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In [11] and [12] May and others have constructed and have characterized
equivariant localizations and completions of G-nilpotent G-spaces when G is
a compact Lie group. Let J be a set of primes and X be a based G-nilpotent
G-space. Then the equivariant localization λ: X-*Xj is characterized by the
universal property that the //-fixed point space XHj is /-local for each closed
subgroup H of G and λ*: [Xf, Y]G-*[X, Y]G is a bijection for any based G-
nilpotent G-space Y with YH /-local, and it is constructed as a based G-map
whose restriction to //-fixed point spaces is a /-localization in the non-equiv-
ariant sense. The equivariant completion γ: X-*Xj is similarly characterized

and constructed.
According to Bousfield [3], each non-equivariant homology theory h%

determines /^-localizations of based CW-complexes. Special cases of the h%-
localization η\ X-*Lh^X are familiar if a based OPF-complex X is nilpotent.
Taking //#( Z[J~1]) as h*, then the H*( Zf/"1])-localization is the usual
/'-localization where Jc denotes the complement of the set /. Taking
ί/#( ®pejZlp)9 then the //#( 0ίe/Z//>)-localization is the usual /-completion.

In this paper we study a localization η: X—>L(h^tG)X=LX of a based G-
CW complex X such that its //-fixed point map rf\ XH-+(LX)H is an /^-localiza-
tion for any closed subgroup H of G. This localization is characterized by the
universal property that ηH: h*(XH)-*h*((LX)H) is an isomorphism for each //,
and for any based G-map/: X-^Y inducing isomorphisms/J: hχ(XH)-*h#(Y'H)
there is a unique based G-map r: Y-*LX with r f= η^[X, LX]G.

First we investigate some relations between Bredon homology and co-
homology theories and ordinary homology and cohomology theories in § 1,
following Wilson [16]. Given a homology theory h% and a family ^ΛG= {ΛH}
of abelian groups we define our localization in a general form in § 2, and prove
the existence theorem of our localizations in Appendix using the technique
developed by Bousfield. In § 3 we treat of the special case that h% is the or-
dinary homology theory H%. We proceed cocellularly the construction of the
localizations of G-nilpotent G-CW complexes so that we obtain our main result
(Theorem 3.3), which may be a slight generalization of main results in [11]
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and [12]. Finally we compute the localizations of Eilenberg-MacLane G-
spaces K(N, n) with respect to the complex homology ./^-theory K# (Theorem

4.5) in § 4, as Mislin [14] did in the non-equivariant case.

1. Bredon homology and cohomology

Let G be a compact Lie group and Cg be the category of pairs (X, Y) of

G-CW complexes, where Y' dX, and G-maps/: (X, Y)-*(X', Y'). A covari-
ant coefficient system M for G is a covariant functor from the category of left
homogeneous spaces G/H by closed subgroups H and G-homotopy classes of
G-maps to the category of abelian groups. A contravariant coefficient system
N for G is similarly defined.

Bredon homology and cohomology theories written as GH%(X, Y; M) and

GH*(X, Y; N) are Z-graded equivariant homology and cohomology theories
with coefficients in the covariant coefficient system M and the contravariant one

N respectively defined on the category Cg^ both of which satisfy the dimension

axiom. For any coefficient system M or N for G and each closed subgroup
K of G, denote by i%M or i$N the induced coefficient system for K which

assigns to each K/H the abelian group M(G//ί) or N(G/H) respectively. The

composites

KH*(X, Y; iίM) -+ KH*(G*KX, G£Y; ifΛί) -> GH*(G*KX, GiY; M)

and

GH*(GZX, GZY; N) - KH*(G*KX, G*KY; i*KN) - KH*(X, Y; ίj

are isomorphisms for every closed subgroup K of G and (X, Y)
We now recall the useful notion in interpreting coefficient systems for G,

introduced by Wilson [16, §4]. Let C(G) be a collection of closed subgroups
of G which contains precisely one subgroup from every conjugacy class of
closed subgroups of G and fix it. We have a partial ordering on C(G), namely
H^K if and only if H is subconjugate to K. The isotropy ring IG is defined
to be the free abelian group on the set of G-homotopy classes of G-maps from
G/H to G/K for all pairs H^K in C(G), whose ring structure is imposed by
compositions of G-maps. When G is a finite group, the ring IG has the multi-

plicative unit l=ΣH<=c(G)]-G/H where \G/H denotes the identity map on GjH.
However we notice that the ring IG has in general no multiplicative unit.

We call a left IG-module an abelian group M together with a structure
map φ: IGxM-*M written as φ(λ, x) = \x satisfying the condition that

M^Q)HG=C(G^G/H M in place of the unitary property in the usual case. A right
IG-module is similarly treated. According to [16, Theorem 5.1] there is a one

to one correspondence between covariant coefficient systems and left /G-modules

and analogously between contravariant coefficient systems and right /(--modules.
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Write I—IG for short. Given any abelian group A and each
the abelian group IIG/H®A=Q)K(ΞC(G)1G/KIIG/H®A is a left /-module, and the
abelian group 0^eC(G)Hom(lG/x/lG/^, A) denoted by Hom(/lG/#, A)r is a right
/-module. The following identifications of Bredon homology and cohomology
with ordinary homology and cohomology were given implicitly in [16, Theorem
7.3].

