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In [11] and [12] May and others have constructed and have characterized
equivariant localizations and completions of G-nilpotent G-spaces when G is
a compact Lie group. Let J be a set of primes and X be a based G-nilpotent
G-space. Then the equivariant localization A: X —X is characterized by the
universal property that the H-fixed point space X% is J-local for each closed
subgroup H of G and A*: [X), Y];—[X, Y]; is a bijection for any based G-
nilpotent G-space Y with Y# J-local, and it is constructed as a based G-map
whose restriction to H-fixed point spaces is a J-localization in the non-equiv-
ariant sense. 'The equivariant completion v: X —X; is similarly characterized
and constructed.

According to Bousfield [3], each non-equivariant homology theory #,
determines /A-localizations of based C'W-complexes. Special cases of the /-
localization 5: X —L, X are familiar if a based CIW-complex X is nilpotent.
Taking Hy( ; Z[J7']) as hy, then the Hy( ; Z[J '])-localization is the usual
J-localization where J° denotes the complement of the set J. Taking
Hy( ;5 D,es Z[p), then the Hy( ; D ,es Z/p)-localization is the usual J-completion.

In this paper we study a localization »: X —L, X=LX of a based G-
CW complex X such that its H-fixed point map »7: X#—(LX)# is an h*-localiza-
tion for any closed subgroup H of G. This localization is characterized by the
universal property that »7: hy (X#)—h,((LX)") is an isomorphism for each H,
and for any based G-map f: X —Y inducing isomorphisms f3: & (X%)—h(Y#)
there is a unique based G-map r: Y —=LX with r-f=y&[X, LX];.

First we investigate some relations between Bredon homology and co-
homology theories and ordinary homology and cohomology theories in §1,
following Wilson [16]. Given a homology theory %y and a family A= {4}
of abelian groups we define our localization in a general form in § 2, and prove
the existence theorem of our localizations in Appendix using the technique
developed by Bousfield. In §3 we treat of the special case that %, is the or-
dinary homology theory H,. We proceed cocellularly the construction of the
localizations of G-nilpotent G-CW complexes so that we obtain our main result
(Theorem 3.3), which may be a slight generalization of main results in [11]
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and [12]. Finally we compute the localizations of Eilenberg-MacLane G-
spaces K(N, n) with respect to the complex homology K-theory K, (Theorem
4.5) in § 4, as Mislin [14] did in the non-equivariant case.

1. Bredon homology and cohomology

Let G be a compact Lie group and Cy; be the category of pairs (X, Y) of
G-CW complexes, where Y CX, and G-maps f: (X, Y)—(X', Y'). A covari-
ant coefficient system M for G is a covariant functor from the category of left
homogeneous spaces G/H by closed subgroups H and G-homotopy classes of
G-maps to the category of abelian groups. A contravariant coefficient system
N for G is similarly defined.

Bredon homology and cohomology theorles written as (H (X, Y; M) and
H*(X, Y; N) are Z-graded equivariant homology and cohomology theories
with coefficients in the covariant coefficient system M and the contravariant one
N respectively defined on the category Cg, both of which satisfy the dimension
axiom. For any coefficient system M or N for G and each closed subgroup
K of G, denote by i¥M or ¢¥N the induced coefficient system for K which
assigns to each K/H the abelian group M(G/H) or N(G/H) respectively. The

composites
Hyo(X, Y;iEM) — (H(GEX, GFY; i¥M) — H(GiX, GFY; M)

and
H*(GiX, G¥Y; N) — (H*(GiX, GRY; i¥N) — cH*(X, Y; i¥N)

are isomorphisms for every closed subgroup K of G and (X, Y)e(C4.

We now recall the useful notion in interpreting coeflicient systems for G,
introduced by Wilson [16, §4]. Let C(G) be a collection of closed subgroups
of G which contains precisely one subgroup from every conjugacy class of
closed subgroups of G and fix it. We have a partial ordering on C(G), namely
H <K if and only if H is subconjugate to K. The isotropy ring I is defined
to be the free abelian group on the set of G-homotopy classes of G-maps from
G/H to G/K for all pairs H =<K in C(G), whose ring structure is imposed by
compositions of G-maps. When G is a finite group, the ring I; has the multi-
plicative unit 1==ycc)le/z Where 1/, denotes the identity map on G/H.
However we notice that the ring /; has in general no multiplicative unit.

We call a left I,-module an abelian group M together with a structure
map ¢: I X M—>M written as ¢(n, x)=Ax satisfying the condition that
M =D yeci)le/z M in place of the unitary property in the usual case. A right
Ig-module is similarly treated. According to [16, Theorem 5.1] there is a one
to one correspondence between covariant coefficient systems and left /;-modules
and analogously between contravariant coefficient systems and right Jg-modules.
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Write I=1; for short. Given any abelian group 4 and each H €C(G),
the abelian group I1;/;®A=@ reci)le/xlle/n®A is a left I-module, and the
abelian group @ xec(Hom (14/x11¢/5, A) denoted by Hom (L1, A); is a right
I-module. The following identifications of Bredon homology and cohomology
with ordinary homology and cohomology were given implicitly in [16, Theorem
7.3].

