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1. Introduction

In this paper, we shall deal with the behaviour of boundary values of a family
of singularly perturbed equations as the parameter tends to zero. Let w^3.
Let P! and P2 be elliptic operators on Rn with constant coefficients of order 2μ
and 2v with μ>v, respectively and every bj(D), j=0y •••, 2μ—1, be a normal
boundary operator of order j. Let jΊ, •••,> be a series of integers with

(1.1) O^Λ< <yμ^2μ-l.

We shall introduce the notion of c deducibility" for the following one-pa-
rameter family of boundary value problems:

( (6 Pί(D)+P2(D))u = 0 , in ΛJ, 0<£<1
(L2) ί bj(D)u\ 4o =φ* k=ί

Here Rn+={x<=Rn', ^>0} and φΛ, Λ=l, •••, μ belong to ^JR"'1). We shall
deal with a distributional solution us, which is prolongable to x^O as a distri-
bution. Then we define a canonical extension [ue]

+ of a solution ί/g with support

in R+. We know that the canonical extension is unique, the boundary values

&—1, in
δ;0 ' N ' ~ " ~ A " ~ ' " "

are uniquely determined, and that

lim bjk(D)Uι \ Xl=δ = φΛ , & = 1, •••, z;, in 3)'(Rn~~l).

Assume that there exists a prolongable distribution UQ in 3)' (R+) such that
lim [ue]

+=u0 in ^J'(jB+). Since P1 and P2 act continuously on j®'(Λ+), we have
840

lim (£Pl(D)-{-P2(D))u9 = (lim 6) P1(Z)) (lim u^)-\-P2(D) (lim
ε^o 840 840 840
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Therefore uϋ satisfies the reduced equation

(1.3) P2(D)u0 = G in Λ J ,

and the boundary values of u0 in £D'(Rn~1}

limbj(D)u0\Xl=8y j = 0, ,2*-l
o f 0

are uniquely determined. See [7].

In the previous works [l]-[5] and [8], they studied only the case when

w,-*«b in Hj»+\Rl).

In this case, the continuity of the trace operator implies that for 05^y^£/v

lim (lim bj(D)ut \ ,1=δ) = lim bj(D) (lim uj \ β .
ε jo δj.0 δ ψ o ε^o

Then UQ satisfies the following boundary value problem:

= 0, in ΛJ;

Here we assume that (1.4) has a unique solution v. But this does not necessarily

hold if the convergence ue->u0 does not take place in Hj*+1 (Rl).

Why does UQ happen to satisfy the first v boundary conditions? Does u0

satisfy a different set of v boundary conditions in a different topology which
does not ensure the continuity of the trace operator ? We are going to give an

affirmative example to this question and a detailed analysis of a framework, called
reducίbility of (1.2), by use of methods different from those of [l]-[5] and [8].

DEFINITION 1.1. A one-parameter family of the boundary value problems

(1.2) is said to be reducible if (1.2) satisfies the following four conditions:

(1) Every boundary value problem (1.2) has a prolongable solution u^ in ^)f(Rl)

such that the canonical extension [ue]
+ bleongs to S'(Rn).

(2) There exists a prolongable solution UQ of (1.3) such that

limn,, = UQ in 3)\Rl) .
ε o

(3) There exists a series (kl9 •••, &v) such that

and UQ satisfies the following boundary conditions:

(1.5) M0XU+o=Φ*;, 7=1,-,*.
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(4) The reduced boundary value problem (1.3) with (1.5) is uniquely solvable.

In particular, if kt=l, /—I, •••, v then the family (1.2) is said to be normally

reducible. The family (1.2) is said to be abnormally reducible if the family (1.2)

is reducible but not normally reducible.
Our main theme is to look for conditions for reducibility and study an ex-

ample of the abnormally reducible family such that the limit u0 of the solution

uz of (1.2) in L2(R+) satisfies the boundary conditions:

(1.6) bJk(D)uQ\Xl,Q=φkί A = l , . . ,ι;-l, v + 1.

The main results are given in § 4. As a preliminary, we shall study in § 2

asymptotic behaviour of determinants appearing in the expression of solutions

of the boundary value problems. In § 3 we shall examine necessary properties

of the characteristic roots of the perturbed equations which were assumed in § 2.

The writer would like to express his sincere gratitude to Professor Youjirou

Hasegawa for his encouragement and helpful suggestions.

2. The order calculus of determinants

LetjΊ, •••,> be a series of integers with

(2.1) 0^yι< . <>^2A,-l.

Let bj(τ, ξ'),j=j19 •••,> be polynomials of (T, £') as

(2.2) δ,(τ, Π = τM-Σί-ι MW"*, j =Λ, -,> ,

which are denoted by bj(τ) when regarded as polynomials of r with polynomial

coefficients.

