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1. Introduction

Let p be a prime number and l&t be an algebraically closed fiéldharacter-
istic p. Let G be a finite group ané a block &G . In [10], M. Linckednm in-
troduces two notions: thegansfer mapsn Hochschild cohomology of symmetric alge-
bras, and thecohomology ring of the block. Using the transfer map, he shows that
the cohomology ringH*(G, b, D) of the blockb is embedded into the Hochschild
cohomology ringHH*(kGb) of the block algebrakGb , which gives a block ver-
sion of the well-known embedding from the usual cohomologg rH*(G, k) into
the Hochschild cohomology ringdH* (kG) (see [10, Proposition 4.5]). Around the
same time, M. Linckelmann [11] introduces a cohomologicaliety which is a block
version of Carlson’s module variety [4]. As is well known,rfa finitely generated
kG-module U , Carlson’s varietys U ) is defined to be the maximalaidgpectrum
of H*(G, k)/I;(U), where I;(U) is the annihilator of the action oH*(G, k) on
Ext;; (U, U) induced by the cup product. On the other hand, for a bourcdedplex
U of kGb-modules, Linckelmann’s varietys, U( ) is defined to be the it ideal
spectrum of H*(G, b, Dv)/l(’;’h’Dv(U), where I(’g’h’DW(U) is the kernel of the algebra
homomorphismH*(G, b, D,) — Ext,(U, U) induced from the above embedding
H*(G, b, D,) — HH*(kGb) (see Section 2 for details).

In this paper we study the variety;, U( ). The following is the maesult,
which gives a characterization of the ide@{h’Dv(U) in terms of the cohomology ring
of a defect groupD ob .

Theorem 1.1. Letb be a block ok G, D, a defect pointed group df and let
i € v be a source idempotent &f . L&  be a bounded complekGif -nsodule
Then we have that

I p.p, (U) = H*(G, b, D,) N I(iU).

In particular if b is a nilpotent block okG, then we have thav; ,(U) = Vp(iU).
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In [11], M. Linckelmann shows that for any bounded compléx kGf-modules,
there exists a finite surjective mag; , U (9 Vs (U) (see Theorem 2.4 below). From
Theorem 1.1, we can show the following reverse version «f thsult.

Corollary 1.2. For any bounded complek  d&fGb -moduldkere exists a fi-
nite surjective mapp: Vp(iU) — Vi, (U). Further, the dimensions o¥p(iU) and
Ve.»(U) coincide.

In [11], Linckelmann also shows that the varieti®g, U ( ) areaiifant under
splendid stable and derived equivalences in the sense akélimann (for the def-
inition of these notions, see [12]). Applying Theorem 1.1 wensider the question
whether the varietied; , U ) are invariant under the Brauerespwndence betweeen
blocks b in kG with defect groupD and blocks in kNg(D) with defect groupD .
As a partial answer, we have the following.

Theorem 1.3. Suppose thatD is abelian. LeU be an indecomposable
kGb-module with vertexD and leW be the Green correspondent/ of h wespect
to (G, D, Ng(D)). Then we have thaVs »(U) = Vi, (p),0(W).

Let Z be a centrap -subgroup @ and sgfZ = G. Then the naturak -algebra
homomorphismkG — kG gives a one to one correspondence from all blokks k@f
onto all blocksb of kG. Applying Theorem 1.1 again, we have the following.

Theorem 1.4. Let U be a bounded complex éfGb-modules. Regarding/  as
a complex ofkGb -modules throughGb — kGb, we can define an affine map
inf, ,: V6.»(U) — Vg 5(U) induced from the inflatiorinfy ,.

Finally, we consider the inverse images of the affine mapvelatso. See Propo-
sitions 5.2 and 5.3 below.

All modules considered in this paper are assumed to be fintjeinerated left
modules, unless otherwise stated. We end the introductitim fixing notations. Let
H be a subgroup of a finite groug . For a group algeR@ over a cdativel
ring R, (RG)r denotes the regulaRG — RH-bimodule and, similarly,; RG ) de-
notes the regulaR H — RG-bimodule. For the conjugation given by an element of
G, we use the left notationtH =xHx~ ! and’a =xax~! for @ € RG. Further,
cx: H*(H, k) — H*(*H, k) denotes the conjugation map given by . For compleXes
andY ,X | Y means thatX is isomorphic to a direct summandyof

2. Preliminaries

Let A andB be algebras over a commutative riRg . ByAn B-bimodule, we
mean a bimodule on which the left and right actionsff  coiegcish other words,
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an A ®g B°-module B° is theR -algebra opposite ® ). For &n -modMle and a
complex C of R -modules, we se¥* = Homg (M, R) andC* = Homg (C, R), their
R-uals. LetU be a right bounded complex df -modules. We dengteAA(U) a
projective resolusion o/ , that isZ(U) is a right bounded complex of projective
A-modules with a map of chain complexe®(U) — U which is an isomorphism
on homology. ConsideA as a# ®g A°-module (i.e.,A — A-bimodule). Further we
also considerA as a complex with the degree 0 compordent  anathedl compo-
nents being zero. Then we denote B, a projective resolution of the complex
Let U and V be right bounded complexes af -modules. Notice thdf (&, V) =
H"(Hom, (22(U), V)) by definition. Further, we have the following isomorgims (see,
e.g., [3, I, Section 2.7] or [8, Chapter 6]):

Exty(U, V) = H"(Homy (Z(U), V)) = H"(Hom, (Z(U), Z(V))
= Homg4)(Z(U), 2(V)[n]),

whereK (A) is the homotopy category of complexesdof -modules@{V)[n] is the
complex obtained by moving?(V) to the left byn places. Suppose that tRe -algebra
A is projective as arR -module. Then we can define Hochschildmootogy HH” (A)

to be the cohomology” (Hompa-(Za, A)) = Extyg4.(A, A). SO we have an iso-
morphism