Lemma 1.1. Let G be a compact Lie group, H a closed subgroup of G con-
tained in C(G) and A be any abelian group. Then for any pair (X, Y) of G-
CW complexes we have natural isomorphisms
1) Hy(X, V5 Iy @A)y=H(X#|W(H),, Y¥|W(H),; 4)

i) H*X, Y; Hom(Ilgy, A))=H*(X%|W(H),, Y#|W(H),; A)
where W(H), denotes the identity component of the Weyl group N(H)/H and
XE|W(H), denotes the orbit space of the H-fixed point space X by W(H),.

Let M be a left I-module. Denote by I(M) the left I-module defined to
be

I(M) = @HEC(G)IIG/H®1G/HM .

The map z: I(M)=@ yll5/z@1c/uM— M given by m(Nlg/p®@1e/ux) =Ngax
is a homomorphism of left /-modules, which is obviously epic. Let N be a
right I-module. Denote by I(IN) the right /-module defined to be

I(N) = ®recie) Hueciey Hom (167 11/, Nlgy) .

The map i1 N=@gNlgyx—>I(N)= PxIzHom(1sI15y, Nlgy) given by
#(%1g/6) (176 Mesa)=x1g/x Mg/ is a homomorphism of right /-modules and it
is monic.

Corollary 1.2. Let G be a compact Lie group, M be a left I-module and
N a right I-module. Then for any pair (X, Y) of G-CW complexes we have
natural isomorphisms
1) Hy(X, Y; I(M))=DyeccrH(X*|W(H)o, Y*|W(H)o; 1¢/u M)
i) H*X, Y; I(N)=Ilyeco H*(X#[W(H)o, Y#|W(H)o; Nlg/s).

By means of Corollary 1.2 we show

Proposition 1.3. Let G be a compact Lie group, f: (X, Y)— (X', Y') be
a G-map of pairs of G-CW complexes and n=0.
i) Let M be a left I-module. If f*: H(XX|W(K)y, YE/W(K)y; 1g,uaM)—
H(X'"5|W(K)o, Y'*|W(K)o; 1g/uM) is an isomorphism for each i=n and every
pair H <K in O(G), then fy; H(X, Y; M)—>H/(X', Y'; M) is an isomorphism
for each i <n.
ii) Let N be a right I-module. If f*: H{(X'*|W(K), Y'*|W(K)s; Nlgu)—
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Hi{(X¥*/W(K)y, YXIW(K)y; Nlgy) is an isomorphism for each i<n and every
pair HZK in C(G), then f*: H\(X', Y'; N)—»cH'(X, Y; N) is an isomorphism
for each i<n.

Proof. i) Consider the exact sequence 0— M,— I(M) E M0 of left
I-modules. Since the exact sequence

0— lG/HMl g IG/HI(M) = @Llc/yllc/L®lc/LM_’ 1G/HM -0

is split as abelian groups, our assumption is maintained for M, as well as M.
By induction on 7, 0=<7/=<n, we will show that f,: H(X, Y; M)—»H(X', Y'; M)
is an isomorphism. By Corollary 1.2 our assumption implies that f: ;Hy(X, Y;
I(M))— H(X', Y’; I(M)) is an isomorphism for each #<#n. Using induction
hypothesis and the weak four lemma we first verify that f,: ;H (X, Y; M)—
cHi(X', Y'; M) is epic and hence fi: H{(X, Y; M))—H(X’, Y’'; M,) is epic,
too. Using again induction hypothesis and the weak four lemma we next see
that f.: (H(X, Y; M)~ H,(X', Y'; M) is monic.

The case ii) is analogously shown considering the exact sequence 0—>N->
I(N)—N,—0 of right I-modules.

Let ¢k, and oh* be RO(G)-graded (or Z-graded) equivariant homology and
cohomology theories defined on the category Cg. By definition the composites

whag(X, Y) = ghag(GEX, G2Y) — haf GEX, GrY)
and

HGEX, G3Y) — b H(GEX, G3Y) — hV(X, Y)

are isomorphisms for each degree a=RO(G) (or €Z) and each pair (X, Y)e
Cg, taking every closed subgroup H of G (see Kosniowski [10]). Applying
entirely the same method adopted in [11] we obtain the following proposition
regarded as a generalization of the result [11, Proposition 2].

Proposition 1.4. Let G be a compact Lie group, (X, Y) be a pair of G-
CW complexes and o= RO(G) (or €Z).
i) Let chy be an RO(G)-graded (or Z-graded) equivariant homology theory.
If ghoyy- (X%, Y¥)=0 for each i=0 and any pair H CK -of closed subgroups of
G, then chy- (X, Y)=0 for each i =0.
i) Let Gh* be an RO(G)-graded (or Z-graded) equivariant cohomology theory.
If zh™2~{( X%, Y®)=0 for each i=0 and any pair H CK of closed subgroups of
G, then h” (X, Y)=0 for each i =0.

