

Title	A characterization of four-genus of knots
Author(s)	Shibuya, Tetsuo; Yasuhara, Akira
Citation	Osaka Journal of Mathematics. 2001, 38(3), p. 611-618
Version Type	VoR
URL	https://doi.org/10.18910/5702
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

A CHARACTERIZATION OF FOUR-GENUS OF KNOTS

TETSUO SHIBUYA and AKIRA YASUHARA

(Received December 16, 1999)

Introduction

We shall work in piecewise linear category. All knots and links will be assumed to be oriented in a 3-sphere S^3 .

The 4-genus $g^*(K)$ of a knot K in $S^3 = \partial B^4$ is the minimum genus of orientable surfaces in B^4 bounded by K [1]. The nonorientable 4-genus $\gamma^*(K)$ is the minimum first Betti number of nonorientable surfaces in B^4 bounded by K [3]. For a slice knot, it is defined to be zero instead of one. The first author [4] defined the 4-dimensional clasp number $c^*(K)$ to be the minimum number of the double points of transversely immersed 2-disks in B^4 bounded by K . He gave an inequality $g^*(K) \leq c^*(K)$ [4, Lemma 9] and asked whether an equality $g^*(K) = c^*(K)$ holds or not. For this question, H. Murakami and the second author [3] gave a negative answer, i.e., they proved that there is a knot K such that $g^*(K) < c^*(K)$. Thus $c^*(K)$ is not enough to characterize $g^*(K)$. In this paper we give characterizations of 4-genus and nonorientable 4-genus by using certain 4-dimensional numerical invariants.

The local move as illustrated in Fig. 1(a) (resp. 1(b)) is called an *H-move* (resp. *H'-move*) for some positive integer n . Both an *H-move* and an *H'-move* realize a crossing change when $n = 1$. Thus these moves are certain kinds of unknotting operations of knots. Let L_n (resp. L'_n) be a link as illustrated in Fig. 2(a) (resp. 2(b)). Then we easily see that an *H-move* (resp. *H'-move*) can be realized by a *fusion/fission* [2, p. 95] of L_n (resp. L'_n); see Fig. 3. Therefore, for a knot K in ∂B^4 , there is a *singular* disk D in B^4 with $\partial D = K$ that satisfies the following:

- (1) D is a locally flat except for points $p_1, p_2, \dots, p_{m(D)}$ in the interior of D .
- (2) For each p_i ($i = 1, 2, \dots, m(D)$) there is a small neighborhood $N(p_i)$ of p_i in B^4 such that $(\partial N(p_i), \partial(N(p_i) \cap D))$ is a link L_{n_i} (resp. L'_{n_i}) for some integer n_i .

We call these points $p_1, p_2, \dots, p_{m(D)}$ *singularities of type H* (resp. *type H'*). Among these disks satisfying the above, $c_H^*(K)$ (resp. $c_{H'}^*(K)$) is the minimum number of $m(D)$. Note that $c_H^*(K) \leq c^*(K)$ and $c_{H'}^*(K) \leq c^*(K)$.

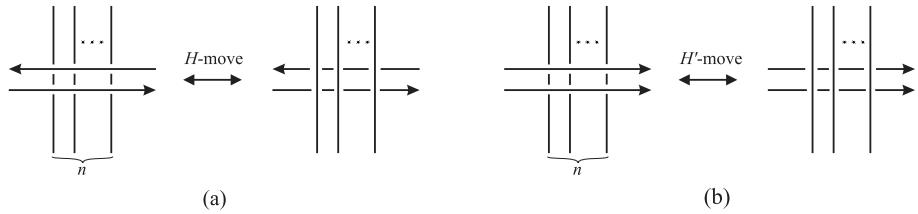


Fig. 1.

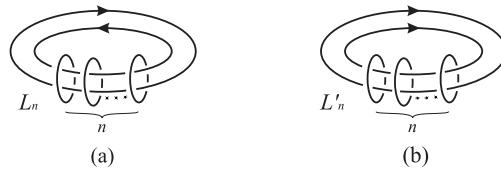


Fig. 2.

