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1. Introduction

Let G be a 4—fold transitive group on Q={1, 2 ,---, n}, and let P be a Sylow
2-subgroup of a stabilizer of four points in G. In a previous paper [6] the
following theorem has been established: If P fixes exactly six points, then G

must be A4,.
The purpose of this paper is to prove the following

Theorem. Let G be a 4—fold transitive group. If a Sylow 2-subgroup
of a stabilizer of four points in G fixes exactly eleven points, then G must be M,,.

Therefore, by a theorem of M. Hall [1. Theorem 5.8.1], this theorem
implies the following

Corollary. Let G be a 4-fold transitive group. If a Sylow 2-subgroup
P of a stabilizer of four points in G is not identity, then P fixes exactly four, five or
seven points.

We shall follow the notations of T. Oyama [5] and [6].

2. Preliminary lemmas

Lemma 1. Let R be a 2-subgroup of a group G and H a subgroup of G.
If RENG(H) and |H| is even, then there exists an involution a of H such that
R=<C(a).

Proof. Since the number of Sylow 2—subgroups of H is odd, by assumption
R normalizes some non-identity Sylow 2-subgroup O of H. Since the number
of central involutions of Q is also odd, R centralizes some involution of Q.

Lemma 2. Let G be a permutation group and H a stabilizer of some points
in G. Suppose that a subgroup U of H has the following property :

() If a subgroup V of H is conjugate to U in G, then it is conjugate to U in H.
Then there is a subgroup N of Ng(U) such that N fixes I(H) as a set and N'*>
=N (H) .
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Proof. Let N be a subgroup of N;(U) consisting of all the elements of
Ng(U) which fix I(H) as a set. Obviously N/ <N (H)"#. Let x be any
element of Ng(H). Then U” is a subgroup of H. By (x), there is an element
y of H such that U*=U?. Then xy"'€Ng(U). Since xy™* fixes I(H) as a
set, xy'&N. Furthermore (xy ')/ FE =yl .(y ) H=xI(H>  Hence x' ™
NI(H). Thus NI(H):NG(H)I(H).

3. Proof of the theorem

Let G be a 4-fold transitive group. By the theorem of M. Hall, if a stabilizer
of four points in G is of odd order, then G must be one of the following groups:
S, S, A, A, or M,,. Therefore to prove our theorem we may assume that a
Sylow 2-subgroup of a stabilizer. of four points in G is not identity.

Lemma 3. Let G be a 4—fold transitive group on Q={1,2,---,n}, and
P a Sylow 2-subgroup of G,,,. Suppose that P is not identity and Ng(P)'®>
=M,,. For a point t of a minimal orbit of P in Q—I(P) let P,=Q, Ng(Q)=N
and I(Q)=A. Then a Sylow 2-subgroup R of N, satisfies the following con-
ditions, where {i, j, k, I[}C A.

(a) I(R)=I(P’), where P’ is some Sylow 2—subgroup of G ;.

() R* s a Sylow 2-subgroup of (N*); ju-

(¢) R*® is a non-identity semi-regular group.

(d) Ny(RY®<M,,.

Proof. (a), (b) and (c) follow from Lemma 1 in [6].
(d). Obviously Ny(R)®=ZNg(Grp)®. By (a) and Lemma 2
Ng(Grep)) ®=Ng(P')!®”, Hence N y(R)Y‘®<M,,.

In the following lemma we consider a permutation group G on
Q={1, 2,-.-, n}, which is not necessarily 4—fold transitive.

Lemma 4. Let P be a Sylow 2-subgroup of any stabilizer of four points
in G. Then there is no group, which satisfies the following conditions.

(@) |I(P)|=11 and Ng(P)'®<M,,.

(b) P is a non-identity semi-regular group.

The proof will be given in various steps. Suppose by way of contradiction
that G is a counterexample to Lemma 4.

(1) P has only one involution.
Proof. By the same argument as in Case I of [5] we have this assertion.
(2) Any involution of G fixes exactly eleven points.

Proof. Let x be an arbitrary involution of G. If |I(x)| =4, then |I(x)]
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=11 by assumption. Since |Q| is odd, |I(x)| is odd and so |I(x)|=1,3 or
11.
Suppose |I(x)|=1 or 3. We may assume that x is of the form

x=(12)(34)-.

Since x& Ng(Gy,), ¥ normalizes some Sylow 2-subgroup P’ of G,,,. Let
I(P)={1,2,-,11}. By assumption x’?"cM,. Hence we may assume
that x is of the form

x=(12)(34)(56)(78)(9) (10) (11) (Ej)-- -

Thus |I(x)| 1. Letabe ainvolution of P’. Then x commutes with a by (1).
Suppose x2~ 1P 4 g2 P> Then we may assume that x and a have two 2-
cycles (7j) (k) and (i R)(jl) respectively. Since {x, a> <N (G, ), {*, a> nor-
malizes some Sylow 2-subgroup P” of G,,,. Since x'®” is an involution
of M, and x fixes only three points 9, 10 and 11, @’ fixes these three
points. Therefore (Ng(P")F")4 101 =<, a)'®™” and x' P4 a!®’>, But this
is a contradiction, because a stabilizer of three points in M,, is a quaternion
group. Therefore x2 /P’=g® ®> and so a=(1)(2)--+(11)(Fj)---. Then
<a, x) also normalizes some Sylow 2-subgroup P’ of G,,;;. In the same way
we get I(P"")D{9,10,11}. Since I(P")D{l1,2,9,10, 11,14, j}, a’®">=(1)(2)
(9)(10)(11)(¢5)--+. By assumption (a) this is a contradiction.
Thus |I(x)| =11.