Proof. We first prove the cohomology case ii). We may assume that
g™ X, Y)=0 for each /=0 and all H in the family F of proper closed sub-
groups of G and that zA"'#~{(X¢ Y €)=0 for each /=0 and all H in the family
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F., of all closed subgroups of G. There is a commutative diagram with exact
rows

HTIFNX, Y)—— " [F.., FIX, Y)— h*7H(X, Y)——h*[F)(X, Y)
h* I F)(XC, YO)— ch*[F., FY(XC, Y©) — gh"~(XC, Y¢)— - [F)(X6, Y°)

where all vertical arrows are induced by the inclusion (X¢, Y°)—(X, Y) (see
[7]). Observing exactly Segal’s spectral sequence in the proof of Jackowski
[9, Proposition 1.4], it is easy to check under the above assumptions that
H*TIF](X, YV)=0=ch""'[F] (X¢, Y°) for each 7=0. On the other hand, the
inclusion (X¢, Y¢)—(X, Y) induces an isomorphism A*[F., F](X, Y)E
H*[Fn, F)(XC Y°) as investigated by tom Dieck (see [7, Proposition 7.4.2]).
Consequently we obtain that ;h* (X, Y)=:k""/(X¢ Y°)=0 for each /=0.

We next prove the homology case i) by coming back to the cohomology
case ii) by duality. For any divisible abelian group A4, consider the equivariant
cohomology theory cA(A4)* given by setting #(A4)*(X, Y)=Hom (c24(X, Y), 4).
Applying the cohomology case ii) it follows at once that ;4(A4)* (X, ¥)=0
for each 7 =0 and any divisible abelian group 4. Taking the injective resolution
0—-Z—->0—0/Z—0 of the integers Z, we have that Hom(sh,-;(X, V), Z)=0=
Ext(¢he-(X, Y), Z). This means that ¢h,_ (X, Y)=0 for each 7=0.

Let H be a closed subgroup of G and M be a covariant coefficient system
for G and N a contravariant coefficient system for G. If (X, Y) is a pair of
trivial H-CW complexes, then we have natural isomorphisms

H(X, Y; iM)y=Hy(X, Y; M(G/H))
and

H¥(X, Y3 i5N,) =H*(X, Y; N(G/H))

where M and 5N are the induced coefficient systems for H. Taking Bredon
homology and cohomology as ks and c#* in the above proposition we have

Corollary 1.5. Let G be a compact Lie group and (X, Y) be a pair of G-
CW complexes and n=0.
i) Let M be a left I-module. If H(X%, Y%; 15/;,M)=0 for each i <n and every
pair H=<K in C(G), then H(X, Y; M)=0 for each i=n.
il) Let N be a right I-module. If H' (XX, YX; Nlgy)=0 for each i<n and
every pair HSK in C(G), then ;H' (X, Y; N)=0 for each i=n. (Cf, [11,
Proposition 4]).

Let hy and A* be (non-equivariant) homology and cohomology theories
defined on the category C of pairs of CW-complexes. Putting ;h.(X)=h(X/G)
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and A*(X)=h*(X/G), chys and ch* are equivariant homology and cohomology
theories respectively defined on the category Cg.

Corollary 1.6. Let G be a compact Lie group, H its closed subgroup and
N(H) the normalizer of H in G. Let (X, Y) be a pair of G-CW complexes and
n=0.

1) If h(XX, Y*)=0 for each i<n and each K, HCK CN(H), then h{(X"|
W(H),, YE|W(H),)=0 for each i=mn.
i) If W(X%, YX)=0 for each i<n and each K, HCK CN(H), then h'(X%|
W(H),, Y#|W(H),)=0 for each i=n.

2. hy-localization of G-CW complexes

For a (non-equivariant) homology theory defined on the category C, let
hy( ; A) denote the associated homology theory with coefficients in the abelian
group A. Let JAg={Ay} be a family of abelian groups indexed by H =C(G).

A based G-map f: X—Y of based G-CW complexes is said to be an
(hy, Ag)-equivalence if its H-fixed point map f# induces an isomorphism f:
ho(X®; Ay)—hy(Y7; Ay) for every HeC(G). A based G-CW complex X is
said to be (hy, Ag)-local if any (hy, Ag)-equivalence f: X'—Y’ induces a
bijection f*: [Y’, X]s—[X', X]c where [ , ] denotes the set of G-homotopy
classes of based G-maps.

Using the technique developed by Bousfield [3, 5] we can show the exist-
ence of (hy, Ag)-localizations of based G-CW complexes, although we avoid
to rely on the simplicial homotopy theory.

Theorem 2.1. Let G be a compact Lie group, hy be a homology theory
defined on the category C and Ag= {Ag} pecy be a family of abelian groups.
Given any based G-CW complex X there is a based G-map

of based G-CW complexes such that ny is an (hy, Ag)-equivalence and LX is
(hy, Ag)-local.

