

Title	Note on a 2-dimensional versal D_8-cover
Author(s)	Tokunaga, Hiro-o
Citation	Osaka Journal of Mathematics. 2004, 41(4), p. 831-838
Version Type	VoR
URL	https://doi.org/10.18910/5662
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

NOTE ON A 2-DIMENSIONAL VERSAL D_8 -COVER

Dedicated to Professor Makoto Namba on his sixtieth birthday

HIRO-O TOKUNAGA

(Received April 9, 2003)

Introduction

Let G be a finite group. Let X and Y be normal projective varieties. X is called a G -cover of Y if there exists a finite surjective morphism $\pi: X \rightarrow Y$ such that the induced morphism $\pi^*: \mathbb{C}(Y) \rightarrow \mathbb{C}(X)$ gives a Galois extension with $\text{Gal}(\mathbb{C}(X)/\mathbb{C}(Y)) \cong G$, where $\mathbb{C}(X)$ and $\mathbb{C}(Y)$ denote the rational function fields of X and Y , respectively.

DEFINITION 0.1. A G -cover $\varpi: X \rightarrow M$ is said to be versal if it satisfies the following property:

For any G -cover $\pi: Y \rightarrow Z$, there exist a rational map $\nu: Z \dashrightarrow M$ and a Zariski open set U in Z such that

- (i) $\nu|_U: U \rightarrow M$ is a morphism, and
- (ii) $\pi^{-1}(U)$ is birational to $U \times_M X$ over U .

One could say the investigation of versal G -covers is a geometric study of generic or versal G -polynomials (see [2] and [4]). The notion of versal G -covers implicitly appeared in [7], [8], and is defined explicitly in [12], [13]. It is known that there exists a versal G -cover for any finite group G ([8, Theorem 2.4]). The dimension of the versal G -cover given by Namba, however, is equal to $\sharp(G)$. Hence it does not seem to be tractable in practical use. We need to find a tractable model for G . So far it has been done for some cases by ad-hoc methods in ([12], [13]).

In this note, we consider versal D_8 -covers, where D_8 is the dihedral group of order 8, i.e., $D_8 = \langle \sigma, \tau \mid \sigma^2 = \tau^4 = (\sigma\tau)^2 = 1 \rangle$. It is known that any versal D_8 -cover has dimension at least 2 (see [2]), and one of such models was given in [12]. The purpose of this article is to give another new model, which is described as follows:

Let $\varphi_{141}: X_{141} \rightarrow \mathbb{P}^1$ be the rational elliptic surface obtained by blowing-up base

2000 *Mathematics Subject Classification* : 14E20, 14J27.

Research partly supported by the research grant 14340015 from JSPS.

points of the $(2, 2)$ -pencil on $\mathbb{P}^1 \times \mathbb{P}^1$ given by

$$\left\{ \lambda_0(s_0 - s_1)^2(t_0 - t_1)^2 + \lambda_1(s_0s_1t_0t_1) = 0 \right\}_{[\lambda_0:\lambda_1] \in \mathbb{P}^1}.$$

As for X_{141} , the following facts are well-known:

(i) X_{141} is so-called the elliptic modular surface attached to

$$\Gamma_1(4) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}(2, \mathbb{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{4} \right\},$$

and φ_{141} has three singular fibers and their types are of I_1^* , I_4 and I_1 (see [3, p.350]).

(ii) The group of sections, $MW(X_{141})$, is isomorphic to $\mathbb{Z}/4\mathbb{Z}$ (see [6] or [9]).

Let $\sigma_{\varphi_{141}}$ be the involution on X_{141} induced by the inversion with respect to the group law and let τ_s be the translation by a 4-torsion section s . $\sigma_{\varphi_{141}}$ and τ_s generate a finite fiber preserving automorphism group isomorphic to D_8 . Let $\Sigma_{141} := X_{141}/\langle \sigma_{\varphi_{141}}, \tau_s \rangle$ be the quotient surface and we denote its quotient morphism by $\pi_{141}: X_{141} \rightarrow \Sigma_{141}$. Now we are in position to state our result:

Theorem 0.2. $\pi_{141}: X_{141} \rightarrow \Sigma_{141}$ is a versal D_8 -cover.

In comparison with the model in [12], this model has a nice description with respect to the action of the Galois group.

