”—R"" be a semi-linear immersion
from a combinatorial n-manifold M”" into R"*' and let E(p) be a positive
continuous function on M. Then there exists a semi-linear immersion
g: M"”— R"" which has a transverse line with respect to g at every point
of M" and satisfies

|f(p)—&(B)| < &(P).

Proof. Let K be a subdivision of M such that f is a linear map
on every simplex of K. It is clear that an interior point of an #-simplex
of K has a transverse line with respect to f. We suppose that f has a
transverse line at every point of K except for the points of the g-skeleton
K? of K. Let {c!|i=1,:--,mn, ---} be all the g-simplexes of K whose
interior point has not any transverse line with respect to f. Let g be
a deformation of f with respect to {c?|i=1,---,%,---}.

According to H. Noguchi ([6], lemma 9) there exists for any point
x € (B#0A;)—90A;, a neighborhood U, of x in g(St(¢?)) and a line /, € G}
such that /, is transverse to U,. Since the restriction g|S¢(c?) of g on
St(a¥) is an imbedding, /, is a transverse line about p=g '(x) with respect
to g. Therefore g has a transverse line at the points of K except for
the points of the (¢g—1)-skeleton of K. Let L be a subdivision of K
such that each simplex of L is mapped linearly by g. Then g has a
transverse field at a point of L except for the points of the (¢—1)-skeleton
L7 of L. By the n-fold iteration of the above process, we may obtain
the required semi-linear immersion g: M”— R”*'. If we take the diameter

of A%%V” 7' less than lE(A") at every stage of the process, &(A?)=
n

max {&(p)|p € St(s?)}, then g satisfies the condition |f(p)—g(p)|< &(p).
Thus the lemma is proved.

The proof of Proposition 1. We take the above constructed semi-
linear map g(p): M”— R""* for the semi-linear immersion f(p): M”— R"*\.
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Let K be a complex of M such that each simplex of K is mapped linearly
by g and let K? be the g-skeleton of K.

According to Lemma 3.1, there exist transverse lines with respect
to g on K° which is denoted by

P,: K°— Gt .

Suppose that there exists a map @,: K?—G? such that ¢, is a
transverse field with respect to g on K? Let ¢?*' be a (¢+1)-simplex
of K and let »? be a g-face of o?*'. Take points ¢, s in the interiors of
77, o?+! respectively. Since S#(n?) contains St(c?*"), the totality T,(g:M™)
of the transverse lines with respect to g at £ is contained in the totality
T.(g; M* of the transverse lines with respect to g at s. Therefore
@,(207") is contained in T (g; M).

Since S#(¢?*') is imbedded in R""' by g, T.(g; T) is a contractible
set in G} ([9], lemma 3), ([6], Corollary 2 of lemma 2.). Therefore
@q| 007 ; 20— T (g: M) is extended to a map from ¢?*'into 7,(g; M).
Thus we may obtain @,.,: K?"'—G? which is a transverse field with
respect to g. Therefore we obtain by induction the required transverse
field @ : M”— Gt with respect to g.

§4. The proof of Proposition 2.

Since any continuous map between Lipschitz spaces is approximated
by a Lipschitz map ([10], Theorem 9.1), there exists a Lipschitz map
W(p): M”— Gy such that a((p), p(p))< E(p). Now we shall show that
there exists a positive continuous function p(p) on M such that any
map Y(p): M"— G} with the condition a(yr(p), @(p))<_p(p) is a transverse
field with respect to f.

For any point p€ M and a number 0<fy<%, there exists a neigh-

borhood Uj of p in M such that f|U, is an imbedding and satisfies

A F@)f (@), p(p)) < 2y for every g, ¢€U,, g+d .

Since @ is continuous, there exists a neighborhood U, of p such
that U, is compact and contained in U} and o(U,) is contained in
N(p(p), 7).

Since M” is a paracompact space, there exist a locally finite open
covering {U;}, k-planes {P;€G}?} and positive numbers {O<fy,~<%}
which satisfy the following conditions :
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(i) U; is a compact set and f|U; is an imbedding.

(i) a(f(@)f@), P)>>2y,; for every g, €U, q=¢ ,
i) p(T) NP, 7).

Let d; be the distance between @(U,) and G?—N(P;,v;). Then d;
is a positive number. Then there exists a positive continuous function
p(p) on M which satisfies p(p)<_d; for any point p€ U; ([10], lemma 5. 1).