HH"(A) = HomK(A®An)(9A, WA[n])

Note that if homogeneous componentsidbf  are projectiv® as dutee and ifA also
is projective as arR -module, then we see from the Kiunnetbréme that 22, @4 U
becomes a projective resolution bf . So we have an algebraoimamphism

ay: HH*(A) — Ext,(U, U)

induced by the functor-®, U. Here, the homomorphismy maps the homotopy class
of a chain map(: 22, — Z4[n] to that of ( ® Idy (n is a nonnegative integer).
Suppose thatA and3 are symmetrR -algebras from now andXlet be a
bounded complex ofA — B-bimodules which are projective as let -modules and
as right B -modules. M. Linckelmann gives a grad®d -linear map HH*(B) —
HH*(A) which is called thetransfer mapassociated withX (see [10, Definition 2.9]).
He then shows the following connection between transfersriapHochschild coho-
mology and ordinary cohomology of finite groups: it is knovnatt there exists an em-
bedding of H*(G, R) into HH*(RG), that is, an injective grade® -algebra homomor-
phism

S: H*(G, R) — HH*(RG)

induced by the diagonal induction functor [fgf’ (see [10, Proposition 4.5]). Through
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these embeddings, the following diagrams are commutative

H*(G, R) —" H*(H, R) H*(H, R) "~ H*(G, R)
g T
HH*(RG) ——— HH*(RH), HH*(RH) —= HH*(RG),

where reg y and trg denote the restriction map and the transégr om ordinary
cohomology of finite groups, respectively. He also gives tionoof X -stable elements
as follows.

Derinimion 2.1 (Linckelmann [10, Definition 3.1]). An elemenf][€ HH*(A) is
said to beX stable if there is1] € HH*(B) such that the following diagram is ho-
motopy commutative for any nonnegative integer

Pra X ——= X ®p Py

Cn®|dxl l'dx [

WA[n] ®a X ?X@)B «@B[n]a

where ¢, and 7, are the components in degree @fand r, respectively, and where
the horizontal arrows are given by the natural homotopy vajences %, ®4 X ~
X ®p 2 lifting the natural isomorphismt ®4 X =~ X ®p B. We denote byHHY(A)
the set ofX -stable elements HH*(A).

Then, using the notion ok -stable elements, the transfer rpais characterized
as follows [10, Lemma 3.4 and Theorem 3.6]. Lt Z(B) — Z(A) be the linear
map obtained by the degree zero componentyof , composing tivithnatural iso-
morphismsZ 8 )~ HH°(B) and Z (4) = HH(A). Sett2(1z) = mx. Similarly, set
19.(14) = wx- for the transfer mapy.: HH*(A) — HH*(B). If [(] € HH"(A) is
X-stable and f] € HH"(B) is the element corresponding tg][in Definition 2.1, then
it holds that (i)¢x (fF]) = wx[C], (ii) [7] is the X*-stable element and,-([(]) = 7x«[7].

From the above, ifrx is invertible, then we see that

Tx = (mx)'tx: HHY-(B) — HH}(A)

is a surjective grade® -algebra homomorphism. Furtherothlry and nx- are in-
vertible, then it holds thalx«oTx([7]) = [] for [7] € HH*(B) and thatTxoTx-([(]) =
[¢] for [¢] € HH™(A).

For example, letX =y RG ). Then we have from [10, Proposition 4lgjt
Im(dg) C HH(zg), (RG). Further, we see from [10, Example 2.6 and Definition 3.1]
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that 7, (rG) = 1ru. Thus we see that,(rc): HH{zg), (RG) — HH} z5)(RG) is a sur-
jective gradedR -algebra homomorphism in the above comimatdiagram for reg y
and 1, (RG)-

Using Puig’s pointed group theory, M. Linckelmann definech@mology rings
of blocks. We recall here some definitions and results on '®uiginted group the-
ory [15]. Let k be an algebraically closed field of prime ché#eastic p. For a
p-subgroup P of G , let Bf :KG§ — kCg(P) be the Brauer homomorphism
of P, which is a surjective algera homomorphism. point of @0 is a
((kG)T)*-conjugacy classy of primitive idempotents inKG ) and if Br~) # O,
~ is called alocal point of P on kG. A block of kG is a primitive idempotenb
in the centerZ KG ). Adefect groupD of the blocks is a maximalp -subgroup of
G such that Bf & )# 0. For a defect groud ob , there is a primitive idempotent
i € (kGb)P such that Bf, { )# 0. So the pointy that containsi is a local point of
D on kG contained in the block . The idempotent is calledoarce idempotenof
the blocks and the pairZ{, v), which we denote byD., is called adefect pointed
group of the block b . Since B i( ) is a primitive idempotent ¥C; D( ), theis a
unique blockep ofkCs O ) such that Bri) =8Bri(). The paiD(ep ) is theax-
imal b-Brauer pairwhich corresponds t@,. In general, aBrauer pair of G is a pair
(Q, f) whereQ is ap -subgroup off anfl is a blockiofsz Q ( ). For a Brauer pair
(0, f) and a maximab -Brauer paillX, ep ) correspondingl, if Q is a subgroup
of D and f satisfies Bf +) f = Brg(y), then @, f)< (D, ep). It is known that for
any subgroupQ ofD , there is a unique bloek such thatdy < D, ep). For
more details, see [16, Section 40].

Derinimion 2.2 (Linckelmann [10, Definition 5.1]). LeG be a finite group,a
block of k<G and D, a defect pointed group df . Theohomology ring of the block
b of kG associated withD,, is the subringH*(G, b, D) of H*(D, k) which consists
of all [(] € H*(D, k) satisfying res-1;, , o c,-1([¢]) = resp,o (K]) for any subgroupQ
in D and for anyx € G with (Q, ep) = (*Q, *ep) < (D, ep).