1. Preliminaries

Let S be a smooth minimal projective surface, and let Λ be a pencil of curves on S such that a general member is irreducible. Let $\bar{\varphi}_\Lambda: S \dashrightarrow \mathbb{P}^1$ be the rational map determined by Λ , and let $q: S_\Lambda \rightarrow S$ be the resolution of the indeterminacy of $\bar{\varphi}_\Lambda$. We denote the induced morphism from S_Λ to \mathbb{P}^1 by φ_Λ . We may assume that φ_Λ is relatively minimal. Let us begin with the following lemma.

Lemma 1.1. *Let σ be an automorphism of S . Suppose that $\bar{\varphi}_\Lambda^\sigma = \bar{\varphi}_\Lambda$ (we regard $\bar{\varphi}_\Lambda$ as an element of $\mathbb{C}(S_\Lambda)$). Then σ gives rise to a fiber preserving automorphism of S_Λ (By abuse of notation, we also denote it by σ).*

Proof. Since $\mathbb{C}(S) \cong \mathbb{C}(S_\Lambda)$, $\bar{\varphi}_\Lambda^\sigma = \bar{\varphi}_\Lambda$ implies $\varphi_\Lambda^\sigma = \varphi_\Lambda$. Hence a general fiber of φ_Λ goes to that of φ_Λ under σ . Let $\bar{\sigma}$ be the induced birational map from S_Λ to itself induced by σ . Let $\mu: \hat{S}_\Lambda \rightarrow S_\Lambda$ be a succession of blowing-ups so that (i) $\hat{\sigma} := \bar{\sigma} \circ \mu$ becomes a birational morphism and (ii) the number of the blowing-ups is minimal. It is well-known that $\hat{\sigma}$ is a composition of blowing-downs. Let E_1, \dots, E_r be the exceptional divisors for μ , and let F_1, \dots, F_s be those for $\hat{\sigma}$. We may assume that F_1 is the (-1) curve for the first blow-down. Since F_1 can not be any of E_i

($i = 1, \dots, r$), $F_1 E_i \geq 0$ ($i = 1, \dots, r$). Since

$$-1 = F_1 K_{\hat{S}_\Lambda} = F_1 \left(\mu^* K_{S_\Lambda} + \sum_{j=1}^r m_j E_j \right) = F_1 \mu^* K_{S_\Lambda} + F_1 \left(\sum_{j=1}^r m_j E_j \right),$$

we have $F_1 \mu^* K_{S_\Lambda} \leq -1$. Hence $\mu(F_1)$ is not any irreducible component in a fiber of φ_Λ . Since the image of $\mu(F_1)$ by σ is a point, this implies that a general fiber of φ_Λ does not go to that of φ_Λ under $\hat{\sigma}$, which leads us to a contradiction. \square

EXAMPLE 1.2. Let (x, y) be an inhomogeneous coordinate of $\mathbb{P}^1 \times \mathbb{P}^1$. The pencil on $\mathbb{P}^1 \times \mathbb{P}^1$ in Introduction is given by

$$\Lambda: \{ \lambda_0(x-1)^2(y-1)^2 + \lambda_1 xy = 0 \}_{[\lambda_0, \lambda_1] \in \mathbb{P}^1}.$$

Let σ and τ be the automorphisms of $\mathbb{P}^1 \times \mathbb{P}^1$ given by

$$(x^\sigma, y^\sigma) = (y, x), \quad (x^\tau, y^\tau) = \left(y, \frac{1}{x} \right).$$

σ and τ generate a finite automorphism group isomorphic to D_8 . Since the rational function on $\mathbb{P}^1 \times \mathbb{P}^1$,

$$\frac{(x-1)^2(y-1)^2}{xy},$$

is invariant under σ and τ , one can apply Lemma 1.1 to this case. In fact, it follows that $(\mathbb{P}^1 \times \mathbb{P}^1)_\Lambda = X_{141}$, $\varphi_\Lambda = \varphi_{141}$, and σ, τ fiber preserving automorphisms of X_{141} . By Example 4.7, Chapter III in [11], both σ and τ are the compositions of isogenies and translations. In particular, the corresponding isogenies should be isomorphisms as an elliptic curve. By Theorem 10.1, Chapter III in [11], the automorphisms of X_{141} as an elliptic curve are only the identity and $\sigma_{\varphi_{141}}$. Since $\sigma \circ \tau$ has a fixed point $(1, 0)$, the induced fiber preserving automorphism on X_{141} is non-trivial and fixes a section, O . Hence we may assume that $\sigma \circ \tau = \sigma_{\varphi_{141}}$ on X_{141} , by regarding O as the zero. Also if τ is the composition of $\sigma_{\varphi_{141}}$ and a translation, then $\tau^2 = \text{id}$ on X_{141} . This implies that we may assume that τ is a translation by a 4-torsion section s .