Now we shall show that p(p) is the required positive continuous func-
tion on M. Let y(p): M*—G?% be a map which satisfies a(p(p), ¥ (p))
<p(p) for any pe M. Let us suppose that p is a point of U;. Because
of pe U;, we may obtain the following :

a(p( D), W(p) < p(p) < d; < alp(p), Gi— N(P;, 7)) -

Therefore (p) is a point of N(P;, ;). Take ¢q,q¢ (¢=¢) in U;.
Then

alF@)F @, V(D) +ali(p), P) = ol F(d)f @) P).

Therefore we obtain
A F(@)F@)» WD) = alF(@) F(@) P)—aly(p), P).
Since a(f(q)f(@), P)>>2v; and a(y(p), P)<7;, we obtain

a(f(q)f (;1), Y(p)) >>v; for every points ¢, ¢ € U; ¢=+¢ .

Since U; is considered as a neighborhood of p in M”, (p) is a
transverse plane at p with respect to f.

Therefore (p): M— G% is a transverse field with respect to f. Thus
our proposition is proved.

§5. The proof of Proposition 3.

Before we proceed to the proof of the proposition, we shall be in
need of some lemmas. Let M” be an z-manifold and let f: M*—R""*
be a normal immersion with a transverse field ¢ : M”—G}. Let E(p) be
the k-plane bundle over M” induced by @ and let a map 6: E(p)— R"**
be defined by 6(p, x)=rf(p)+x. Let p(p) be a positive continuous func-
tion on M”. Then we define T,(p) by

To(p) = {(D, x) € E(@)|p e M, x € p(p), |x|<_p(D)} .

Then T.(p) is called a tubular neighborhood with respect to (f, ),
if for any point p of M" there exists a neighborhood U, such that
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O|To(p; Uy): Top; Uy,)—R"* is a regular Lipschitz homeomorphism,
where

Tp; Uy) = {(B, x) € T(p)|p € Uy, xe@(p), 12|<p(p)} .

Lemma 5.1. Let M” be an n-manifold and let f: M"— R""* be a
normal immersion with a transverse Lipschitz field ¢ : M"*—Gi. Then
there exists a positive continuous function p(p) on M" such that T,p) is
a tubular neighborhood with respect to (f, p).

Proof. Let pe M” and let O<7<—Z—. Then there exists a neigh-
borhood U, of p such that U, is compact and f| U, is an imbedding which

satisfies the following :

a(f (@) (@), P(p) >2y for every ¢, q¢ U,, 95¢ .

On the other hand, since @ is a continuous map, we may suppose that
U, satisfies the following :

a(p(p), (@) >~ for every g€ U,.
Then, from the fact

A F(@)F (@) P@)+a(@(a), 9(0) = al £(@) £ @), P),

we obtain

A F(@) @), @) = a(F@)f (@), P) — ale(a), p(B))
>2y—y =1.

Since @ is a Lipschitz map and f|U, is a regular Lipschitz home-
omorphism, there exists a positive number A, with the condition

alp(q), P(@)) =N, f(@)—f(g)| for every g¢,q € U,.

Since M” is a paracompact space, there exists a locally finite open
covering {U;} of M” which satisfies the following :

(i) U; is compact and £|U; is an imbedding,

(i)  a(f(@)f(q), P(q)) > for every ¢, q € U;, g4/,
(i)  alp(), (@) <1 f(@)—f(¢")| for some positive number A; and
for any points ¢, ¢’ € U;.

Now let z==0 be a point in @(g) and let d=«a( f @) f (2), 2). Then

9 = a(f (@) (@), p@)) >, 78 = alF@)f @), —2) >7.
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Therefore we obtain

Ad)—fl@)+z|* = | f(g)—f@|*+ 2| +2|f(g)—f(q)| |z|cos I
=1—lcos?|)(1f(@)—F(@I*+ 127
=1 —cos)(If(@)—f@|*+ 12|

gsinzg—(lf(q'>~f(q>| +1z]).
Hence we obtain

|f(4')—f(4)+2|25in%(|f((1')—f((1)|+|2|) ----------- 6.1

Let =, be the orthogonal projection from R"** onto @(gq). Let x’ € p(q’),
x€p(q). Then

