
Title The reduced wave equation in layered materials

Author(s) Jäger, Willi; Saitō, Yoshimi

Citation Osaka Journal of Mathematics. 1997, 34(2), p.
267-301

Version Type VoR

URL https://doi.org/10.18910/5703

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Jager, W. and Saitό, Y.
Osaka J. Math.
34 (1997), 267-301

THE REDUCED WAVE EQUATION IN
LAYERED MATERIALS

WILLI JAGER and YOSHIMI SAITO1

(Recieved March 12, 1996)

1. Introduction

The mathematical theory of wave in layered media is still posing interesting

mathematical problems even in the linear, stationary case.

In Jager-Saitό [9] and [8], we studied the spectrum of the reduced wave operator

(1.1) H0 = -μ0(x)-1A,

where μo(x) is a simple function which takes a two positive values μoi and μo2 on

Ωi and Ω2 respectively. Here Ω ,̂ £ = 1,2, are open sets of R ^ such that

[ Ω i U Ω 2 = ΩiUΩ 2 = ΈLN,

Ωi being the closure of Ω .̂ Under a new condition on the separating surface

5 = dΩ>ι = <9Ω2, we have established the limiting absorption principle for Ho which

implies that Ho is absolute continuous. Our condition is satisfied, for example, for

the case where 5 is a cylinder.

In this work we are going to extend the results in [9] to the multimedia case, the

case where μo(x) can take finitely or infinitely many values (see §2). The limiting

absorption principle will be established and, again, the operator Ho is absolute

continuous. Also we shall consider short-range or long-range perturbation of Ho,

that is, we shall study the operator

(1.3) H = -μ(x)~1A,

where

(1 4) μ{x) = μ0 (x) + μi (x)

second author was partly supported by Deutche Forschungs Gemeinschaft through SFB
359.
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and μi(x) is short-range or long-range. In this case we shall prove that the point

spectrum, if it exists, is discrete, and the limiting absorption principle holds on any

interval which does not contain an eigenvalue.

As for the study of the reduced wave operators with discontinuous coefficients,

many works have been done for the stratified media in which the coefficients of the

operator are the functions of x' € Hk C RN , k < N. Some perturbed operators
of the above type have been discussed, too. Here we refer Wilcox [16], Ben-Artzi-
Dermanjian-Guillot [2], Weder [14], [15], DeBievre-Pravica [4], [5], Boutet de
Monvel-Berthier-Manda [3], and Zhang [17]. In [5] S. DeBievre and D.W. Prav-
ica proved there is no point spectrum for the stratified propagators without any
additional conditions other than sufficient smoothness of the coefficients at infinity.

It seems that there are rather few results for the nonstratified case. Eidus [6] was
the first to consider the reduced wave operators Ho with a cone-shape discontinuity.
He imposed the following assumptions on the separating surface 5: there exist
positive constants c\ and c2 such that

(1.5) \n%\x)\>cλ (xeS),

and

(1.6) \x-n{ι){x)\ <c2 (xeS),

where # ( x ) , ^ = 1,2, is the unit outward normal ofΩ# at x, and x n^\x) is the

inner product of x and n^(x) in R^. Note that a cone having its vertex at the

origin and the positive x^v-axis as its axis satisfies (1.5) and (1.6). Under the above

assumptions, Eidus [6] proved the limiting absorption principle for Ho, that is, by

denoting by Jfϊo(2) the resolvent of HQ, the limits

(1.7) limΛo(λ±xτj) = Λo±(λ) in B{L21{RN),L2 ^{ΈiN))
77J.0

exist for λ > 0, where the weighted L2 space L2j(R>N), t e R, is defined by

(1.8) L2,t(K-N) = {/ : (1 + M)7(s ) e L 2 (R")}

with its inner product and norm

( , g)t = / f(χ)g(χ)

and B(X, Y) is the Banach space of all bounded linear operators from X into Y.

Then, Saitό [13] showed that L2Λ(RN) and I^- iCR^) in (1.7) can be replaced by
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L2,s(RN) and L2,_<5(RJV) with δ > 1/2, respectively. This means that the limiting

absorption principle for Ho holds on the same weighted L2 spaces as are used for

the Schrόdinger operator (cf. Agmon [1], Ikebe-Saitό [7] and Saitό [8]). Recently

Roach-Zhang [10] has shown that u = i f^λ)/ , where λ > 0 and / G L2,δ(J&N)

with δ > 1/2, is characterized as a unique solution of the equation

(1.10) (-μo(x)-1A~λ)u = f

with the radiation condition

(1.11) lim — / \Vu T i\/\μ{x)xu\2 dx = 0 I x = —Γ I ,
R->OORJBR \ \χ\J

BR being the ball with radius R and center at the origin. The condition (1.11) is

a natural extension of the radiation condition for the Schrόdinger operators ([7],

[8]). [10] also gave another proof of the limiting absorption principle for HQ.

In the recent work [9] and [8], we studied the reduced wave operators Ho with

a cylindrical discontinuity in which the separating surface is assumed to satisfy that

(1.12) (μ0 2 - μoi)(* ™(1)) = (μoi - Mo2)(* n ( 2 ) ) > 0 (x G S).

The condition (1.12) is satisfied if Ωi is an infinite cylindrical domain which con-

tains the origin and μo2 > Moi Then it has been shown again that Ho is absolutely

continuous. So far it seems that the absence of the point spectrum can not be ob-

tained without imposing some additional conditions such as (1.5)—(1.6) or (1.12).

In §2, we define the reduced wave operator Ho with multimedia and we state

our assumption on the separating surface S and the positive function μ0, in which

μ0 can take countably infinite values although the condition is a natural extension

of the condition (1.12). §3 is devoted to showing the limiting absorption principle

for the unperturbed operator Ho. Here the arguments are quite parallel to the one

in [8] or [9], and hence we shall omit some of the proof. In §4 we shall discuss

the point spectrum of the perturbed operator (1.3). It will be shown that the point

spectrum of H is discrete. Also some sufficient conditions for the nonexistence

of the point spectrum of H will be given. We shall show in §5 that the limiting

absorption principle for H holds on any closed interval which does not contain the

point spectrum.

ACKNOWLEDGEMENT. This work was finished when the second author was

visiting the University of Heidelberg from October 1994 through March 1995. Here

he would like to thank Deutsche Forschungs Gemeinschaft for its support through

SFB 359. Also the second author is thankful to Professor Willi Jager for his kind

hospitality during this period.
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2. The operators Ho and H

In this section, we are going to define a reduced wave operator

(2.1) Ho = -μofcΓ'Δ,

where μo(x) is a positive, simple function on R w which will be specified below,
and its perturbed operator

(2.2) H = -μix)-1*,

where

(2.3) μ{x) = μo(x) + μi(x)

such that μ(x) is a positive function on R^ and μι(x) decays to 0 at infinity.
Let us describe the conditions on μo(x). Let N be all positive integers and

let N_ be all negative integers. Let L be a subset of integers satisfying one of the
following:

(I) L = N_ U {0} U N,
(II) L = {L_,L_ + 1,. . ,-1,O}UN,

1 * } (III) L = N_ U {0, 1, ••-,£+},
(IV) L = { L _ , L _ + 1, •••, -l}u{0}U {1,2, ••-,£+},

where L_ e N_ U {0} and L+ € {0} U N.