If Dv/ is another defect pointed group éf , then there exjsts G such that
Dv/ = 4D, (see [16, Proposition 40.13]), and we see that the conpmatiapc, in-
duces an isomorphist#*(G, b, D,) ¥ H*(G, b, Dv/).

With the notation of Definition 2.2, let € ~. ConsiderkGi as akGb —
kD-bimodule andikG as &D — kGb-bimodule. By [10, Theorem 5.6]s; and
mirc are invertible inZ kGb ) andZ KD ), respectively. Thugg; #i) i -
HH,; (kD) — HH};;(kGD) is a gradedk -algebra isomorphism (notice theG{ * =)
ikG as kD — kGb-bimodules). Furthermore from [10, Corollary 3.8 and Pipo
tion 5.4], we have an injective gradéd -algebra homomonphis: H*(G, b, D,) —
HH;,;(kD), where ¢, is the restriction of the diagonal embeddirg*(D,k) —
HH*(k D) stated before. Therefore, we obtain an injective gradedjebra homomor-
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phism
TkGi [¢] 5D: H*(G, b, D’Y) — HHZGi (ka)

Let U be a finitely generatedG -module. In [4], J.F. Carlsonadtrces a notion
of the variety of U as follows. There is la -algebra homomonmphig, : H*(G, k) —
Ext;; (U, U) mapping [] € H*(G,k) to [(] U I € Ext;(U, U), whereu is a cup
product and/ is the identity element of Ex(U, U). Let I;(U) be the kernel of
vu. Then Vg U ), thevariety of U, is the maximal ideal spectrum of the quotient
H*(G, k)/I%(U). On the other handZ?(k) ®: U is a projective resolution of/ , where
Z(k) is a projective resolution of the trividlG -module (see.d1l, 2.9]). So we
see thatyy is induced by the functor ®, U through the isomorphism&” G(k ¥
Homk ) (22 (k), 2 (k)[n]) and Ext; U, U ) > Homkue) (2 (k) @k U, 2 (k) @k Uln]).
Similarly, for any bounded complek dfG -modules, the functor, U induces a
k-algebra homomorphism

v H*(G, k) — Ext;; (U, U).

We also write;(U) for the kernel ofyy, and Vi U) for the variety o . As a re-
markable fact in this direction, we have from [11, 2.9] tha¢ abovek -algebra homo-
morphism~y is equal to the composite df -algebra homomorphisms

ay

H*(G, k)22 HH*(kG)—>% Ext’ (U, U).

For a bounded complek dfGb -modules, M. Linckelmann [11] gigegotion
of the variety ofU associated with the blogk

Derinimion 2.3 (Linckelmann [11, Definition 4.1]). LetG be a finite group,
a block of kG, D, a defect pointed group ob , and a source idempotenty.in
For any bounded complet/ ~ ofGb -modules, denote By, , (U) the kernel in
H*(G, b, D,) of the composite ok -algebra homomorphisms

TyGiodp

H*(G, b, D) HH*(kGb) —> Ext’;, (U, U)
and letVs, U ) be the maximal ideal spectrum (G, b, DV)/I(*;’,,,DW(U). We also
let Vi, be the maximal ideal spectrum éf*(G, b, D).

For another defect pointed grouDv/ of b, there existsg € G such that
c,: H*(G,b, Dy) ¥ H*(G, b, Dv/), as stated above. So the isomorphism class of the
variety Vi, U ) does not depend on the choice Iof.

M. Linckelmann shows the following connection between eties associated with
blocks and Carlson’s module varieties. By the definitionjsitclear that the restric-
tion map reg p induces an algebra homomorphigm H*(G, k) — H*(G, b, D).
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Let p;: Vg, — Vi(k) be the affine map defined by,, where Vi k) is the maximal
ideal spectrum ofH*(G, k).

Theorem 2.4 (Linckelmann [11, Corollary 4.4]). For any bounded complely  of
kGb-modules it holds that};(U) = p,jl(l(*;,,,’Dv(U)). Thus p;: Ves(U) — Ve(U) is a
finite surjective map and the dimensionsWef,(U) and Vi (U) coincide. In particular
if b is the principal block ofkG, then the above map is an isomorphism.

3. Proof of Theorem 1.1 and its applications

In this section we give a proof of Theorem 1.1. Further, aipgl\this theorem we
consider the question whether the varietigs, U ( ) are invatugaader the block cor-
respondence in Brauer’s first main theorem (with the assomphat defect groups are
abelian). Theorem 1.1 is based on the following theorem hvigcthe reverse version
of Linckelmann’s theorem [11, Theorem 5.1].

Theorem 3.1. Let A, B be symmetric algebras over a commutative riRgand
let X be a bounded complex of B- bimodules whose componentsrajectve as
left and right modules. Ifry- is invertible in Z(B), then for any bounded compléx
of A-modules there is a commutative diagram of graded -aldétmmomorphisms

ay

HH% (A) Exty (U, U)

TX* ﬂX*.l/

HH%.(B) »  EXtp(X*®a U, X* @4 U),
QX*R U
where the horizontal maps are induced by the functerg, U and — ®p (X* ®,4 U),
respectively and where the right vertical map is induced by the funcr®, — .

Theorem 3.1 implies the next proposition. With the notationSection 2, let
X = kGi regarded as &Gb — kD-bimodule, and soX* = (kGi)* ¥ kG
as kD — kGb-bimodules. Further, for a bounded compléx  joffb  -modules, let
~iv: H*(D, k) — Ext;,(iU, iU) be thek -algebra homomorphism induced by the func-
tor — ®; iU, whereiU =ikG ®igp U is considered as a complex 6D -modules.