% —7(x")| = |2 |sin a(x’, p(g)) =< |«’|sin a(®(q), #(q))
=[x |a(p(@), P(q)) =N |2 | (@) —f ()]
and

|y (x) =2 | = |x—2"| — | &' =7 (x) | = |x—x"| =N |2 || £(@)— ().
From (5.1), we obtain the following

|0(q', x')—0(q, x)| = | f(q)—f(q)+ (7o(x") — x) + (&' — 7 o(x")) |
=\ f(@)—f(g) +7(x)— x| — |2 —7o(x)]

> (sin %) (@) —F(@)] + | ) —x])
L ARNACAEIA)]
= (sin 2) (15 @) ~7@1 +(1x—+D)
21| F@) 7 (@) (L+sin L ).
Hence we obtain

|0(g, &) —6(g, %)| z% sin 2 (1£(@)~F(@)| + | ~x])

if || < L sin l/x,.<1+sin 1).
2 2 2
Therefore 6 is a regular Lipschitz homeomorphism on N ; U,)
= {(p, x)eE(@)|peU;, xep(p), |x| <—; sin %/k,(l—ksin %)} Since

{U;} is a locally finite covering and U, is compact, there exists a positive
continuous functions p(p) on M” such that



242 J. Tao

p(p) < % sin -27—/7\,-(1+sin %) for peU;.

Then T,(p) is the required tubular neighborhood of M with respect
to (f, ). Thus the lemma is proved.

Now we shall state two lemmas by J. H. C. Whitehead without proof
([10], lemma 9.5, lemma 9. 6).

Lemma 5.2. Let V, W be open sets in R™ such that V is compact
and is contained in W. Let f: W—R? be a map such that there exists a
positive number « with the following condition :

lg(x)—f(x)| < x|2' —x] for any x,x € W.

Then for any given positive number n >0, there exists a differentiable
map g: V—R? which satisfies the following :

lg(x)—gx)| < kv q |2 —x] for every x,x€V
and
I fx)—gx)| <=7 for every x€ V.

Lemma 5.4. Let U, V, W be open sets in R™ such that V is compact
and U=V, Vc=W. Let f: W—R? be a map which is of class C” in an
open set N W and satisfies

I f)—fx)] < xlax'—x] for every x,% € W

and for some positive number «. Then for any given positive number n,
there exists a map h: W— R? which satisfies the following conditions :

(1) |h(x)—f(x)|<n for every x€ W and h(x)=f(x) if xe W1V,
(ii) &k is of class C* in UUN
(i) (A —h(x)| <4/ q |2’ —2x| for every x,x' € W.

Now we shall proceed to prove Proposition 3.
Let p€ M and 0<7<%. Then there exists a neighborhood W,—M

of p such that W} is compact and f is an imbedding in W/ and satisfies

a(;(Q')f(l;), P(p)>2y  for every q, g eW, qg4¢ .

Let B be a positive number such that

0<B< ", B<%{6(p)|peW,’,} and /F cot 2y < cot 28.
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Since @ is continuous, we may take a neighborhood W, of p in W,
such that @(W,)N(p(p), B). Since M is paracompact, there exist a
locally finite covering {W,}, k-planes {P*€G}} and positive numbers

{0<B,~<fy,-<%} which satisfy the following conditions :

(i) W, is compact,

(i) 8 <3 min {&(p)|pe W,

(iii) /k cot2vy;<cot2B;,

(iv)  Za(F(B)F@), P)>>v; for every p,q€ Wi, b0,
(v) (W) = NP, B),

(vi)  a(f()f(@), Q) >, for every p, g€ W;, p-+q and
every Q€ N(P;, B;),

(vil)  a(p(p), Q)< 28;< &(p) for every p€ W, and
every Q€ N(P;, ;).

Now let {V;}, {U;} (=1, 2, ---) be open coverings of M such that
U,cVv, V. W,.

Then we shall show that there exist Lipschitz maps @;: M"—G; (i=0,
1,2, -, mn, --) which satisfy

(i) =9,

(li) W,(W,)CN(P], 18_1) Z. = 1’ 2) Tt j: 1, 2; A

(i) @(p)=p;(p) if pe M-V,

(iv) o, is of C~-field in some neighborhood U, v --- vU;=C;,

that is to say, there exist a neighborhood N—M of C; and a positive
continuous function p; on N(C;) such that @z : T, (p;)—G} is of class
C~, where T,(p;) means a tubular neighborhood of N(C;) with respect
to (f, ®;). If the above mentioned Lipschitz maps ¢; (=0, 1, -, n, -+*)
are defined, we may prove Proposition 3 as follows.