NOTATION 2.1.

For polynomials i/(τ), J=l, •••, μ and for complex numbers or functions

TJ and φy, /=!, •••, μ,

Mat DO = Mat DO(TI, •••, τμ; b19

[*l(Tl) — *l(T*-i) Φl *l(T*+i) — δ^Tμ)"!

: : : : ' I '

*μ(τι) " b*(τk-ι) Φv> bμ(τk+l) ••• *μ(τμ) J

where Λ=l, •••, μ.

^ , and Θ=
μ—2v

where 0:
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Mat Va(ζ;/„-,;.) =

det Mat F.QΓ Λ, »•,;„) = F

Mat Vμ.v>Q = Mat Fμ_v(f jv

1

r'

f ;/„ -,;„) ,

i, — ,>) .

For — z/,

Mat Fii-v..* = Mat Fμ_v(ζ ;jv+1) — , j^+t-i, j ί, h+k+ι,

Mat 3D, = Mat D^l, ?, -,

Mat Av+i) = MatZ>0(rθ, -, r^^θ; F) .

For

Mat Aw = MatD0(θ, ζθ, -, ?*-

We shall abbreviate the determinant of Mat D as Z), where Mat D is any of

the matrices abbrevitated as above.

Our purpose of this section is to calculate

= -

Lemma 2.2.

A>(Θ, θf, -, θf1^-1; τ^v«, -, TV) - θ^ F^v,o .

Vμ.-.VtQ=Q if and only if there exist two integers k and I in A={j\+1, ,jμ}

such that

k==l(mod 2μ—2v) ,

Proof. Put

Then

det _v) = θ7 det '

Since we can rewrite a{ as
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«,- = (1,

we have

det '(«!, — , αμ_v)

Since f is a primitive root of 1 of order 2μ—2v, ζk=ζ1 holds if and only if
k=l (mod 2μ—2v). Recalling that Fμ,_v is the difference product of £'*+*, •••, ζjρ,
we have the conclusion. [Q.E.D.]

REMARK, rank Mat Fμ_v.o= μ—v, if and onty if every pair (119 72) with /!</£
and 4, /2^-4 satisfies 1^12 (mod 2μ—2v).

rank Mat Fμ_v,o— μ— *>— 1> if and only if there exists only one pair (717 72)
with /!</2 and /j, l^A such that /! = /2 (mod 2μ—2v).

rank Mat Vμ,-Vt0^μ—v— 2, if and only if there exists two different pairs
(/υ 72) and (/ί, /£) with /x</2 and /ί</£ and /j, /2, /ί, /^e^4 such that ^Ξ/2 and
/ί = /2' (mod 2/A-2v).

Assume that there exists only one pair (119 /2) with /i</2 and l^ 12^A such

that /t = /2 (mod 2/^ — 2z/), and put lι=j\+kl and I2=j\+k2 Then

ASSUMPTION 2.3.
τ7 (λ, ξ'),j=l, * ,)Lt are continuous functions of (λ, ξ r ) in {λ>l}xΛ|~1

satisfying the following asymptotic properties: there exist continuous functions

σj(ξ')> )=1, — , v of f ' in Λ"-1 such that

(2.3) limτ/λ, ξ') =
λfo*

(2.4) l™τXλ' Π/λ = ̂

uniformly on every compact subset K of ΛfΓ1.

We shall calculate the coefficients of the leading terms with respect to λ
of the asymptotic expansions of Z); , j=Q, •••, μ.

Lemma 2.4. Let Assumption 2.3 be satisfied. Then

(2.5) lim D0(τl9 —,τp 9 bjl9 —, bjμ)/\f

(2.6) l™1 '̂ "•' τ^' b

= Dk(σl9 •••,crv;
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and for k=v-\-l, •••, μ

λf <» 1

Here the convergences are uniform on every compact subset K of Rn~l.

Proof. Let K be a compact subset of Rn~l and ξ'^K. With a new vari-

able λ, we replace τ, (λ, £'), y=ι;+l, •••, μ, by λ τy(λ, ί?')/^ ^n Ab Λ=0, •••, μ
and denote the result by J9Λ. If we put λ=λ, then we have Dk=Dk. Since Z)*

is a polynomial in λ, we can rewrite βk as

First we prove (2.5). Recalling the definition of the determinant, the

terms of do.o^ 7 are contained in the sum of the products of

(2.9) (sgn p^/^T^λ, {•')) ••• *ypcv)(τv(λ, ξ'))

and

/o 1 o^ Ά /S[ /"\ ε'\ /*\ \ A
l^ .IU) t/y I Λ»*7"v+ιv A*> fc ) "^) *** /pCv + i) f, . ^

where p runs over all the permutations of μ letters satisfying

(2.11) l^p(/)^z>, for

and

(2.12) *>+l^p(/)^μ, for

Denote the symmetric group of order m by <Sm. Then there exist p'e<5v and

ρ"ecSμ_v such that ρ(j)=ρ'(j) in (2.11) and ρ(j}—v=p"(j—v) in (2.12). Since
(sgnp)=(sgnp')(sgnp//), (2.9) X (2.10) can be represented as

jT,, (X, Π) - *Vcv>Wλ> f'))