Lemma 1.1. Let G be a compact Lie group, H a closed subgroup of G con-
tained in C(G) and A be any abelian group. Then for any pair (X, Y) of G-
CW complexes we have natural isomorphisms

i) GH*(X, Y; IlGlH®A)e*H*(X*lW(H)» YH/W(H)0; A)
ii) GH*(X, Y; Hom(IlG/S9 A)I)^H\XHIW(H)Q, YHIW(H\ A)
where W(H)0 denotes the identity component of the Weyl group N(H)jH and

XHJW(H\ denotes the orbit space of the H-fixed point space XH by W(H)0.

Let M be a left /-module. Denote by I(M) the left /-module defined to
be

The map π: I(M)=®HI\G/H®\G/HM-*M given by π(\lG/H®\G/Hx)=\lG/Hx
is a homomorphism of left /-modules, which is obviously epic. Let N be a
right /-module. Denote by I(N) the right /-module defined to be

I(N) = 0/fec(G)n^ec(G)Hom(lG/^/lG/^, N\G/H) .

The map i: N = ®KN1G/K-»I(N)= ®κHHHom(lG/κnG/H, NIG/H) given by
i(x^G/κ)(^G/κ^G/H)= X^G/K^G/H is a homomorphism of right /-modules and it
is monic.

Corollary 1.2. Let G be a compact Lie group, M be a left I-module and

N a right I-module. Then for any pair (X, Y) of G-CW complexes we have
natural isomorphisms

i) GH*(X, F; I(M))^®H^C(C)H*(X»IW(H)0, Y»jW(H)0; \GlHM)

ii) GH*(X, Y',I(N))*Ίls&Λe)H*(X*IW(H)n YηW(H)0; N1G/H).

By means of Corollary 1.2 we show

Proposition 1.3. Let G be a compact Lie group, f: (X, Y)-*(Xf, Y') be
a G-map of pairs of G-CW complexes and n^.0.

i) Let M be a left I-module. I f f * : H{(XKIW(K)^ YKIW(K\\ lc/HM)-»
Hj(X'κ/W(K)0, Y'K/W(K)0', lG/ffM) is an isomorphism for each i^n and every
pair H^K in C(G\ then /#; GHi(X, Y; M)->GHi(X', Ύ'\ M) is an isomorphism
for each i^n.

ii) Let N be a right I-module. ///*: H\X'KIW(K)^ Y'K/W(K)0; NlG/a)-+
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Hi(XKIW(K)Q^ YKIW(K)Q\ N1G/H) is an isomorphism for each i^n and every

pair H^Kίn C(G), then}*: GH\X', Y'; N}^GH\X, F; N) is an isomorphism

for each i^n.

Proof, i) Consider the exact sequence 0->M1->/(M)-»M->0 of left

/-modules. Since the exact sequence

0 -* \GIHM1 -> W(M) = θ* W1G/L® 1G/LM -> 1G/HM - 0

is split as abelian groups, our assumption is maintained for Ml as well as M.

By induction on i, Q^i^n, we will show that /* : GHi(X, Y M)-+GHi(X', Yr M)
is an isomorphism. By Corollary 1.2 our assumption implies that/^: GHi(X, Y;

I(M])-+GHi(X'y Y'; /(M)) is an isomorphism for each i^n. Using induction

hypothesis and the weak four lemma we first verify that/^: GHi(X, Y; M)— >

Gffi(Xf

9 Y'\ M) is epic and hence /*: aff^X, F; M1)->Gflr

i(-Y/, Y r; MO is epic,
too. Using again induction hypothesis and the weak four lemma we next see

that/*: GH{(X, Y; M)-*GHt(X', Y'; M) is monic.
L

The case ii) is analogously shown, considering the exact sequence 0->7V-»
#ι-*0 of right /-modules.

Let ^^ and Gh* be i?O(G)-graded (or Z-graded) equivariant homology and

cohomology theories defined on the category Cg. By definition the composites

Hha,H(X, Y) -> Hha\H(G*HX, G*H Y) -* MGΪX, Gέ Y)

and

cF(GZX9 Gϊ Y) - Hh*t*(GϊX, GΪY) ~> Hh*i*(X, Y}

are isomorphisms for each degree a^RO(G) (or eZ) and each pair (X, Y)e

C^ , taking every closed subgroup H of G (see Kosniowski [10]). Applying
entirely the same method adopted in [11] we obtain the following proposition

regarded as a generalization of the result [11, Proposition 2].

Proposition 1.4. Let G be a compact Lie group, (X, Y) be a pair of G-

CW complexes and a^RO(G) (or <=Z).