The proof is deferred to Appendix. Remark that our construction given
in Appendix is not necessarily functorial.

Let A be an abelian group and J, denote the set of primes p such that 4
is uniquely p-divisible. Associate with A4 the special abelian groups

4=

{ ®per Zlp  if ARQ=0
Z[J if AQQ=0

and
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Sk { e, Z[p if Hom(Q, A)=0=Ext(Q, 4)
Z[Jz4 if not
Since each homology theory 4, holds a universal coefficient sequence
0 — hye(X, YYQA — hy(X, YV; A) — Tor(hye_, (X, Y), 4) -0,
from [2, Proposition 2.3] it follows easily that
(2.1) ho(X, Y; A)=0  ifandonlyif hy(X,Y; Sy =0

(see [13, Proposition 1.9]). Let A* be a cohomology theory of finite type, thus
its coefficient group A‘(*) is finitely generated for every degree 7. Then there
exists a homology theory Vk, related with the universal coefficient sequence

[6, 18]

0 — Ext(Vhy_(X, Y), 4) = B*(X, Y; A) > Hom(VA(X, Y), A) > 0.
As a similar result we have |
(2.2) (X, Y; Ay=0  ifandonlyif KX, Y; S¥)=0.

Moreover, when either S=@®,c;Z/p and VS=1II,c;Z[p or S=VS=Z[]]
for some set J of primes, we get

(2.3) (X, Y;VS)=0 ifandonlyif Vh(X,Y;S)=0.
For a family Ag= {4y} gec(y of abelian groups we define the family
So= {S} necte) of special abelian groups given by
{ Opernllp  if Ax®Q=0
Z[J#'] if ;00

where [, denotes the set of primes such that 4 is uniquely p-divisible. Clearly
(2.1) implies

SH:

(2.4) A based G-CW complex X is (hy, Ag)-local if and only if it is (hy, S_j)-
local.

Given abelian groups 4 and B, write <A>=<{B) if J,O Jz and BQQ=0
implies AQ Q=0, and <4A>*<<{B)* if J,O J and Hom(Q, B)=0=Ext(Q, B)
implies Hom(Q, 4)=0=Ext(Q, 4). Obviously it follows from (2.1) that

(2.5) ho(X, Y; B)=0  implies hy(X, Y; A)=0

when {B>=<{A4>, and under the restriction that #* is of finite type it follows
from (2.2) that

(2.6) KX, Y;B)=0  implies h*X,Y;A)=0
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when (B>* > A>*.

A family A g= {44} zece) of abelian groups is said to be (homologically)
order preserving if {Ay>=<<{Ag> for every pair H=<K in the partially ordered
set C(G).

Lemma 2.2. Assume that a family Ag= {Ag} is order preserving. If
a based G-CW complex X is (hy, Ag)-local, then its H-fixed point space X is
hy( 5 Ay)-local for every H € C(G).

Proof. Let f: U—V be a based map which induces an isomorphism f:
he(U; Ay)—hye(V; Ay) for a fixed HeC(G). Then 1.f: (G/H).AU—
(G/H),AV becomes an (hy, Ag)-equivalence under the hypothesis on Ag=
{44}. Therefore it induces a bijection (15f)*: [(G/H) AV, X]¢— [(G/H).AU,
XJe. This means that f*: [V, X#]—[U, X#] is certainly a bijection, too.

Owing to the existence theorem of (%4, A g)-localizations we show that the
converse of Lemma 2.2 is also valid.

Proposition 2.3. Assume that a family Ag={Ay} is order preserving.
Then a based G-CW complex X is (hy, Ag)-local if and only if its H-fixed point
spaces X" are hy( ; Ay)-local for all H € C(G).

Proof. We have to show only the “if” part. Let »: X—LX be an
(hy, Ag)-localization of X. By the “only if” part, Lemma 2.2, (LX)? is
hy( ; Ay)-local for each H=C(G). Since the H-fixed point map »7: X#—
(LX)# is an hy( ; Ag)-equivalence, we see easily that »7: X#—(LX)? is a
homotopy equivalence for each H=C(G). Thus »: X—LX itself is a homo-
topy equivalence, and hence X is (hy, A g)-local as desired.

An Eilenberg-MacLane G-space K(N, n) is a based G-CW complex by
which the n-th (reduced) Bredon cohomology group ¢H"(X; N) with coeflicients
in N is represented as ;H"(X; N)=<[X, K(N, n)]s. For Eilenberg-MacLane
G-spaces K(N, n) we can give another proof of Proposition 2.3 without use of
the existence theorem of (%, A g)-localizations.

Proposition 2.4 (as a special case of Proposition 2.3). Assume that a
family Ag={Ay} is order preserving. Let N be a right I-module. Then an
FEilenberg-MacLane G-space K(N, n) is (hy, Ag)-local if and only if Eilenberg-
MacLane spaces K(N1g,y, n) are hy( ; Ag)-local for all H = C(G).