Proposition 3.2. Let U be a bounded complex &Gb -modules. The following
diagram of gradedk -algebra homomorphisms is commutative.
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ayoTiiodp

H*(G, b, D) Ext;, (U, U)
L iores.p
H*(D, k) Ext;, (U, iU),

Yiv
where the right vertical map is the composite of the resgicthomomorphism and
the projection fromExt;, (U, U) onto Ext;, (iU, iU), and the left vertical map is the
inclusion map.

Proof. From [10, Theorem 5.6k is invertible inZ ¢D ). So by Theorem 3.1,
we have thatyy o Tirg = Birg.v oay. Now, sincemg; is also invertible,Tyg; andie
are mutually inverse& -algebra isomorphisms from [10, TeeoB.6]. Thus it follows
that oy = Birg.v © aw o Trgi- That is, we have the following commutative diagram of
gradedk -algebra homomorphisms:

HH;;: (kGD)

Extig,(U, U)

l ﬂik(i.l/

Ext, (iU, iU).

TyGi

HH (kD)

@iy

From this diagram, we can form the commutative diagram

H*(G,b, D,) N HH} (kD) vl Exti, (U, U)
Ll lﬂim.u

Now, it is clear that the functoikG ®ig, — gives the algebra homomorphisinres; p
and sofig.u =i ores.p . Moreover, from [11, 2.9], the compositey o §p is equal
to the algebra homomorphismy given by the functor— ®; iU. So the proposition
follows. [

The following lemma is a block variety version of [3, Il, Pagition 5.7.5] on
Carlson’s varietiesVg ([ ).

Lemma 3.3. Let U; and U, be bounded complexes 66 -modules. Then we
have thatlg, , (Ur & Uz) = 15, p (U1) N 15, p (U2), and hence we have that
V.»(Ur © Uz) = Vi, (U1) U Vi 5(U2).



VARIETIES FOR MODULES OVER A BLOCK 335

Proof. Notice thatZ.g, ®ieyr (UL @ U2) = (Prcp @kcp U1) © (Prey @kep Uz).
Under this isomorphism, we have the decomposifondy, gy, = ((®Idy,)®((®1dy,)
for a chain map(: %6, — Ziep[n]. Thus for the projection

fii 7 EXCgy(Uy @ U, Uy @ Us) — Extig, (Ui, Us) (i =1, 2),

it follows that u; o ayyeu, = ay, (i = 1, 2), respectively. Then these commutations
show thatl(*;’h’Dv(UlesUz) - I(’;’h’DW(Ul)ﬁI(’;’h’DW(UZ). Moreover, if(®Idy, (i =1, 2)
is homotopic to 0, respectively, thenz Idy, ey, is also homotopic to 0. So the lemma
follows. U

The following lemma is well-known. We include here a proof fammpleteness.

Lemma 3.4. Let U be a bounded complex bGb -modulés, a defect pointed
group ofb and leti € v. ThenU is isomorphic to a direct summandiafi ®;p iU.

Proof. Since T§ {) =X.¢/pxix "t is invertible in Z ¢Gb) (see [10, Theo-
rem 5.6]), we haves = (Tr§(i))~! € Z(kGb). Now, consider the chain map U —
kGi ®¢p iU consisting ofkG -homomorphismg U, — kGi Qip iU, defined by

u+— Z xi ®iﬁx‘lu for u € U,,
x€[G/D]

where U, is the degree component &f . On the other hand, thestsexichain
maps :kGi QpiU — U consisting of natural homomorphisres kGi QipilU, — U,
induced by the action okG o/, . Then, since$Ta3 = Tr%(i)8 = b, we have
Sp o ty(u) =u foru € U,. So the lemma follows. O

Proof of Theorem 1.1. From [11, Theorem 5.1], there exist®mroutative di-
agram

Qiy

HH?,. (kD) Ext', (iU, iU)
ikG kD

Tkml lﬁkm.iu

HH? ., (kGD) Ext{;,(kGi @ip iU, kGi @p iU).

QkGi®y pilU

Now, from Lemma 3.4, we have the canonical projection Ext;;,(kGi ®p iU,
kGi ®p iU) — Exti;, (U, U). Then from Lemma 3.3 it follows that o cugig,,iv =
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ay. Thus the above diagram induces the following commutatiegrdm:

Qiy

H*(D, k) —2 = HH} g (kD) —— 2 Ext!, (iU, iU)

|

H*(G, b, D) — HH} (kD) ————— Extig;, (U, U).

ayoTigi

l#oﬂkm.m

We note thatw,;yodp = ;y. Hence, we have thalf*(G, b, D,)NI;([iU) C I(’g,h,DW(U).
Conversely, by Proposition 3.2 we have th@’h’Dv(U) C H*(G,b, Dy) N I}(iU).
Hence we havel;, , (U) = H*(G, b, D) N I;(iU). In particular, ifb is a nilpo-
tent block ofkG , thenH*(G, b, D) = H*(D, k) (see [11, 3.6]) and so we have that
I(’;’h’DW(U) =15(U) and Vg, U ) =Vp (U ). This completes the proof. ]

We came to know during the circulation of this paper withol tlast section
that essentially the same fact as Theorem 1.1 was shown inilddéké&lmann [13] and
Corollary 3.5 below also was obtained in it.