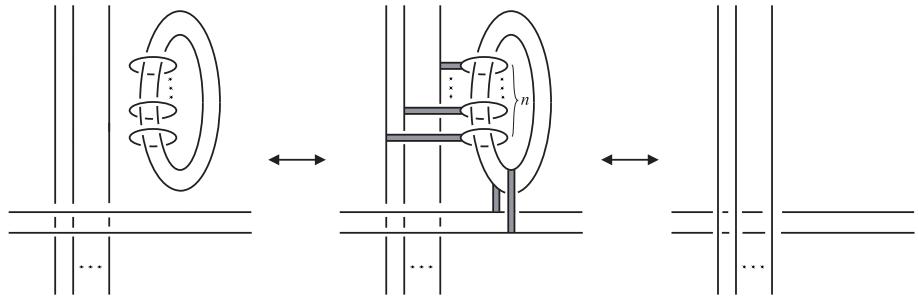


Fig. 3.

In this paper, we shall prove the following.

Theorem 1. *For any knot K , the following equalities hold.*

- (1) $c_H^*(K) = g^*(K)$.
- (2) $c_{H'}^*(K) = [(\gamma^*(K) + 1)/2]$.

Here $[x]$ is the maximum integer that is not greater than x .

Since the inequality $\gamma^*(K) \leq 2g^*(K) + 1$ holds for any knot K [3, Proposition 2.2], by Theorem 1, we have the following corollary.

Corollary 2. *For any knot K , $c_{H'}^*(K) \leq c_H^*(K) + 1$.*

REMARK. Let K_n be a $(2, 2n+1)$ -torus knot ($n = 1, 2, \dots$). It is known that $g^*(K_n) = n$. On the other hand, we note that K_n bounds a Möbius band in a 4-ball and that K_n is not a slice knot. This implies $\gamma^*(K_n) = 1$. Therefore, by Theorem 1, we have $c_{H'}^*(K_n) = 1$ and $c_H^*(K_n) = n$.

Proof of Theorem 1

In order to prove Theorem 1, we shall show the following lemma.

Lemma 3. *Let K (resp. $-K'$) be a knot in $S^3 \times \{0\}$ (resp. $S^3 \times \{1\}$). Suppose that K and $-K'$ cobound a twice punctured surface F in $S^3 \times [0, 1]$ such that F has neither maximal points nor minimal points. Then the following hold.*

- (1) *If F is orientable and oriented so that $\partial F = K \cup (-K')$, then K is obtained from K' by $g(F)$ H -moves.*
- (2) *If F is nonorientable, then K is obtained from K' or $-K'$ by $[\beta_1(F)/2]$ H' -moves.*

Here $-K'$ denotes the knot K' with reversed orientation, $g(F)$ the genus of F and $\beta_1(F)$ the first Betti number of F .

Proof. Suppose that F is orientable. Then $2g(F) = \beta_1(F) - 1$. We regard each saddle point as a saddle band in the sense of [2, p. 107]. We can deform F so that all saddle bands lie in $S^3 \times \{1/2\}$; see [2]. Note that $F \cap (S^3 \times \{1/2\})$ is a 2-complex that consists of K and $2g(F)$ bands $b_1, b_2, \dots, b_{2g(F)}$, and that K' is obtained from K by *hyperbolic transformations* [2, Definition 1.1] along the bands $b_1, b_2, \dots, b_{2g(F)}$. Moreover we may assume that $F \cap (S^3 \times \{1/2\})$ is homeomorphic to a 2-complex as illustrated in Fig. 4(a). Hence K , $F \cap (S^3 \times \{1/2\})$ and K' can be given as shown in Fig. 5(a). Then we can deform $F \cap (S^3 \times \{1/2\})$ into a 2-complex as illustrated in Fig. 6(a) by combining the three kinds of local moves; (1) changing a crossing of b_{2i} and b_j , (2) changing a crossing of b_{2i} and K , and (3) adding a ± 1 -full twist to b_{2i} , where $i = 1, 2, \dots, g(F)$ and $j = 1, 2, \dots, 2g(F)$. We note that this deformation is realized by $g(F)$ local moves as illustrated in Fig. 7. Since the result of hyperbolic transformations along the bands in Fig. 6(a) is K , K is obtained from K' by $g(F)$ local moves as illustrated in Fig. 8. It is not hard to see that the local move as in Fig. 8 is realized by a single H -move; see Fig. 9 for example. Thus K is obtained from K' by $g(F)$ H -moves.