ϊ) Let oh* be an RO(G}-graded (or Z-graded) equivariant homology theory.
If Hha\H_i(XK, Yκ)=0 for each z'^0 and any pair H C.K of closed subgroups of
G, then Gha-i(X, Y}=0for each i^O.

ii) Let Gh* be an RO(G)-graded (or Z-graded) equivariant cohomology theory.

If HhΛ^H~i(Xκ^ Yκ)~ 0 for each i^Q and any pair HdK of closed subgroups of

G, then Gh^(Xy Y)=0/or each ί^O.

Proof. We first prove the cohomology case ii). We may assume that

Hh*iH-*(X, Y)=0 for each ί^O and all H in the family F of proper closed sub-

groups of G and that Hh^H-\XG, YG)=§ for each i^O and all H in the family
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jPoo of all closed subgroups of G. There is a commutative diagram with exact
rows

, Y) — *jr-'[F., pyx, Y) — > jr-'(x, Y) — >Gh
a-i[F](xy Y)

¥<>)-»£•-'&„, F](XG, YG) - <JιΛ-'(XG, YG)-G#*-'[F](^G, YG)

where all vertical arrows are induced by the inclusion (XG, YG)-*(X, Y) (see
[7]). Observing exactly Segal's spectral sequence in the proof of Jackowski
[9, Proposition 1.4], it is easy to check under the above assumptions that
Jf^nX, Y)=Q=Gh"-{[F] (XG, YG) for each ί^O. On the other hand, the

inclusion (XG, YG)->(JSΓ, Y) induces an isomorphism GA*[ίU, F](X, Y)^
cλ*[Foo, F](XG, YG) as investigated by torn Dieck (see [7, Proposition 7.4.2]).
Consequently we obtain that cff-^X, Y)^G//"-'(^G, YG)=0 for each ί^O.

We next prove the homology case i) by coming back to the cohomology

case ii) by duality. For any divisible abelian group A, consider the equivariant
cohomology theory Gh(A)* given by setting Gh(A)*(X, Y)=Hom(Gλ#(J£, Y), A).
Applying the cohomology case ii) it follows at once that Gh(A)*~l(X, Y)=0
for each i ̂ 0 and any divisible abelian group A. Taking the injective resolution

0->Z->ρ->ρ/Z->0 of the integers Z, we have that Hom(Gha,i(Xy Y), Z)=0=
i(X, Y), Z). This means that Gha-i(X, Y)=0 for each ί^O.

Let H be a closed subgroup of G and M be a covariant coefficient system
for G and N a contravariant coefficient system for G. If (X, Y) is a pair of
trivial H-CW complexes, then we have natural isomorphisms

aH#(X, Y ίίΛ4)^H*(X, Y;

and

aH*(X, Y; iSN,)<*H*(X, Y; N(G/H))

where i$M and i%N are the induced coefficient systems for H. Taking Bredon
homology and cohomology as Gh% and GA* in the above proposition we have

Corollary 1.5. Let G be a compact Lie group and (X, Y) be a pair of G-

CW complexes and n ̂  0.
i) Let Mbe a left I-module. If Hi(XK

J Yκ\ 1G/HM)=0 for each i^n and every
pair H^K in C(G), then GHi(X, Y; M)=0for each ί^n.
ii) Let N be a right I-module. If Hi(Xκ

f Yκ\ N\GlH}=§ for each i^n and
every pair H^K in C(G), then GH

l(X, Y; Λ^) = 0 for each i^n. (Cf., [11,

Proposition 4]).

Let h* and A* be (non-equivariant) homology and cohomology theories
defined on the category C of pairs of CPF-complexes. Putting Ghχ(X)=h%(X/G)
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and Gh*(X)=h*(X/G), Gh% and Gh* are equivariant homology and cohomology

theories respectively defined on the category CQ.

Corollary 1.6. Let G be a compact Lie group, H its closed subgroup and

N(H) the normalίzer of H in G. Let (X, Y) be a pair of G-CW complexes and

i) // hj(Xκ, y*)=0 for each i^n and each K, HdKc:N(H), then hi(XH[

W(H)fr YH/W(H)0)=Qfor each i^n.
ii) If hl(XK

9 Yκ)=0 for each i^n and each K, HdKc:N(H\ then ti(XHl

W(H\, YHIW(H)ύ=Qfor each ί^n.

2. h* -localization of G-CW complexes

For a (non-equivariant) homology theory defined on the category Cy let

h*( A) denote the associated homology theory with coefficients in the abelian

group A. Let ^Λg= {AH} be a family of abelian groups indexed by H^C(G).

A based G-map /: X— >Y of based G-CW complexes is said to be an
(h%, Jl ̂ -equivalence if its //-fixed point map fH induces an isomorphism/*:
h*(X*\ Aff)-*h*(Yff; Aff) for every H<=C(G). A based G-CW complex X is

said to be (λ*, Jlg)-local if any (h%, ^^-equivalence /: X' -*Y' induces a

bijection /*: [ Y f , X]G-+[X', X]G where [ , ]G denotes the set of G-homotopy

classes of based G-maps.