3 1el=27.

Proof. Let x be an involution. By (2), we may assume that x is of the

form

x = (1)(2)-+(11)(12 13)--- .

By Lemma 1, x commutes with some involution y of G,,,,,,. By (2), |1(y)|
=11. Since x'®&M,, and y'®M,,, we may assume that x and y are of

the forms

y = (1)(2)(3)(# 5)(6 7)(8 9) (10 11)(12)(13) -+ (19)-+-,
x = (1)(2)-(11)(12 13)(14 15)(16 17)(18 19)--- .

Then xy is also an involution. Hence |I(xy)|=11. Therefore xy must be of
the following form

xy = (1)(2)(3)(4 5)(6 7)---(18 19)(20)(21)--+(27)--- .
Thus [Q] =27.
(4) Ng(P)'™® is one of the following:
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Case 1. N(P)'® is transitive. Ng(P)'®=M,, or LF(11).

Case I11.  Ng(P)'® has exactly two orbits, say A and T'.

(7) 1A|=1 and |T|=10. NyP)®=M,, or Mio, where M1, is a com-
mutator subgroup of M.

() |A|=2 and |T'|=9. NG P)Y'®=N(M,) or N(M¥), where N(M,)
=Ny, (M,) and | N(M,): N(M¥)|=2.

(i) |A|=5and |T'|=6. N P)®=S,-S¥, where S,-S¥ is isomorphic
to S,.

Proof. Let I(P)={1,2,--,11}. Then we may assume thatan involution
a of P is of the form

a = (1)(2)-(11)(ij) .

For any two points Z,, 7, in I(P) a normalizes G, ;;;,. By Lemma 1, there is
such that x; ; commutes with a. We denote the

i189i 7 iy,
restriction of x; ;, on I(P) by a; By assumption (a) 4;, ;, fixing a point 7, is of

an involution ¥; ; of G;

i1ip° iyip
the form
i, i, (21)(12)(13)(1 ls)(’s 17)(1 19)(l10 lu)
Let T={{a;;,|{z, i,y I(P)}>. Then T=<Ng(a)"®. Since a is a unique

involution of P, by Lemma 2 Ng(a)'®=Ng(Gp)" ®’=Ng(P)"®. There-
fore TSN (P)'®<M,,.

Case I. Let Ng(P)*® be transitive. Since there exists an involution
in T fixing three points, by a theorem of Galois [7. Theorem 11.6] Ng(P)*® is
nonsolvable. Since a nonsolvable transitive group of degree 11 in M, is
M ,, or LF,(11) (see [2]),

Ng(P)[® = M,, or LFy11).

Case II. Let Ng4(P)'® be intransitive. Since T<NGPY®, T is also
intransitive. Therefore we denote one of the T-orbits by A.

i) Suppose |A|=1. Let A={l} and I'={2,3, -+, 11}. For any two
points 7,, 7, in T" there is an involution a;_;, of the following form

Aiyi, — = ()(E)(2)(5 )05 16)(E1 26)(Es 1) -

By a lemma of D. Livingstone and A. Wagner [3. Lemma 6] T is doubly tran-
sitive on . Since T'<M,, |T|=10:9-2k, where k=1, 2 or 4. By a theorem
of G. Frobenius [4. Proposition 14.5],

l

Safs) =51 =10-9:k.

On the other hand since any two points j, j, in T" determin uniquely an in-
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volution a; ;, and conversely any involution &’ of 7' determins exactly two

points of T', which are fixed by &/, the number of involutions is (120) Therefore

S a(x') = (10)4 — 10-9-2,
E24 2
where x’ ranges over all involutions of 7. Since > ar,(x)= > a(x'), k=2.

Thus T=M,, or M}, where M/, is a commutator subgroup of M,. Since
Ng(P)'® is intransitive and T'<N(P)"®, Ny(P)'®=M,, or M1,.

ii) Suppose |A|=2. LetA={l,2}and I'={3,4, -+, 11}. For any point
7, of T" there is an involution a,;, of the form

Ay, = (1)(2)(11)(12 1.3)(1.4 is)(is i7)(is is) .
By Lemma 6 of [3] T, is transitive on T".  Since T',,<M,, |T,,| =92k, where

k=1,2 or 4. Since T contains an involution a,,=(12)(3)(4) -+, T=T,,+T,,a,,
and so | T|=2-9-2k. From the theorem of G. Frobenius

Da(«") =9-4k,
ier

SV, (x'T) = 92k,

*ET
On the other hand since two points j,, j, in I' determine uniquely an involution

a which fixes three points of T", the number of involutions of T',a,, is ( > >

j172
l. Hence
3
" al(xlll") — ( 9>‘_1~.3 — 9.4_ ,

x/ 2 3
where x”/ ranges over all involutions of T,4,,. Since
2 a(*¥)= 3 ay(x")+ ) en(x")
9:4k=9-2k+9-4.