Proof. The “if” part: Let f: X—Y be an (hy, Ag)-equivalence. Then
by Corollary 1.6 fy: he(X*|W(K)o; Ap)—hy( YE[W(K),; Ay) is an isomorphism
for each pair H <K in C(G). Since the Eilenberg-MacLane space K(N1g/y, m)
is hy( ; Ag)-local for any m=mn, f*: H"(YX/W(K),; Nlg/y)—=H™(X¥|W(K),;
Nlgyy) is an isomorphism for any m=n and every pair H <K in C(G). Using
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Proposition 1.3 we observe that f*: ;H"(Y; N)—;H"(X; N) is an isomorphism,
thus the Eilenberg-MacLane G-space K(N, n) is (g, Ag)-local.

3. H,-localization of G-nilpotent G-CW complexes

Let Ag=1{A44} nec() be a family of abelian groups which is order preserv-
ing and N be a right I-module. For each H €C(G) put

E_;N(G/H) = { e, Ext(Z,., Nlgra) if A,Q0=0
N1g/n®Z[J 7] if 4,@0 %0
and
Myes, Hom(Zye, Nlgm)  if 4,80=0
H ;N(G/H)= =
AN {0 if 4,00

where [, denotes the set of primes p such that Ay is uniquely p-divisible and
Z !,eo:_liin) Z[p". As is easily seen, setting E_N=@Pyccx)E_1N(G/H) it is a
right I-module and the canonical map I: N=@ ;Nlg, 5y —> E_jN=® E_1N(G/H)
is a homomorphism of right I-modules. Similarly for H_;N. Note that
H_j3N=0 if N is torsion free as an abelian group.

Lemma 3.1. Assume that a family Jg={Ay} is order preserving. Let
N be a right I-module such that H jN=0. Then the induced G-map

yy = ly: K(N, n) - K(E_;N, n), n=1,
is an (Hy, Ag)-localization.

Proof. According to Bousfield [3, Proposition 4.3] the H-fixed point map
nn: K(Nlgy, n)—K(E_N(G/H), n) is an Hy( ; Ay)-localization. Now the
result follows from Proposition 2.4 (or Proposition 2.3).

Let M be a left I-module. We say a based G-map f: X—Y of based
G-CW complexes an ;Hy( ; M)-equivalence if fy: (Hy(X; M)—Hy(Y; M) is
an isomorphism, and a based G-CW complex X  Hy( ; M)-local if any
Hy( ; M)-equivalence f: X’'— Y’ induces a bijection f*: [Y’, X]o—[X', X]..
Similarly for (H*( ; N)-equivalence and H*( ; N)-local space when N is a
right I-module.

For the order preserving family Ag={4p}necey we put I(A)=
D recele/a® Ay, which is a left I-module.

Lemma 3.2. Assume that Jg= {Ay} is order preserving. Let N be a right
I-module such that H_jN=O0. Then the Eilenberg-MacLane G-space K(E_;N, n)
is cHy( 3 I(A))-local for every n=1.
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Proof. By use of Lemma 1.1, (2.1) and (2.3) we can see that the following
four conditions are all equivalent:
i) abased G-map f: X =Y is an cHy( ; I(A))-equivalence,
il) each fZ: X2|/W(H),—Y#IW(H),is an H,( ; Ay)-equivalence,
iii) each f¥ is an Hy( ; Sy)-equivalence,
iv) each f# is an H*( ; V.Sy)-equivalence
where Sy=@¢s, Z[p and VSy=1le;, Z[p If AzQ®Q=0, or Sy=VSy=
Z[J#'l if Az®Q=+0. Obviously <VS;>* =<E_;N(G/H)>*, hence (2.5) says
that the condition iv) implies
v) each f# is an H*( ; E_jN(G/H))-equivalence.
Moreover it follows from Proposition 1.3 that the condition v) implies
vi) f: X—Yisan cH*( ; E_;N)-equivalence.
Therefore the Eilenberg-MacLane G-space K(E_;N, n) is ¢Hy( ; I(A))-local
as desired.

Following [11] we say a based G-CW complex X G-nilpotent if each X¥ is
connected and nilpotent and if for every n=1 the orders of nilpotency of the
(X#)-groups =, (X¥) have a common bound for varying H. According to
[11, Proposition 8] we have the following analogous result to the non-equivari-
ant case.

(3.1) If a based G-CW complex X is G-nilpotent, then there is a (nilpotent)
G-tower 2= {X,} such that

i) X is weakly G-homotopy equivalent to the inverse limit of X,.

ii) X,={*} and X,,, is the fiber of a based G-map k,: X,—~K(IV,, q,) where
¢,=2, and

iii) ¢,41=¢, and only finitely many g,=r for each r.