As is well known, the nilradicah/O of H*(G, k) is the intersection of all max-
imal ideals of H*(G, k) (see [14]). Recall that{*(G, k)/+/0 is a finitely generated
commutativek -algebra an#f*(D, k) is finitely generated as a module ovEr (G, k)
(via the restriction map) (see [3, Il] and [5]). Thus*(D, k) is also finitely generated
(that is, Noetherian) as a module ovEr*(G, b, D,) and so, by [3, Il, Section 5.4]
and [14, Section 9, Lemma 2], we have a finite surjective affive® cp,: Vo — Vg
induced by the inclusion map: H*(G, b, D) — H*(D, k), whereVp is the maximal
ideal spectrum off*(D, k) and Vi, is the maximal ideal spectrum & (G, b, D-).
Then, Proposition 3.2 shows that for any bounded comglex k@b modules, we
can define the finite affine map

tpp: Vp(iU) — Viu(U).

Proof of Corollary 1.2. By Theorem 1.1, it is clear thaf, is a surjective map.
Further, Theorem 1.1 shows also that the Krull dimensiong{6{D, k)/I;(iU) and
H*(G, b, DV)/Ié,h,DW(U) coincide. So the dimensions df; iY{ ) and;, U ( ) coin-
cide. ]

With the notation of Theorem 1.1, léfy be a bounded complex &fD -modules
such thatlUy | iU and U | kGi ®ip Up. Then, from the proof of Theorem 1.1 we have
also

IG.b.0,(U) = H*(G, b, Dy) N I5(Uo).

Hence.p,: Vp(Uo) — Vi.(U) is also a finite surjective map.
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Corollary 3.5. Let U be an indecomposableGb -module with vertex . Sup-
pose that the dimension of a source @f is not a multiplepof .nThe have that
Voo (U) = Vi,

Proof. We see from Lemma 3.4 thét | kGi ®p iU. Thus there exists an
indecomposablekD -modul&y such thatUp | iU and U | kGi ®p Uy, SO that
Uy is a source ofU . By the assumption, we see tQéig(Uo = 0 in H*(D, k)

from [3, Il, Corollary 5.8.5]. Further, by the above it folls that , /I(*;’h’DW(U) =
H*(G, b, D,)N/I};(Up). Thus we have tha&/l(*;’h’Dv(U) =40 in H*(G, b, D.,), that

is, Ve, (U) =V ]

As is well known,by = Br%(b) is a block ofkNg (0 ) with the defect group  and
is called the Brauer correspondentiof . LBt, be a defect pointed group @b, and
let i € 0. Since BE*P)(ip) is primitive in kCs (D), there is a primitive idempotent
i € (kG)P such thati =i =iip and BE, ¢) = BE“)(i). Theni belongs to the block
b. Indeed, Bf, (b ) = Bf, {)Bf, & ) = BY(ig) BrYe®) (o) = Bric®P(ip) # 0. Let v
be the (kG ¥ )-conjugacy class of . Then we obtain a defect pointed grdypof
b. Let (D, ep) be the maximab -Brauer pair correspondingZig. Note that O, ep )
is also the maximabg-Brauer pair corresponding th.,.

Corollary 3.6. With the above notatignlet by be the Brauer correspondent of
b and let U be a bounded complex &fGb -modules. Suppose Fhat isaabel
Then we havely, p) 4, p, (boU) € IG, p (U), and hence we have thats ,(U) C
VNG(D).bo(bOU).-

Proof. Theorem 1.1 shows thal;, , (U) = H*(G,b,D,) N I;(U) and
I,’QG(D),,,O’DWO(boU) = H*(Ng(D), bo, Dy,) N IS(ioU). As in [10, 5.2.3], if D is
abelian, then we have thati*(G,b, D,) = H*(D,k)Nc(P-0)/Cc(D) and similarly
H*(Ng(D), bo, D) = H*(D, k)Ne(P-¢0)/Ca(D) S0 H*(G, b, D-) = H*(Ng(D), bo, D-,)-

Moreover, from [3, Il, Proposition 5.7.5] it follows that)(icgU) C I;(iU) since
iogU = iU & (ip — i{)U. Thus we have thamn(D)’,,o,Dvo(boU) € 1g,.p, (U) and so
V6.5(U) S Vivg(p).bo(boU). U

For Carlson’s module varieties, the following is known. LRtbe an abelian Sy-
low p-subgroup ofG , so thalvg K ) controls the -fusiondh . LEEt beiade-
composablekG -module with verte®R  and 8t be the Green correlgmd of U
with respect to G, P, Ng £ )). Then it follows thatg U{ ¥ Vi, p)(W) (see [2, The-
orem 2.26.9] and [3, |, Proposition 3.8.4]). Therefore, liistcase, we see from The-
orem 2.4 that ifb is the principal block &G , theVig ), U( 3 Vi, (p).0,(W) for any
indecomposabléGb -modulE  with vertedX  and the Green correspurv of U .
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Extending this fact to any block ofG , we obtain Theorem 1.3 alfodvs from
Lemma 3.7 below. Note thad is not necessarily abelian in Lan®.

With the above notation, lef' F e¢f ) be the inertial groupgf My D ( )
that is, T ={x € Ng(D);*ep = ep}. Notice thatT =Ng D, ep ) =Ng D) (see [16,
Proposition 40.13]), andp is also a block of . Using the Cltiffdheory of blocks,
we have the following.

Lemma 3.7. LetU be an indecomposablgGb -module with verigx .Wet be
the Green correspondent @f  with respect(®, D, Ng(D)). Leti € v and ip € vo.
(i) We can choose a sourdéy of U such thatlUy | iU and U | kGi ®ip Up, and a
source Wy of W such thatWy | iogW and W | kNg(D)io Qkp Wo.
(i) Let Uy and Wy be the sources satisfying the conditions(idf Then there exists an
elementr € T such thatrUy = Wy as kD -modules.