ASSUMPTION 2.1. Let iVbea positive integer such that N > 2. Let L be as in
(2.4). For each I G L , let Ω̂  be an open set in R^. Let μo be a positive function on
R^. The family {Ω^}^GJL and the function μ0 are assumed to satisfy the following
(i) - (iii):

(i) {ΩtjieL is a disjoint family of open sets of R^ such that

(2.5) R N =
eeL

where Ω̂  is the closure of Ω .̂ For any R > 0, the open ball BR with center at the
origin and radius R is covered by a union of a finite number of Ω ,̂ i.e., for R > 0
there is a finite subset LR of L such that

(2.6) Ω ^ n £ β = 0 ( £ e L - L κ ) .

(ii) For each £ e L, the boundary <9Ω̂  of Ω̂  is a disjoint union of two con-
tinuous surfaces S^ and SJ+ , i.e.,

(2.7)
ί ant - st
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for ί G L, where S£ and S£ are unions of a finite number of smooth surfaces.

Here we assume that si — 0 when L has the smallest number L_ and si = 0

when L has the largest number L+. Further we assume that

(2.8) S£ = Sί+1 (£ G L),

where we set s £ ^ = 0 if £ + 1 g L.

(iii) μ0 is a simple function which takes the value V£ on each Ω ,̂ where v£ is

a positive number such that

(2.9) 0 < ra0 = inf V£ < supz^ = Mo < oo.

Let

I x I I I 1 ΠΓt ^ ' I T^ I ^ ^ ^ I Ύ# I T^ 1 ΠΓi I ^ ^ I ΠΓi I ^t I I I ψ f # I

y^ lV/y /6 V*̂ / V 1 V /? 2 \ /? 5 rJ \ )) \ )ϊ

be the unit outward normal of Ω̂  at a.e. x G ̂ Ω^. Then we assume that

(2.11) (ι//-i//+i)(n(/)(a:) a :)<0 (x G 5^+), ^GL)

although £ φ L+ if L has the largest number £,+, where n^(x) x is the usual inner

product of n^\x) and x in R N .

As for the function μ, we have

ASSUMPTION 2.2. Let μ be a measurable function on HN satisfying the follow-

ing (i) and (ii):

(i) We have

(2.12) 0 < mj) = inf μ(x) < sup μ(x) = Mo < oo.

(ii) Let μι = μ — μ0. Then either μi is short-range, that is,

(2.13) MaOl^dίl + lxl)-1-' (x € RN),

or μi is long-range, that is, μi is differentiable such that

(^i(x)\<Cl(l + \x\)-' (x€RN),

(2.14)

with constants ci,e > 0. Throughout this work we assume that 0 < e < 1/2 with
no loss of generality.
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Let Xo and X be Hubert spaces given by

(Xo = i2(RW i μo(x)dx),

\X = L2(RN; μ(x)dx).

The inner product and norm of Xo [or X] will be denoted by ( , )χ0 and || | |χ0

[or ( , )χ and || \\χ\ respectively. Then define the operator Ho in Xo by

f D(H0) =
(2.16) { _ /

where JD(T) is the domain of T, H2(RN) is the second order Soblev space on HN.
and Au is defined in the sense of distributions. Similarly the operator H in X is
given by

(2.17) \

Then it is easy to see that Ho and H are selfadjoint operators in Xo and X, respec-
tively.

Now we are going to give some examples of {Ω^}^EL and μo which satisfy As-
sumption 2.1. In the following examples we take TV = 3 although the TV-dimensional
versions of these examples can be easily obtained.

EXAMPLE 2.3. Let L = N_ U {0} U N. Let {^}^eN_uN be such that

{ . < bm < 6m +i < < 6_i < 0 < &! < < bέ ,

b£ ^ o o (ί->oo),

bm —• -co (m —> -co),

and define { Ω ^ ^ by

\ι = {x =(xi,x2,X3) G R 3 : bι < x3 < b£+i} (ί G N),

(2.19) { ς}0 = {χ = (x l j x 2 ,x 3 ) G R 3 : 6_i < x3 < fei},

î  = {x = (xι,x21X3) G R : 6̂—1 < x3 < 6̂ } (ί G N_),

Then the separating surfaces S^ are given by

{ g(+) = Sχ = (Xl X2 χ3) ̂  R3 . =

5(-) = { χ = | ^ χ 2 ' ; E 3 ) € R 3 ' : χ 3 =
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for l e N ,

ί SQ+ ) = {x = (xi,x2,x3) e R 3 : x3 = 6i}>

\ 5^" } = {x = (x1,X2,xs) eR? :x3 = 6-1},

and

2 ) ί ^ ( + ) = {* = (*i,*2,*3) € R 3 : X3 = 6^,

\ S^(") = {x = (xux2,xs) ens:x3= 6^_i}

for t G N_. Define μ0 by

(2.23) μo(x) = ^ (xeίlf)

such that

VQ < V-\ < V-2 < ' ' ' < V-i < " '

with

ί > 0,

MQ = sup vι < oc.

Since we have

( nW(i) x > 0 (x G 5^(+), ^ G {0} U N)

(nW(i).i<0 (xe5|+),leN_),

we see that the condition (2.11) is satisfied. Although this is a reduced wave operator
in stratified media studied by many authors (see, e.g., [16], [14], [4]), note that Ω̂
can be modified as far as the condition (2.26) holds good.

EXAMPLE 2.4. Let L = {0} U N. Let { 6 ^ G N
 b e s u c h t h a t

| 0 < 6 1 < 6 2 < . . . < 6 , < . . ,

[bt^oo ( * - o o ) ,

and define {Ω^}^GL by

{ Ωo = {x = (x1,x2,X3) G R 3 : x\ +x\ < &?},

Ωι = {x = (xi,X2,x3) G R 3 : 6| < x\ + x | < 6f+1} (ί G N).
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The separating surfaces S^ are given by

ί
c(+) _ / τ _ ( T 1 τ r \ r r>3 . T 2 i r 2 _ L2 Ί (p ζz T\

S<"> = {* = (X!,x2,x3) e R3 : x? + * | = &?} (* G N),

Define μ0 by

(2.30) μo(x) = ve (xe Ω £ )

such that

(2.31) ẑ o < ί̂ i < i/2 < '' < ι/£ < ''m,

with

1 Mo = sup vι < oo.

Since

\L.jj) ΐlκ \X) ' X ^_ U ^£ E »̂ ^ , ( t -LJ,

from (2.31) it is seen that the condition (2.11) is satisfied. Again Ω^ are allowed to
be deformed as far as (2.33) holds good.