Theorem 3.3. Let Ag={Ay}nec) be a family of abelian groups which
is order preserving and denote I(A)=Ppecci) [1c/n@Ay. Given any G-nilpotent
G-CW complex X there exists a based G-map

nx: X — L X

of G-nilpotent G-CW complexes such that

i) its H-fixed point map n%: XZ—(L 1 X)¥ is an Hy( ; Ay)-localization for each
HeC(G), and

i) L_gX is GHy( 5 I(A))-local.

Proof. First take a right /-module N and an exact sequence 0—>F,—F,
—N—0 of right /-modules such that F, is projective. Note that both F, and
F, are free as abelian groups. Denote by L_;K(N, n), n=1, the fiber of the
G-map K(E_;F,, n+1)—=K(E_;F,, n+1). It is a 2-stage G-CW complex with
homotopy groups only in dimensions # and n+1. We have a dotted arrow



LocaLizaTtioN OF EILENBERG-MACLANE G-SPACES 531

nn: K(N, n)—L_g K(N, n) making the diagram below G-homotopy commutative
K(F,n) — K(N,n) — K(F,n+1) — K(F,n+1)
l !
K(E F,, n) - LJKzN, n) = K(E_jF,, n+1) - K(E_;F,, n+1) .

By use of the Serre spectral sequences and Lemma 3.1 we see easily that »y is
an (Hy, A g)-equivalence and by Lemma 3.2 that L_jK(N, n) is Hy( ; I(A))-
local.

For a G-nilpotent G-CW complex X we may regard that it is given as the
inverse limit of a nilpotent G-tower X={X,}. Inductively we can construct
cHx( 3 I(A))-local spaces L_3X,,, being the fiber of L _jk,: L 3 X,—L_31K(N,, q,),
and also (Hy, Ag)-equivalences 7,.,: X,1; =L 31X, such that the following
diagram is G-homotopy commutative

K(leq;zﬁl) g Xn+1 g Xn g K(A{m qrx)
LJK(Nm 9n— 1) g LJan+1 - LJXn g LJK(NM qn) .

Put as L ;X a G-CW approximation of the inverse limit space of L _3;X,. Then
the above construction shows that L_;X, is G-nilpotent for each n» and that
L ;X is also G-nilpotent (see [8]). So we obtain a desired localization map
nx: X—=L_3X.

Because of the localization theorem 3.3 we have the following characteriza-
tion, although it is trivial if G is a finite group.

Proposition 3.4. Assume that a family A g={Ay} is order preserving. On
a tased G-map f: X—Y the following three conditions are equivalent:
1) fi: Ho(X"; Ay)—H(YH; Ay) is an isomorphism for each H € C(G),
i) fi: H(X#|W(H)y; Ay)—H(Y#|W(H),; Ay) is an isomorphism for each
HeC(G), and
i) fy: cHe(X; I(A)—=>cH(Y; I(A)) is an isomorphism.
(Cf., [12, Proposition 6]).

Proof. Lemma 1.1 asserts that the conditions ii) and iii) are equivalent,

and Corollary 1.5 says that the condition i) implies iii). It remains to show
only the implication iii)—i). Consider the G-homotopy commutative square

SZ
SEX —f> S?Y

ﬂsle 177321/

L 3S8*X —— L ;S%Y.
Then the condition iii) implies that L_;S?/: L_3S?’X —L_3S?Y is an cH( ; I(A))-
equivalence, and hence it becomes a G-homotopy equivalence since L_zS?X
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and L_zS?Y are both  Hy( ; I(A))-local. Hence f: X—Y is certainly an
(Hy, Ag)-equivalence.

As a dual of Proposition 3.4 we have

Corollary 3.5. Let Ag=1{Ay}uecc) be a family of atelian groups such
that {Ay>* <{Ag)>* for every pair HZK in C(G). On a based G-map f: X—Y
the following three conditions are equivalent:
i) fHE: H¥Y#; Ag)—H*(X¥%; Ay) is an isomorphism for each H € C(G),
i) fH: H¥YE|W(H),; Ay)— H*(XE|W(H)y; Ay) is an isomorphism for each
He(C(G), and
i) f*: GH¥Y; I(A)*)— H¥X; I(A)*) is an isomorphism. Here I(A)*=
@Iy Hom(1g/xL1g/5, Ay).

Proof. Use Lemma 1.1, Corollary 1.5, (2.2), (2.3) and Proposition 3.4.

4. K,-localization of Eilenberg-MacLane G-spaces

Denote by Ky( ; A) and K*( ; A) respectively the complex homology
and cohomology K-theories with coefficients in 4. Let BUA be the connected
component of the base point of the CW-complex which represents K°( ; A4).
As a consequence of [14, Theorem 1.11] we notice that

(4.1) BU(AQR)is Ky( ; R)-local when R=Z[ ] '] is a subring of the rationals Q.
Moreover, Mislin [14, Lemma 2.1] showed that

(4.2) the Eilenberg-MacLane space K(A, 2) is a factor of BUA if the abelian
group A is torsion free.