Using the technique developed by Bousfield [3, 5] we can show the exist-

ence of (h%, c.̂ 1) -localizations of based G-CW complexes, although we avoid

to rely on the simplicial homotopy theory.

Theorem 2.1. Let G be a compact Lie group, h* be a homology theory

defined on the category C and <JlQ= {AH} #ec(G) be a family of abelian groups.
Given any based G-CW complex X there is a based G-map

of based G-CW complexes such that ηx is an (h*, Jl^-equivalence and LX is

(h*, Jlo)-locaL

The proof is deferred to Appendix. Remark that our construction given

in Appendix is not necessarily functorial.

Let A be an abelian group and JA denote the set of primes p such that A
is uniquely ^-divisible. Associate with A the special abelian groups

ςr I ^P**JA~\r ιr

&A 1 ,- ..,
if

and
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if Hom(0> A)=o=Ext(Q, A)
Z[J-A

1} if not

Since each homology theory h* holds a universal coefficient sequence

0 -̂  h*(X, Y)®A - h*(X, Y; A) - Ύo^h^X, Y), A)^0,

from [2, Proposition 2.3] it follows easily that

(2.1) h*(X, Y;A) = 0 if and only if h*(X, Y; SA) = 0

(see [13, Proposition 1.9]). Let h* be a cohomology theory of finite type, thus
its coefficient group /*'(*) is finitely generated for every degree i. Then there
exists a homology theory Vh* related with the universal coefficient sequence
[6, 18]

0 - ExtO?/**.^, F), A) -> h*(X, F; A) - Hom(V/**(^, Y), A)-»Q.

As a similar result we have

(2.2) h*(X, Y; A) = Q if and only if h*(X, Y; 5Ϊ) = 0 .

Moreover, when either S=®p(ΞjZ/p and VS=Πpξ=jZlp or S-VS-Zt/-1]
for some set / of primes, we get

(2.3) h*(X, F; VS) = 0 if and only if Vh*(X, F; 5) - 0 .

For a family Jlg= {AH} jyecCc) °f abelian groups we define the family
<Sjl= {Sff} HGC(G) °f special abelian groups given by

ίf

where JH denotes the set of primes such that AH is uniquely ^-divisible. Clearly
(2.1) implies

(2.4) A based G-CW complex X is (h^ Jlg)-local if and only if it is (h%,
local.

Given abelian groups A and β, write <04>^<£> if JA^JB and B®Q=0
implies ^®g=0, and < [̂>*^<J5>* if JA^JB and Hom(ρ, JB)=0=Ext(Q, B)
implies Hom(g, ^4)^0— Ext(O, ^4). Obviously it follows from (2.1) that

(2.5) h+(X, F; B) = 0 implies h*(Xy Y;A) = 0

when <#>^<^4)>, and under the restriction that h* is of finite type it follows
from (2.2) that

(2.6) h*(X, Y',B) = Q implies h*(X, Y]A) = Q
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A family ^Άg= {AH} #<=C(G) °f abelian groups is said to be (homologically)
order preserving if (AHy^ζAκy for every pair H^K in the partially ordered
set C(G).

Lemma 2.2. Assume that a family Jig— {AH} is order preserving. If

a based G-CW complex X is (h^ Jlcft-local, then its H-fixed point space XH is
h*( Aff)-local for every

Proof. Let/: U->V be a based map which induces an isomorphism /* :

h*(U\ AH)-»h*(V\ AH) for a fixed #eC(G). Then 1Λ/: (G/#)+Λt/->
(G/H)+/\V becomes an (h%, ^^-equivalence under the hypothesis on Jlg=

{AH}. Therefore it induces a bijection (1Λ/)*: [(G/ίf)+ΛF, X]G-»[(GJH)+^U,
X]G. This means that/*: [F, XH]-+[U, XH] is certainly a bijection, too.

Owing to the existence theorem of (h%, cJ?^>) -localizations we show that the
converse of Lemma 2.2 is also valid.

Proposition 2.3. Assume that a family Jlg= {AH} is order preserving.
Then a based G-CW complex X is (h%, Jlg)-local if and only if its H-fixed point

spaces XH are h*( AH)-local for allH^C(G}.

Proof. We have to show only the "if" part. Let η: X-+LX be an

(h#, ^^-localization of X. By the "only if" part, Lemma 2.2, (LX)H is

h*( -4tf)-local for each H <=C(G). Since the ίf-fixed point map ηH: XH '-»
(LX)N is an h*( ^^-equivalence, we see easily that η f f : XH-*(LX)H is a
homotopy equivalence for each H^C(G). Thus 77: X-+LX itself is a homo-

topy equivalence, and hence X is (h%, <_^£>)-local as desired.