Suppose F is nonorientable and that $\beta_1(F) - 1$ is even. Set $\beta_1(F) - 1 = 2\gamma$. In the above arguments, by replacing $g(F)$, K' , Fig. 4(a), 5(a), 6(a) and H -move with γ , $\pm K'$, Fig. 4(b), 5(b), 6(b) and H' -move respectively, we have the required result.

In the case that $\beta_1(F) - 1$ is odd, we have the conclusion by the following. By attaching a small half-twisted band to $F \cap (S^3 \times \{1/2\})$, we find a new surface F' in $S^3 \times [0, 1]$ such that K and $-K'$ cobound F' , $\beta_1(F') = \beta_1(F) + 1$ and F' has neither maximal points nor minimal points. \square

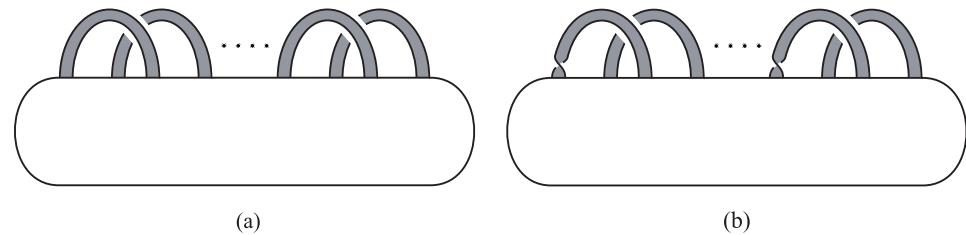


Fig. 4.

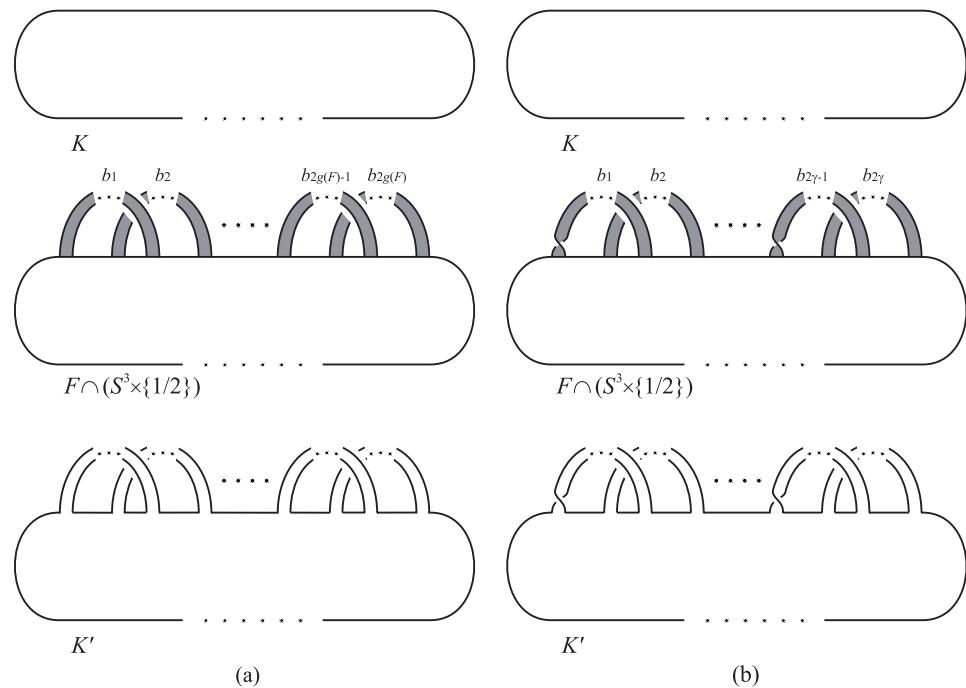


Fig. 5.