Combining (4.1) with (4.2) we obtain examples of Ky( ; R)-local spaces.
If R is a subring of Q, then

(4.3) the Eilenberg-MacLane spaces K(AQR, 1) and K(A|TQR, 2) are
Ky( ; R)-local where T denotes the torsion subgroup of A.

By aid of the computation of Mislin [14, Theorem 2.2] we get immediately

Proposition 4.1. Let A be an abelian group, T its torsion subgroup and R
be a subring of Q. Then the following induced maps are respectively Ky( ; R)-
localizations:
i) K4, 1)=»K(ARR, 1)
i) K4, 2)—=K((4/T)RR, 2)
iii) K(4, n)=KARQQ,n)  for n=3.

When R=@,c;Z/p for some set J of primes, we consider the cofibering
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\V S! i>\ﬂ/S‘—>M r associated with a free resolution 0@ Z >PZ —>P,e; Z—>
] L4 B
0. My is a Moore space of type (B,e;Z,~, 1).

Lemma 4.2. Let A be a torsion free abelian group and R= D ,c;Z/[p.

Putting ExA=11,c; Ext(Z =, A), then BUErA is homotopy equivalent to the con-
nected component of the constant map of the based mapping space F(My, BUA).

Proof. It is sufficient to show that there is a natural isomorphism between
KY(X; ExA) and K°(X,My; A) for any based CW-complex X. We work in
the category of CW-spectra. Let MA be a Moore spectrum of type 4 and
MERA of type ExA. Consider the pairing %,: (1;1 MA),\(\/ S%)—S2MA4 induced

by the projections po: (ILMA),S*—>S*MA. The canonical morphism KAIIMA
—IIK,MA is a homotopy equivalence since IIMA is a Moore spectrum of
type I1A4 (see [18, Lemma 4] or [1]). Thus the map
T(ua)x: 1X, K\IMA} — {X;\(\/S?, K,S*MA}
defined by T(f)=(1,u%a)(fAl) for any CW-spectrum X, is an isomorphism.
Similarly for #g. Consider the homotopy commutative square
kAl
(L1M4),(\/S?) > (IMA)N(\/S?)
1nj U

(I MA),(\/S) —>  S2MA
B B Ug

where the map k: IIMA—TIMA is one induced by the map j: \/S'—\/S™.
B @ ® B
Then, by [18, Lemma 1] (or [15, Theorem 6.10]) there exists a nice map
w: MERA My — S*MA

which induces an isomorphism

VR

T(w)g: {X, K,MEzA} — {X My, K,S2MA}

for any CW-spectrum X. Composing the Bott isomorphism with the above
map we obtain a natural isomorphism

R¥(X; Exd) — R*(X, My; A)
for any CW-spectrum X, and in particular for any based CIW-complex X.

Applying Mislin’s method [14, Corollary 2.5] with Lemma 4.2 we have
Lemma 4.3. Let A be a torsion free abelian group and R=@® ,c; Z[p. Then
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the Eilenberg-MacLane space K(ERA, 2) is Ky( ; R)-local.

Proof. Let f: X—Y be a Ky ; R)-equivalence. Then f,1: X, My—
Y, My is clearly a K, -equivalence. Therefore the based mapping space F
(Mg, BUA) is Ky( ; R)-local because BUA is Ky-local by (4.1). On the
other hand, by (4.2) the Eilenberg-MacLane space K(Ez4, 2) is a factor of
BUERA since the abelian group Ep4 is torsion free. We use Lemma 4.2 to
obtain that K(E,4, 2) is Ky( ; R)-local.

By use of Lemma 4.3 we obtain

Proposition 4.4. Let A be an abelian group, T its torsion subgroup and
R=®,c;Z[p for some set | of primes. Then the following canonical maps are
respectively Ky( ; R)-localizations:
iy K4, 1)-LzK(4,1)

i) K(4, 2)—>K(Ex(A|T), 2)=LzK(A|T, 2)

i) K(4,n)—{x}  forn=3

where LrX denotes the Hy( ; R)-localization of X and Ex(A|T)=1I,c; Ext(Z,=,
A|T). (Cf., [14, Corollaries 2.3 and 2.5]).

Proof. i) Take a free resolution 0—F,—F,—A—0. Since L K(4, 1)
is the fiber of the map K(ERF,, 2)—>K(E.F;, 2), it is K4( ; R)-local by Lemma
4.3. The Hy( ; R)-localization map 75,: K(4, 1)—LzK(A4, 1) is obviously a
K,( ; R)-equivalence. .

il) In the composite map K(4, 2)—K(A/T, 2)—> K(Ex(A4|T), 2) the former is
a Ky-equivalence and the latter is an Hy( ; R)-equivalence, and hence the
composite map is a Ky( ; R)-equivalence.

iii) For =3 the constant map K(4, n)— {*} is certainly a Ky( ; Z/p)-equiva-
lence (see [17, Theorem 2.7]).