EXAMPLE 1.3. Let $N = \mathbb{Z}^{\oplus 2}$ and let Δ_i ($i = 1, \dots, 6$) be 2-dimensional cones in $N \otimes \mathbb{R}$ given by

$$\begin{aligned} \Delta_1 &= \mathbb{R}_{\geq 0} \mathbf{e}_1 + \mathbb{R}_{\geq 0} (\mathbf{e}_1 + \mathbf{e}_2) & \Delta_2 &= \mathbb{R}_{\geq 0} (\mathbf{e}_1 + \mathbf{e}_2) + \mathbb{R}_{\geq 0} \mathbf{e}_2 \\ \Delta_3 &= \mathbb{R}_{\geq 0} (-\mathbf{e}_1) + \mathbb{R}_{\geq 0} \mathbf{e}_2 & \Delta_4 &= \mathbb{R}_{\geq 0} (-\mathbf{e}_1) + \mathbb{R}_{\geq 0} (-\mathbf{e}_1 - \mathbf{e}_2) \\ \Delta_5 &= \mathbb{R}_{\geq 0} (-\mathbf{e}_1 - \mathbf{e}_2) + \mathbb{R}_{\geq 0} (-\mathbf{e}_2) & \Delta_6 &= \mathbb{R}_{\geq 0} (-\mathbf{e}_2) + \mathbb{R}_{\geq 0} \mathbf{e}_1, \end{aligned}$$

where $\mathbf{e}_1 = {}^t(1, 0)$, $\mathbf{e}_2 = {}^t(0, 1)$. Let $\Sigma = \bigcup_{i=1}^6 \Delta_i$ and $X_{D_{12}} = T_N \text{emb}(\Sigma)$ (see [10, §1.2]). The subgroup, G , of $\text{GL}(2, \mathbb{Z})$ generated by

$$\sigma = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \tau = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}$$

is isomorphic to D_{12} . Since G preserves Σ as above, D_{12} acts on $X_{D_{12}}$. An explicit description is as follows:

Let $\{f_1, f_2\}$ be the basis of $\text{Hom}(N, \mathbb{Z})$ dual to $\{\mathbf{e}_1, \mathbf{e}_1 + \mathbf{e}_2\}$ and let $x = \mathbf{e}(f_1)$ and $y = \mathbf{e}(f_2)$. (x, y) gives an affine coordinate of the affine open set, U_{Δ_1} , determined by Δ_1 . Then

$$(x^\sigma, y^\sigma) = (y, x), \quad (x^\tau, y^\tau) = \left(\frac{1}{y}, xy \right).$$

Consider the pencil on X which is given on U_{Δ_1} by

$$\{\lambda_0(xy) + \lambda_1(xy+1)(x+1)(y+1) = 0\}_{[\lambda_0, \lambda_1] \in \mathbb{P}^1}$$

on U_{σ_1} . Since

$$\frac{xy}{(xy+1)(x+1)(y+1)}$$

is D_{12} -invariant, one can apply Lemma 1.1 to this case. In this case, X_Λ coincides with the rational elliptic surface $\varphi_{6321}: X_{6321} \rightarrow \mathbb{P}^1$ (the notation is due to [6]). The following facts on X_{6321} are well-known:

(i) X_{6321} is so-called the elliptic modular surface attached to

$$\Gamma_1(6) := \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}(2, \mathbb{Z}) \mid \begin{pmatrix} a & b \\ c & d \end{pmatrix} \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \pmod{6} \right\},$$

and has four singular fibers and their types are of I_6 , I_3 , I_2 and I_1 (see [1] and [6]).

(ii) The group of sections, $MW(X_{6321})$, is isomorphic to $\mathbb{Z}/6\mathbb{Z}$ (see [6]).

In our case, $\varphi_\Lambda = \varphi_{6321}$, and σ and τ generate a fiber preserving automorphism group of X_{6321} isomorphic to D_{12} . By the same argument to that in Example 1.2, we may assume that it coincides with one given by the inversion with respect to the group law and the translation by a 6-torsion section.

We here raise a question concerning Example 1.3.

Question 1.4. Let $M_{D_{12}}$ be the quotient of $X_{D_{12}}$ with respect to the D_{12} -action in Example 1.3. Is the D_{12} -cover $X_{D_{12}} \rightarrow M_{D_{12}}$ versal? In other words, is $X_{6321} \rightarrow \Sigma_{6321}$ a versal D_{12} -cover, where Σ_{6321} is the quotient by the inversion with respect to the group law and the translation by 6-torsion?