Hence k=2 or 4. Thus T=Ny, (M,) or N(M¥), where N(M¥)is the following
group: The index of N(M¥) in Ny, (M,) is 2 and N(MF)-orbits are A and T'.
Similarly to i) Ng(P)"®>=N(M,) or N(M¥).

iii) Let |A|=3 and I(P)—A=T. For any two points 7, ¢, in T since
|T'| is even, there is an involution such that it’s restriction on T fixes exactly
these two points. Therefore again by Lemma 6 of [3], 7" is doubly transitive
and so |T|=8-7-k. But this is impossible since 7 (M, |. Therefore there
is no such 7T that |A|=3.
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iv) Let |A|=4 and I(P)—A=T. From the results above the length
of a T-orbit in T is not 1,2 or 3. Therefore 7T is transitive. Since |T'|=7,
in the same way as in iii) we have a contradiction. Thus [A| 4.

v) Suppose |[A|=5. Let A={l,2,--,5} and I'={6,7,-.-,11}. For
any two points i, 7, of T' since |T'| is even, there is an involution such that
it’s restriction on T' fixes exactly these two points. Therefore again by Lemma
6 of [3], TT is doubly transitive. Since T<M,,, T,=Tr={1}. Hence |T|=
|T*|=|T"| =6-5-2k. Since |A|=5, | T*| =60 or 120, namely T*=4, or S,.
On the other hand 7T has a transposition (1)(2) (j,)(j,j:)- Therefore T*=S..
Thus T is isomorphic to S;. We denote this group by S,-S&. Similarly to
i) Ng(P)!®=S,-S¥.

vi) If |A|=6, then |I(P)—A|<5. Considering the length of T-orbit
in I(P)— A, we have that N(P)"® is one of the groups above.

ReMARk. Every involution x;, ;, has the following property: x; ;, commutes
with @ and fixes two points 7, j, where (i) is a 2—cycle of a. Therefore from
now on we denote T" by &, ,(a) or &Z.

(5) P is cyclic or a generalized quaternion group.
Proof. This follows immediately from (1).

(6) If P is cyclic, then the automorphism group A(P) of P is a 2—group. If
P is a quaternion group, then A(P)=S,. If P is a generalized quaternion group
and |P|>8, then A(P) is a 2-group.

Proof. For a proof see [8. IV, §3].

(7)* Let b be an involution of C(P)* Ng(P)rpy—P and |P| =4. If there
is an involution ¢ of Cg(P)*Ng(P)rpy—P such that ¢ commutes with b and
b 1P then bes Co(P).

Proof. Let R be a Sylow 2-subgroup of C;(P). Then R'® is a Sylow
2-subgroup of Cg(P)"®. Set S=R-P. Then S is a 2-group and S7®
=RI®, TFurthermore S;py=(R*P);»=_P is a Sylow 2—subgroup of Ng(P);p.
Since

|Co(P)Na(P)icpy| _ | Co(P)* | - | N(P)rcp |
S| |R"|+| P| ’

S is also a Sylow 2-subgroup of Cg(P):Ng(P);p- Let S’ be an arbitrary
Sylow 2-subgroup of C;(P): Ng(P)rp;. Then S*=S’, where x is some element
of Co(P)-Ng(P)icpy. Since Ci(P) is a normal subgroup of Cg(P): Ng(P)scps,

* (7) and (8) are due to Professor H. Nagao. The auther is grateful to Professor H, Nagao for
communicating these results,
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R*=R’isa Sylow 2-subgroup of Cg(P) contained in S’. Since I(P)*=I(P) and
RI®=8I® R'I®=8'IP  Thus an arbitrary Sylow 2-subgroup S’ of Cs(P)
«N (P);p> contains a Sylow 2-subgroup R’ of C(P) such that R//®=S"1P,

Suppose by way of contradiction that & belongs to Cg(P). Since |P|
=4, P has an element of order 4 by (5). If ceCy(P), then ¢ commutes
with an element of P, whose order is at least 4. If c&Cy(P), then above
remark yields that a Sylow 2-subgroup of Cg(P):Ng(P);cp, containing b and ¢
has an element ¢’ of C;(P) such that ¢'"®=¢'®, Then cc’eP but cc’ € Co(P).
Since ¢'€Cy(P), ¢’ commutes with ¢c’, and so ¢ commutes with cc’. Since
¢c’ does not belong to the center of P, the order of ¢c’ isatleast4. In any case,
¢ commutes with some element y of P, where |y| =4. Since beCy(P), b also
commutes with y. Since & commutes with ¢, I(b)+1(c) by (1). Hence ¢/®
fixes exactly three points, namely |I(b)NI(c)|=3. Since (I(b)NI(c))’=I1(b)
NI(c) and y has no 2-cycle, y fixes I(b)N I(c) pointwise. Thus I(P)=I(y)
DI(b)N I(c). Therefore b’® and ¢'® fix the same three points. But this is
impossible since d/® == ¢®> and the stabilizer of three points in M), has only
one involution. Therefore bes Cy(P).

(8) If No(P)'®>=M,,, then | P|=2.