Let Ag=1{A4x} nectey be an order preserving family of abelian groups and
N be a right I-module. For each H €C(G) put

if 4,00=0

X N(G/H) =
N(GIH) Nlga®Q  if A;Q0=0.

Then LEN=@ yeco)L*;N(G/H) is a right I-module. And the canonical map
I': N=@®yN1gy— LN =& ,L;N(G/H) is a homomorphism of right I-mo-
dules, which induces a G-map

i = lk: K(N, n) — K(LX,N, n) .
Theorem 4.5. Assume that a family A= {Ax}uec of abelian groups is

order preserving. Let N be a right I-module and T its torsion subgroup. Then
the following maps are all (K, A g)-localizations:
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i) the (Hy, Ag)-localization ny: K(N, 1)—L_3;K(N, 1),

ii) the composite map K(N, 2)—~K(N|T, 2) % K(E_y(N/T), 2)=L_K(N/T, 2),
iii)  the induced map ni: K(N, n)—K(L*;N, n) for n=3.

Proof. Putting Propositions 4.1 and 4.4 together we can check that all

the H-fixed point maps in the theorem are Ky( ; 4jy)-localizations for any
HeC(G).

Appendix. Proof of the existence theorem of the localization

Let o be a fixed infinite cardinal number such that Car @ yeco)lis(*; Ax)
<o where the abelian groups A4, belong to the family fg. For a based
G-CW complex X, let #X denote the number of G-cells in X.

Lemma A.l. Let (X, Y) be a pair of based G-CW complexes such that
ho (X", YH#; Ay)=0 for each He=C(G), and W, be a G-CW subcomplex of X
with $W,<c. Then there exists a G-CW subcomplex W of X such that W <o,
W, cW&Y and h (W2, WENYH; Ay)=0 for each H<C(G). (Cf., [3,
Lemma 11.2]).

Proof. We construct a sequence of G-CW subcomplexes of X
w,cw,cw,c.-.cWw,c---

such that #W,<o, W,& Y and the map h (W, Wi~YH; Ay)—h(WE,,,
WhiAYH; Ay) is zero for n=1 and each H<=C(G). First, choose W,CcX
such that #W,<¢ and W,CW,C Y, and construct inductively W,. Choose
properly a finite subcomplex F, of X¥ for each element xh (W5, W]~ YH;
Apy) and take as W,,, the union of W, with all G- F,, then each x goes to zero
in ho(WE, WiiAYH; Ay) and $W,,,<o. Finally we put W=U ,», W, to
obtain the desired one.

Lemma A.2. Let X be a based G-CW complex. Assume that for amy
inclusion map iy: Yo—>Zy with $Zo=o such that it is an (hy, Ag)-equivalence,
i¥:[Zay X6 [Ya» X]g is onto. Then X is (hy, Ag)-local. (Cf., [3, Lemmas 2.5
and 11.3]).

Proof. Let f: Y—Z be an (hy, Ag)-equivalence. We may regard Y as
a G-CW subcomplex of Z and f as the inclusion Y CZ. Let v be an infinite
ordinal of cardinality greater than #Z—#Y. Using Lemma A.l1 we can
construct a transfinite sequence

Y=Y, cY,c...CY,CY, ,,C-

of G-CW subcomplexes of Z such that i) if A is a limit ordinal then Y,=
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Usa Yy, ii) if Y(=Z then Y ,;,=Z, and iii) if Y,#Z then Y ,=Y ,UW for
some WCX with $§W=<¢o, W& Y and h(W#? WENYY¥; Ay)=0 for each
HeC(G). Clearly Z=Y,, and f*: [Z, X];—[Y, X]; is onto. Take two based
G-maps g, h: Z—X such that f¥g=f*he[Y, X];, to show the injectivity of f*.
By the (44, Ag)-version of [3, Lemma 3.6] there exists a based G-CW com-
plex X and an (hy, Ag)-equivalence j: X— X such that jog=jhE[Z, X];.
Since we can find a left inverse k: X— X of j, it follows immediately that f*
is in fact a bijection.

Proof of Theorem 2.1. Choose a set {lp: Yo—>Zo}ae; of inclusion maps
with #Z,=<¢ which are (ky, Ag)-equivalences, such that it contains up to iso-
morphism each inclusion maps with these properties. Let ¥ be the first
infinite ordinal of cardinality greater than o. We inductively construct a
transfinite sequence of based G-CW complexes

X=X, cXc-cXcX,,C:--

where X,= U ,«, X, for each limit ordinal A and where X,CX,,, is given by
the push-out square

\/w\/f CYe>Xs Yw - )fs
\/a\/f P Ya>rXs Za — Xs+1

Putting LX=X,, the inclusion 5: X—LX is an (hy, Ag)-equivalence. Since
each based G-map f: Y,—LX passes through X for some s<v, i¥: [Z,, LX];
—[Yq, LX]; is onto for any a&1. By means of Lemma A.2 we observe that

LX is (hy, Ag)-local.
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