2. Proof of Theorem 0.2

Let σ and τ be the automorphisms of $\mathbb{P}^1 \times \mathbb{P}^1$ as in Example 1.2. They give rise to a finite automorphism group isomorphic to D_8 . Put $\Sigma_{D_8} := \mathbb{P}^1 \times \mathbb{P}^1 / \langle \sigma, \tau \rangle$, and we denote the quotient morphism by $\varpi_{D_8} : \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \Sigma_{D_8}$. Theorem 0.2 follows from Example 1.2 and the proposition below.

Proposition 2.1. $\varpi_{D_8} : \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \Sigma_{D_8}$ is versal.

We need two lemmas to prove Proposition 2.1.

Lemma 2.2. *Let $\pi : Y \rightarrow Z$ be a D_8 -cover. Then there exist non-constant rational functions ψ_1 and ψ_2 such that*

- (i) $(\psi_1^\sigma, \psi_2^\sigma) = (\psi_2, \psi_1)$,
- (ii) $(\psi_1^\tau, \psi_2^\tau) = (\psi_2, 1/\psi_1)$,
- (iii) $\psi_1/\psi_2 \notin \mathbb{C}$ and
- (iv) $\psi_1\psi_2 \neq 1$.

Proof. By the normal basis theorem (see [5, p.229]), there exists $\theta \in \mathbb{C}(Y)$ such that $\{\theta^{\tau^i}, \theta^{\sigma\tau^i}\}$ ($i = 0, 1, 2, 3$) form a basis of $\mathbb{C}(Y)$ as a vector $\mathbb{C}(Z)$ -space. Put

$$\psi_1 = \frac{\theta + \theta^\sigma + \theta^{\tau^3} + \theta^{\sigma\tau^3}}{\theta^{\tau^2} + \theta^{\sigma\tau^2} + \theta^\tau + \theta^{\sigma\tau}}, \quad \psi_2 = \frac{\theta + \theta^\sigma + \theta^\tau + \theta^{\sigma\tau}}{\theta^{\tau^2} + \theta^{\sigma\tau^2} + \theta^{\tau^3} + \theta^{\sigma\tau^3}}.$$

Both ψ_1 and ψ_2 are non-constant rational functions since $\{\theta^g \mid g \in D_8\}$ is a basis over $\mathbb{C}(Z)$, and the statements (i) and (ii) are straightforward. If $\psi_1 = c\psi_2$ for some $c \in \mathbb{C}$, we have $\psi_1 = \pm\psi_2$ by (i). If this happens, then we infer that $\psi_2^2 = \pm 1$ by (ii), but this is impossible as ψ_2 is non-constant. Suppose that $\psi_1\psi_2 = 1$. Then $\psi_2/\psi_1 = 1$ by (i). This contradicts to (iii). \square

Lemma 2.3. *Let ψ_1 and ψ_2 be the rational functions as in Lemma 2.2. Then $\mathbb{C}(Y) = \mathbb{C}(Z)(\psi_1, \psi_2)$.*

Proof. Choose a rational number c not equal to ± 1 and we put $\psi = \psi_1 + c\psi_2$. It is enough to see that $\psi \neq \psi^g$ for all $g(\neq 1) \in D_8$.

- (i) $\psi \neq \psi^\tau$. If $\psi = \psi^\tau$, we have

$$\psi_1 - \psi_2 = c \left(\frac{1 - \psi_1\psi_2}{\psi_1} \right).$$

By Lemma 2.2, $1 - \psi_1\psi_2 \neq 0$, $\psi_1 - \psi_2 \neq 0$. So

$$c = \frac{\psi_1 - \psi_2}{1 - \psi_1\psi_2} \psi_1 \neq 0.$$

On the other hand, we have

$$\left(\frac{\psi_1 - \psi_2}{1 - \psi_1 \psi_2} \psi_1 \right)^\sigma = \frac{\psi_2 - \psi_1}{1 - \psi_1 \psi_2} \psi_2 = - \frac{\psi_1 - \psi_2}{1 - \psi_1 \psi_2} \psi_2.$$

As $c^\sigma = c$, we have $\psi_1 = -\psi_2$, but this contradicts to Lemma 2.2, (iii).