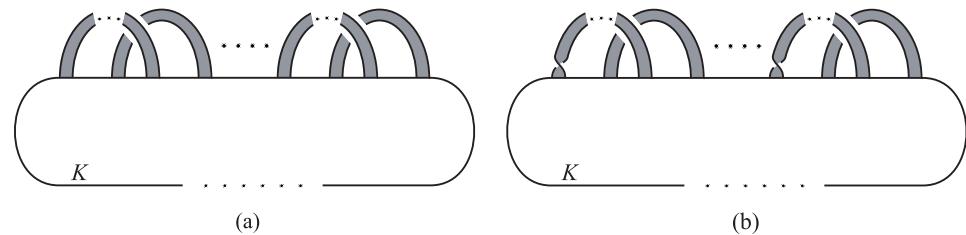


Fig. 6.

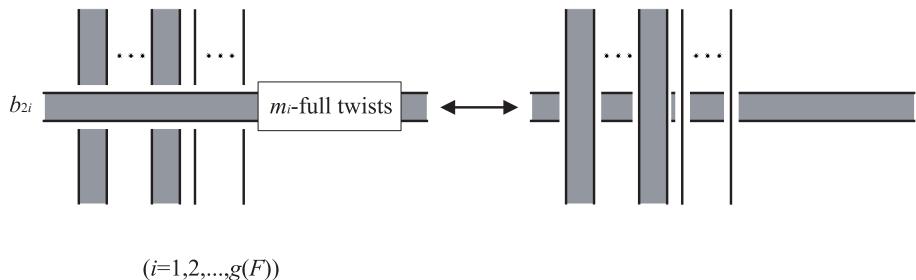


Fig. 7.

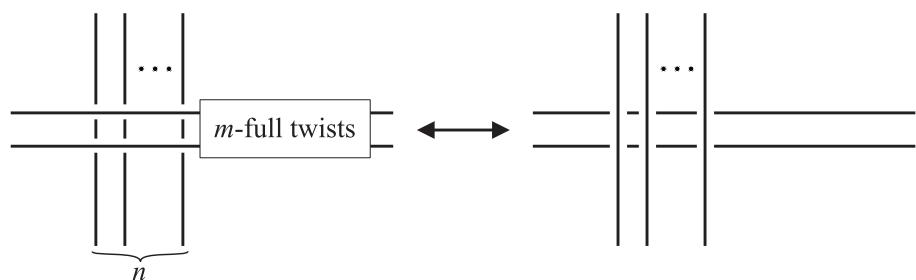


Fig. 8.