Proof. First of all, we note that if and lie in ~, theniU = {’U andkGi =
kGi' askD -modules, and likewise fap € 7o. Indeed, leti’ = 4 for an element in
((kG)P)*. Then, mapping: € iU to za € i’U, we have the isomorphisit/ =~ i’U as
kD-modules. By applying this argument, we obtain all othemisgphisms. Thus, the
choices ofUy and Wy in (i) depend only on the points and ~,. As we have shown
in Corollary 3.5, (i) now follows from Lemma 3.4.

Next we prove (ii). Suppose thate ~ satisfiesi =i = iip. Now, sinceW is the
Green correspondent d@f , we have tiigy = W @& W’ and soigU = iogW & iogW’
where any indecomposable direct summandigf (and soipW’) does not have ver-
tex D. Here, fromiU | ioU, we seelp | ioU. Then sincely has vertexD , we see
Uy | ioW. Further, we can choosg € 7o such thatepio = ipep = ip. Indeed, letij be a
primitive idempotent in KN D ) such thatpif = ifep = i}, and BEP)(if) # 0. Let
4 be a point of D onkNg D ) containing)). Then from B (if)ep = Bric®)(if),
D, is the defect pointed group dfy corresponding to B, ep ), because the relation
Brg”(D)(i())eD = Brg“(D)(i()) defines a bijection between maximbg-Brauer pairs and
defect pointed groups dfy (see [16, Proposition 40.13]). Thus we see th@t= 7o.
By this choice ofip € 70, we have thatoW | epW. So it holds thatU | ep W and
also Wy | epW. Let ep =er andNg O ) =N . Using the Clifford theory, we show that
the kT -moduleer W is indecomposable and has verex . Stce ). .y, ; “er
and “erYer = 0 forx # y (modT), we have thatW =boW = kN Q1 et W
and soerW is indecomposable and verticesepiV cont@in . On the bited,
since W | kNip Qxp Wo and erio = io, we see thatW | kNer ®ip Wp so that
W = boW | bokNer @ip Wo. Here sincebokN = @, ,yepvxn rxr X(kTer)y™, we
see thater §okN)er =kTer. Thuser W | er(bokN)er Qip Wo = kTer Qxp Wo and so
erW | kT ®ip Wo. Therefore we see thay W has vertex . Further, fiéiq| er W,
we see thatWy is a source okr W . Now, we also hav& | ez W and so we see that
there is an elemente T such thatrUy = Wy as kD -modules. ]
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Proof of Theorem 1.3. LelU, and W, be the sources chosen in Lemma 3.7.
Then, as noted preceding to Corollary 3.5, we see Ilgg;ng(U) = H*(G,b,D,) N
IZS(U()) and ING(D),bo,DWO(W)* = H*(Ng(D), bo, D’Yo) N IZS(W()). Now, lett € T be the
element obtained in Lemma 3.7 and gt H*(D, k) — H*(D, k) be the conjugation
map given byr . Then, sinc& #/g D(ep ), we see from Definition 2.2 thats i
the identity map onH*(G, b, D.). Further it is easy to see that o vy, = vy, 0 ¢
(for vy, and ~,y, see Section 2) and so we have tleatl};(Uo)) = I;(tUo) = I5(Wo).
Here, sinceD is abelian, we have th&t* (G, b, D,) = H*(Ng(D), bo, D-,) (see
the proof of Corollary 3.6). Therefore it follows thdg’h’Dv(U) = ¢ (I(’;’,,,DW(U)) =
¢ (H*(G, b, D,)N I},(Ug)) = H*(G, b, D) N I},(Wo) = H*(Ng(D), bo, D-,) N I} (Wo) =
ING(D).bo.D,, (W), that is, we have thaVg, U ) Fne(D).p(W)- O

4. Module varieties and quotient groups

Let G be a finite group and leZ be a central -subgroupGof . We d@enot
G/Z by G and let f :kG — kG be the naturalk -algebra homomorphism. As is
well known, f gives a one to one correspondence from all blagk&G onto all
blocks of kG. In this section we consider relations of the varieties urnttiées corre-
spondence. For a subgroup 6f | its image@nis denoted byﬁ. In general,
the mark ~ will be attached to the quantities associated @itand kG. Let P be
a p-subgroup ofG . Considet -algebra homomorphisfifs kG { - (kG)? and
composite fc,p): kCg(P) — kCg(P) — kCg(F) induced by f , wherekG ©) is
the subalgebra okG consisting of at -fixed elements ahd)( likewise. Then
Bréof? = feup) o Br§ as is well known. Now, sinceZ is a central -subgroup we
see thatCs(P) is a normal subgroup of 5(P) and C5(P)/Cs(P) is a p-group. In-
deed, forx € G, let x =x,x, (wherex, is thep -component ang, is the p -regular
component ofx ) and ift € C5(P), then we seex,, € C(P) so thatCg(P)/Cq(P)
is a p-group.

Lemma 4.1. With the notation aboveif i is_a primitive idempotent inkG)”,
then f7 (i) remains a primitive idempotent i(kG)”.