3. The unperturbed operator Ho

In this section we are going to discuss the unperturbed operator Ho given by
(2.16). First we shall show the uniqueness theorem for the equation

(3.1) (-μo(x)-ιA-λ)u = f

with radiation condition. Then, after showing several a priori estimates of the
solution u of the equation (3.1), the limiting absorption principle for Ho will be
proved. The arguments in this section are quite parallel to the ones in Jager-Saitό
[9], and hence we shall omit the proof or give a sketch of proof in most of the
theorems given in this section.

We shall start with some notations.

NOTATION 3.1. Let z G C, x = (xi,X25 * * ,XN), r = |x|, x = (x\
= x/r, dj = d/dxj and V = (d/dx1,d/dx2, , d/dxN). Then we set
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(1) k = k(x) = k(x,z) = [zμo(x)]1/2, where the branch is taken so that

fc(x,2) >0;

(2) a = a(x) = a(x, z) — Re k(x, z);

(3) b = b{x) = b{x, z) = Im k(x, z)\

(4) Dίi = Vu + {(iV - l)/(2r)}xιx - ik(x)xu\

(5) £>ru = Dw x = <9u/dr + {(AT - l)/(2r)}u - ik(x)u;

Let i/ G H2(RN)\OC. Then the restrictions I^IG and dju\c, j = 1,2, , N, of it

and d j^ = du/dxj onto a smooth surface G are defined as the traces of u and djU

on (2, respectively. Thus U\Q and 9JW|G are considered to belong to L,2{G)\OC.

Let z e C and let u G / f 2 ( R N ) i o c . Define / by

(3.2) / = - μ o ( « ) ~ 1 Δ u - 2U = μo(^)" 1 (-ΔTX - /c2t/)

with k given by (1) of Notation 3.1. Now we are going to show an identity which

is an extension of Proposition 3.3 of [9] and will be used throughout this section.

Proposition 3.2. Let u e H2(RN)\OC and let f be given by (3.2). Let ξ be

a real-valued, continuous function on [0, oo) such that ξ has piecewise continuous

derivative. Set φ{x) = a(#)£(|x |), where a is a simple function which is constant on

each Ωt. For 0 < r < R < oo, set

(3.3) BrR = {x e KN : r < \χ\ <R},

Then we have

I
JBrR

(3.4) = R e / φμo(x)fV^Ldx
JβrR

+ 2-1 ί ψ (2\Vru\2 - \Vu\2 - cNr-2\u\2) dS
JsR

- 2-1 / φ{2\Vru\2 - \Vu\2 - cNr-2\uγ) dS,
Jsr
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where Ωg satisfies (i), (ii) of Assumption 2.1, d/dn in the integrand of the sur-

face integral over <9f̂  Π BrR means the directional derivative in the direction of the

outward normal n = n^ ofdίϊe, and

(3.5) cN = (N

The proof will be omitted since it is essentially the same as the proof of Propo-

sition 3.3 of [9].

Theorem 3.3. Assume Assumption 2.1. Let u e i ί 2 ( R 7 V ) i o c be a solution of

the homogeneous equation

(3.6) -μo{x)~1Au-λu = O (λ > 0)

on HN such that

(3.7) liminf / ( ^ + \u\
2) dS = 0,

R^°° JsR \ dr )

for N>3, or

Λ / r\ 2 \

(3.8) liminf Ra / ( -^ + \u\2 j dS = 0

iv/Y/r α > 0 for N = 2, where

(3.9) S β = {x G R ^ : |x| = β } .

77ze/2 u is identically zero.

Sketch of Proof. Theorme 3.3 can be proved by starting with Proposition

3.2 and proceeding as in the proof of Theorem 3.2 of [9] (for N > 3) or proof of

Theorem 7.1 of [9] (for N = 2). Only difference here is that, instead of the last

inequality of (3.20) in [9], we have to use

(3.10) ] Γ ί φ\k\2(x n)\u\2 dS < 0,

where n in the integrand is the unit outward normal n^\x) of Ω^ at x. In fact, it
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follows from (i) and (ii) of Assumption 2.1 that

ψ\k\\x -n)\u\2dS

(3.11) = Σ ( 7 ( , + / ( + ) )φ\k\2@ n)\u\*dS

teLJsι~)nB*

where we should note that we are dealing with a finite sum because of (i) of As-

sumption 2.1. Then (3.10) is obtained from (iii) of Assumption 2.1. //

The following corollary guarantees the uniqueness of the inhomogeneous equa-

tion

(3.12) -μQ(x)-ιΔu - \u = f

with one of the conditions

(3.13) \\vWu\\δ-hEl <oo,

where δ > 1/2,

(3.14) Vi±]u = du/dr + {(N - l)/(2r)}ix T ik(x)u,

(3.15) ER = {xeRN : \x\>R},

and, for a measurable set G in R^,

(3.16) IHl2-i f G

Corollary 3.4. Let λ > 0 and let f e L2(RN)ioc. Then the solution u e

H2(RN)\OC of the equation (3.12) with one of the radiation conditions in (3.13) is

unique.

The proof is the same as the proof of Corollary 3.8 of [9].

Let L2,t(R i V) be the weighted Hubert space defined by (1.8). Let the resolvent

(Ho — z)~λ of the operator Ho be denoted by RQ(Z). NOW consider u e Xo defined

by

(3.17)
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For 0 < c < d < o o a subset J±(c, d) of C are defined by

(3 18) (j+(c,d) = {z = λ + iη : c < λ < d, 0 < 77 < 1 },

\ J-(c, d) = { z = \ + iη : c < λ < d, -1 < η < 0 }.

In the next theorem, we are going to evaluate the radiation condition terms
T>u. Here and in the sequel we agree that C = C(A,B, •) in an inequality means
a positive constant depending on A, B, . Now we are evaluating the radiation
condition term Vu.

Theorem 3.5. Suppose that Assumption 2.1 holds. Let 1/2 < δ < 1. Let u be
given by (3.17).

(i) Let N > 3. Then there exists a constant C = C(δ, ra0, Mo) > 0 such that

(3.19) II^IU-i < cii/iu,

where Vu is as in Notation 3.1, || | | t is the norm o/L2,t(R i V), and the constant
C(δ) is independent off and z satisfying (3.17).

(ii) Let N = 2. Let 0 < c < d < 00 and let J±(c,d) be as in (3.18). Let u
be given by (3.17) with z e J+(c, d) U J_(c, d). ΓAe« ίA r̂̂  exists a positive constant
C = C(<5, c, d, m 0 , M o ) such that

(3.20)

where

(3.21) |b l | t

2 *= / |x||τ;(x)|2dx+ / {l + \x\)2t\v{x)\2dx.
JB1 JEλ

Sketch of Proof. We have only to proceed as in the proof of Theorems 4.1
and 7.2 of [9]. Set in (3.4) a(x) =

for N > 3, and

/ 1 _

< 1/2),
(3.23)
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for N = 2. Let the second term of the left-hand side of (3.4) be denoted by 7̂ 2•
Then it is easy to see that

(3.24) IL2 =
R I OΎl

(cf. (3.11)). Similarly we see that the second term of the right-hand side of (3.4) is
nonpositive. All other terms of (3.4) can be evaluated exactly in the same manner
as in the proof of Theorems 4.1 and 7.2 of [9], which completes the proof. //

Now that we have established the uniqueness of the solution of the equation
(3.12) with the radiation condition (Corollary 3.4) and the estimate of the radiation
condition term (Theorem 3.5), we can show the limiting absorption principle for
Ho by proceeding as in §5, §6, and §7 of [9]. Let t e R. The weighted Sobolev
spaces H^(RN), j = 1,2, are defined as the completion of CQ°(RN) by the norms

U ,1/2
2 t ( 2 2 ) \U

Γ r "I 1/2

(3.26) | M | 2 ϊ t = / (l + r ) 2 t V \d^u\2dx\ ,

and

,1/2

dΊu\2dx\
N<2

respectively, where

{ Ί = (7i,72, ,7iv),
II I I I

OyU = (Oi) r i . (C/AΓ) y^W (O/ = O/OXj).

