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1. Introduction. In this paper we prove the following:

Theorem. Suppose the comnected Lie group A is a product A=GL of a
connected subgroup G and a compact subgroup L. Let H be a connected semisimple
normal subgroup of G. Then
(a) if H is of noncompact type, H is normal in A ;

(b) if H is compact, then H is contained in a compact semisimple normal subgroup
of A.

Here H “‘of noncompact type” means all simple connected normal subgroups of
H are noncompact.

This theorem is related to the problem of describing the group of all isome-
tries of a connected homogeneous Riemannian manifold A in terms of a given
transitive connected subgroup G. Indeed if 4 is the connected component of
the identity in the full isometry group of M, then A=GL where L, the isotropy
subgroup of 4 at a point of M, is compact.

Part (a) of the theorem generalizes and provides a new proof of a result of
[1] in which the normality of G in 4 is established when G itself is semisimple of
noncompact type. Following the proof of the theorem, we will note a sufficient

condition for equality of the noncompact parts of Levi factors of G and A4,
generalizing a further result of [1].

2. Recall that all maximal compact subgroups of a connected Lie group
A are conjugate under an inner automorphism of 4. If A=GL with L compact
and if U is a maximal compact subgroup of 4, then a conjugate of L lies in U.
It is then easily verified that A=GU. Thus we are free to replace L by any
convenient maximal compact subgroup of 4.

A maximal connected semisimple subgroup 4, of A will as usual be called
a Levi factor of 4. Being semisimple, 4, is a product A,,=A, A, of con-
nected normal semisimple subgroups 4, and A4, of noncompact and compact
type, respectively. A4, and A, will be called the noncompact and compact
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parts of A,,. Similar notation will be used for the corresponding Lie algebras.

Proof of the theorem. Choose Levi factors G, and 4, of G and A4 with
HcG,,cA,,. Denote by a,g,aq,, g, and § the Lie algebras of 4, G, 4,
G,,, and H, respectively, and by a, and g, the radicals of a and g. As above we
write a,=a,,+a, and g§,,=g,.+¢g.. Let =,:a—aq, and z.:a—aq, be the pro-
jections relative to the vector space direct sum a=ga, + a,+a,. Note that
7,(8,.)= {0} since a, contains no noncompact semisimple subalgebras, so g,.Ca,,.

Let g,,=!+p be a Cartan decomposition of g, i.e.,  is a maximal com-
pactly imbedded subalgebra of g, [f, P]=p and [p, p]=Ef. By a theorem of
Mostow (see [2], pp. 277 and 569), a,. has a Cartan decomposition a,=%'4p’
with

(1) t+z.(g)ct and pCh’.

Note that t’'+a, is a maximal compact subalgebra of a,,. Hence, letting 11 be
any maximal compactly imbedded subalgebra of a containing ¥'4-a,, it follows
easily that

2) u=F+a)+(Na,).
1Na, is a solvable ideal of 1 and hence is central in u. Thus
3) v, u]ca,, .

The connected subgroup U of 4 with Lie algebra 1t contains a maximal compact

subgroup of 4, so A=GU and
4 a=g+tu.

We first show that [§, a,]={0}. We may assume that § is simple. Iffis
of noncompact type, then § is a g,.-ideal and therefore has a Cartan decomposi-
tion h=%F,+p, with {,=tNYH and p,=pNY. If §is compact, then hcg.Cu by
(1) and (2). Thus in either case, )N u=={0}. In view of (3) and (4) we have

(5) bNu, alc[h, g]+[n, u]ch+(uNna,)Ca,,.

Hence [HN 1, a,]={0}. Since the annihilator in g of @, is a g-ideal, it follows
that

(6) (5, a]= {0} .
Suppose now that § is of noncompact type and write h==%+p, as in the
paragraph above. By (5),

[for anr]c(b+u) n am‘ == f'+b == fl+p0 .

In particular,

(7) [fo: pl]c(f,+po) npl = ‘po .
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[i1, p]=[¥', 9] by (2) and (6), 0 (4) implies

[ann ‘po] c [g’ po]‘i_[f,, po] Cb+p’ .
Therefore

(8) [P, p]c(O+P)NY =1,

(7) and (8) together yield [p’,h]ch. Since a,=[p’, p']+P’, b is an a,.-ideal.
(1) now follows from (6).

Next suppose H is compact. Thenhcuna,, and [f), ajcuby (5). Noting
that [uNa,, p’]=[F, p']=p’, we have [§, p'Jcuny’={0}. Hence [b, a,.]=1{0}
and hca,. Let§’ be the minimal a,-ideal containing §. By (6), [§’, a,]= {0}
so b’ is an a-ideal. The corresponding connected subgroup H’' of 4 is a
compact semisimple normal subgroup containing H.

ReEMaRrk. Examples are easily constructed indicating that part (b) of the
theorem cannot in general be strengthened. Even when G itself is a semisimple,
compact, simply transitive group of isometries of a Riemannian manifold M.
Ozeki has shown in [3] that G need not be normal in the full connected isometry
group A of M.

Corollary. Given Lie groups A=GL with A and G connected and L compact,
suppose that the noncompact part G,, of a Levi factor of G is normal in G. If no
homomorphic image of the radical of G is isomorphic to a transitive group of isome-
tries of a Riemannian symmetric space of the noncompact type, then G,, is the non-
compact part of every Levi factor of A (and is normal in A).

Proof. By the theorem, G, is normal in 4. Since all Levi factors of a
connected Lie group are conjugate, G,, lies in every Levi factor of G and A.
Let G,,=G,.G, and A,,=A, A, be any Levi factors and let G, and A4, denote
the radicals of G and 4. Let

w: A—A[(G,.AA,)

be the projection. Note that z(A4) is semisimple of noncompact type and is
trivial if and only if G,,.=4,,. Modding out the discrete center if necessary,
we assume 7(A4) has finite center. Now

2(A) = m(G)n(L) = n(G)n(G,)n(L) .

As noted previously, we may replace #(L) by a maximal compact subgroup U
of n(A) containing #(G,), so that #(4)==(G,)U. Under any left-invariant
Riemannian metric, z(A4)/U is a symmetric space of the noncompact type (see
[2], pp. 252-253) on which 7z(G,) acts transitively by isometries. The corollary
follows.
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