Therefore ίΓ0,o(^> £') is the product of

(2.13) Σ (sgnp>y/ (Tl(λ, Π)1

\ / * ' \ σ i / p'Cl)

and

(2.14) Σ (sgnp'ΉTWλ.ε'

When λ f oo, we have (2.13)-*Z>0(σι, —, σv; ̂ , -, ftyj and (2.14)->D0(Θ,
•••, ΘΓ"^1; τyv+ι, •••, τJV). Then Lemma 2.2 shows (2.5).

Next we prove (2.6). By the definition of the determinant, we have
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(2.15) Dάτv τt bfr b^& fa

Since φ1? •••, <£μ are bounded on K, we can use the same argument as in the

proof of (2.5). If we replace (2.9) by

(2.16) (sgnpίί/^fa) - bjKk_Ό(τk-ι) $P(krbjp^(τk+l) - */p00(τv) ,

then we have (2.6).

Finally we prove (2.7). (2.15) shows that the formal highest term of βk

with respect to λ is contained in the sum of

(2.17) (sgn p)bipca(Tl(\, Π) - ί/^Tvίλ, ξ'))

Since the formal highest order of (2.17) with respect to λ is /— /v+ι> which is

obtained by putting ρ(k)=v-\-l, we have

(2.18) ^,(λ,£') = 0,

for 0^/^yv+1— 1. Since jv+1>j^0y we have dkιQ=0. This impilies (2.7).

[Q.E.D.]

When F/K-V.O— 0> we need more assumptions on τ; (X, ζ'\ J— 1> •••> M to

calculate the leading terms of Djyj—0, •••, μ.

ASSUMPTION 2.5.

Let δ be a positive number and TV be the greatest integer satisfying NS^l.

τy(λ, ξ '), 7=1, •••, μ satisfy the following asymptotic properties: for 7'=!, •••, v

(2.19) τ,(λ, ξ') = σ/

and for7*=ι;+l> *", μ

(2.20) Ty(λ, f )/λ =

Here τjtks(ξ') and T;-fl(^') are continuous in J?!/"1 and Ty,(^+1)S(X, |') and τy>2(λ, ?')

remain bounded on K when λ f oo , where K is an arbitrary compact subset

ofΛ"-1.

With a new variable %, we put for 7—!, •••,*>
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(2.21) fl , = σXn+ΣZ-i X-M τΛ,(e ')+*.-("+1)δτ (lr+1)β(λ,

and fory=z/+l, •••, μ

(2.22) «•, = X-C^

If we substitute (2.21) and (2.22) for τy(λ, ?')> ;=1, '"> A* in Dky k=0y — , μ
and denote the result by Dky we have asymptotic expansions of Dk with respect
to λ as

(2.23) ΰt = ίU

Put

and λ— λ. Then asymptotic expansions of Dk are

(2.24) Dk = rf..o(f

Here even when NS=l, we deal with dktN8 and rfAa separately.
We have already calculated the leading terms dktQ(ξ') in Lemma 2.4, that

is, 4>i0=(2.5), d*.0=(2.6) for A=l, -, i;, and rfM=(2.7) for ft=y+l, -, μ. We
shall calculate the leading terms of (2.24) when F^-v.o— O

Lemma 2.6. Z,£ί Assumption 2.5 fe satisfied. Assume that
Then, Σ7-ι rf*.y (f O λ^^O, A=0, -, μ.

Furthermore, when jv+1 —jv ̂  2,

(2.25) ί/o.i = D0(σl9 -, σv;

Fork=\, •-,!;

(2.26) rfM - D ,̂ -, σv; ̂ ,

(2.27) rf»a = 0

Whenj\+1- j\=l,

(2.28) d^j. - Dβίo ,, , σ v ftylf , fty

(2.29) rfw = Dt(σlt -, σ

1, •• ,σv;
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For k= v+l, •••, μ there are two cases as follows.

When v=l and jv— 0, it may be assumed that bj1—b0=l and bj2=b1=ξ1+

ftιa(n Then

(2.30) rfw = (-lΓU-(*ιHAι(n)λ) A»

When ι>^2 or /v^l,

(2.31) rfw = 0 .