The inner product and norm of H{(RN) will be denoted by ( , )jjt and || | |J ? ί.
For an operator T, the operator norm in B(i ί | (R i V ) , Hf(RN)) will be denoted by
| |T| |^ '^, where j,i = 0,1,2, s, ί G R, and we set

Let D± c C be given by

( D+ = {z = λ + iη : λ > 0, r/ > 0 },

J0_ = { z = λ H- ΐ77 λ > 0, 77 < 0 }.
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Also, for 0 < c < d < oo, let J±(c,d) be as in (3.18). The closures J±(c,d) are
given by

(3.30)
J+(c, d) = { z = λ + iη : c<\<d, 0<η<l}C £ > + ,

l-(c, d) = { z = λ + iη : c < λ < d, - 1 < 7 7 < O } C £>_.

For λ > 0, let

(3.31)
J)±U

and extend the resolvent Ro(z) on D± by

(3.32) - ,. . x I

for z e £>+ and

(3.33)

for 2 e D_. Then we have

<
l i ϊo-(λ)

(λ > 0, η > 0),

(λ > 0, η = 0)

(λ > 0, η < 0),

(λ > 0, η = 0)

Theorem 3.6. Suppose that Assumption 2.1 holds. Let 1/2 < δ < 1.
(i) 77*<?« ίAe /ίmte (3.31) & well-defined in B(L2,6(R iV), ί r ^ ( R N ) ) , α/irf the

extended resolvent RQ(Z) is a B(L2,6(RJV), H2_δ(B»N))-valued continuous function
on each ofD+andD-.

(ii) For any z e £>+ [or D_], #0(2) /s α compact operator from L2,δ(R>N) in

(iii) 77ẑ  self adjoint operator Ho is absolutely continuous on the interval (0,00).
The operator HQ has neither point spectrum nor singular continuous spectrum.

(iv) For 0 < c < d < 00 there exists a constant C = C(c,d,<?>,rao,Mo) > 0
such that, for z € ~J+(c, d) U Ί-{c, d),

/
ES

(3.34)

where, for λ € £>+ Π (0, oo) or D~ Π (0, oo), Vu should be interpreted as

= Vu + {(N — \)/{2r)}xu — ik(x)xu

(λ 6 D+ (Ί (0, oo)),
(3.35) Vu = { _f_λ

= Vu + {(N — l)/(2r)}a;w + ik(x)xu

(λ G D- Π (0, oo)).
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(v) Let N > 3. Then there exists a constant C = C(δ, m0, Mo) > 0 such that

(3.36)

/
ES

(zeD

C\\f\\δ (zeD+U D_, L2,δ).

Finally we are going to prove a modification of Theorem 3.5, where the range
of δ is slightly wider. This modification will be useful in the next section.

Proposition 3.7. Let Assumption 2.1 be satisfied. Let 1/2 < δ < 3/2. Let
f e L2,δ(R>N) and let z e D+U £>_. Let u = R0(z)f.

(i) Let N > 3. Then there exists a constant C = C(δ, ra0, Mo) > 0 such that

(3.37)

r ^ is given in Notation 3.1, (6), and for λ G D+C\ (0, oo) [or D_ Π (0, oo)],
Vru should be interpreted as £>£+) [or Ό^].

(ii) LetN = 2. LeίO < c < d < oc. Then there exists C = C(δ, c, d, m0, Mo) >
0

(3.38) ,. <CΊ|/||β (/eI 2 /(R Λ ) , zeJ+(c,d)uJ_(c,d)),

(3.21).

Proof. In view of the continuity of the extended resolvent of Ro(z), we only
have to prove (3.37) and (3.38) for non real z. Then we should note that we have
u = R0(z)f e H$(RN) (cf., e.g., [12], Lemma 2.1). As in the proof of Theorem
3.5, we start with (3.4) with ξ given by (3.22) or (3.23) and a(x) = 1/̂ /μo Let the
7-th term of the left-hand side be denoted by ILJ, where j = 1,2,3,4. Then we have
ILΊ = 0, and, since

(3.39) - ~2~1^- >0
r or
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and \Du\ > \Vru\, we have

- ί (*-dJ£λ\Vru
(3.40)

-JBrR{r 2drJ<—> ~~ JBrR\r dr
f 1 dφ

JBTR 2 dr

As for the fourth term /χ,4, we have ILA > 0 for N > 3, and for JV = 2 we have, as
in (7.19) and (7.20) of [9],

-IIΛ < C 1 | | ω | | l _ 2 + C 2 / \η\\u\2dx

with C\ = Ci(δ,mo), C2 = C2(c, d), and C3 = C3(<5, c, d,rao,Mo). Here we can
evaluate |M|<5-2 as

(3 42) / e ( / ' ] ^ I N U " 2 " "W | 1"' ~ C Ί I / I U '
\ δ e (1,3/2) = ^ ||u||6_2 < C"\\fh-6 < C"\\f\\δ,

with C" - C;(«, c, d, μ0) and C" = C"(δ, c, d, μo) We can evaluate the right-hand of
(3.4) by proceeding as in the proof of Theorems 4.1 and 7.2 of [9] Therefore, letting
r —> 0 and i? —> oo, where we have to use the fact that u — Ro(z)f G H$(ΊlN), we
obtain (3.37) and (3.38), respectively. This completes the proof. •

4. The point spectrum for H

Throughout this and the following sections we shall assume that Assumptions
2.1 and 2.2 are satisfied. Let the operator H be as in §2. Let σp(H) be the set of all
eigenvalues of H, and let VP(H) be the set of all eigenvectors of H, i.e.,

(4.1) Vp(H) = {ueH2(RN) :u^0, (H - λ)u = 0 with λ G σp(H)}.

Now we need to introduce a set σp ' (H) of the extended eigenvalues of H and a set
^ of the extended eigenvectors of H.
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DEFINITION 4.1. Let 1/2 < δ < 1/2 + e if μ\ is short-range, i.e., μ\ satisfies

(2.13), and let 1/2 < δ < (1 + e)/2 if μi is long-range, i.e., μλ satisfies (2.14), where

e is given in Assumption 2.2. Denote by σ£+)(iΓ) [or σ^~\H)] the set of all λ > 0

such that there exists a function u satisfying

(i) ueH2(RN)loc, uφO,

(ϋ) ^V,(R^),

(in) \\V^u\U-i,El < oo, [or \\V^u\\δ^El < oo],

(iv) -μ(x)~λAu - λu = 0,

where V^u are given by (3.35), and k = k(x) = [λμo(^)]1^2 is as in §3. Let

V^±]{H) be the set of all u e X which satisfy (4.2) with λ e σ^\H). We call

u e Vp(H) which satisfies (4.2) an extended eigenvector of H associated with the

extended eigenvalue λ.

