

Title	Semisimple normal subgroups of transitive Riemannian isometry groups
Author(s)	Gordon, Carolyn
Citation	Osaka Journal of Mathematics. 1982, 19(2), p. 283-286
Version Type	VoR
URL	https://doi.org/10.18910/5630
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Gordon, C.
Osaka J. Math.
19 (1982), 283–286

SEMICOMPACT NORMAL SUBGROUPS OF TRANSITIVE RIEMANNIAN ISOMETRY GROUPS

CAROLYN GORDON¹⁾

(Received August 1, 1980)

1. Introduction. In this paper we prove the following:

Theorem. *Suppose the connected Lie group A is a product $A=GL$ of a connected subgroup G and a compact subgroup L . Let H be a connected semisimple normal subgroup of G . Then*

- (a) *if H is of noncompact type, H is normal in A ;*
- (b) *if H is compact, then H is contained in a compact semisimple normal subgroup of A .*

Here H “of noncompact type” means all simple connected normal subgroups of H are noncompact.

This theorem is related to the problem of describing the group of all isometries of a connected homogeneous Riemannian manifold M in terms of a given transitive connected subgroup G . Indeed if A is the connected component of the identity in the full isometry group of M , then $A=GL$ where L , the isotropy subgroup of A at a point of M , is compact.

Part (a) of the theorem generalizes and provides a new proof of a result of [1] in which the normality of G in A is established when G itself is semisimple of noncompact type. Following the proof of the theorem, we will note a sufficient condition for equality of the noncompact parts of Levi factors of G and A , generalizing a further result of [1].

2. Recall that all maximal compact subgroups of a connected Lie group A are conjugate under an inner automorphism of A . If $A=GL$ with L compact and if U is a maximal compact subgroup of A , then a conjugate of L lies in U . It is then easily verified that $A=GU$. Thus we are free to replace L by any convenient maximal compact subgroup of A .

A maximal connected semisimple subgroup A_{ss} of A will as usual be called a Levi factor of A . Being semisimple, A_{ss} is a product $A_{ss}=A_{nc}A_c$ of connected normal semisimple subgroups A_{nc} and A_c of noncompact and compact type, respectively. A_{nc} and A_c will be called the noncompact and compact

Technion Preprint series No. MT-474.

1) Research performed as a Lady Davis Fellow at the Technion—Israel Institute of Technology.

parts of A_{ss} . Similar notation will be used for the corresponding Lie algebras.

Proof of the theorem. Choose Levi factors G_{ss} and A_{ss} of G and A with $H \subset G_{ss} \subset A_{ss}$. Denote by \mathfrak{a} , \mathfrak{g} , \mathfrak{a}_{ss} , \mathfrak{g}_{ss} , and \mathfrak{h} the Lie algebras of A , G , A_{ss} , G_{ss} , and H , respectively, and by \mathfrak{a}_c and \mathfrak{g}_c the radicals of \mathfrak{a} and \mathfrak{g} . As above we write $\mathfrak{a}_{ss} = \mathfrak{a}_{nc} + \mathfrak{a}_c$ and $\mathfrak{g}_{ss} = \mathfrak{g}_{nc} + \mathfrak{g}_c$. Let $\pi_{nc}: \mathfrak{a} \rightarrow \mathfrak{a}_{nc}$ and $\pi_c: \mathfrak{a} \rightarrow \mathfrak{a}_c$ be the projections relative to the vector space direct sum $\mathfrak{a} = \mathfrak{a}_{nc} + \mathfrak{a}_c + \mathfrak{a}_r$. Note that $\pi_c(\mathfrak{g}_{nc}) = \{0\}$ since \mathfrak{a}_c contains no noncompact semisimple subalgebras, so $\mathfrak{g}_{nc} \subset \mathfrak{a}_{nc}$.