Proof. We follow the terminology and arguments in KulshaemRuig [9]. Let
fP and ]/”c:(/p) be the exomorphisms determined 5y ang ), respectively. From
[9, Theorem 3.16], it follows tha!ff’ is a strict semicovering for any -subgroup
of G if and only if % is a strict semicovering for any -subgroup 6f . Now,
from [9, Example 3.9] we see thqg:(p/) is a strict semicovering for any’ , since
Cg(ﬁ)/CG(P) is a p-group. From the fact thafP is a strict semicovering, we see
that f/” ()# 0 and that ifz andn are the number of primitive idempotentsodgmos-
ing unity elements of (G 3§ andk(G)”, respectively, them = . S¢g¥ i () is primi-
tive. U
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Let b be a block ofkG ,D, a defect pointed group o , and lete v. We set
f) = b, D/Z = D and fD @) =i. Then sinceZ is a centrqd: -subgroup 6f
we see that is a block ofkG and D is a defect group ob. Further,i is primitive
by Lemma 4.1. Also, sinc&Cg (D) = k(Cg(D)/Z) = kC(D)/J(kZ)kCs(D) (where
J(kZ) is the radical ofkZ ), we see that Bb fP(i) = feo(p) © BrD(z) # 0 and soi
is local. Therefore, lety be the ((cG)D)X-conJugacy class of, then D5 is a defect
pointed group ofy. Recall thatH*(G, b, D,,) consists of all {] € H*(D, k) satisfying
res,—1, - o c,—1([C]) = resp,o ([(]) for any subgroupQ ofD and for any € G with

~1p.g
*(Q. eg) < (D, ep).

Lemma 4.2. Let Z be a central p -subgroup ofG . In the definition of
H*(G, b, D), we can assume tha® contais

Proof. Let (Q,ep) be ab -Brauer pair such thaD(ep, < (D, ep). Since Z
is a centralp -subgroup, we have that{Br  =¢Br . Thus{Br ed ) % Bred)
BrQ(z) = BrQZ(z), and soegz =egp and@Z,eop X (D,ep). Also, for an element
x € G, it is clear that* Q,ep )< (D, ep) if and only if *(QZ, eg) < (D, ep). Fur-
ther, if res..;, 07 ° cx-1([C]) = resp, oz (1), then we have that resy, , © c-1([C]) =
resp.o (K]). So we can replacg) b@Z in the definition. O

Proposition 4.3. With the notation aboveet [(] be an element of*(G, b, D5).
Theninfp 5([¢]) belongs toH*(G, b, D,).

Proof. Let (@, ep) be ab -Brauer pair such thaD,(ep <) (D, ep) and thatQ
containsZ . For the blocle, , sinc& is a centgal -subgrougCefQ (eg).is the
block okaG(Q) Further, smceCG(Q)/CG(Q) is a p-group, we have a unique block
eg of kCz(Q) which coverseg. Then, since Q,ep )< (D, ep), we have Q,ep) <
(D, ej). Note that D ep) is the maximalb-Brauer pair corresponding tD— Indeed,
eg eg =g and so it holds that Bj(i)eg = Brg(i)eg = Brg(i) = Brg(i). Also, we see
that if *(Q, eg) < (D, ep) for x € G, then*(Q, eg) < (D, ep). Thus, for an element
[¢]l € H*(G, b, D5), it follows that

res,-1, , © Cx—l(infE,D([a)) = res,y, poinf ey 1)) oc;_l([(_])
=infg o (res;—lﬁ’é ° C;—l([d))

infé,Q(resls,Qi[(_]))

resp,o (inf5 p([])).-

So we conclude that ing([g_]) € H*(G, b, D). O

From the above proposition, we can define an inflation mapy,inf
H*(G,b,D5) — H*(G,b,D,). Then, sinceH*(G, b, Dv)/\/ﬁ is a finitely gen-
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erated commutativé -algebra (see [11, Theorem 4.2]), thation inf;, induces an
affine map inf,: Vg, — Vg ;. Further, for any bounded compléx  &&b-modules,
which may also be considered as a complexk 6 -modules thradgh — kGb,
we have Theorem 1.4.

Proof of Theorem 1.4. For the convenience of the proof, whencansiderU
as a complex ofkGb-modules, we denote it by/. Then Theorem 1.1 shows that
1% 5o (U) = H (G.b. D7) N I5(iU) and thatl;;, , (U) = H*(G.b, D,) N I;(iU).
Note that for the chain maps and = representing {] € Ext’k’D(zU iU) and ] €
Ext;p (iU, iU), inf5 p([¢]) = [7] if and only if the following diagram is homotopy
commutative:

P(U) —= P(iU)n]

I

2(iU) — 20,

where the left vertical map is a chain map lifting the idgntmap iU — iU and the
right vertical map is its shift. It is easy to see thatgnfoy; = viv o infp p, so that
we have inf; (15 (zU)) C I;(iU) and so inf (1% GhDs ) C IGh.p, (U). Therefore

we can define an affine map jnf: Vi ,(U) — Vg 5(U). ]

5. Inverse images

Under the assumption that the defect groups are abelian, omsider the in-
verse images of the affine maps given in Corollary 1.2 and fidmeol.4. Our con-
sideration is based on Linckelmann’s following stratifioat theorem for block vari-
eties of modules [13]. Leb be a block &G  anfd, a defect pointed group of
b. For any subgroupQ ofD , the composite graded algebra homdnsonprg

H*(G, b, D,)——H*(D, k) —22 H*(Q. k) induces a finite affine map of varieties
ré: VQ — VG,h,

where ¢ is the inclusion and rgsp, is the restriction map. In particutq: Vp —
Ve.» is finite surjective (this map is denoted by , in the previous sections). L&t
be a finitely generatedGb -module and let ~. Following [13], we now define the
following subvarieties ofV, and/;,

Vg = Vo — Ur<o(resp.r ¥ Vi, Vo(iU) = Vo(iU)n Vg
Ve.0 =1 Vo, Véo =10 Vg
Vi.o(U) =rgy Vo(iU), Vg’Q(U):ra Vé(iU)
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Theorem 5.1 (Linckelmann [13, Theorem 4.2 and Proposition 4.3]let U be a
finitely generatedkGb -module.
() The variety Vi ,(U) is the disjoint union of locally closed subvarietiés; . (U),
where E runs over the set of subgroups Bf  such tffateg) runs over the set
of representatives of th& -conjugacy classes of thipse eBraairs contained in
(D, ep) for which E is elementary abelian an@p(E) is a defect group of the block
€E.
(i) Let E be an elementary abelian subgroup@f such #ig{E) is a defect group
of eg. The groupW(E) = Ng(E, eg)/Cg(E) acts on the varietyV;(iU), and r; in-
duces an inseparable isoge (iU)/W(E) — Vg (V).
(i) Suppose that is indecomposable with  as a vertex and a sodirdenension
prime to p . Thenfor any subgroupQ o> we havéy(iU) =V, and V,(iU) = V).
Further, for any subgroupQ o> we have; o(U) = Vi.o and Vi ,(U) = Vi -