Since {V;} is locally finite for any point p of M, there exist a
neighborhood U, and an integer % such that U,=M-V, if i >h,.
Define y(p)=,,(p). Then y(p) is the required one. Therefore we shall
show the existence of the above mentioned maps @;: M"—G} (=0, 1,
-+, m, ---) by induction.

Without loss of generality, we may assume that there exists a
positive continuous function p(p) on M and T.(p,-,) = {(p, x)|pEM,
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x €@, (p), |x|< p(p)} is a tubular neighborhood with respect to (f, ®,_,)
and @, 7 To(pg_,; UC,_))—G} is of class C” and 60: T,(p,_,) — R"*
is a regular Lipschitz homeomorphism on T.(p,_,; W,), where To(p,_;;
U(Cy-))=A{(D, %) € E(pg_,) | € N(Cy), x € Pg_i(P), | 21<p(D)}s To(Pa-r; W5)
={(, 0)|1pe W;, x€p,(D), |x1<p(p)}. We shall denote f(W,), f(V,)
and fF(U,) by B,, B, and U, respectively.

According to J. H. C. Whitehead ([10], lemma 10. 2), there exists a
neighborhood N(W) = R** of W such that for every x € N(W) and every
Qe NP, B,), x+@ intersects V. We may suppose that (W) is con-
tained in 0T.(p,_,; W,). Let N(B) be a neighborhood of BV in R"**
whose closure is compact and R(B)=W.

Let #, be the distance between J and R**?— N(V).
Let 8, be the metric on N<Pq,%> which is induced by the map

pp,: N (Pq , 12[—> — R". Since ¢,_,7 is a Lipschitz map and 6 is a regular

Lipschitz homeomorphism on T,(p,_,; W,), there exists a positive number
« which satisfies
84(Pa-17(@), Pa-y(q)) = #|60(q')—06(q)|

for every ¢, g€ N(V,), where N(V,)=0""R(DB).
Since 6, is an allowable local metric for the global metric « on G%,
there exists a positive number & which satisfies a(Q, R)<bd,(Q, R) for

every @, R N(P,,v,). Let 7,—sin %/ 16617/ (1+ cot 28,)(1+sin (3,/2)).
Let X, Y be open sets in V, such that
U,cX, XY, YUV,

and let F(X)=%, F(Y)=9.

According to J. H. C. Whitehead ([10], lemma 10. 1), there exists a
positive number 7, which satisfies the following conditions. If %, : 83— T8,
h,: X—>B satisfy |x—h(x)|< 9, for x€%B, |1 —h,(x')|<4n, for ' €%
respectively, then ¥ 4,(B), W h,(X) respectively.

Let m:% dist. (J, B—B), 7,— % dist. (F(Y=N(C,.)), f(C,,nW,) and

let ﬂ:min {7]1’ B 7]5}'
Now let P* be an n-plane which is orthogonal to P,. Let L%, T*

and U* be the orthogonal projections of B, T and U1 on P* respectively.
Let (u), (v) be the rectangular coordinates of P*, P, respectively. Then
B is defined by the following equation

v==tu), ucW®*, veP~P,.
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The map ¢: T* — P, satisfies
[ty —t(u)| < | —u| cot 2y, for any o/, ue LB*.

From Lemma 5.2 there exists a differentiable map g: ¥*— P, which
satisfies

| &) —t()| <, |8")—gw)|<|w —u|/k cot2y,<|u'—u|cot28,.

Let ¥ = {(u, g(u))|u € B*}. From the fact <7, we obtain L' —N(V)
CR(W). Therefore 7,| BV : B'— W may be defined, where =,=fz07":
OT(py—; Wo)—> .

: Now we shall show that z,=7,|8 : ¥ —7,(¥’) is a homeomorphism.
Let x=(u, v), '=(«/, v’) be points in ¥’ and let x=-x’. Since |g(«')—g(u)|
<|# —u|cot 28,, we obtain
«>
cot a(¥'x, Pp) = |g(w')—g(w)| | |u' —ul|<cot 28,

therefore

«—>

cot a(x’x, P,) < cot 28,,

hence

>

alxx’, P,) > 28, .

Let we®W. Then

a(;?;c» Pa_ f (W) = a(-;:)x,» Pp)—ape- f (W), Pg) >2B,—B, =B,

Therefore @,_,f '(w) intersects ¥’ at most at one point. Hence =,
is a homeomorphism from 28’ onto 7,(8¥’) which is an open set in 2.
Let #,: L— W be defined by

hi(u, Hu)) = =o(u, g(u)) .