Let $\mathfrak{g}_{nc} = \mathfrak{k} + \mathfrak{p}$ be a Cartan decomposition of \mathfrak{g} , i.e., \mathfrak{k} is a maximal compactly imbedded subalgebra of \mathfrak{g}_{nc} , $[\mathfrak{k}, \mathfrak{p}] = \mathfrak{p}$ and $[\mathfrak{p}, \mathfrak{p}] = \mathfrak{k}$. By a theorem of Mostow (see [2], pp. 277 and 569), \mathfrak{a}_{nc} has a Cartan decomposition $\mathfrak{a}_{nc} = \mathfrak{k}' + \mathfrak{p}'$ with

$$(1) \quad \mathfrak{k} + \pi_{nc}(\mathfrak{g}_c) \subset \mathfrak{k}' \quad \text{and} \quad \mathfrak{p} \subset \mathfrak{p}'.$$

Note that $\mathfrak{k}' + \mathfrak{a}_c$ is a maximal compact subalgebra of \mathfrak{a}_{ss} . Hence, letting \mathfrak{u} be any maximal compactly imbedded subalgebra of \mathfrak{a} containing $\mathfrak{k}' + \mathfrak{a}_c$, it follows easily that

$$(2) \quad \mathfrak{u} = (\mathfrak{k}' + \mathfrak{a}_c) + (\mathfrak{u} \cap \mathfrak{a}_r).$$

$\mathfrak{u} \cap \mathfrak{a}_r$ is a solvable ideal of \mathfrak{u} and hence is central in \mathfrak{u} . Thus

$$(3) \quad [\mathfrak{u}, \mathfrak{u}] \subset \mathfrak{a}_{ss}.$$

The connected subgroup U of A with Lie algebra \mathfrak{u} contains a maximal compact subgroup of A , so $A = GU$ and

$$(4) \quad \mathfrak{a} = \mathfrak{g} + \mathfrak{u}.$$

We first show that $[\mathfrak{h}, \mathfrak{a}_r] = \{0\}$. We may assume that \mathfrak{h} is simple. If \mathfrak{h} is of noncompact type, then \mathfrak{h} is a \mathfrak{g}_{nc} -ideal and therefore has a Cartan decomposition $\mathfrak{h} = \mathfrak{k}_0 + \mathfrak{p}_0$ with $\mathfrak{k}_0 = \mathfrak{k} \cap \mathfrak{h}$ and $\mathfrak{p}_0 = \mathfrak{p} \cap \mathfrak{h}$. If \mathfrak{h} is compact, then $\mathfrak{h} \subset \mathfrak{g}_c \subset \mathfrak{u}$ by (1) and (2). Thus in either case, $\mathfrak{h} \cap \mathfrak{u} \neq \{0\}$. In view of (3) and (4) we have

$$(5) \quad [\mathfrak{h} \cap \mathfrak{u}, \mathfrak{a}] \subset [\mathfrak{h}, \mathfrak{g}] + [\mathfrak{u}, \mathfrak{u}] \subset \mathfrak{h} + (\mathfrak{u} \cap \mathfrak{a}_{ss}) \subset \mathfrak{a}_{ss}.$$

Hence $[\mathfrak{h} \cap \mathfrak{u}, \mathfrak{a}_r] = \{0\}$. Since the annihilator in \mathfrak{g} of \mathfrak{a}_r is a \mathfrak{g} -ideal, it follows that

$$(6) \quad [\mathfrak{h}, \mathfrak{a}_r] = \{0\}.$$

Suppose now that \mathfrak{h} is of noncompact type and write $\mathfrak{h} = \mathfrak{k}_0 + \mathfrak{p}_0$ as in the paragraph above. By (5),

$$[\mathfrak{k}_0, \mathfrak{a}_{nc}] \subset (\mathfrak{h} + \mathfrak{u}) \cap \mathfrak{a}_{nc} = \mathfrak{k}' + \mathfrak{h} = \mathfrak{k}' + \mathfrak{p}_0.$$

In particular,

$$(7) \quad [\mathfrak{k}_0, \mathfrak{p}'] \subset (\mathfrak{k}' + \mathfrak{p}_0) \cap \mathfrak{p}' = \mathfrak{p}_0.$$

$[\mathfrak{u}, \mathfrak{p}_0] = [\mathfrak{k}', \mathfrak{p}_0]$ by (2) and (6), so (4) implies

$$[\mathfrak{a}_{nc}, \mathfrak{p}_0] \subset [\mathfrak{g}, \mathfrak{p}_0] + [\mathfrak{k}', \mathfrak{p}_0] \subset \mathfrak{h} + \mathfrak{p}'.$$