Proof. By the same argument as in Lemma 2.4, d0iQ\J and d0jt%,J~s*,
j=l, •••, -/Vare contained in the sum of the products of

(2-32) (8gnp>yp,ω(9 l) "*^w(«'v)

and

(2.33) (sgn p")(?v+ι)'v+p'/cι> ••• (τμ)W'o*-v) .

Put Tj = ζJ~v~1θ,j = v+l, ,μ. Then, by the binomial theorem, for k =
h+i9 •">> andy=ι/+l, ••-, /^

(2.34) (*y/X)* = (τ}+λ-1τya(eθ+0(^)*=τ}*+X-1 Λ τ}*-1.τyatf .

Hence every term of (2.33) can be expanded as (2.35)+(2.36):

(2.35) (sgn p")(τί+ι)y» '̂α

(2.36) (sgn p'O ΣΪΓ? (τί+1^*p"

X λ'1 'V+P"(«

Here jί=jk— 1. Since Fμ_v>0=0 implies that (2.35)=0, we have (2.33)=O(λ"1).
Hence (2.33)x%->'sτ;>/s=O(i-1- ''s). Put 3L=λ, then

Σf=ι dwGW" = 0 , A = 0, .», A* .

This implies that when we calculate rfA>1(|'), &=0, •••, μ, we can ignore the
terms τ,jt(ξ'), 1=1, •••, v,j=l, •••, N under the condition that Fμ_v,0=0. Put

τι.y.(f')==0» /=1' -,",y=l, -.̂ . then for ft=0, -, /*

(2.37) dtΛ(ξ') = lim (λ(^,0(λ, r)-4wO+«ίk.ι(λ, ?'))
λf oo

When yv+ι — 7v^2, we prove (2.25) first. Since the product of (2.13) and
the sum of (2.35) is </0,o(lτ')> we
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(2.38) Urn λ(40(λ, n-«WΠ)= AK -, σv; bJt, •», iyJ β'-' Σiί-ϊβ

Since every όy(τ) is represented as (2.2), the coefficient of λ7"1 in (2.10) is

(2.39) ΣSΓ

Hence

(2.40) UmcUλ, Π ̂  Afa, -, σv; 4,,, -, ίyJ θ/^ Σafί *yv+M(f O ^-M

Recalling (2.37), we have (2.25) by (2.38) and (2.40).

Now we prove (2.26). By a similar method substituting (2.16) for (2.9) in

Lemma 2.4, and Dk(σly •• ,σ v; bjl9 •••, ό, v; φlτ •••, φv) for D0(^i> •"> ^vί ^4, •••,

όyv), we have (2.26). Since;v+l-yv^2, (2.18) implies (2.27).

When/v+1— jv— 1, we must consider the following extra terms:

(2.41) ( β g n p W λ , Π) - (rv-xίλ, ξ'))

where p satisfies (2.11) and (2.12). By substituting bj for ό, v in Lemma

2.4, we can apply Lemma 2.4 to (2.41). Then the sum of (2.41) is expanded as

(2.42) λ'-'Σp'.p

X(sgnp")(τv+1(λ, ?'

x -MX, r)/λ)
where p' is a permutation of 1, •••, v— 1, z/+l and p" is of 0, 2, •••, μ— v. Put-

ting 5L=λ and dividing (2.42) by λ/-1, we have, when λ f oo,

(2.42) -* Dfa, -, σv; bjl9 -, 6yv-ι, δy^^ θ^ Γ^va -

Adding this extra term to (2.25), we have (2.28).

If we substitute bj for δ, v and φv+1 for φv in Lemma 2.4, we can prove

(2.29) similarly.

Now we prove (2.30). Denote the transposition of i andy by ( i , j ) and put

p—p, for k=2 and

= (2, 3) — (Λ-2, k-l)(k-l, k)p, for Λ^3 .
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Then v=l andyv=0 implies that (2.17) becomes

(2.43) (-l)»"(sgn rtδy-ί

Therefore (2.30) can be calculated by the same method as in Lemma 2.4 with

v=k=2. The order of λ of the leading term of (2.43) is J—j2=J—l. The
term of order /— 1 is the sum of

PPW(2.44) (-lΓ2(sgnp)*y~

where p satisfies (2.11) and (2.12) with z/=2. Hence

(2.45) dktl = (-1Γ2 AMΓ)> <r i, */,; &, 4) A» -

By the definition, we have

(2.46) A(σ1? σ; 1, 6,,; φ,, φ2) = ̂ -(̂ + (̂5'))̂

Therefore (2.45) and (2.46) imply (2.30).

Since jv+1— l=jv^l, (2.18) implies (2.31). [Q.E.D.]

