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Introduction

We shall work in piecewise linear category. All knots and links will be assumed
to be oriented in a 3-spher®®.

The 4genusg*(K) of a knot K inS®=0B* is the minimum genus of orientable
surfaces inB* bounded byk [1]. Thenonorientable4-genus~y*(K) is the minimum
first Betti number of nonorientable surfaces Bt bounded byK [3]. For a slice knot,
it is defined to be zero instead of one. The first author [4] defined tHenénsional
clasp numberc*(K) to be the minimum number of the double points of transversely
immersed 2-disks inB* bounded byK . He gave an inequaligy(K) < c¢*(K) [4,
Lemma 9] and asked whether an equalty(K) = ¢*(K) holds or not. For this ques-
tion, H. Murakami and the second author [3] gave an negative answer, i.e., they proved
that there is a knok such thgt'(K) < ¢*(K). Thusc¢*(K) is not enough to char-
acterizeg*(K). In this paper we give characterizations of 4-genus and nonorientable
4-genus by using certain 4-dimensional numerical invariants.

The local move as illustrated in Fig. 1(a) (resp. 1(b)) is calledEamove (resp.
H'-movg for some positive integer . Both all -move and Ai-move realize a
crossing change whem = 1. Thus these moves are certain kinds of unknotting opera-
tions of knots. LetZL,, (respL/) be a link as illustrated in Fig. 2(a) (resp. 2(b)). Then
we easily see that all -move (resfi’-move) can be realized by faision/fission[2,

p. 95] of L, (resp.L!); see Fig. 3. Therefore, for a kndt  #B*, there is asingular
disk D in B* with 9D = K that satisfies the following:

(1) D is a locally flat except for pointps, po, ..., pmp) in the interior of D .

(2) For eachp; { =1 2..,m(D)) there is a small neighborhoad p,( ) of B*
such that §N(p;), d(N(p;) N D)) is a link L,, (resp.L, ) for some integen; .

We call these pointn, po, ..., pu(p) Singularities of typeH (resp.type H'). Among
these disks satisfying the above;, (K) (resp. ¢y, (K)) is the minimum number of
m(D). Note thatc}, (K) < ¢*(K) and ¢}, (K) < ¢*(K).
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Fig. 3.
In this paper, we shall prove the following.
Theorem 1. For any knotK , the following equalities hold.
(1) ci(K) = g"(K).
(2) cj(K) = [(*(K) +1)/2].

Here [x] is the maximum integer that is not greater than

Since the inequalityy*(K) < 2¢g*(K) + 1 holds for any knotk [3, Proposition
2.2], by Theorem 1, we have the following corollary.

Corollary 2. For any knotK ,cj; (K) < c5(K) + L.
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Remark. Let K, be a (2 2 + 1)-torus knotn( =,1,2..). It is known that
g*(K,) = n. On the other hand, we note that, bounds abMs band in a 4-ball
and thatkK, is not a slice knot. This implies’(K,) = 1. Therefore, by Theorem 1,
we havecy, (K,) =1 andcj(K,) =n.

Proof of Theorem 1

In order to prove Theorem 1, we shall show the following lemma.

Lemma 3. Let K (resp.—K’) be a knot inS3 x {0} (resp.S® x {1}). Suppose
that K and—K’ cobound a twice punctured surfade  $3 x [0, 1] such thatF has
neither maximal points nor minimal points. Then the following hold.

(1) If F is orientable and oriented so thd@F = K U (—K’), then K is obtained from
K’ by g(F) H-moves.

(2) If F is nonorientable then K is obtained fromK’ or —K’ by [61(F)/2] H'-
moves.

Here —K’ denotes the knoK’ with reversed orientationg(F) the genus ofF and
B1(F) the first Betti number of .

Proof. Suppose thaF is orientable. Thegp 2 ( PH#F) — 1. We regard each
saddle point as a saddle band in the sense of [2, p. 107]. We can déform  so that
all saddle bands lie ir§® x {1/2}; see [2]. Note thatF N (S° x {1/2}) is a 2-complex
that consists ofKk and@2F ) bands, by, ..., by ), and thatk’ is obtained from
K by hyperbolic transformation$2, Definition 1.1] along the bandsy, by, . . ., bayr).
Moreover we may assume tha&tn (S3 x {1/2}) is homeomorphic to a 2-complex as
illustrated in Fig. 4(a). Henc&k F N (S® x {1/2}) and K’ can be given as shown
in Fig. 5(@). Then we can deforn N (S® x {1/2}) into a 2-complex as illustrated
in Fig. 6(a) by combining the three kinds of local moves; (1) changing a crossing of
by and b;, (2) changing a crossing &f; and K, and (3) adding &1-full twist to
by, wherei =1 2...,g(F)andj =1 2...,2¢(F). We note that this deformation
is realized byg £ ) local moves as illustrated in Fig. 7. Since the result of hyperbolic
transformations along the bands in Fig. 6(a)As K, is obtained fromby g(F)
local moves as illustrated in Fig. 8. It is not hard to see that the local move as in
Fig. 8 is realized by a singlé/ -move; see Fig. 9 for example. Tkus is obtained
from K’ by g(F) H-moves.