An Eilenberg-MacLane G-space K(N, n) is a based G-CW complex by
which the n-th (reduced) Bredon cohomology group Gfϊ

n(X\N) with coefficients

in N is represented as GS
n(X\ N)^[X, K(N, n)]G. For Eilenberg-MacLane

G-spaces K(N, n) we can give another proof of Proposition 2.3 without use of

the existence theorem of (h^ ^^-localizations.

Proposition 2.4 (as a special case of Proposition 2.3). Assume that a
family ^Ag= {AH} is order preserving. Let N be a right I-module. Then an
Eilenberg-MacLane G-space K(N, n) is (h%, Jlg)-local if and only if Eilenberg-

MacLane spaces K(N\G/Hy n) are h*( AH)-local for all

Proof. The "if" part: Let /: X-+Y be an (A#, ^^-equivalence. Then
by Corollary 1.6 /*: h*(X*IW(K)ύ AH)-*h*(YκjW(K)Q; AH) is an isomorphism

for each pair H^K in C(G). Since the Eilenberg-MacLane space K(NlG/ffy m)
is *„,( ^)-local for any m^nj*: Hm(YK/W(K)0: NlG/H)-^Hm(XK/W(K)0;

NlG/ff) is an isomorphism for any m^n and every pair H^K in C(G). Using
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Proposition 1.3 we observe that/*: GH
n(Y\ N)-+GH

n(X\ N) is an isomorphism,

thus the Eilenberg-MacLane G-space K(N9 n) is (h*, Jlg)-\ocal.

3. //^-localization of 6r-nilρotent G-CW complexes

Let c_^?£= {Aff} jyeC(G) be a family of abelίan groups which is order preserv-
ing and TV be a right /-module. For each // eC(G) put

N _ ( Up^JsExt(Zpco9 N1G/H) ifAH®Q = Q

I /V7Ί /^?\ 7\ T~ Ί IT /\\ -L V J. Γ'/ff \£y *J \ I ff I •*••*• ^

and

> mc'«ϊ if

/-v * C Λ /O /~l i A0 ir ΛH®Q Φ ϋ

where /jy denotes the set of primes p such that AH is uniquely ^-divisible and

Z p~=limZ/p". As is easily seen, setting EjiN=®H<=c(G)EJlN(GIH) it: ίs a

right /-module and the canonical map /: N=®HN\G/H-*EjιN=@HEjιN(GIH)
is a homomorphism of right /-modules. Similarly for Hj[N. Note that

/^0 if JV is torsion free as an abelian group.

Lemma 3.1. Assume that a family JLg= {AH} is order preserving. Let

N be a right I-module such that Hj[N=0. Then the induced G-map

ηN = /*: K(N, n)-*K(EjιN, n) , n^l ,

is an (H^ Jl ^-localization.

Proof. According to Bousfield [3, Proposition 4.3] the //-fixed point map
97$: K(N\G/H,ri)-*K(EjιN(GIH),ri) is an //*( ^-localization. Now the

result follows from Proposition 2.4 (or Proposition 2.3).

Let M be a left /-module. We say a based G-map /: X-+Y of based

G-CW complexes an GH*( M)-equίvalence i f f * : GH*(X\ M)-*GH*(Y\ M) is
an isomorphism, and a based G-CW complex X GH*( M)-local if any
£//*( M)-equivalence /: X'-+Y' induces a bijection /*: [ Y f , X\G-»[X', X]G.
Similarly for G//*( N}-equίvalence and G//*( N)-local space when ΛΓ is a

right /-module.
For the order preserving family Jig— {AH} H<=C(G) we put

ny which is a left /-module.

Lemma 3.2. Assume that Jlg= {AH} is order preserving. Let N be a right
I-module such that Hj[N=0. Then the Eilenberg-MacLane G-space K^jiN, n)

is GH*( I(<JL)γiocal for every n^l.
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Proof. By use of Lemma 1.1, (2.1) and (2.3) we can see that the following
four conditions are all equivalent:
i) a based G-map/: X-+Y is an GH*( I(<-Λ)) -equivalence,
ii) each f* : XHJW(H\-* YHW(H)0 is an H*( ^-equivalence,
iii) each/^ is an H*( SH) -equivalence,
iv) each/^ is an H*( VS^-equivalence
where SH=®p^JffZlp and VSH = Πp^sZ/p if Aa®Q = 0, or Ss = VSa =
Z[Jπl] if AH®O*Q. Obviously <V*S^>* ̂  <£>/V(G//f)>*, hence (2.5) says
that the condition iv) implies
v) each fa is an H*( E^Λ^G/ίί^-equivalence.
Moreover it follows from Proposition 1.3 that the condition v) implies
vi) /: X-+Y is an GH*( E^Λf)-equivalence.
Therefore the Eilenberg-MacLane G-space K(Ej[Ny n) is GH*( /(^))-local
as desired.

Following [11] we say a based G-CW complex X G-nίlpotent if each XH is
connected and nilpotent and if for every n^l the orders of nilpotency of the
τr1(^'jy)-groups πn(XH) have a common bound for varying H. According to
[11, Proposition 8] we have the following analogous result to the non-equivari-
ant case.