Lemma 2.7. //rank Mat Fμ-v^μ— ̂ — 2,

(2.47) *iβ(n = *.ι(n = 0 l /or ft=0, -,/,.

Proof. Put d^v+jkj, 4=Λ+*2> /ί=Λ+*j and Γ2=jv+k^. Since Mat IV v,*

and Mat 9DΛ, Λ=l, •••, /z— z/ are different from Mat Fμ_v,0 by the &th row,
either the ̂  th row and the k2 th row, or the k{ th row and the k2 th row remains

equal. This implies that Vμ,^fk=0 and QDk= 0, Λ = l , •••, /Λ— z>. Hence
βμ^v = 0 by the definition. Recalling that D(k) is one of the minors of order

μ— v— 1 of Mat D0(Θ, •••, θf1"11"1; τ\ •••, ̂ ), which is zero by Lemma 2.2, we
have Z)(Λ)— 0. Therefore Lemma 2.6 implies that dktl(ξ')=Q, k=0, •••, μ.

[Q.E.D.]

REMARK. This lemma shows us that we need to calculate dkj for k= 0, •••, μ
and /^2, when rank Mat Fμ_v>0^^— v— 2.

3. The properties of the characteristic roots

Let ft^3. Assume that P^D) and P2(D) are elliptic linear operators with
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constant coefficients of order 2μ and 2v with μ>v, respectively, such that

(3.1)

(3.2) p2(
Here/>lty(f ) and_p2fy(f ) are polynomials of f ' with their orders not higher than

7, and θ satisfies 0^θ<2π.

We shall deal with the following polynomial with a large positive parameter

λ:

(3.3) P1(?)+X2^P2(|) = 0 .

Denote the characteristic roots of (3.3) with respect to ξ1 by τ/λ, £'), j=

1, •••, 2μ and those of

(3-4) P2(ξ) = 0

with respect to ξ1 by a j(ξ'),j=ly •••, 2z>, respectively.

ASSUMPTION 3.1.

The characteristic roots of (3.4) are simple for all ξ'.

There exists a positive number C such that

Pι(?)+λ2μ-2VP2(£)Φθ, for λ ^ C a n d l H ^ C .

Since P2 is elliptic, we may assume that <ry(£'), 7—!, •••,*> have positive

imaginary parts for \ξ'\^C.

Lemma 3.2. Let Assumption 3.1 be satisfied. If the suffixes {j} of the

characteristic roots τy(λ, ξ'}, j=l> " ,2μ are properly chosen, then there exists a

positive number \R for every positive number R with R>C such that if \>\Rί

then τ; (λ, ξ '), j= 1, •••, v have positive imaginary parts for \ξ '\ >C and satisfy

(2.19) for δ=l and τy(λ, ξ '), j=v+l, •••, μ have positive imaginary parts for all

ξ' and satisfy (2.20).

Proof. First we deal with

(3.5) ^μ+Σ!; ΐ ι aji
2μ-j-txp(iθ)t^+"Σf,1 bjt*-j = 0 .

Denote the roots of (3.5) by ΐj=tj(a, έ), where 7=!, •••, 2μ, a=(aly •••, a2fί), and

b=(bv •••, έ2V). They every ίy(0, 0) satisfies

(3.6) *2μ-exp(*0)ί2V - 0 .

The roots of (3.6) are 0 and θ?''1,̂ !, •••, 2^— 2z; and the roots of (3.6) with
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positive imaginary parts are Θζί~1jj=l9 ,μ—v. Since the roots of t2μ~2V=

exp(z#) are simple, there exists a positive number η such that tj(a, b),j=2v-\-l,

•••, 2β are simple for \a\ <η and \b\ <η. Then every tj(a, b)ίj=2v-}-l, •••, 2μ

is analytic in \a\ <η and \b\ <η. Hence every tj(a, b)9j=2v-}-l9 •••, 2μ has its
power series representation with centre 0:

(3.7) ίX«, 4) = Σ.«yV («•*)*.

where (a, b) =(a1) ι (a»)*(bl)^ (bj*+*'.

We may assume that

f/0,0) = 0, J=1, -,2V; *,<(), 0) = Θί' -2*-' , = 2*+l, -, 2M .

Then for/=2ι»+l, •••, 2μ

(3.8) ts(a, b) = θ?'-"-1+Σ3βφo fyv (β> *)'•

If we divide (3.3) by λ?μ and put ^/λ=ί and

(3.9) (λ-' A.i -. λ ^ Ajμ, λ ' Aa. -. λ-2v ί2,2v) = (α, ft) ,

then we have (3.5). For η and Λ, there exists a positive number Xj/ with

\R>C such that X>X^X implies that |β|<^ and |i|<i7. Substitute (3.9)

for (Λ, b) and put τy(X, ξ')=\ tj(a, b) in (3.8). Thus we have representations

as (2.20).