Proof. Since Ng(P)/CHP)<A(P) and Ng4(P)/N(P)rpy==N(P) =M,
Ne(P)rem £Col(P) by (6). Hence {1} (Co(P)- Ne(P)rcm)/No(P)rer 2 No(P)
Ng(P)rpy==M,,. Since M,, is a simple group, (Ce(P)*N c(P)rp>)/Ne(P)rcp>
=Ng(P)/Ng(P);p> and so Cg(P)*Ng(P)rpy=Ng(P). Furthermore from this
relation we get M, =N g(P)!®=(Cs(P)* Ne(P)1p))'F>=Cc(P)'P.

Suppose by way of contradiction that |P| =4. Let a be an involution of
P and I(P)={1,2,---,11}. We may assume that a is of the form

a = (1)(2)--(11)(12 13)-- .

First assume that P is cyclic. Then Cg(P);py=P. From Ng(P)=Cg(P)
*Ng(P)repy we get Ng(P)/Co(P)=Ng(P)1er/Ce(P)rpy. Since P is a Sylow
2-subgroup of Ng(P);py and Cg(P);py=P, the order of Ng(P)/Cq(P) is odd.
On the other hand by (6), A(P) is a 2-group. Therefore |Ng(P)/Ce(P)|=1.
Thus Ng(P)=Cg(P).

Now since a normalizes G,,,,,,, there is an involution b of G, ,,,, commuting
with a by Lemma 1. We may assume that & is of the form

b = (1)(2)(3)(4 5)(6 7)(8 9)(10 11)(12)(13)--- .

Since {a, b><<N3(G,;1,13), there is also an involution ¢ of G, ,,,, commuting with
both a and & by Lemma 1. Since <&, ¢> <Ng(Gp>), <b, ¢> normalizes some
Sylow 2-subgroup P’ of Gyp,. Obviously I(P)=I(P’), b*®" =+ ¢"P" and Ng(P’)
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=C¢(P’). Hence both b and ¢ belong to Cg(P')—P’, which is a contradic-
tion by (7).

Next assume that P is a generalized quaternion group. Since Cg(P)*®
=M, there are two 2—elements d and f of Cg(P) such that d’® and f'®
are involutions, d’® commutes with f/® and d'®4f"®,  Let I(d'®)
={7, 7, k. Let Q be a Sylow 2-subgroup of C¢(P),,, containing d. Since
O1m=0N(PNCs(P))=<ay, Q" ”=0Q|0;p=0Q[<a>. On the other hand
from Cg(P)*®> =M,,, Q" is a quaternion group. Suppose that d is not an
involution. Then « is only one involution of Q. Therefore Q is cyclic or a
generalized quaternion group. Hence Q/<a> is cyclic or a dihedral group,
which is a contradiction. Therefore d is an involution of C5(P). The same is
true for fand af. But this is impossible by (7).

Thus |P|=2.

(9) If No(P)'® is LF,(11), M,, or MY,, then P is a generalized quaternion
group.

Proof. Let a be an involution of P, and I(P)={l,2,---,n}. In the
following proof if Ng(P)"®=M,, or Mj,, then we assume that it’s orbits are
{1} and {2, 3, -+, 11}.  We may assume that a is of the form

a = (1)(2)--(11)(12 13)-- .

Since a& Ng(G,,,, 1), there is an involution b of G, ,,,,, commuting with a. We
may assume that b is of the form

b= (1)(2)(3)(4 5)(6 7)(8 9)(10 11)(12)(13)---(19)--- .
Hence

a = (1)(2)--(11)(12 13)(14 15)(16 17)(18 19)--- .

Since <{a, b> <Ng(G,;..1), there is an involution ¢ of G,;,,,, commuting with
both a and 5. We may assume that ¢ is of the form

¢ = (1)(2 3)(4)(5)(6 7)(8 10)(9 11)(12)(13)(14 15)(16 18)(17 19)--- .

First assume that Ng(P)!®=LF,(11). Then F=<LF,(11), where & is
one of the groups obtained in the proof of (4). Comparing the orders of these
groups of (4) we have F=LF (11). Since ¢/®’ & LF (11), there is a 2—element ¢’
such that /P =¢""® and " & F,,,(a). Since I(¢*)D{1,2,-,11,16,17}, ¢’
is an involution. Next assume that No(P)" =M, or M5, Similarly F=M,,
or MY, and so we get the same element ¢’. Thus ¢’ is an involution of the form

¢ = (1)(2 3)@)5)6 7)(8 10)(9 11)(16)(17)--- .

Since
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be’ =(1)(2 3)(4 5)(6)(7)(8 11)(9 10)(16)(17)-- ,

the order of b¢” is also 2k, where k is odd. Therefore (bc')# is a central involution
of a dihedral group <5, ¢’>. Thus we get an involution

¢” = b(be'yk = (1)(2 3)(4)(5)(6 7)(8 10)(9 11)(16)(17)-+-,

commuting with both a and . Then cc”"&= G, and (cc”)’® is of order 4.
Thus G, has an element of order 4. Hence | P| =4.

Suppose that P is cyclic. If Ng(P)!®=LF,(11) or M/,, then Ng(P)*®
is a simple group. Since |P|=4, by the same argument as in (8) we have a
contradiction. If Ng(P)*®=M,, then M/, is only one non-identity normal
subgroup of M,,. Therefore similary to (8) we have Cg(P)"®>=Mj, and
Co(P)=Ng(P);p>- Thus b and ¢ belong to C(P). But this is a contradiction
by (7).