(ii) $\psi \neq \psi^{\tau^2}$. If $\psi = \psi^{\tau^2}$, we have

$$c = \frac{(\psi_1^2 - 1)\psi_2}{(1 - \psi_2^2)\psi_1}.$$

By Lemma 2.2, $c \neq 0$. On the other hand, we have

$$\left(\frac{(\psi_1^2 - 1)\psi_2}{(1 - \psi_2^2)\psi_1} \right)^\sigma = \frac{(1 - \psi_2^2)\psi_1}{(\psi_1^2 - 1)\psi_2} = \frac{1}{c}.$$

As $c^\sigma = c$, we have $c^2 = 1$. This contradicts to our choice of c .

(iii) $\psi \neq \psi^{\tau^3}$. If $\psi = \psi^{\tau^3}$, we have

$$c = \frac{\psi_1 \psi_2 - 1}{\psi_1 - \psi_2} \frac{1}{\psi_2}.$$

By the similar argument to the first case, we infer $\psi_1 = -\psi_2$, but this is impossible.

(iv) $\psi \neq \psi^\sigma$. If $\psi = \psi^\sigma$, we have $c = 1$, but this contradicts to our choice of c .

(v) $\psi \neq \psi^{\sigma\tau}$. If $\psi = \psi^{\sigma\tau}$, $\psi_1^2 = 1$. This contradicts to Lemma 2.2.

(vi) $\psi \neq \psi^{\sigma\tau^2}$. If $\psi = \psi^{\sigma\tau^2}$, we have $c = -\psi_1/\psi_2$. As $c = c^\sigma$, we have $\psi_1/\psi_2 = \psi_2/\psi_1$. This implies that $\psi_1 = \pm\psi_2$, but this contradicts to Lemma 2.2 (iii).

(vii) $\psi \neq \psi^{\sigma\tau^3}$. If $\psi = \psi^{\sigma\tau^3}$, we have $\psi_2^2 = 1$, but this is impossible. \square

Proof of Proposition 2.1. Let $\pi: Y \rightarrow Z$ be an arbitrary D_8 -cover. By Lemmas 2.2 and 2.3, there exist non-constant rational functions ψ_1 and ψ_2 such that (i) $\mathbb{C}(Y) = \mathbb{C}(Z)(\psi_1, \psi_2)$ and (ii) $(\psi_1^\sigma, \psi_2^\sigma) = (\psi_2, \psi_1)$ and $(\psi_1^\tau, \psi_2^\tau) = (\psi_2, 1/\psi_1)$. Define the D_8 -equivalent rational map $\Psi: Y \dashrightarrow \mathbb{P}^1 \times \mathbb{P}^1$ by

$$p \in Y \mapsto (\psi_1(p), \psi_2(p)) \in \mathbb{P}^1 \times \mathbb{P}^1.$$

This shows Proposition 2.1. \square

Now Theorem 0.2 follows from Proposition 2.1 and Example 1.2. We end this section with the following example.

EXAMPLE 2.4. Let

$$\rho: D_8 \rightarrow \mathrm{GL}(2, \mathbb{C})$$

be the representation given by

$$\rho(\sigma) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \rho(\tau) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}.$$

Let $\tilde{\rho} = 1_{D_8} \oplus \rho$, and define the D_8 -action on \mathbb{P}^2 by

$$g([z_0, z_1, z_2]) = [z_0, z_1, z_2](\tilde{\rho}(g))^{-1}, \quad [z_0, z_1, z_2] \in \mathbb{P}^2.$$

Put $X_1 = \mathbb{P}^2$ and $M_1 = \mathbb{P}^2/D_8$ (note that $X_1 \rightarrow M_1$ is the versal D_8 -cover by [12, Proposition 4.1]). Let u and v be the rational functions of \mathbb{P}^2 given by z_1/z_0 and z_2/z_0 , respectively. Then one can check