Since 0 0 σp(H), we have VP(H) c V^\H) and σp(H) C ^(H) by defini-

tion. In this section we are going to prove that

(4.3) c

and crp(H) is a discrete set on (0, oo).

Proposition 4.2. Assume that Assumptions 2.1 and 2.2 hold. Let u e

H2(RN)ιoc be a solution of the equation -μ(x)~1Au - \u = 0. Let φ(x) = ξ(\x\)

and let ξ(r) satisfy the following (a) ~ (c)':

(a) ξ is a nonnegative, continuous function on (0, oo),

(b) ξ has a piecewise continuous derivative ξ' such that

(4.4) ξ'(r) > 0.

and

(4.5) ^ - U'(r) > 0
r I

for almost all r > 0.

(c) //ΛΓ>3,

(4.6) ξ(r) = O(r) (r -> 0).

(c)' IfN = 2,

( ξ(r) = O(r2) (r ->• 0) ,
(4.7) ^ V ;

I ξ'(r) = O(r) (r -+ 0).
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(i) Suppose that μι is short-range in the sense of (2.13). Then there exists a

constant C = C(λ, μ0) > 0 such that, for R > 1,

φ\μi\\u\\V^u\dx

(4.8) J B R U ' JB«

+ Cξ(R) / {V^u^dS
JsR

for TV > 3, or

f &Ψ 2 —1 ί

JBR dr JBR

(4.9) + (2moλ)-1 /
JB

+ Cξ(R) ί
JssR

for N = 2.

(ii) Suppose that μ± is long-range in the sense of (2.14). Then the relation

(4.8) or (4.9) holds again with the first term Km of the right-hand side of (4.8) or

(4.9) replaced by

(4.10) ^ j^

Proof. (I) We shall prove (4.8) and (4.9) for V{

r

+)u. These formulas for

Vr u can be proved in quite a similar way. For the sake of simplicity of notation

we set vi+)u = Vru and V^u = Vu. Since we have from (iv) of (4.2) -Au -

Xμo(x)u = λμι(x)u, we can apply the formula (3.4) with / and z replaced by

^ViOE)^ a n d λ, respectively, to obtain, for 0 < r < 1 < R < oo,

BrR

(4.11) +cN

= Re /
JBrR

[
JBr

λφμι(x)uT>rudx

/ φk2(x-n)\u\2dS
dnenBrR
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+ 2"1 / φ{2\Vru\2-\Vu\2-cNr~2\u\2)dS
JsR

- 2 - 1 / φ{2\Vru\2 -\Vu\2 - cNτ-2\u\2)dS.
Jsr

(II) Suppose that μi is short-range. Proceeding as in the proof of [9], Theo-
rems 3.2 or 7.1, we have

Js
where we should note that all the integrals in (4.12) is well-defined even in the case
of TV = 2 because of (4.7). Therefore it follows from (4.11) and (4.12) that

-t(R)Js ^ { ^

dx+ CN r 2 ( 2 1 τ r " ) l ^
JBrR \ r υr J

< Re / λφμι(x)uVrudx

(4.13) +2-1V / φ\k\2{x-n)\u\2dS

+ 2~1ξ(R) [ (2\Vru\2 - \Vu}2 - cNr-2\u\2) dS
JSR

- 2-1ξ(r) / {2[Dru\2 - \Vu\2 - C j V r- 2 | t ί | 2 ) dS,
Jsr

JBr2drl '

+ ξ(R) ί lmίk^ΰ

It follows from (2.11) that the second term of the right-hand side of (4.13) is nonpos-
itive. Therefore we can drop it from the right-hand side of (4.13). Further, we see
from (4.5) in (b) that the second term of the left-hand side of (4.13) is nonnegative,
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and it can be dropped, too. Then, letting r -» 0 along an appropriate sequence

{rn}> we obtain

(4.14)

<λ / φ\μi(x)\\u\\Vru\dx
JBR

+ 2~^{R) [ {2\Vru\2 - \Vu\2 - cNr~2\u\2) dS
JsR

+ ξ(fl) ί lm(k^ΰ

Here we noticed from (c) and (c)' that

Ίiminf ξ(r) [ (2\Vru\2 - \Vu\2 - cNr-2\u\2) dS = 0,
r^° Jsr

(4.15)

(2\Vru\2 -\Vu\2 -cNr

+ ξ(R) ί lm(kζ^ΰ
JSR \ όr

dS

< Cξ(R)1Λdu
u\2 ) dS

with a constant C. Since cN > 0 for N > 3 and cN = -1/4 for N = 2, (4.8) and

(4.9) follows from (4.14) if we can prove

(4.16) /
sR

dS
JSR

with a constant C.

(Ill) (Proof of (4.16).) Multiply both sides of the equation — Au — μ(x)λu = 0

by ΰ, integrating over BR, use partial integration and take the imaginary part to

obtain

(4.17)
JsR [dr
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Now we can proceed as in the proof of [9], Theorem 3.7 to obtain (4.16).
(IV) Suppose that μλ is long-range. We have only to evaluate the first term

KR1 of the right-hand side of (4.11). In fact, we have by partial integration

•̂ 1 = λRe / φμι(x)uVrudx

(4.18)

/ ^ M d x +
BrR dr 2 JSR

- « /
z Jsr

dS

Since the third term of the right-hand side of (4.18) converges to 0 as r —• 0, we see
that K'RX in (4.10) can replace the first term Km of the right-hand side of (4.8) or
(4.9), which completes the proof. •

Proposition 4.3. Assume that Assumptions 2.1 and 2.2 hold. Suppose that
μι is short-range. Suppose that u £ Vp(H) [or u e Vp~\H)] with an extended
eigenvalue X e σ^(H) [or X e σ^~\H)] such that

r«ei2,.ί+,,(R),

1 -δ + je < 0

with a nonnegative integer j . Then we have

(4 20) i u e L 2 , - 6 + ( j + i ) £ ( R " ) ,

\ VΪ+)u e L2t.s+υ+1)e(RN) [oτV{

r-
}ueL2t_s+{j+1)e(RN)},

and

r| |«| |_β + ϋ + 1 ) e<Λ/λc1σ ;J
J V ) | |u| |_ ί + j ί (iV>3),

where <ήN) = cήN\δ,e,mo,Mo) for N > 3 and Cf = cf\λ,δ,e,mo,Mo).