Next we deal with

(3.10) j M-Σjli &,•**-> = ().

Denote the roots of (3.10) by Sj=Sj(b), where j=l, •••, 2^ and b=(b1, ••-, *2V).

Put *o=(— exp (—/(?)• ί2.ι(f ')> •"> — exP(— iθ) p2,2v(ξ')) Then Assumption 3.1
implies that jy(δ0)=σ; (f '),y=l, « ,2ι; are simple. Hence there exists a positive

continuous function rj(ξr) such that jy(6), y=l, •••, 2v are simple and analytic

of b in 1 6— bQ(ξ r)\ <η(ξ ') and ί/(6), j=l, •••,!/ have positive imaginary parts

in \b-b0(ξr)\<ι(ζ') for |ΓI>C. Denote

((τ/X)-(τχx,

Λ = {(τ,χ-M');
and

Then we can write

(3.11) λ-^-^P^r, ξ')+P2(τ, ξ') = Q,
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Since lim |τy(λ, ξ ')/λ| = 1, j — 2z/ + 1, ••-, 2μ, there exists a positive number
λfoo

λ* with λ*>λtf' such that Q2ΦQ in Aλ. Then Q2 is a polynomial of T with

analytic coefficients of (λ"1, ξ') in y!2 and l/Q2 is analytic in ̂  Hence

(\~(2μ"2v)P1+P2)IQ2 has a power series representation of (r, λ""1, ξ') in ̂  and Qx

is a polynomial of r with analytic coefficients bj(\~l, ξ') in A2 as

0ι(τ, λ, ξ') = τ2v+Σ/-vι .̂(λ-1,

Since limCλ — — exp( — ίθ) P2y there exists a positive number \R with
λt~

such that if λ>λΛ, then l^λ"1, ξ ')— fy>| <tf(?') Hence the characteristic roots

τ/λ, Π> J= !> -> 2" of Qι are analytic of (X"1, ξ'} in
\ξ' I <Λ}. Thus τχλ, ξ'), j=l, — , 2z; can be expanded as (2.19).

By renumbering the suffixes {]} properly, we have the conclusion.
[Q.E.D.]

4. The reductibility of the one-parameter family

If we divide the equation of (1.2) by £=λ~2μ+2v then we have

^ = 0 in Rl
(4<1) ' bJk(D)u(x) I ̂ β = φ,(*') , λ = 1, -, μ .

Here we require Assumption 3.1 and that every symbol of bjk(D) is represented

as (2.2). We shall consider the one-parameter family (4.1) with λ>l instead

of (1.2) and study the behaviour when λ f °°. We denote by ««> the limit of

the canonical extension [uχ\+ of a solution #λ of (4.1). We know that [%]+ is

uniquely determined when the boundary conditions of (4.1) are coercive.

We can define the reducibility of (4.1) by replacing uz, u0, and lim by ί/λ, «<»,
εψo

and lim, respectively, in the definition of the reducibility of (1.2).
λfoo

We shall consider the solutions of (4.1) solved by the partial Fourier trans-

formation with respect to x'. We denote by Λ the partial Fourier transforma-

tion with respect to x' and by ff"1 the inverse partial Fourier transformation

with respect to ξ'. The partial Fourier transform of (4.1) is

, , *ί, n = o;( ' ' (*ι, n i „;„ = &(r> , k =
This is an ordinary differential equation subjected to parameters (X, ξ'). We

shall consider only the solution ύ(xly ξ') of (4.2) represented by

(4.3) ύ(xly ξ') = y(*
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Here Y(x1) is the Heaviside function. The partial Fourier transforms of the

boundary conditions in (4.2) are represented as

(4.4)
If .D0ΦO, then Ck can be obtained uniquely by Cramer's formula as

(4.5) Ck(\, Π = ZVA, , k = l, ,μ.

For the definitions of D0 and Dk see Notation 2.1.

ASSUMPTION 4.1.

There exist positive numbers/, C, and M independent of λ>l and ξ' in

Λ""1 such that

(4.6)

and every cofactor D0tktl of D0, ft, /=!,•••, μ satisfies

(4.7) |DM,;|<:Cλ/<r>M.

Here<r>=(l+IΠ2)1/2

REMARK. Since Assumption 4.1 assures the commutation of the limit λ f °°

and the inverse Fourier transformation, we have only to calculate the pointwise

limit of (4.3). It is difficult to check (4.6) when the data of (4.1) belong to

^(R"-1). But if we restrict the data of (4.1) from ^jR""1) to

where K is a compact set of ΛfΓ1 , then (4.6) follows the estimate of lim D0.λf~

NOTATION 4.2.