Thus P must be a generalized quaternion group.

(10) If Ng(P)'™ is S,-S¥, N(M,) or N(M¥), then P is a generalized
quaternion group whose order is at least 16.

Proof. Let I(P)={l,2,--+,11}. We may assume that if Ng(P)*? is
S+ SE, then Ng(P)'®-orbits are {1, 2, --+, 5} and {6, 7, ---, 11}, and if Ng4(P)"®
is N(M,) or N(M¥), then N (P)®-orbits are {1, 2} and {3, 4, .-+, 11}. Letan
involution a of P be of the form

a = (1)(2)---(11)(12 13)(14 15)(16 17)(18 19)--- .

Since a&Ng(G,,4,4), there is an involution b of G,,,,,, commuting with a.
By assumption on Ng(P)*®-orbits we may assume that b is of the form

b= (12)(3)4)(5)(6 7)(8 9)(10 11)(12)(13)---(19)--- .

Since <a, 5> <Ng(G,r1515), there is an involution ¢ of G, ,,, commuting with
both @ and 5. In the same way c¢ is of the form

¢ = (12)(3)(4 5)(6)(7)(8 10)(9 11)(12)(13)(14 15)(16 18)(17 19)--- .

On the other hand since <{a, b> <<Ng(G,;1:), there is an involution d of G, 61,
commuting with both a and . In the case Ng(P)*®=N(M,) or N(M¥), by
assumption on Ng(P) ®-orbits d'F>=(1 2)(6)(7)---. Since ¢/®=(12)(6)(7)-,
d'*®=cI®, In the case Ng(P)'®P=.S,-S¥, since the restriction of ¢ on the
orbit {6, 7, ---, 11} is (6)(7)(8 10)(9 11), S,- S¥ has no element of a form (6)(7)
(89)(10 11)---. Hence the restriction of d on {6, 7, ---, 11} is the same form as
¢. Therefore (" ®=d*®. Thus in both cases ¢/®=d’®. On the other hand
since ¢/®=(3)(4 5)(12)(13)(14 15)(16 18)(1719) and d'®=(3)(4 5)(16)(17)---,
(cd)™® is of order 4. Thus d is of the form
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d = (12)(3)(4 5)(6)(7)(8 10)(9 11)(12 14)(13 15)(16)(17)(18 19)--- .
Hence

f=cd=(1)2)-(11)(12 14 13 15)(16 19 17 18)--- .

Next since <a, b> <Ng(Gyy,515), there is an involution ¢’ of Gy, cOm-
muting with both a and 5. By assumption on Ng(P)"®-orbits ¢'*®=(1 2)(3)
(45)B)9) or cTP—(12)#)3 5)(8)(9)-. But TP (12)(3)4 5)8)9)-
since ¢" P =(12)(3)(4 5)(6)(7)(8 10)(9 11). Therefore ¢’ is of the form

¢’ = (12)(4)(3 5)(8)(9)(6 10)(7 11)(12)(13)-- .
Since (cc’)®=(3 5 4)(12)(13)-+-, | (cc’)®|=3. Therefore

¢’ = (1 2)(4)(3 5)(8)(9)(6 10)(7 11)(12)(13)(14 16)(15 17)(18 19)--- or
¢’ = (1 2)(4)(3 5)(8)(9)(6 10)(7 11)(12)(13)(14 18)(15 19)(16 17)--- .

Let ¢’ be of the first form. Then ¢’fc'=f" is of the form
= (1)(2)---(11)(1216 13 17)(14 18 15 19)--- .

Let ¢’ be of the second form. Then ¢'fc’=f" is of the form
f = 1)2)---(11)(12 18 13 19)(14 1715 16)... .

Thus in any case H={{f, f> is a subgroup of G, and a Sylow 2-subgroup
P’ of H is a quaternion group, because the restrictions of P’ and H on
{12, 13, .-+, 19} have the same form. From now on we may assume that ¢’ is of
the first form.

Suppose |P|=8. Then P’ is a Sylow 2-subgroup of G,p,. Since <b, ¢’>
<Ng(H), there is a Sylow 2-subgroup P” of H such that <{b, ¢'> <Ng(P").
Since beCy(H), b= Cx(P"). By the conjugacy of Sylow 2-subgroups of
G rcpyy N(P")'®=S,-S¥, N(M,) or N(M¥).

First assume that Ng(P")'®"=S,.S¥. Since Ny(P")®"" Ce(P")'®",
Co(P")®"=S,, A, or {1}. On the other hand Cgx(P")*®" has an involution
b*P">, whose restriction on {1,2, ---, 5} is a transposition. Therefore Cg(P")*?"”
=Ng(P")®""=S,. Hence Ng(P")=Cs(P")- Ng(P")*®"”. Thus the involution
¢"belongs to Cs(P")* Ng(P")1p’»—P" and commutes with b, which is impossible
by (7). ,

Next assume that Ng(P")/®>=N(M,) or N(M¥). Since <b, ¢>¥" <
(Ng(P")'®™),,,, No(P")*P""> has the following element

x = (1)(2)(4)(3859)61011 7).
Then (B*®"y=c"®", Since beCqx(P") and Ng(P") Pk Co(P") ",



MurTtipLy TRANSITIVE GrRoUPs IX 51

¢""Fhe Cy(P")' P, Therefore there is an element ye Cg(P”) such that
¢'1P"H— yIP"> Then ye'ENg(P")ypry and so '€y~ Ng(P")rp>. Thus
c'eCg(P") Ng(P") 1’5, which is a contradiction by (7).