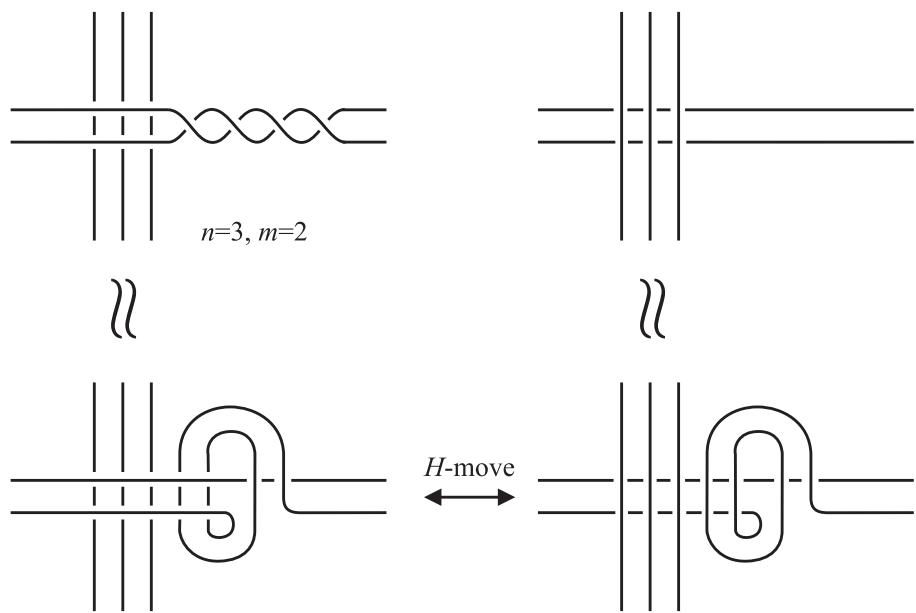


Fig. 9.

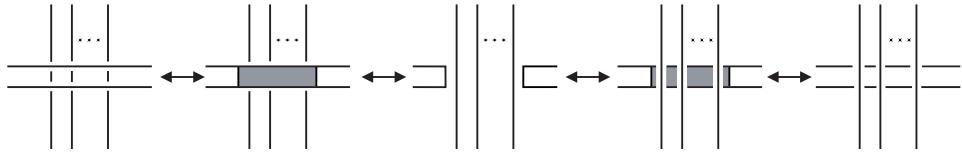


Fig. 10.

Proof of Theorem 1. An H -move (H' -move) is realized by twice hyperbolic transformations as illustrated in Fig. 10. Hence we have $c_H^*(K) \geq g^*(K)$ and $2c_{H'}^*(K) \geq \gamma^*(K)$. Note that $2c_{H'}^*(K) \geq \gamma^*(K)$ implies $c_{H'}^*(K) \geq [(\gamma^*(K) + 1)/2]$.

Suppose that a knot K in ∂B^4 bounds a surface F in B^4 . We assume that $B^4 = (S^3 \times [0, \infty)) \cup \{1\text{pt}\}$. We can deform F so that the following conditions are satisfied [2]:

- (1) $F \cap (S^3 \times [0, 1])$ is an annulus that does not have maximal points.
- (2) $F \cap (S^3 \times [1, 2])$ is a surface that has neither maximal points nor minimal points.
- (3) $F \cap (S^3 \times [2, \infty))$ is a disk that does not have minimal points, i.e., $F \cap (S^3 \times \{2\})$ is a ribbon knot.

Set $\partial(F \cap (S^3 \times [0, 1])) \setminus K = -K'$ and $\partial(F \cap (S^3 \times [2, \infty))) = K''$. If F is orientable (resp. nonorientable), then by Lemma 3, we have that the ribbon knot K'' is obtained from K' by $g(F)$ H -moves (resp. from K' or $-K'$ by $[(\beta_1(F)+1)/2]$ H' -moves). This implies that K' and $-K''$ (resp. $\pm K''$) cobound a singular annulus in $S^3 \times [1, 2]$ with $g(F)$ singularities of type H (resp. $[(\beta_1(F)+1)/2]$ singularities of type H'). Hence we have $c_H^*(K) \leq g^*(K)$ and $c_{H'}^*(K) \leq [(\gamma^*(K) + 1)/2]$. This completes the proof. \square

Since both H -move and H' -move are unknotting operations, we can define 4-dimentional unknotting numbers, $u_H^*(K)$, $u_{rH}^*(K)$, $u_{H'}^*(K)$ and $u_{rH'}^*(K)$, of a knot K by the similar ways to those of $u^*(K)$ and $u_r^*(K)$ in [4]. Namely $u_H^*(K)$ (resp. $u_{rH}^*(K)$) is the minimum number of H -moves that is needed to transform K into a slice knot (resp. a ribbon knot), and $u_H^*(K')$ (resp. $u_{rH'}^*(K')$) is the minimum number of H' -moves that is needed to transform K into a slice knot (resp. a ribbon knot). The *ribbon 4-genus* $g_r^*(K)$ of a knot K in $S^3 = \partial B^4$ is the minimum genus of orientable surfaces in B^4 bounded by K that has no minimal points [4]. The *nonorientable ribbon 4-genus* $\gamma_r^*(K)$ is the minimum first Betti number of nonorientable surfaces in B^4 bounded by K that has no minimal points. For a ribbon knot, it is defined to be 0 instead of 1. We define c_{rH}^* (resp. $c_{rH'}^*$) to be the minimum number of type H (resp. type H') singular points of singular disks in B^4 bounded by K that has no minimal points and whose singularities are of type H (resp. type H'). From the proof of Theorem 1, we have the following theorem.