SupposeF is nonorientable and that(F) — 1 is even. SetByi(F) — 1 = 2y. In
the above arguments, by replacipgr ( K);, Fig. 4(a), 5(a), 6(a) and/ -move with
+K’, Fig. 4(b), 5(b), 6(b) and?’-move respectively, we have the required result.

In the case thapi(F) — 1 is odd, we have the conclusion by the following. By
attaching a small half-twisted band ®nN (5% x {1/2}), we find a new surfacé’ in
$% % [0, 1] such thatk and-K’ coboundF’, B1(F’) = (F) + 1 and F’ has neither
maximal points nor minimal points. ]
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Proof of Theorem 1. AnH -moveH’-move) is realized by twice hyperbolic
transformations as illustrated in Fig. 10. Hence we haygK) > g*(K) and
2c¢3;/(K) > v*(K). Note that 23,,(K) > v*(K) implies ¢3;,(K) > [(v*(K) + 1)/2].

Suppose that a knak  iAB* bounds a surfac& iB% We assume thaB* =
(53 x [0, 00)) U {1pt}. We can deformF so that the following conditions are satisfied
[2]:

(1) FN(S®x][0,1]) is an annulus that does not have maximal points.

(2) FN(S®x[1, 2] is a surface that has neither maximal points nor minimal points.
(3) FN(S®x[2,00)) is a disk that does not have minimal points, i.8.0 (53 x {2})

is a ribbon knot.

Setd(F N (S2x[0,1])\ K = —K’ and 9(F N (8% x [2, 00))) = K". If F is orientable
(resp. nonorientable), then by Lemma 3, we have that the ribbon Kffots obtained
from K’ by g(F) H-moves (resp. fronk’ or —K’ by [(81(F)+1)/2] H'-moves). This
implies thatk’ and —K” (resp.+K") cobound a singular annulus i§? x [1, 2] with
g(F) singularities of typeH (resp. [ (F)+1)/2] singularities of typeH’). Hence we
havecy; (K) < g*(K) and ¢}, (K) < [(v*(K) +1)/2]. This completes the proof. [J

Since bothH -move andi’-move are unknotting operations, we can define 4-
dimentional unknotting numbers;, (K), u)y,(K), u},.(K) and u;,,(K), of a knot K
by the similar ways to those ofi*(K) and u}(K) in [4]. Namely u} (K) (resp.
ufy(K)) is the minimum number off -moves that is needed to transféfm into a
slice knot (resp. a ribbon knot), and;(K’) (resp.u’,.,(K)) is the minimum number
of H'-moves that is needed to transfokh  into a slice knot (resp. a ribbon knot). The
ribbon 4-genusg?(K) of a knot K in S% = 9B* is the minimum genus of orientable
surfaces inB* bounded byK that has no minimal points [4]. Thenorientable rib-
bon 4-genus~;(K) is the minimum first Betti number of nonorientable surfaces3t
bounded byK that has no minimal points. For a ribbon knot, it is defined to be O
instead of 1. We define}, (resp.c;,) to be the minimum number of typ#  (resp.
type H') singular points of singular disks iB* bounded byk that has no minimal
points and whose singularities are of tyfe  (resp. tyf¢. From the proof of The-
orem 1, we have the following theorem.
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Theorem 4. For any knotK, the following equalities hold.
(1) ¢iy(K) = 7(K) = uly (K).
) ¢ (K) = [(7(K) +1)/2] = ufyi (K).

Since the trivial knot inOB* bounds a Mbius band inB* without minimal
points, we havey'(K) < 2g*(K) + 1 for any knotK . By Theorem 4, we have the
following corollary.

Corollary 5. For any knotK, u’,,(K) < u;y(K)+1

Remark. Let K, be a (2 2 + 1)-torus knotr( =,1,2..). Since g*(K) <
g (K) < g(K) [4, Lemma 2], we havey(K,) = n, whereg K ) is thegenusof K.
On the other hand, sincg, is not a ribbon knot aad boundsbhibd band in a
4-ball that has no minimal points, we havé(K,) = 1. Therefore, by Theorem 4, we
havec’, (K,) =1 andc/y,(K,) =n.

By the definitions ofc};(K), ¢} (K), uj,(K) and uj, (K), we havecy(K) <
uy(K) and ¢y, (K) < ujp(K).

Conjecture. For any knotK, cj;(K) = uj,(K) and ¢};,(K) = u}, (K).

Remark. If g*(K) = gi(K), then by Theorems 1 and 4;,(K) = g*(K) =
g (K) = uly(K) > uj(K). If v*(K) =~(K), then by Theorems 1 and 4;,,(K) =
[(v*(K) +1)/2] = [(/(K) +1)/2] = u;p(K) > upy(K). Thus if g*(K) = g/(K) and
v*(K) =~7(K) for any knotK , then the conjecture above is true.
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