Thus we have |P| =16.

(11)  The case N(P)'®=S,-S¥ does not occur. If Ng(P)'®=LF,11),
M., or MY, then P is a quaternion group.

Proof. Let Ng(P)'®=S,-S¥, LF(11), M,, or M%. By (9) and (10)
P is a generalized quaternion group. Since Ng(P)/C¢s(P)is asubgroup of 4A(P)
and Ng(P)"P is a simple group or Ng(P)*® has a simple normal subgroup
of index 2, Ng(P)'®|Cs(P)™® is of order 1 or 2 by (6). Hence Cg(P) has
2—element x such that x® is an involution.

If x is an involution, then x fixes eight points of Q—I(P). Since P is
semiregular and xe C¢(P), | P|=S8.

If x is not an involubiton, then x?2=a, where a is an involution of P. Let b
and ¢ be the generators of P such that b**=c*=a. Set y=56**"". Then y is of
order 4. Since xC4(P), (xy)’=x"y*=a-a=1. Thus xy is an involution
commuting with . Since xy fixes eight points of Q—I(P), the order of b is
at most 8. If bis of order 8, then 5’ has a 8—cycle and three fixed points. But
M,, has no such element. Therefore b is of order 4. Thus |P|=S8.

In particular by (10) there is no group such that Ng(P)'®=S;-S¥

(12) The case Ng(P)Y'®>=M,, or M/, does not occur.

Proof. Suppose by way of contradiction that N;(P)'®>=M,, or M%. In
the proof of (11) we have showed that C(P)*®=M%,. Hence let x be a 2—
element of C;(P) such that x’P is an involution.

Suppose that x is not an involution. Since Cg(P)*®>=M/,, there is a
2-element y of Cs(P)such that (»*)/®=x!®_ Then a Sylow 2-subgroup of
{x, y> containing x has an element 2 such that 3/®=y/®_  Since 2* and xz*
are 2—elements of Gp, centralizing P, 2*=1 or a and xz*=1 or a, where a is
an involution of P. If 2*=1, then x2*%1 because x is not an involution.
Therefore xz*>=a. Then z'=(x"'a)’=x"*a*=x"*=1, which is also a contradic-
tion. Therefore 2*=a. By (11) P has an element b of order 4. Then (b2°)
=b’2"=a-a=1. Thus b2’ is an involution commuting with z. Since 2*=a, »
is of order 8. Then 2/® has two 4—cycles and three fixed points, hence 2~ /#>
has only 8-cycles. Since b2* fixes three points in I(P), b2’ fixes eight points
in Q—I(P). Thus 27®*® has one 8-cycle and three fixed points. But M, has
no such element. Therefore x must be an involution.

Now since Cg(P)*®> = Mj,, there are two 2—elements u and v in Cg(P) such
that u/®, o® and (uv)’® are all different involutions. Then by the above
proof u, v and wv are involutions. Thus # commutes with ». But this is a
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contradiction by (7).
This contradiction shows that there is no group such that Ng(P)®=M,,
or M,.

(13) If No(P)"®=DM.,,, then there are four points i, j, k and I of Q such that
Ng(P)Ph=N(M,) or N(M¥), where P’ is a Sylow 2—subgroup of G, ;.

Proof. Let I(P)={1,2,.--,11}, and a be an involution of P. By (8)
|P|=2. We may assume that g is of the form

a = (1)(2)--(11)(12 13)(14 15)(16 17)(18 19)(20 21)(22 23)(24 25)(26 27)... .

Since ae Ng(G,,,,1,), there is an involution b of G,,,,,, commuting with a.
Since |I(ab)| =11, we may assume that b is of the form

b = (1)(2)(3)(4 5)(6 7)(8 9)(10 11)(12)(13)-+-(19)(20 21)(22 23)(24 25)(26 27)

Since <{a, b> <Ng(G,;:.1,), there is an involution ¢ of G,;,,,, commuting with
both @ and 5. We may assume that ¢ is of the form

¢ = (12)3)4)(5)(6 7) (8 10)(9 11)(12)(13)(14 15)(16 18)(17 19)(20)(21)
(22 23)(24 26)(25 27)--- .

Since there is a Sylow 2-subgroup of Ng(P)*? such that it contains <{b, c)™®
and two elements (1)(2)(3)(465 7)(8 109 11), (1)(2)(3)(4 105 11)(6 8 79), there
is a 2—group of N;(P) containing <a, b, ¢> and the following two elements

x=(1)2)3)4657)(8109 11)--- ,
y = (1)(2)(3)(4 105 11)(6 8 79)--- .

Since «*bP, x¥b=1 or a. Set A={12,13,..-,19} and I'={20, 21 ,---, 27}.
If #°=b, then x*=1 or x* has four 2-cycles. In the later case since <{x, a>
<N¢(Grp) and I(x"®)=1(a’®)=(1, 2, 3}, ' ®=a’®. Thus xa fixes A point-
wise. If x’»=a, then x’=ab. In the same way x or xa fixes I" pointwise.
Therefore if necessary we take xa instead of x, we may assume that x fixes A or
T pointwise. The same is true for y.