Therefore

$$(8) \quad [\mathfrak{p}', \mathfrak{p}_0] \subset (\mathfrak{h} + \mathfrak{p}') \cap \mathfrak{k}' = \mathfrak{k}_0.$$

(7) and (8) together yield $[\mathfrak{p}', \mathfrak{h}] \subset \mathfrak{h}$. Since $\mathfrak{a}_{nc} = [\mathfrak{p}', \mathfrak{p}'] + \mathfrak{p}'$, \mathfrak{h} is an \mathfrak{a}_{nc} -ideal. (i) now follows from (6).

Next suppose H is compact. Then $\mathfrak{h} \subset \mathfrak{u} \cap \mathfrak{a}_{ss}$ and $[\mathfrak{h}, \mathfrak{a}] \subset \mathfrak{u}$ by (5). Noting that $[\mathfrak{u} \cap \mathfrak{a}_{ss}, \mathfrak{p}'] = [\mathfrak{k}', \mathfrak{p}'] = \mathfrak{p}'$, we have $[\mathfrak{h}, \mathfrak{p}'] \subset \mathfrak{u} \cap \mathfrak{p}' = \{0\}$. Hence $[\mathfrak{h}, \mathfrak{a}_{nc}] = \{0\}$ and $\mathfrak{h} \subset \mathfrak{a}_c$. Let \mathfrak{h}' be the minimal \mathfrak{a}_c -ideal containing \mathfrak{h} . By (6), $[\mathfrak{h}', \mathfrak{a}_r] = \{0\}$ so \mathfrak{h}' is an \mathfrak{a} -ideal. The corresponding connected subgroup H' of A is a compact semisimple normal subgroup containing H .

REMARK. Examples are easily constructed indicating that part (b) of the theorem cannot in general be strengthened. Even when G itself is a semisimple, compact, simply transitive group of isometries of a Riemannian manifold M . Ozeki has shown in [3] that G need not be normal in the full connected isometry group A of M .

Corollary. *Given Lie groups $A = GL$ with A and G connected and L compact, suppose that the noncompact part G_{nc} of a Levi factor of G is normal in G . If no homomorphic image of the radical of G is isomorphic to a transitive group of isometries of a Riemannian symmetric space of the noncompact type, then G_{nc} is the noncompact part of every Levi factor of A (and is normal in A).*

Proof. By the theorem, G_{nc} is normal in A . Since all Levi factors of a connected Lie group are conjugate, G_{nc} lies in every Levi factor of G and A . Let $G_{ss} = G_{nc}G_c$ and $A_{ss} = A_{nc}A_c$ be any Levi factors and let G_r and A_r denote the radicals of G and A . Let

$$\pi: A \rightarrow A/(G_{nc}A_cA_r)$$

be the projection. Note that $\pi(A)$ is semisimple of noncompact type and is trivial if and only if $G_{nc} = A_{nc}$. Modding out the discrete center if necessary, we assume $\pi(A)$ has finite center. Now

$$\pi(A) = \pi(G)\pi(L) = \pi(G_c)\pi(G_r)\pi(L).$$

As noted previously, we may replace $\pi(L)$ by a maximal compact subgroup U of $\pi(A)$ containing $\pi(G_c)$, so that $\pi(A) = \pi(G_r)U$. Under any left-invariant Riemannian metric, $\pi(A)/U$ is a symmetric space of the noncompact type (see [2], pp. 252–253) on which $\pi(G_r)$ acts transitively by isometries. The corollary follows.

References

- [1] C. Gordon: *Riemannian isometry groups containing transitive reductive subgroups*, Math. Ann. **248** (1980), 185–192.
- [2] S. Helgason: Differential geometry, Lie groups, and symmetric spaces, New York, Academic Press, 1978.
- [3] H. Ozeki: *On a transitive transformation group of a compact group manifold*, Osaka J. Math. **14** (1977), 519–531.

Department of Mathematics
Lehigh University
Bethlehem, Pennsylvania 18015
U.S.A.