Theorem 4. *For any knot K , the following equalities hold.*

- (1) $c_{rH}^*(K) = g_r^*(K) = u_{rH}^*(K)$.
- (2) $c_{rH'}^*(K) = [(\gamma_r^*(K) + 1)/2] = u_{rH'}^*(K)$.

Since the trivial knot in ∂B^4 bounds a Möbius band in B^4 without minimal points, we have $\gamma_r^*(K) \leq 2g_r^*(K) + 1$ for any knot K . By Theorem 4, we have the following corollary.

Corollary 5. *For any knot K , $u_{rH'}^*(K) \leq u_{rH}^*(K) + 1$.*

REMARK. Let K_n be a $(2, 2n + 1)$ -torus knot ($n = 1, 2, \dots$). Since $g^*(K) \leq g_r^*(K) \leq g(K)$ [4, Lemma 2], we have $g_r^*(K_n) = n$, where $g(K)$ is the *genus* of K . On the other hand, since K_n is not a ribbon knot and K_n bounds a Möbius band in a 4-ball that has no minimal points, we have $\gamma_r^*(K_n) = 1$. Therefore, by Theorem 4, we have $c_{rH'}^*(K_n) = 1$ and $c_{rH}^*(K_n) = n$.

By the definitions of $c_H^*(K)$, $c_{H'}^*(K)$, $u_H^*(K)$ and $u_{H'}^*(K)$, we have $c_H^*(K) \leq u_H^*(K)$ and $c_{H'}^*(K) \leq u_{H'}^*(K)$.

Conjecture. *For any knot K , $c_H^*(K) = u_H^*(K)$ and $c_{H'}^*(K) = u_{H'}^*(K)$.*

REMARK. If $g^*(K) = g_r^*(K)$, then by Theorems 1 and 4, $c_H^*(K) = g^*(K) = g_r^*(K) = u_{rH}^*(K) \geq u_H^*(K)$. If $\gamma^*(K) = \gamma_r^*(K)$, then by Theorems 1 and 4, $c_{H'}^*(K) = [(\gamma^*(K) + 1)/2] = [(\gamma_r^*(K) + 1)/2] = u_{rH'}^*(K) \geq u_{H'}^*(K)$. Thus if $g^*(K) = g_r^*(K)$ and $\gamma^*(K) = \gamma_r^*(K)$ for any knot K , then the conjecture above is true.

References

- [1] R.H. Fox: Some problems on knot theory, Topology of 3-manifolds, Prentice-Hall, Inc., 168–176, 1962.
- [2] A. Kawauchi, T. Shibuya and S. Suzuki: *Descriptions on surfaces in four space*, I. Normal forms, Math. Sem. Notes, Kobe Univ., **10** (1982), 75–125.
- [3] H. Murakami and A. Yasuhara: *Four-genus and four-dimensional clasp number of a knot*, Proc. Amer. Math. Soc., to appear.
- [4] T. Shibuya: *Some relations among various numerical invariants for links*, Osaka J. Math., **11** (1974), 313–322.

Tetsuo Shibuya
Department of Mathematics
Osaka Institute of Technology
Omiya 5-16-1, Asahi, Osaka 535-8585, Japan
e-mail: shibuya@ge.oit.ac.jp

Akira Yasuhara
Department of Mathematic
Tokyo Gakugei University
Nukuikita 4-1-1, Koganei, Tokyo 184-8501, Japan
e-mail: yasuhara@u-gakugei.ac.jp

Current address:
Department of Mathematics
The George Washington University
Washington, DC 20052, USA