Proof. (I) We shall prove (4.20) for T>i+)u, and set T>{+)u = Vru. Then u
satisfies the equation (—Δ — \μo)u = λμiu and the radiation condition
\\τ>{

r

+)u\\s_hEl < oo, i.e.,

(4.22) u = \ 1
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where we set Ro+{λ) = JZo(λ). Since we have

(4.23) iMo ViH < cim-1 (1 + M Γ 1 " ^ ^ [(1 + M

it follows that

(4.24) μόViu G La.i-β+ϋ+ij^R^).

Noting that (4.19), 1/2 < δ < 1/2 + e and 0 < e < 1/2, we see that

{ δ < 1/2 + e ==> 1 - 5 + (j + l)e > 1 - δ + e > 1/2,

-<S + , ? e < 0 a n d 0 < e< 1/2

= ^ 1 - £ + (j + l)e < 1 + e < 3/2,

and hence we can apply Proposition 3.7 with δ replaced by 1 — 6 + (j + l)e to obtain

(4.26) | | P r u | | _ 6 + ϋ + 1 ) c < Amo1c1C^||u||_6 + j e

with C'ό = C'jfa e, m0, Mo) for N > 3, and

(4.27) ||2>ru||_s+y+i)€f# < ^ ' /

with cy = Cy(«, e, λ, m0, Mo) for N = 2.
(II) Let #o > 1. Set /? = 2(-δ -f (j + l)e) + 1,

( (0 < r < 1),

^( f

( (0 < r < 1),

2-^" 1(l + r ^ ( K r < Λ o ) ,
for iV = 2. It follows from (4.25) that 0 < β < 2, and hence ξ satisfies (a), (b), (c)
or (c)' in Proposition 4.2. Therefore we can apply (i) of Proposition 4.2 to obtain

\u\2dx+ / β2~β(l+r)β-1\u\2dx

< 2mo"
1ci / r(l + r)~ι~e\u\\Vru\dx

(4.30) Bl

-f 2-/3+1rn0-
1ci / (l + rf-^luWVruldx

JB1R

ί \Vru\
JsR

\ r \ 2 d S
sR
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for R > RQ and TV > 3, or

289

r\u\2dx + / β2~β~ι(l+ r)β~1\u\2dx
JBlR0

- 1 f 2 - 1 - e

JBλ

(4.31) +2-βm0~
1c1 / (l + rf'^luWVruldx

+ 2~/3+1rr?~1λ~1 / (1 +rΫ(~δ+je)\u\2 dx

+ /^o—/3—1/1 i D λ/5 1 lτ^ n . |2 JΓ*U Z 11 τ~ -/to) / \UrVL\ du

JsR

for R> Ro and JV = 2, where we have used the facts that

(4.32)

and, for r > 1,

(4.33) V»* θr
r - 2 ! - - : _

2

Since

(4.34)

we have

(4.35) j (l + rf-1-*

Therefore we have for JV > 3

- 1 - β = (-(5 + je) + {-δ + (j + l)e),

ruldx < \\u\\-δ+J€\\Vru\\-δ+u+1)€

(4.36)
WUW-δ+(j+l)e,BRo

and for TV = 2

(4.37)

/
JS
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where Co, CQ, C, and C depend on j , 6, e,ra0, and Mo. Note that we have from
(iii) of (4.2)

(4.38) liminf / \Vru\2 dS = 0.
J SR

Let R —> oo along an appropriate sequence so that the last terms of the right-hand
sides of (4.36) and (4.37) tends to 0. Therefore, noting that Ro > 1 is arbitrary, and
using (4.26) and (4.27), too, we obtain (4.21), which completes the proof. D

Proposition 4.4. Assume that Assumptions 2.1 and 2.2 hold. Suppose that
μι is long-range. Suppose that u G Vp(H) [or u G Vp(H)~\ with an extended
eigenvalue λ G σp^(H) [or λ G GP~\H) ]. Let e' = e/2. Suppose that

(4.39)

with a nonnegative integer j . Then we have

(4.40)

where C^ = c!jN\δ,c,mo,Mo) for N >3 and cf* = cf\λ,δ,e,mo,Mo).

Proof. We shall prove (4.40) and (4.41) in the case that λ G VP

W(H). We
set Vi+)u = Vru. Let RQ > 1. Set /? = 2(-δ -f (j + l)e') + 1, and let ξ(r) be given
by (4.28) (with e replaced by e'). Here we should note that 0 < β < 3/2, and hence
our ξ(r) satisfies the conditions (a), (b) and (c) of Proposition 4.2. Then we have



THE REDUCED WAVE EQUATION IN LAYERED MATERIALS 291

from (ii) of Proposition 4.2

\u\2dx+ [ β2~β(l+ r)β~1\u\2dx

+ m-1c1(β+l)2-β ί (1 + rf-^lu
JB1RQ

(4.42) + m^cλ2-β ί (1 + r)β(l + r)-λ-e\u\2 dx
JB1RQ

+ C2-β(l + R0)
β ί \Vru\2dS,

JsR

<C ί (l + r) 2 (-^ e / ) M 2 ^
JBR

+ C2~β(l + R0)
β ί \Vru\2dS,

JsR

where Ro < R, C = C(j, δ, e, ra0), and we should note that β - 1 - e = 2(-δ+je').
The inequality (4.41) follows from (4.42). The case that N = 2 can be treated in
quite a similar way, which completes the proof. •

Now we are in a position to show that VP(H) = Vp^ζH). Let

f jo = min{j e N : -δ + je > 0 },
(4.43) I

[δo = -δ+joe

if μi is short-range, and let

Γ jo = min{j G N : - ί + je' > 0 },

(4.44) <
[ ^ o ^ - ^ + joβ'

if /xi is long-range.
Theorem 4.5. Let Assumptions 2.1 and 2.2 be satisfied.
(i) Then we haw

(4.45)

where δ0 is given by (4.43) or (4.44), and hence

σp(i/) =
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(ii) Let μι be short-range. Let u G VP(H) associated with X G σp(H). Then,

for each N > 2, there exists a positive constant C^ such that

(447) ί N k ( l v ) H - 6 (ΛΓ>3),

UNI*, <C<2>c*>IMI-« (ΛΓ = 2),

where j 0 is given by (4.43), and C^ = C^N\δ, e, m0, Mo) for N > 3 and

C ( 2 ) (λ, δ, e, m 0 , M o ). Further, for N > 3, we have

(4.48) σp(H) C [cϊ2(CW)-2/i°, oo).

(iii) Let μι be long-range. Then, for each N > 2, there exists a positive

constant C™ = C<iy)(ί,£,m0,Mo) (N > 3),= C^(λ,δ,e,mo,Mo) {N = 2) such

that

(4.49) IHIί,, < cWC jo / 2 | | i i | |_ i,

where u £ VP(H), and jo and δ0 are given by (4.44).

Proof. Using Propositions 4.3 and 4.4 repeatedly, we obtain

(4.50) V&\H) c L2tδo(B.N),

and the inequalities (4.47) and (4.49), where C ^ = C{

o

N)c[N) CJf ) and j 0 and

ô are in (4.43) or (4.44). Let u e VP

{±)(H) associated with λ € 4 ± } ( # ) τ h e n *

follows from the equation —Au — Xμu = 0 that u, Δu G L 2 ,6 0 (R i v ) which implies

that u G f f ^ R ^ ) . Thus we have proved (4.45). Let TV > 3 and let μλ is short-range.