Suppose that x fixes A pointwise and y fixes T' pointwise. Since both
x and y are of order 4, x" has two 4—cycles and y* has two 4—cycles. Since
(y lxy)P=(x"")1P, x*=1 and y"=1, y 'xyx fixes {1, 2, .-+, 19} pointwise and
has 2—cycles on I'.  This is a contradiction by (2).

Therefore ¥ and y fixes the same eleven points. Let P’ be a Sylow
2-subgroup of Gy, ,~, containing Q=<x, y>. Then P’ is a generalized
quaternion group. By (8), (11) and (12) Ng(P')!P"=N(M,), N(M¥) or
LF(11).
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Suppose that Ng(P')/®?>=LF,(11). By (11) P'=Q. Simiraly to the
proof in (11) Ng(P')P’=Cgx(P')®">. Since c&Ngx(P'), cCs(P’)
Ng(P)rep’>. On the other hand a= C¢(P’) and a commutes with ¢. Since

al®" 4 cF P we have a contradiction by (7).
Therefore Ng(P')"?"=N(M,) or N(M¥)

(14) The case N o(P)'®>=LF (11) does not occur.

Proof. Suppose by way of contradiction that Ng(P)“®=LF,(11). By
(11) P is a quaternion group. Let R be a Sylow 2-subgroup of N4(P). Then
the lengthes of R-orbits on I(P) are at most 4, but on Q —I(P) these lengthes
are at least 8. Therefore a 2—group R’, which contains R as a normal sub-
group, fixes I(P). Hence R’ normalizes some Sylow 2-subgroup P’ of Gp..
By the conjugacy of Sylow 2-subgroup of Gp; [Ng(P)|=|Ng(P’)|. Since R
is a Sylow 2-subgroup of Ng(P), |R'| =|R|. Hence R'=R. This shows that
R is a Sylow 2-subgroup of G. Since R'® is a Sylow 2-subgroup of Ng(P)*®>
=LF,(11), there are exactly three R/"-orbits of length 2. Suppose that there
is a Sylow 2-subgroup P” of G, ;,; such that N(P")/®"” % LF,(11), where 1. j, k
and [ are some points in Q. By (13), we may assume that Ng(P")/?"’=N(M,)
or N(M¥). Then by (10) |[P|=16. In the same way a Sylow 2-subgroup
R" of Ng(P") is also a Sylow 2-subgroup of G. Since Ng(P")!?">=N(M,) or
N(M¥), there is only one R"-orbit of length 2, which contradicts the conjugacy
of Sylow 2-subgroups. Thus for any points i, j, k and I Ng(P")!®">=LF(11),
where P” is a Sylow 2-subgroup of G ;.

Now by (11) P has an element x of order 4. For a 4—cycle (z,7,%,7,) of
x ¥ Ng(Giyipigi,)- Therefore x normalizes some Sylow 2-subgroup P of
Giiyiiye Then Ng(P')®”" has the element x'®”” of order 4. Hence
Ng(P")I®"> % LF(11), which is a contradiction.

Thus there is no group such that Ng(P)"®=LF(11).

(15) If Ng(P)'®=N(M,) or N(M¥), then G has two orbits, say T, and
T,. The length of T, is odd and the length of T, is 2.

Proof. By (10), [P|=16. Let R bea Sylow 2-subgroup of N;(P). Then
the lengthes of R-orbits in I(P) are at most 8 and in Q— I(P) these lengthes are
at least 16. Therefore in the same way as in (14) R is a Sylow 2-subgroup of
G. Let Ng(P)'®-orbit of length 2 be {1,2}. Since R fixes exactly one point
i, which does not belong to {1, 2}, R is also a Sylow 2-subgroup of G;. Since
R, is a Sylow 2-subgroup of N;(P),, in the same way R, is also a Sylow 2-subgroup
of G,. If Gis transitive, then G; is conjugate to G,. Hence R is conjugate to
R,, which is a contradiction. Thus G is intransitive. '

Let three points 7,, 7, and 7, belong to different orbits. For a point 7, in
Q—{i,, 1, 1,} let P’ be a Sylow 2-subgroup of G; Since Ng(P')!®"is M ,,

16223i4"
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N(M,) or N(M¥), at least two points of {7, 7,, 7;} belong to the same orbit of
Ng(P)'®, which is a contradiction. Therefore G has exactly two orbits, say
T,and T',. Since |Q] is odd, we may assume that |T',| is odd and |T%,| is even.

Suppose that |T,| 22. Then for three points j,, j, and j, of I, and a point
j.of T, let P” be a Sylow 2-subgroup of G, ;,; ;.. Since I(P")NT,>j, and
I(P"YNT,2j,, Ng(P")'®" is intransitive. Hence Ng(P")®"> is N(M,) or
N(M¥). Since the lengthes of T', and P”-orbits in Q—I(P") are even, |T,
NI(P")| iseven or 0. On the other hand the length of a Ng(P")!®"”-orbit
is 2 or 9. Hence |T,NI(P")|=0 or 2. But I',NI(P")D{i, i, i,}, which is
a contradiction. Therefore |T,|=2.