$$\{\theta^g\}_{g \in D_8}, \quad \theta = \frac{1}{1 - u - 2v}$$

form a basis over $\mathbb{C}(M_1) = \mathbb{C}(u, v)^{D_8}$. To see this, let

$$A := \begin{pmatrix} \theta & \theta^\tau & \theta^{\tau^2} & \theta^{\tau^3} & \theta^\sigma & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} \\ \theta^\tau & \theta^{\tau^2} & \theta^{\tau^3} & \theta & \theta^{\sigma\tau^3} & \theta^\sigma & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} \\ \theta^{\tau^2} & \theta^{\tau^3} & \theta & \theta^\tau & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^\sigma & \theta^{\sigma\tau} \\ \theta^{\tau^3} & \theta & \theta^\tau & \theta^{\tau^2} & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^\sigma \\ \theta^\sigma & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta & \theta^\tau & \theta^{\tau^2} & \theta^{\tau^3} \\ \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^\sigma & \theta & \theta^\tau & \theta^{\tau^2} & \theta^{\tau^3} \\ \theta^{\sigma\tau^2} & \theta^{\sigma\tau^3} & \theta^\sigma & \theta^{\sigma\tau} & \theta^{\tau^2} & \theta^{\tau^3} & \theta & \theta^\tau \\ \theta^{\sigma\tau^3} & \theta^\sigma & \theta^{\sigma\tau} & \theta^{\sigma\tau^2} & \theta^\tau & \theta^{\tau^2} & \theta^{\tau^3} & \theta \end{pmatrix},$$

and check that $\det A \neq 0$. The explicit forms of ψ_1 and ψ_2 with respect to the normal basis $\{\theta^g\}_{g \in D_8}$ are as follows:

$$\begin{aligned} \psi_1 &= -\frac{(-2 + 6u^3 + 9u - 9uv^2 - 13u^2 + 5v^2)}{(2 + 6u^3 + 9u - 9uv^2 + 13u^2 - 5v^2)} \\ &\quad \times \frac{(1 + u + 2v)(1 + 2u + v)(1 + 2u - v)(1 + u - 2v)}{(-1 + u + 2v)(-1 + 2u + v)(-1 - v + 2u)(-1 + u - 2v)} \\ \psi_2 &= -\frac{(2 + 9u^2v - 5u^2 - 6v^3 + 13v^2 - 9v)}{(-2 + 9u^2v + 5u^2 - 6v^3 - 13v^2 - 9v)} \\ &\quad \times \frac{(1 + u + 2v)(1 + 2u + v)(-1 - v + 2u)(-1 + u - 2v)}{(-1 + u + 2v)(-1 + 2u + v)(1 + 2u - v)(1 + u - 2v)} \end{aligned}$$

Hence we have a D_8 -equivalent rational map from $\mathbb{P}^2 \rightarrow \mathbb{P}^1 \times \mathbb{P}^1$. Note that the existence of this rational map gives another proof for Proposition 2.1.

ACKNOWLEDGEMENT. The author thanks for the referee for his/her comments on the first version of this article.

References

- [1] A. Beauville: *Les familles stables de courbes elliptiques sur \mathbb{P}^1 admettant quatre fibres singulières*, C. R. Acad. Sci. Paris Sér. I Math. **294** (1982), 657–660.
- [2] J. Buhler and Z. Reichstein: *On the essential dimension of a finite group*, Compositio Math. **106** (1997), 159–179.
- [3] D.A. Cox and W.R. Parry: *Torsion in elliptic curves over $k(t)$* , Compositio Math. **41** (1980), 337–354.
- [4] C.U. Jensen, A. Ledet and N. Yui: Generic polynomials, Mathematical Sciences Research Institute Publications, Cambridge University Press, 2002.
- [5] S. Lang: Algebra, Addison-Wesley, (1965).
- [6] R. Miranda and U. Persson: *On extremal rational elliptic surfaces*, Math. Z. **193** (1986), 537–558.
- [7] M. Namba: *On finite Galois coverings of projective manifolds*, J. Math. Soc. Japan, **41** (1989), 391–403.
- [8] M. Namba: *Finite branched coverings of complex manifold*, Sugaku Expositions **5** (1992), 193–211.
- [9] I. Naruki: *Configurations related to maximal rational elliptic surface*; Complex analytic singularities, Adv. Studies in Pure Math. **8**, Kinokuniya, Tokyo, 1986, 315–347
- [10] T. Oda: Convex bodies and algebraic geometry, *Ergbnisse der Math.* **15**, Springer-Verlag, Berlin Heidelberg, New York, London, Paris, Tokyo, 1988.
- [11] J.H. Silverman: The arithmetic of elliptic curves, Springer-Verlag, 1986.
- [12] H. Tokunaga: *2-dimensional versal S_4 -covers and rational elliptic surfaces*, to appear in Séminaire et Congrès, Société Mathématique de France.
- [13] H. Tsuchihashi: *Galois coverings of projective varieties for the dihedral groups and the symmetric groups*, Kyusu J. Math. **57** (2003), 411–427.

Department of Mathematics
 Tokyo Metropolitan University
 1-1 Minami-Ohsawa Hachioji
 Tokyo 192-0397, Japan
 e-mail: tokunaga@comp.metro-u.ac.jp