Since we have from the first inequality of (4.47)

(4.51) \\u\U < \\u\\δo <
 j

or

(4.52) (l

whence (4.48) follows. This completes the proof. D

Theorem 4.6. Let Assumptions 2.1 and 2.2 be satisfied. Let σp(H) be as

above.

(i) Then the multiplicity of each λ G σp{H) is finite.

(ii) o p(H) does not have any accumulation point except λ = 0 and λ = oo. If

N > 3, then the only possible accumulation point ofσp(H) is X = oo.
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Proof. Suppose that σp(H) has an accumulation point λ0 G (0, oo). Then
there exist infinite sequences {λn} c σp(H) and {un} C VP(H) such that

ί
(n->oo),

(Um, U>n)x = δmn (m, Π € N ) ,

- \nun = 0 (n <E N),
where <5mn is Kronecker's delta. Since

||Vun||§ = \n{Un,Un)χ — Xn\\un\\2

χ
(4.54)

= λn < supn λn < oc,

we can apply the Rellich selection theorem to choose a subsequence {uUrn } which
converges in L2(RiV)ioc as m —> oc. Let UQ e L2(RAΓ)iOc be the limit function. On
the other hand, in view of Theorem 4.5, there exists a positive constant C such that,
for any s > 0,

„ «x IK™ Iks. < (i + «)-ίo \\unm \\δo,Es <
(4.55)

and hence

(4.56)

where £o is given by (4.43) or (4.44). Therefore uUrn is small at infinity uniformly
for m e N. Thus it follows that unrn converges to u0 in X and ||^o||x = l Noting
that {uUrn} is an orthonormal system in X, we have

(4.57) 0 = lim (u n m , unτn+1)x = \\uo\\χ = 1,
n—>oo

which is a contradiction. Therefore σp(H) is discrete in (0, oo). If TV > 3, (ii) of
Theorem 4.5 implies that λ = 0 cannot be an accumulation point of σp(H). This
completes the proof. D

Consider the following additional condition on μι(x):

ASSUMPTION 4.7. (i) The function μ\ is measurable such that

(4.58) μ(x) > Nμi(x) + λo(|x| |μi(x)|)2 (a.e. x G RN)

with λ0 > 0.
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(ii) The function μi is differentiable and μi satisfies

(4.59) μ{x) + |α:|-pr > 0 (a.e. x e R N ) .
σ\x\

The following theorem gives sufficient conditions that the absence oΐ σp(H) = 0

on some interval or whole positive half line (cf. Roach-Zhang [10], the proof of

Theorem 3.1).

Theorem 4.8. Suppose thatμ(x) = μo(x)+μi(x), μo satisfies Assumptions 2.1,

and μ satisfies (2.12) of Assumptions 2.2. Suppose that (i) or (ii) of Assumption

4.7 hold. Then we have

f σp(JΪ)n[O,λo] = 0 (if (0 holds),
(4.60) <

[ σp(H) = 0 (if (ii) holds).

Proof. (I) Let u e H2(RN) satisfy the homogeneous equation — Au —

\μ(x)u = 0 with λ > 0. We have only to show that u = 0. We are going to multiply

both sides of the equation by 2r(drΰ) + (N — 1)TZ, integrate over BR, R > 0, and

take the real part.

(II) Using the identity

(4.61) 2Re [(Au)r(dru)] = div [2Re{r(drΰ)Vu} - \Vu\2x] + (N - 2)\Vu\2

(Roach-Zhang [10], (3.4) with h(r) = 1) and the divergence theorem, we have

2Re / {-Au)r{dru)dx

(4.62) BR

= - {N-2)\Vu\2dx-R (2\drΰ\2-\Vu\2)dS,
JBR JSR

where drv — dv/dr, r = \x\. Since it is easy to see that

Re / (-Au)(N-ϊ)ϋdx

(4.63) BR

= (N- l)\Vu\2 dx-(N-l) / Re [(dru)ΰ] dS,
J BR JSR

it follows that

Re / (-Au){2r(drΰ) + (N - l)ΰ} dx

(4.64) BR

= ί \Vu\2 dx-R [ [2\drΰ\2 - \Vu\2 + ̂ r ^ R e [(dru)ΰ] ) dS.
JBR JSR \ ^ /
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(III) Suppose that (ii) of Assumption 4.7 holds. By the use of the integration
by parts, we have

2Re / {-\μu)r(dru)dx
JBR

= - ί (λμ)r(dr\u\2) dx
JBR

(4.65)
= λ

[ [ μ\u\2 dS,
£eL dΩ£ΠBR JsR

where we should note that μ0 does not appear in the first term of the right-hand
side since it is constant on each Ω ,̂ and μ\ does not appear in the second term of
the right-hand side since it is continuous on R^. Also we should note that

(4.66) eeL

 r

since the integrand is nonnegative by (2.11). Thus,

Re / (-\μu)[2r(dru) + (N-
JBR

(4.67) = λ / (μ + r(drμi))\u\2 dx
JBR

/
BR

dS - XR ί μ\u\2 dS
JsR

(4.68)

(IV) It follows from (4.64) and (4.67) that

0 = Re / (-Au - \μu){2r{dru) + (N - l)ΰ} dx
JBR

= ί (|Vu|2-
JBR

R [ (\Vu\2 - 2\drΰ\2 - ^ ^ R e [{dru)u\ - \μ\u\2) dS.
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Since 2\drΰ\2 + |Vτz|2 + Xμ\u\2 + (N - l ) | 3 r u | |u | is integrable on R^, we see that

the third term of the right-hand side goes to 0 as R —> oo along an appropriate

sequence. Therefore it follows from (4.68) that

0 =

(4.69) .

Js(+)

Noting that all the integrands in the right-hand side are nonnegative, we have Vu = 0

a.e., and hence u = 0 since u £ H2(RN).

(V) Suppose that (i) of Assumption 4.7 holds. By using partial integration

only for the term containing μ0, we obtain

Re / (—Xμu) \2r{dru) + (N — l)u\ dx
JBR

= -λ / [μ0r(dr\u\2) + (N - l)μo\u\2} dx
JBR

-X μx [2rRe(u(drΰ)) + (N - l)\u\2] dx

(4.70)

= X μo\u\2 dx
J BR

μo(x nW)\u\2 dS - XR ί μo\u\2 dS,
JSR

-X ί μ i [2rRe(u(drΰ)) + (N - l)\u\2] dx
JBRBR

Let h(x) be a positive function to be specified later. Since we have

(4.71) 2\rμiu(drΰ)\ < \rμ

it follows from (4.70) that

Re / (-Xμu) [2r(drΰ) + (N - l)ΰ] dx
JBR

(4.72)
4- λ / [μv — (N — ϊ) μι — h\r μι\\\u\2 dx

{x "n{ί))\u\2 dS - XR I μQ\u\2dS.
JsR
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Thus (4.64) and (4.72) are combined to give

0 = Re I (-Au - Xμu) [2r(drΰ) + (N - l)ΰ] dx

(4.73) +λ / [μ-Nμ1-h\rμ1\]\u\2dx
JBR

— λVJ / μo(x - n^)\u\2 dS — XR I μo\u\2 dS

£eLJdΩεΠBR JSR

- R [ (2\drΰ\2 - \Vu\2 + ̂ ^ - R e [(dru)ΰ]) dS.
JsR

 R

Then, letting R —• oo along an appropriate sequence in (4.73), we obtain

(4.74) •λ / [μ-Nμx -h\rμi\]\u\2dx,
JRN

where we have used (4.66), too. Let λ G [0, λ0) be an eigenvalue of H with its

eigenfunction u. Set η = λ/λ0 G [0,1) and

ί l (if μi{x) = 0),
(4.75) h(x) = I

{λo\rμi(x)\ (iίμi{x)ϊ0).