It is known that a simplekG -modul& id of height O satisfies thaditon
in (iii) (see [7, Corollary 4.6]). So (i) and (ii) give a stifitation of Vi, also. Using
the above theorem, we show the following which is a blocketgiriversion of Avrunin
and Scott [1, Theorem 3.1].

Proposition 5.2. Suppose thaD is abelian. L2  be a subgrouplof  and let
U be a finitely generated Gb -module. Then we have that

Vo(iU) = (ry) "t Vo (U).

Proof. First we show two facts obtained from the assumptiat D is abelian.
Let (R, eg) be ab -Brauer pair contained iD(ep ). Thep adyd are Brauer co
respondents ob , and furthep, is also a Brauer correspondeat.oThus eg has a
defect groupD , becausg, has the defect group . So, for Rnyg( < (D, ep), er
satisfies the last condition of Theorem 5.1 (i) (thatds, R ( p=s aidefect group of
er). The second assertion is the following. L&’(eg/) also be ab -Brauer pair con-
tained in O, ep ). Suppose thdt R(, er') = (R, eg) for somex € G. Then, by the fu-
sion theorem for Brauer pairs (see [16, Proposition 49.5 Rraposition 49.6]), there
is y € Ng(D, ep) such that’r’ = *r' for all »’ € R’. Thus, mappingz € *iU to
yx~ta € YiU, we have the isomorphisfiU = YiU as kR -modules. Further, since
Ng(D, ep) = Ng(D,), there existsz € ((kG)P)* such that’i =% . Thus, mapping
b € iU to zb € iU, we have the isomorphismU = YU as kD -modules. So
*iU = {U as kR -modules. Therefore the conjugation map H*(R’, k) — H*(R, k)
induces an isomorphism of subvarieti€g (iU) = Vr(*iU) = Vg (iU).

Clearly r}, Vo(iU) C Vg5(U). Conversely, letv € (r})* Vo5 (U). Applying the
Quillen stratification theorem (see e.g. [1, Theorem 2.8])l}, we can choose an
elementary abeliarp -subgroup @ asde V7 with (resp g Y(s) = v. On the
other hand, by Theorem 5.1 (i), we can choose an elementaljanbp -subgroup
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E' of D ands’ € V. (@iU) with r;(s') = ro(). Thenrg, (s') = rp(v) = rg(s).
Thus, by Theorem 5.1 (i) foVs, , we see thiat -Brauer pafsdg ) afit] dg)
must beG -conjugate. LetF,er ) = E(,eg) for an elementg inG . Then since
8(E',ep’) = (E,eg) < (D.ep), we see from the definition oH*(G, b, D) that
every ] € H*(G,b, D,) satisfiesc,-1 o resp £ (K]) = resp & ([¢]) (equivalently,
res, -1, . © ¢g-1([¢]) = resp g ([¢])). Thus we have that;(c;‘_l(s’)) =i (") = ri(s).
Here, note that;_l: Ve — Vg is equal to the natural map induced by the conjuga-
tion mapc, : H*(E’, k) — H*(E. k). We write ¢s’ for c;‘_l(s’). Sincess’ ands are
contained inV; and ri(¢s’) = ri(s) and furtherCp € ) =D is a defect group ef: ,
Theorem 5.1 (i) forVs, shows that there exigtsc Ng(E, ex) with "85’ = 5. Now,
since D is abelian, we see from the fact stated above that thigation mapcy, in-
duces an isomorphisig (iU) = Vg(iU). Thuss is contained iVg iU ). Therefore
v = (rep. e J(s) is contained inVy (U ), so the proposition follows. ]

Using the above proposition, we show the following, whictaiblock variety ver-
sion of [6, Theorem 1].

Proposition 5.3. With the notation inSection 4,suppose thatD is abelian. Let
U be a finitely generated Gb-module. Then we have that

V.5 (U) = (inf} )™ Vo 5(U).

Proof. It is clear that there is a commutative diagram asofedt

*

)
Vp —— VG,h

inf;bl linf,’:‘b

Vo — Ve -
D

Then we have
(rp)Fo(infz )~ Vg {(U) = (inf ) " o ()~ Ve 5(U) = (infj ) "2 V(iU) = Vp (iU),

where the second equality holds by Proposition 5.2, and hlrd holds by [6, Theo-
rem 1]. Thus, since},: Vp — Vi, and its restriction},: Vp(iU) — Vg ,(U) are both
surjective, it follows that (ir;f’h)—l Ve 5(U) =rp Vp(iU) = Vi,(U). This completes the
proof. ]

RemArRk 5.4. Suppose that is the principal block b . Then we have from
Theorem 2.4 thatVg, ({ ) = (i|jf,7)—l VG 5(U), without the assumption thab s
abelian. Indeed, from the relatiop, o infs; = inf;, o p;, we see that/)~! o
(infg o)~ Va(U) = (inf; )~ o (o)~ V5(U) = (inf; )~ V5 ,(U). Further, we see
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from [6, Theorem 1] that/) " o (inf5 )t V5(U) = (p})* Ve(U) = V6 (U). So, it
follows that Vi, U ) = (inf; )~ Vg ;(U).
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