If x=(u, f(w))€B, then |x—h(x)|=[twu)—gu)|< n. From n=nz,, we
obtain Y= #,(B) =7 (B).
Therefore we may define

¥ = 7z5'(%), P = 77(Y) and
W = 77 (f(N(Co-)) N7 (B)) -

Let @*: %*»N(Pq, %) be a map defined by

PHU) = Pq-. f ', gw)) -
Let X*, 9* and N* be the orthogonal projections of %', ¥ and N’
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into P* respectively. Since @,_,= is differentiable on T(p,_,; N(C,-,),
@* is differentiable on 9t*. Let u, «’ > 9¢* and let x=(u, g(u)), x' =, g(u")).
Then we obtain

So(@*(), p*()) = 8Py f ' o(X'), Pg-1 f 17 4(%))
=ck|lx—x|=w(|o—u|l +]gw)—g))
< wk(1+cot2B,)|u —ul.
Since @, (W, W)NP,, B)NNP;, B;) (i=1,2,+-) and {W} is

locally finite and V, is compact, there exists an integer /, such that
Vo Wy=t i il Let o' = (ulpe-(Warn W), N(Po, Z)= NPy, 8);
j=1,--,14;}. From Lemma 5.3, there exists a map *: 58*—>N<Pq , %)
which satisfies the following :

(1) 8(*(w), p*(w)<n" and Y*(u)=g*(u) if ue€B*—P¥,
(ii) * is differentiable in ¥ X*,
(i) By(y*(u), ¥*(u)) = 4u(1+cot 28,)\/nk|w —ul .
Let ' : ¥ — (G} be defined by
v (u, gw)) = ¥*(u) .

Then ' is differentiable in M U¥ and /(B)=*(B*)=N(P,, B, and
a(¥'(2"), ¥'(x))=a(y* @), ) = b8,(y*(u'), y*(u)) = 4bx (1+cot 28,)\/nk
|/ —u| < 4br(1+cot 28,)/nk|x’—x| where x=(u,g(w)), ¥’ =W, glu')) € L.

Therefore v’ is a Lipschitz field on ¥’ and 7,(y*)= {x+y€ R"*|x ¥/,
y€Y(x), |y|< o} is identified with a tubular neighborhood of %' with
respect to the identity map: B — R”** and +’, where

o = sin % / 8bren /75 (1 + cot 28,)(1+sin B, /2) .

Since /(BT N(P,, B,), B'R(W,), amap ~: B —W is defined by
h(x)=(x+'(x)) N BB,

From |x—h(x) | =2]|f(u)—g(u)| <29 =29,=0 for x=(u, g(u)) €V, we
obtain A(¥)=T,.(¢’). Therefore & and ='|h(B’) are the inverse each
other, where =’ is the projection #': T,(*)—8'. Therefore % is a
homeomorphism from %’ onto A(¥)=WNT,.

Since |x—75'(x)|< 2% for x=(u, t(u)) € =, (L), we obtain

|2 — k73 (x) | < | 2 — 75 (%) | + |75 (%) — h () [< 7 .

Therefore we obtain
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Mo hrs'(®) = kX)) = e P=B.
As /' (x) =*(x) = p*(u) = p,_, frro(x) for x=(u, g(u)) >B'—Y’, we obtain
h(x)=m(x) for x € B .
Yot B(B')— Gy is defined by v, (x)=+'7'(x). Now we define o,:
M"— Gt by
Po(D) = Yo f(p) if pefAW)
= @,(p) it peM—fTR(D).

Then ¢, is a well-defined single-valued map. Since +/, =’ are
Lipschitz maps, v, is a Lipschitz map. Since W and ¢,, is a
Lipschitz map, ¢, is a Lipschitz map.

From A(Y’)—B, we obtain @,(p)=¢,_,(p) if pe M—V,. Let peW,. If
PEM—fh(Y), then @ (p)=p,_(p) € N(P;,B8)) (=1,2,--). I pe D),
then @ (p)="*() € N(P;, 8,) (j=1, -, 1,), where p=f""h(u, g(u)).

Therefore we obtain @, (W,) = N(P;, B;) for every j>0. From
F(WonCy)nhny* F(Y—N(C,-,)) =, we obtain

CorNfHY) = Corynfhrs (D) = Coyn f T has (YNNG, )
Cf T f(VenN(Co-y) = fTHI) .