Then we have

a)| f 1 (if μi(x) = 0),
(4 7 6 ) 1

Λ(») \l-η (iίμi(x)^0),

and hence, by using (4.58)

ί
μ o > O ( i f μ i (x) = 0),

μ{x) - Nμi{x) - λo(rμi(x))2 > 0

(iίμi(x)jίθ).

Therefore, we have from (4.74)

(4.78) 0 > (1-τj) / \Vu\2dx,
i.e., Vw Ξ 0 or « is identically zero almost everywhere. This completes the proof.

D
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5. The limiting absorption principle for H

Throughout this section we assume that δ satisfies

where e is as in (2.13) or (2.14). Let u £ X be given by

r « = R(z)f,
(5.2) lz = λ + iη (λ>0,η^0),

{ f G L2,S(RN),

where R{z) = (H — z)~x. Then u satisfies the inhomogeneous equation (—

z)u = f which is equivalent to

(5.3) (-μΰ1A-z)u = g {g = μ^ ϊ(μf +

with k — y/zμo. Let μ\ be short-range. Then, since

f
(5.4) u e ^ . { ( R " ) = » I

we see that g G L2J-6(RΛ Γ). In the case that μ\ is long-range, the inequality

(5-5) ?

will be useful, where C = C(μ), \\ | | l j 0 is the norm of i f 1 ( R i V ) , and ( , )o is the

inner product of L 2 ( R i V ) . For the proof of (5.5), see, e.g., Eidus [6], [13], Lemma

2.1. Then, by a direct application of Theorem 3.5 to our case, we can evaluate the

radiation condition term Vu.

Theorem 5.1. Suppose that Assumptions 2.1 and 2.2 hold. Letδ be as in (5.1).

Let 0 < c < d < oo and let J±(c,d) be as in (3.18). Let u be given by (5.2) with

z e J+{c, d) U J-(c, d). Then there exists a positive constant C = C(<5, c, d, m 0 , M o )

such that

(5.6) | | 2 > u | | 6 _ 1 (

for N>3, and

(5-7) | |2?u| | ί_ l i .<

for N = 2, where \\ | | t )* is as in (3.21).
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Proof. We can proceed as in the proof of Theorem 3.5. Since / in the proof of

Theorem 3.5 should be replaced by g = /x^"1(μ/ + zμ\u) (see (5.3)), our additional

task is to prove, for any e > 0,

(5.8) I = Re / zφμi{x)uVJidx < C(\\f\\2

δ + \\u\\2_δ + eWVuf^)
JBrR

with C = C(e,6,c,d,nio,Mo), where φ is as in the proof of Theorem 3.5, and

||Pw||$_i in (5.8) should read HP^H^-i,* if N = 2. Suppose that μι is short-range.

Then (5.8) follows directly from (5.4). Suppose that μι is long-range. Then we have

from the definition oϊVru ((6) of Notation 3.1) and partial integration

/ = λRe / φμι(x)uDrudx — ηlvci I φμι(x)uDrudx
JBrR JBΓR

= / dr(φμι)\u\2 dx + λ / bφμι\u\2 dx
2 JBrR JBrR(5.9)

— ηϊm φμι{x)uΌrudx •

where the terms I^r) and h(R) tend to zero as r —> 0 and R —» oo along appropriate

sequences, respectively. It follows from (5.1) and the definition of φ ((3.22) or (3.23))

that φμi is bounded on HN, and hence / 2 and Is can be evaluated by using (5.5).

On the other hand, since

(5.10) dr(φμi) =

the term Iχ is evaluated by |M|?_$, which completes the proof. D

As in §4, let σp{H) be the set of all eigenvalues of H which is a discrete set

in (0, oo) (Theorem 4.6). Let λ > 0 such that λ £ σp(H). Let u G H2(RN)ιoc Π

L2,s(R>N) be a solution of the homogeneous equation — μ(x)~1Au — \u = 0 with

the radiation condition | |2}(+)M||$_I ) JE1 < oo or ||X>^~^||<5_IJJE;1 < OO. Then it follows

from Theorem 4.5 that u G L2,(50(RiV) where <5o is given by (4.43) or (4.44). Since

λ is supposed not to be an eigenvalue, we have W Ξ O . Therefore we can prove the

limiting absorption principle for λ G (0, oo)\σp(H) by starting with Theorem 5.1,

proceeding as in §5 ~ §7 of [9]. Let D± C C be given by (3.29). For λ > 0, let

(5.11) Λ±(λ)=limΛ(λ±Ϊ77),
77I0

and extend the resolvent R(z) on D± by

-iη) ( λ > 0 , 77 > 0),
< 5 1 2 ) "- IJMΛ) (Λ>C-
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for z G D+ and

^ I I Λ oM i - Λ ί ^ ( λ + ̂ ) ( λ > 0 ,
(5.13) i?(λ + z?7) = <

for 2: G D_. Then we have

Theorem 5.2. Suppose that Assumptions 2.1 and 2.2 /zα/ύfo. Lei δ satisfy

(5.1).

(i) ΓAe/i the limits (5.11) is well-defined in &(L2,δ(ΈLN), H2_δ{ΈLN)) for X G

(0,oo)\σ p(iί), and the extended resolvent R(z) is a B(L2,δ(RN), Hlδ(ΈiN))-valued

continuous function on each of D+\σv(H) and D-\σp(H).

(ii) For any z G D+\σp(H) [or D-\σp(H) ], R(z) is a compact operator from

L2,δ(RN) into Hlδ(RN).

(iii) The selfadjoint operator H is absolutely continuous on the interval [c, d]

such that 0 < c < d < 00 and

(5.14) [c, (flnσp(ff) = 0.

operator H has no singular continuous spectrum.

(iv) For 0 < c < d < 00 satisfying (5.14) ίAere ejdste C = C(c, d, <5, ra0, M o) > 0

, for z G J+(c, d) U J-(c, d),

I, •τ)-2S(\WR{z)f\2

(5.15)

s-ι<C\\f\\δ ( / €

where, for λ G D+ Π (0, oo) [or D- Π (0, oo)], Vu should be interpreted as V^ [or

p(~~) ], and J±(c, d) are given by (3.30).
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