D0(τ) = A)(TI> — , τμ; bfa •••, 6yμ)

ASSUMPTION 4.3. For all ζf in

(1) A,

(2) Z>0(o ;

(3) Z>β(σ)

REMARK. Assumption 4.3 implies the unique solvability of the reduced
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problem. This requirement is natural from the viewpoint of singular perturba-

tions. Recall that Vμ.-Vti is independent of £'.

Theorem 4.4. Let Assumption 3.1, 4.1 and 4.3 be satisfied. By restricting

the data φk, k=l, •••, μfrom S(Rn~1) to 3r-1(C7(/2M~1)), Assumption 3.1 can be

removed.

(1) If rank Mat Fμ,_V)0=μ,— z>, then the family (4.1) is normally reducible. In

particular, if the boundary conditions are Dίrichlet's

(4.8) bjk(D) = Dkr\ k=l9 ,μ,

then the family (4.1) is normally reducible.

(2) Assume that rank Mat V[ί.VtQ=μ— v— 1.

(2-1) If jv+1— /v^2 am/ JSμ.vΦO, ίAe/z the family (4.1) w normally reducible.

(2-2) Ifjv+ι—JM=l, then there are three cases as follows.

(2-2-a) 7/.Bμ_vΦθ αwrf Fju-v.i^O, Z/^fl the family (4.1) w normally reducible.

(2-2-b) T/" J3μ_v = 0 tfflrf Fμ_v>1Φθ, ίA^n z/oo satisfies the following boundary condi-

tions :

(4.10) ^(DX*)!̂ ,, = φ,(*') , k = 1, •», *-l, »+l .

In particular, the family (4.1) w abnormally reducible.

(2-2-c) //jB^v^O αwrf Fμ_v>1Φθ, ίAβw the family (4.1) w woί reducible.

Proof. Assumption 4.1 implies that there exists a unique solution wλ of

(4.1) having representation (4.3).

Case (1). By Lemma 2.2, 2.4, Assumption 4.3-(l) and the condition

we have for Λ=l, •••, v

(4.11) lim C,(λ, Γ) = lim - 7 =
λt°° λt« D0(τ)/λ7

and for Λ=v+l, •••, μ

(4.12) lίmCΛ(λ, f / ) = °
λ|»»

Here the convergence is uniform in ξ' on every compact subset of Rn"1. Since

every τy(λ, f '), j=l, ••-, v has a positive imaginary part, it follows that for

every rapidly decreasing function ψ(ξ') and for fixed xl9

(4.13) lim <&(x19 ξ'), ^^ = ΣLi ΓfoKίexp iσk(ζ'^Dk(σ)ID^σ), ψ>δ/ .
λfoo

Thus wλ converges to w^, satisfying (1.4). Therefore the family (4.1) is normally

reducible.
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If the boundary conditions are Dirichlet's conditions, then A= {z>, •••, μ— 1}.
For every pair (/, /') of two different integers in A with /</', we have Γ—l^ί

μ — 1 — v<!iμ — 2v. Hence it is impossible that / = / ' (mod 2μ — 2v). This

implies that the family (4.1) is normally reducible.

Case (2). We shall use the representation (2.24). Since Vμ.^t0=09 we have

for A=0, -, μ, dktQ(ξ')=0 by Lemma 2.4 and Σf=ι dk^(ξf)\J^=0 by Lemma

2.6. Hence

(4.14) lim C,(X, ξ>) = lim - = lim
^ } H ' ς ; -1

.
d0tl(ξ')+o(l) 4u(n

Case (2-1). Lemma 2.6 implies that for &— 1, •••, v

(4.15) limCA(λ,r) = W/A>(<r),
λfoo

and that for k=v-{-l, •••, /Λ

(4.16) ΰmC4(λ,f') = 0.

By the same argument as in Case (1), (4.1) proves to be normally reducible.

Case (2-2). Since the imaginary part of every τ/λ, ξ'} is positive, even

if v= 1 andyv— 0, we have for k=v+\, •••, μ

(4.17) lim Q(λ, O(exp iτ*(λ, f 'X) Y(xl) = 0 .
λfoo

By Lemma 2.6 we have for k=l, •••>»

(4.18) lim CΛ(λ, f) - Z)*(°-)'fl
H > g ;

where the denominator is not equal to zero by Assumption 4.3-(3).

Case (2-2-a).

(4.19) lim C,(λ, ξ') = AC^ ^-v = D*M .
V ' H > ς ;

This implies that z/oo satisfies the following boundary conditions:

(4.20) bJt(D)u(X) I ίlίo = φk(X') , k =!,...,„.