(3.1) If a based G-CW complex X is G-nilpotent, then there is a (nilpotent)
G-tower 3£= {Xn} such that
i) X is weakly G-homotopy equivalent to the inverse limit of Xn.
ii) X0= {*} and Xn+1 is the fiber of a based G-map kn : Xn-+K(Nny qn) where
gΛ^>2, and
iii) qn+ι^qn and only finitely many qn=r for each r.

Theorem 3.3. Let ιΛg= {AH} #<=C(G) be a family of abelian groups which
is order preserving and denote I(Jΐ)=®H^c(G')I^G/H®AH. Given any G-nilpotent
G-CW complex X there exists a based G-map

of G-nilpotent G-CW complexes such that
i) its H-fixed point map rfχ\ XH-*(LjιX)H is an H*( A ̂ -localization for each

ii) LjiXisM ', I(Jΐ)YlocaL

Proof. First take a right /-module N and an exact sequence 0-»F2— >JF\
-^N^Q of right /-modules such that Fλ is projective. Note that both Fλ and
F2 are free as abelian groups. Denote by Lj[K(N, n)y n^l, the fiber of the
G-map K(EjιF2y n+l)-^K(EjιFl9 n+l). It is a 2-stage G-CW complex with
homotopy groups only in dimensions n and n-\-l. We have a dotted arrow
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rjN : K(N, ri)-*Ljι K(Ny n) making the diagram below G-homotopy commutative

K(Fltn) -> K(N,n) -* K(F»n+l)
I ϊ I

By use of the Serre spectral sequences and Lemma 3.1 we see easily that ηN is

an (H%, ^^-equivalence and by Lemma 3.2 that Lj[K(N, n) is GH%( I(Jl))-
local.

For a G-nilpotent G-CW complex X we may regard that it is given as the
inverse limit of a nilpotent G-tower 3£~ {Xn} . Inductively we can construct

GH*( /(oϊ))-local spaces Lj[Xn+l being the fiber of Lj[kn: LJLXn-^LjLK(Nny qn),

and also (H%, Jig) -equivalences ηn+1: Xn+1-*LjιXn+l such that the following

diagram is G-homotopy commutative

K(Nn,qn-l) -» Xn+1 - X. - K(Nn,qn)

Put as Lj[X a G-CW approximation of the inverse limit space of Lj\Xn. Then
the above construction shows that Lj\Xn is G-nilpotent for each n and that

Lj[X is also G-nilpotent (see [8]). So we obtain a desired localization map

Because of the localization theorem 3.3 we have the following characteriza-

tion, although it is trivial if G is a finite group.

Proposition 3.4. Assume that a family ^Ag~ {Aff} is order preserving. On
a lased G-map f: X-+Y the following three conditions are equivalent:

i) fl : H*(XH AH)-+H*( YH AH) is an isomorphism for each H <Ξ C(G),
ϋ) /J: H*(XHIW(H)^AH}^H*(YHIW(H)^AH} is an isomorphism for each

GHχ(Y; I(Jΐ)) is an isomorphism.
(Cf., [12, Proposition 6]).

Proof. Lemma 1.1 asserts that the conditions ii) and iii) are equivalent,
and Corollary 1.5 says that the condition i) implies iii). It remains to show
only the implication iii)— >i). Consider the G-homotopy commutative square

S2f
S2X —^ S2Y

Then the condition iii) implies that LjιS2f: LjιS2X-+LjιS2Y is an GH*( I(Jl))-
equivalence, and hence it becomes a G-homotopy equivalence since
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and LjιS2Y are both GH*( I(Jΐ)) -local. Hence /: X-*Y is certainly an

As a dual of Proposition 3.4 we have

Corollary 3.5. Let <JLg= {AH} HςΞC(Gϊ be a family of abelίan groups such
that <AHy*^(Aκy* for every pair H^K in C(G). On a based G-map f: X-+Y
the following three conditions are equivalent:
i) /**: H*(Y* , AH)-*H*(XH', AH} is an isomorphism for each #eC(G),
ii) /**: H*(YHIW(H)^ Aff}-+H*(Xff/W(H)0] AH) is an isomorphism for each
HtΞC(G),and
iii) /*: G#*(F; I(JKf}-*JΆ*(X\ I(Jΐ)*) is an isomorphism. Here I(J)*=
®κΠHHom(lG/κnG/ff,AH).

Proof. Use Lemma 1.1, Corollary 1.5, (2.2), (2.3) and Proposition 3.4.

4. ^-localization of Eilenberg-MacLane 6r-sρaces

Denote by K*( A) and K*( A) respectively the complex homology
and cohomology ./^-theories with coefficients in A. Let BUA be the connected
component of the base point of the CFF-complex which represents K°( A).
As a consequence of [14, Theorem 1.11] we notice that

(4.1) BU(A®R) is K*( R)-local when R=Z[J~1} is a subrίng of the rationals Q.