(16) The case No(P)'®>*=N(M,) or N(M¥) does not occur.

Proof. Suppose by way of contradiction that Ng(P)"®°=N(M,) or N(M¥).
Then by (15) G has two orbits, say T, and T,. Let I',)={3,4, .-, n} and
I,={1,2}. Set G"'=G, then G is transitive. Let P’ be a Sylow 2-subgroup
of G,;,:,i,y Where {7, 7, .} CT',. Since I(P')>1, I(P')DT,. Hence Ng(P')" "
is intransitive, and so Ng(P')!®’=N(M,) or N(M¥). We may assume that
I(P)=11,2,3, -, 11}.

Now let

a, = (1)(2)(3)(4657)(810911),

a,= (1)(2)(3)(410511)(6879),

a, = (1 2)(3)(#)(5)(6 7)(8 10)(9 11),

a, = (1)(2)(345)(6 109)(78 11) ..

Then we may assume that if Ng(P')!?”=N(M,) then Ng(P')/*"={a,, a,, a,>,

and if Ng(P')®?"=N(M¥) then Ng(P')®°=<a,, a,, a,> (see [1], P. 83). Let
a be an involution of P’. Then a is of the form

a = (1)@)E) (1)) -

Since ac N;(G,,;;), an involution b of G,,;; commuting with a is of the form

b= (12)B)4)E)6 7)(8 10)(9 1)) -

Since {1,2} is a G-orbit and I(b)N {1, 2} =¢, every element (1) of a Sylow
2-subgroup of Gy, has a 2-cycle (12). By (10) Ng(G ) ®=M,,. Since
M,, is 4-fold transitive, 4,5 and 7 belong to the same G;-orbit. Since (ij) is
an arbitrary 2—cycle of a, {4,5,12,13, .-, n} is contained in a G,-orbit. On
the other hand for any point i’ of {6, 7, ---, 11} since ac N(G,//;;), an involution

b' of G, ;; commuting with a is of the form

b" = (1 2)3)@)@H()- -
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In the same way ¢’ and ¢ belong to the same G,-orbit. Thus G, is transitive, and
so G is doubly transitive. Furthermore since Ng(G ;) ®=M,,, 5 and 7 belong
to the same G,,-orbit. Since (i) is an arbitrary 2-cycle of 4, {5, 12, 13, ---, n}
is contained in a G,,-orbit. Set T,={5, 12, 13, ---, n}, T,={6, 7}, T,={8, 10}
and T,={9, 11}. Then G,,-orbits consist of some 7'’s.

Suppose that T is a G,,-orbit. For any two points j, in T,UT,UT,
and k, in {12, 13 ,..-, n} let P" be a Sylow 2-subgroup of G;, ;4. IfI(P")DT,,
then |[P"|=2. By (10) Ng(P")'?">=M,,. Since I(P")2{3,4,j, k}, j. and
k, belong to the same G,,-orbit. Butj,& T and k,& T, which is a contradic-
tion. Therefore I(P")D{l,2,3,4,j,,k}. Suppose that I(P") does not contain
some point j, of T,UT,UT,—{j,}. Then j, belongs to a P"-orbit of at least
length 16, which contains some point of 7';. 'This is impossible since G, ,>P".
Thus I(P")={1,2,3,4,6,7,8,9,10, 11, k}. Set A=I(P")—{k,}. Since k, is
an arbitrary point in {12, 13, ---,; n} and I(P')=AU{5}, by the conjugacy of
Sylow 2-subgroups of G,, G, is transitive on ) —A. On the other hand since
a€ Ng(Gyq1215), an involution ¢ of G,,,,, commuting with a is of the form

¢ = (12)(3)(4 5)(6)(7)(8 11)(9 10)(12)(13)-- .

Since G is doubly transitive, {7, 12,13, -+, n} is a G,,-orbit. Since G,;>G,
and G, is transitive on {5, 12, 13, --+, n}, 5 must belong to the G,,-orbit {7, 12,
13, -+, n}, which is a contradiction.

Therefore there is a G, -orbit containing 7'y and some T; (i+5). We may
assume that T'gU T is contained in a G,,-orbit. Now a Sylow 2-subgroup of
G,,s containing P’ fixes no point in I',—{3, 4, 5}. Since 5 and 6 belong to the
same G,,-orbit, a Sylow 2-subgroup of G,,, containing P’ fixes no point in
I',—{3,4,6}. On the other hand since a Sylow 2-subgroup of Ny(P’),,, is
also a Sylow 2-subgroup of G,,,, a Sylow 2-subgroup of G,,, containing P’
fixes {5, 7, 8, -++, 11} pointwise, which is a contradiction.

Thus there is no group such that Ng(P)"®=N(M,) or N(M¥).

By (11), (12), (14) and (16), Ng(P)'®=M,,. But this is a contradiction
by (13) and (16)

Thus we complete the proof of Lemma 4.

Proof of the theorem. Suppose that there is a group G different from
M,,. Then a Sylow 2-subgroup P of G, ,,, is not identity. Set P,=Q, where ¢
is a point of a minimal P-orbit in Q —I(P). Then by Lemma 3 N;(Q)’? satisfies
the conditions (a) and (b) of Lemma 4. Hence we have a contradiction by Lemma
4. Thus there is no group different from M.
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