Therefore the family (4.1) is normally reducible.

Case (2-2-b).

(4.21) lim C,(X, Π = ̂ σ;ty<t > 1 = §πλ*~ Z)0(σ ; ^-F^-v,! Z>0(σ; i/)



754 R. ASHING

This implies that u^ satisfies (4.10) and that the family (4.1) is abnormally re-

ducible.

Case (2-2-c). Since the right-hand side of (4.18) is different from that of

(4.19), the unique solvability of the reduced problem in Case (2-2-a) implies

that Woo can not satisfy every of the boundary conditions of (4.20). As the right-

hand side of (4.18) does not contain φft, k=v+2, •••, μ, u^ can not satisfy any

of the following boundary conditions :

(4.22) (̂£>>~ I Xl;0 = φk , k =

If Woo satisfies the boundary condition

then the unique solvability of the reduced problem in Case (2-2-b) implies

that the right-hand side of (4.18) is equal to the right-hand side of (4.21), which

is a contradiction. Therefore the family (4.1) is not reducible. Since the con-

vergence is locally uniform, Assumption 4.3 assures (4.8) for large \.

[Q.E.D.]

We give and study an example of the abnormally reducible family.

EXAMPLE 4.5. In (4.1) consider the following symbols:

(4.23) P,(ξ) = (

(4.24) P2(ξ) =

and

(4.25) M*)=1 */,(£) = &, and bit(ξ) = ξl ,

where •(?'>=(!+ |?'|2)1/2 Denote the boundary conditions with symbols (4.25)
by

(4.26) U I ̂  Q = Φo > A« I *!*0 = Φl >

Then μ—3, v=l, and ^4— {1, 5}. Obviously Assumption 3.1 is satisfied. Let

Θ = exp;rf74, ς = expπi/2 = i, a = «?r>4+X4)1/4, and & = <£'>/*•

Then the characteristic roots of P1+λ4 P2— 0 are

±i<?'>, θα, Θia, — θα, and — θia .

Let

T \ , = e«, and
When <?'>/λ<l, the binomial expansion of 0/λ is
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This implies that τ2Λ(ξ')=τ3Λ(ξ')=0 and therefore 9Z>1=9D2=0. Recalling

that bjtΛ(ξ')=bjtfl(ξ')=Q, we have 53_ι=0. A routine calculation gives

A = -Θί (l-*K<r>(l+δ4) , A = -Θ(l-

A = -̂ (-Θ '̂
and

D3 = _θβ»(*<

Since \ζ\ = 1, 0<λ<α, and 0<δ<l, it follows that

IAI =

and

Since Q^Dj/^o, C2=D2/D0, and C3=D3/D0, Assumption 4.1 and 4.3 are

satisfied. Therefore we can apply Theorem 4.4 to this example.

We show that the convergence of [u^\+ is in L2(R+). Let | \s be the norm

of the Sobolev space Hs(Rn~l). Then

I C2 exp iθax1 1 , | C3 exp (—

Integrate |ί/λ|
2 over Λ+. Then the partial Fourier transformation and the

formula

ί°°exρ(— ct)dt = — , for
Jo c

imply that

This estimate shows that every uλ belongs to L2(Λ+),

By the same argument as above we have
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and

This estimate implies that u^ belongs to L2(Rl). Let Z50W<|f'>Z)0 and

A = » <£'>A-A & = -Θ/(i-*><r>(-<r>4&+&/«) .
Replacing wλ by Uχ—u^ and Q by C1=D1ID0 in the above estimates and using

I A I /α^ \/2V<r>3ί vTλ4<f> ,

we have

i A eχP (-<r>o i ̂ - r̂x'Ko i & i + 1 & i )
and

+ 18VT λ-1(|φ0 |
2o+|φ1 |L1+λ-8 |φ5 |J).

This estimate shows that [uλ]
+ -> [ί/J+ in L2(Λ+).

If [wx]+~* [woo]+ in H\Rn

+) then the continuity of the trace operator implies

that Woo must satisfy

(4.27) κ U * o = Φ o

But this is a contradiction. Therefore the convergence in L\Rn+) is the strongest

among the Sobolev topologies of HS(R+), where s runs over all integers.

Replace the boundary conditions (4.26) by the Dirichlet's conditions:

(4.28) u I ̂  o = Φo , A" U o = Φi , and D\ u \ x^0 = φ2 .

Then the limit u^ satisfies (4.27). Therefore the family with (4.28) becomes

normally reducible.

The family not with (4.26) but with (4.28) can be regarded as the perturba-

tion of (1.4) with (4.24) and (4.27). Thus the situation proves to be delicate

in perturbing the boundary conditions.
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