Moreover, Mislin [14, Lemma 2.1] showed that

(4.2) the Eilenberg-MacLane space K(A, 2) is a factor of BUA if the abelian
group A is torsion free.

Combining (4.1) with (4.2) we obtain examples of K*( JR)-local spaces.
If R is a subring of 0, then

(4.3) the Eilenberg-MacLane spaces K(A®Ry 1) and K(A/T®R, 2) are
K*( R)-local where T denotes the torsion subgroup of A.

By aid of the computation of Mislin [14, Theorem 2.2] we get immediately

Proposition 4.1. Let A be an abelίan group, T its torsion subgroup and R
be a subring of Q. Then the following induced maps are respectively K*( R)-
localizations:
i) K(A, 1)-+K(A®R, 1)
ii) K(A, 2)-»K((A/T)®R, 2)
iii) K(A, n)-*K(A®Q, n) forn^l.

When R=ξ&pGjZ/p for some set J of primes, we consider the cofibering
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l - 1 - associated with a free resolution 0->®Z-»®Z-»06e/Z6~^
« β P

0. MR is a Moore space of type (®p<=jZp<*>, 1).

Lemma 4.2. Lei A be a torsion free abelian group and R=ξ&pξΞfZ/p.

Putting ERA=TIpE:jExt(Zp~>, A), then BUERA is homotopy equivalent to the con-
nected component of the constant map of the based mapping space F(MRy BUA).

Proof. It is sufficient to show that there is a natural isomorphism between
K°(X-, ERA) and &\X^MR\ A) for any based CW-complex X. We work in
the category of CW-spectra. Let MA be a Moore spectrum of type A and

MERA of type ERA. Consider the pairing ua: (ΠM4)Λ(V S2)-+S2MA induced
Cύ Cύ

by the projections ρa: (ΠMA)/,S
2-+S2MA. The canonical morphism K/J1MA

Cύ Λ

—*HKΛMA is a homotopy equivalence since UMA is a Moore spectrum of
Λ Λ

type HA (see [18, Lemma 4] or [1]). Thus the map
*

: {X,

defined by T(f)=(lΛua)(f/\l) for any CW-spectrum X, is an isomorphism.

Similarly for uβ. Consider the homotopy commutative square

-H (UMA)A(\JS2)

\ua
- > S2MA
uβ

where the map k: ΠMA-+ΠMA is one induced by the map /: \/S1-^\/S1.
β cύ a β

Then, by [18, Lemma 1] (or [15, Theorem 6.10]) there exists a nice map

which induces an isomorphism

T(w)x: {X, KΛMERA} ^ {XΛMRί KΛS
2MA}

for any CW-spectrum X. Composing the Bott isomorphism with the above
map we obtain a natural isomorphism

for any CW-spectrum X, and in particular for any based CFF-complex X.

Applying Mislin's method [14, Corollary 2.5] with Lemma 4.2 we have

Lemma 4.3. Let Abe a torsion free abelian group and R= ®pξ=j Zjp. Then
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the Eίlenberg-MacLane space K(ERA, 2) is K*( R)-local.

Proof. Let f: X-*Y be a K*( ^-equivalence. Then /Λl: -YΛMΛ->
YκMR is clearly a /^-equivalence. Therefore the based mapping space F
(MR, BUA) is K*( Λ)-local because BUA is X^-local by (4.1). On the
other hand, by (4.2) the Eilenberg-MacLane space K(ERA, 2) is a factor of

BUERA since the abelian group ERA is torsion free. We use Lemma 4.2 to
obtain that K(ERA, 2) is K#( Λ)-local.

By use of Lemma 4.3 we obtain

Proposition 4.4. Let A be an abelian group, T its torsion subgroup and

R=@pςΞjZlP f°r some set J of primes. Then the following canonical maps are
respectively K%( R)-localizations :
i) K(A, l)^LRK(A, 1)
ii) K(A, 2)-*K(ER(AIT), 2)=LRK(A/T, 2)
iii) K(A,n)-*{*} forn^l
where LRX denotes the H*( R)-localizatwn of X and ER(A/T)=np(EjExt(Zp~,
AIT}. (Cf., [14, Corollaries 2.3 and 2.5]).

Proof, i) Take a free resolution 0->F2-> F1->A-> 0. Since LRK(A, 1)
is the fiber of the map K(ERF2, 2)-+K(ExFl9 2), it is K#( Λ)-local by Lemma
4.3. The H*( ^-localization map ηA: K(A, l)-+LRK(Ay 1) is obviously a
K#( \ Λ)-equivalence.
ii) In the composite map K(A, 2)-+K(A/T, 2)-*K(ER(AIT), 2) the former is
a X* -equivalence and the latter is an H*( jR)-equivalence, and hence the
composite map is a K%( R) -equivalence.
iii) For n^3 the constant map K(A, n)-> {*} is certainly a K*( Z/p)-equiva-
lence (see [17, Theorem 2.7]).