Therefore we obtain
Coor & (N(Cy)—f RNV f T H(I)
and ¢, is a C~-field in a neighborhood
(NCo))—fF RNV MR VE) of C,=C,,vl,.

Thus Proposition 3 is proved.

§ 6. The proof of Proposition 4.

Let T(p) be a tubular neighborhood such that the map o= : T(p)— G5
is differentiable. For any point pe€ M, there exists a neighborhood
W,=M of p such that 0|T(¢; W,) is a Lipschitz homeomorphism and

(W ,) is contained in N <¢( D), -721) Let P, be an n-plane orthogonal to

@(p) through a point x,€0T(p; W,)N(p(p)+f(p)). Then there exists
a neighborhood U, of x, in P, so that U,—0T(p; W,). Since 0 is a
homeomorphism on T(p; W,), we may define =,=070"", ¢,=pf™" in
0T(p; W,), f(W,) respectively. As is seen in the previous section, if
U, is sufficiently small, =,: U,— f(W,) is a homeomorphism. We may
introduce a local coordinate system (f~'z,(U,), 7,'f) in a neighborhood
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f 7, (U,) of p where =,' means the inverse map of =,|U,. Then we
shall show that {(f '7,(U,), =,'f)} defines a differentiable structure
on M.

Suppose that f'z (U, N f 7 (U,)=S==¢. It is sufficient to prove
that =;'z,: 7, f(S)—=;'f(S) is a differentiable map. Let x,€7,"f(S)
and let P be an orthogonal n-plane to ¢,z ,(x,)=. Then R""*=P+Q
and there is a neighborhood W #,'f(S) of x, such that @,z , (W)

N <Q, %) and W, =»;'z, (W) are given by the equations
U,-ZZ"(Z”-%]- l.:].,"',k,
j=1
vi:anijuj i:]-)“"ky
=1

respectively, where (x;) € P, (v;) € Q.
Since (pg@,(W)CN(Q, 12r—>, the k-plane @,z ,(x), for x € W, is given
by the equation

k “
u; = > Cij(au Tty an)vj i=1,n,
j=1
where («,, *++, «,) is the coordinates of x in P. Since o= : T(p)—Gi is
differentiable, the functions c;;(«,, -, @,) are differentiable. Since the

k-plane ¢,z (x)+x is given by
(w) = (@) + [les; [ {©)— lla;; |1 (@)},

the (u, v)-coordinates of the point =;'z ,(x) are given by the equations

() = (@+ lle;(@) [ {(v)— lla; | (@)} ,
@) = 1811 (%),
where («) is the (u#)-coordinates of x € W.

Let y(u, a)=(u)—(a)— llc; () [ {11 0;;1[(w) — || a;; ]| (a)} and let («,) be
the (#)-coordinates of x,. Then ||¢;;(«,)|| =0 since @,7,(x,)=@, and it

follows that w is the unit matrix. Therefore it follows from
u

the implicit function theorem that =;!

hence at every point of =,'f(S).

Next we shall show that the projection = : T(p)— M is differentiable.
Let p,€ T(p) and let =(p,)=p. Let P be an n-plane orthogonal to
p(p)=@Q. Then there exist neighborhoods V—x,+®@, U—x,+P of
x,=6(p,) such that &(u+x)=(u, 7’(u+x)) is a diffeomorphism on O'=
{u+xeR"*|luc U, xcpnd(u), 7'(u+x)e€ V}, where #’ is the orthogonal

7, is differentiable near x, and
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projection 7’ : R***—>@Q+x,. Since the following diagram is commutative

/

g g
0= 00)—>0 ——>UxV

e

70 (U) — fz07(U)—>U,

7 is differentiable.

Since the cross-section #(p)=(p, 0): M— T,(p) of the fibre bundle
T(p) is approximated by a differentiable cross-section #(p) : M— T(p)
([8]), we may define a differentiable map g: M— R""* by g=0h which
satisfies |g(p)—fF(p)|< p(p), where p(p) is the positive continuous func-
tion which defines To(p). Let 0< p(p)< &(p). Then we may obtain a
differentiable map g: M”— R"** such that |g(p)—f(»)|< &(p), which is
a required one in Proposition 4.

If M is a combinatorial manifold and f: M”— R""* is a semi-linear
immersion, then it is obvious that the above introduced differentiable
structure is compatible with the combinatorial structure of M”. Thus
Proposition 4 is proved, and the proof of the main theorem is complete.

(Received September 14, 1961)
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