Let JlQ— {AH} H<=C(G) De an order preserving family of abelian groups and
N be a right /-module. For each H ^C(G) put

o ίf^®ρ = o
if

Then L^N=®#eC(G)L^N(G///) is a right /-module. And the canonical map
/7: N=®HN\G/H->LjίN^@HLjiN(GIH) is a homomorphism of right /-mo-

dules, which induces a G-map

Theorem 4.5. Assume that a family Jlg= {AH} H€=C(G) °f abelian groups is
order preserving. Let N be a right I -module and T its torsion subgroup. Then
the following maps are all (K*, Jl ̂ -localizations:
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i) the (#*, ^-localization ηN: K(N, l)^Lj,K(N9 1),

ii) the composite map K(N, 2)-*K(N/T, 2)'?^K(Ejί(NIT), 2)=LjιK(N/T, 2),
iii) the induced map η'N: K(N, n)-+K(LjιN9 n)for n^3.

Proof. Putting Propositions 4.1 and 4.4 together we can check that all
the //"-fixed point maps in the theorem are K%( ^[^-localizations for any

Appendix. Proof of the existence theorem of the localization

Let σ be a fixed infinite cardinal number such that Car ® #ec(G)^*(* 5 AH)
ίgσ where the abelian groups AH belong to the family Jig. For a based
G-CW complex X, let %X denote the number of G-cells in X.

Lemma A.I. Let (X, Y) be a pair of based G-CW complexes such that
h*(XH, YH\ Aff)=0 for each #eC(G), and W0 be a G-CW subcomplex of X
with $W^σ. Then there exists a G-CW subcomplex W of X such that $W^σ,
W0(^W<t.Y and h*(WH,WHϊ}YH\AH)=Q for each H<=C(G). (Cf., [3,
Lemma 11.2]).

Proof. We construct a sequence of G-CW subcomplexes of X

such that $Wn^σy Wn$Y and the map h*(W*, WH

nΓ^YH; Aff)-+h*(W*+l,
Wξ+mYa;AH) is zero for n^l and each H &C(G). First, choose W^X
such that ftW^σ and W0dWι<ί:Y, and construct inductively Wn. Choose
properly a finite subcomplex Fx of XH for each element x^h*(W%, Wn r\ YH\
AH) and take as WH+ί the union of Wn with all G Fχy then each x goes to zero
in Λ#(PΓf+1, W^^YH\ AH) and #Wn+1£<r. Finally we put W=Un^Wn to
obtain the desired one.

Lemma A.2. Let X be a based G-CW complex. Assume that for any
inclusion map ia: Ya->Za with $Za^cr such that it is an (h#, Jl ̂ -equivalence,
i*:[Zay X]G-*[Ya, X]G is onto. Then X is (h%, <Λg)-local. (Cf., [3, Lemmas 2.5
and 11.3]).

Proof. Let /: F— >Z be an (A*, ^^-equivalence. We may regard Y as
a G-CW subcomplex of Z and / as the inclusion Y CZ. Let γ be an infinite
ordinal of cardinality greater than #Z—$Y. Using Lemma A.I we can
construct a transfinite sequence

of G-CW subcomplexes of Z such that i) if X is a limit ordinal then Yχ=
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U s < λF5, ii) if YS=Z then YS+1=Z, and iii) if FSΦZ then y,+1= Ys U fiΓ for

some WdX with tffl^σ, ΪFΦF and h*(Wa, WHΠ Ff; ̂ ) = 0 for each

H*ΞC(G). Clearly Z- Yγ, and/*: [Z, X|G->[Y, J5Γ|G is onto. Take two based

G-maps£, h: Z-+X such that f*g=f*h^[Y9 X]G, to show the injectivity of/*.

By the (h%, <^?£>)-version of [3, Lemma 3.6] there exists a based G-CW com-

plex JL and an (A*, ^^-equivalence j: X-+X such that j*g=j*h^[Z9 %]G.

Since we can find a left inverse k: X—> X of j, it follows immediately that /*

is in fact a bijection.

Proof of Theorem 2.1. Choose a set {ia: Ya-*Za}a€Ξ:I of inclusion maps

with $Za:=ίσ which are (h%, ^^-equivalences, such that it contains up to iso-

morphism each inclusion maps with these properties. Let γ be the first

infinite ordinal of cardinality greater than σ. We inductively construct a

transfinite sequence of based G-CW complexes

where Xχ= U s<\^s f°r each limit ordinal X and where XsdXs+1 is given by

the push-out square

\ / \ / V -̂  Y
V as V / : Ya+Xs * cc~-* Λ s

V.V/:^!.^-*^!

Putting LX=Xy, the inclusion η: X-+LX is an (h%, ^^-equivalence. Since

each based G-map/: Ya-^LX passes through Xs for some ί<γ, i*: [Zα, L-X"]G

-^[Yα;, LJ^]G is onto for any αe/. By means of Lemma A.2 we observe that

L^ is (A*,
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