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1. Introduction

Let {ξi}i>i be a sequence of independent identically distributed random vari-
ables, and set 5o = 0, Sn = Σ™=1ξi, n > 1. Let /(#), h{x) be two functions on
[0,oo). For n > 1, set

One object of this paper is to obtain an estimate of Pn under certain conditions of
fi, f(x) and h(x).

We can consider a similar problem in case of Brownian motion. Let {B(t) : t >
0} be a Brownian motion with B(0) = 0. We assume that f(x) and h(x) satisfy the
following: for some 0 < a < β < oo,

|/(x)| < oo,
x>0 x>0

Set

Applying a very useful formula of Yor ([9],(6.e)), we see as in [5] that

P(t) ~ ct~3/2 as t -> oo,

where

pOD Z OO λ»OO

c = 2iπ~^ / / f(y2)h(4/z)e~λzusmhudydzdu, λ = (1 + y2)/2 + ycoshtx.
Jo 7o Jo

Kawazu-Tanaka [5] used this fact to obtain the rate of decay of the tail probability
of the maximum of a diffusion process in a drifted Brownian environment. This
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result in case of a Brownian motion suggests that an analogous result in a random
walk case also holds. In fact we obtain Theorem 1 below. But to our regret, we can
not find the precise value corresponding to c.

The original motivation of this problem is to clarify and simplify the proof of
Afanas'ev's result [1] on a random walk in a random medium. In the last section
we get Theorem 2 which is a slight extention of the theorem in [1] by using our
Theorem 1.

Now we state the conditions on ξ = ξι and Theorem 1.
Conditions (a)-(d).

(a) Eξ = 0,0< Eξ2 = σ2 < oo.
(b) The distribution of ξ is continuous and E\ξ\3 < oo.
(c) Eeθ^ converges for some θ > 0.
The condition (b) can be replaced by the following condition (d).
(d) The distribution of ξ is concentrated on the set {id : i G Z} with some d > 0.

Theorem 1. Let functions f, h and W satisfy the following conditions:
(i) / and h are continuous on [0, oo).
(ii) W is continuous on R and non-negative.
(iii) There exist positive numbers a, β, ε, η such that

swpx~a\f{x)\ < oo, supχP\h(x)\ < oo,
x>0 x>0

limsup W(x)e~εx < oo, liminf W(x)e~ηx > 0,

with βη > a > 0. If the conditions (a), (b) and (c) are satisfied, then

E en
-3/2

as n —• oo with a constant c. The same conclusion holds under the conditions

(a), (d) and(c).

REMARK. A sufficient condition for the positivity of c is given in Corollary
10.

2. Preliminaries

We introduce the following quantities together with their corresponding Laplace
transforms.

un(x) = P(S1 > 0 , ,5n_i > 0 , 0 < 5 n < x ) ,
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υn(x) = P(S1 < 0, • , 5 n _i < 0, -x < Sn < 0),

uo(x) = υo(x) = l[0jOO)(a:),
ΛOO ΛOO

ID (f)\ 1 p> till IT* I i/j (f)\ I 3̂ rill |7 |

φn{V) — e aun^x), ψn\y) —I e α τ ; n ^ ; .
7o JO

The three lemmas below will be used later. We state them without proof.

Lemma 1 (Spitzer-Baxter identity. See [6], p. 49). For any Θ > 0, \t\ < 1,

1 + / Ψniβjt — e χ P \ / —Έj\e n\ Sn > 0) > .

Lemma 2 (See [2]). 7/*^^ conditions (a) α«ύ? (b) /zoW, ίÂ /2 /or ΛAẐ  θ > 0,

E(e~ΘSn

 1Sn > 0) ~ (V^πσβ)-1/!"^ as n -^ oo.

Lemma 3 (See [4] and [8]).

(1) Let Σn=oantn = exp(ΣZibntn) for \t\ < 1. Ifbn - 6n~3/2

(bexpB)n-3/2 with B = f ) ^ = 1 6n.

(2) Leίcn > 0, dn > 0, cn - en" 3/ 2 β«rfdn - ί/n"3/2. 7/αn = Y^=o Cn-jdά, then

an ~ (ci) + ̂ C)n" 3/ 2 wiYA C = ΣZo cn and D = ΣZo dn

Set

n=0 n=Q

and

C/(x) = - J = - ^ u(2/)dy, ^(β) = ̂ °° e-θxdU(x),

V(x) = -±=- Γ v{y)dy, φ(θ) = Γ e-'W(a ).
V2πσ 7o 7o

Then we can prove the following lemma.

Lemma 4. If the conditions (a) and (b) λoώί then

(1) l i m , ^ ^ n 3 / 2 ^ n ( ^ ) - φ(θ), l i m ^ ^ n 3 / 2 ^n(^) = ̂ (β) for each θ > 0.

(2) limn_>oo rc3/2un(2;) = C/(x), limn^oo n 3 / 2 ^ n ( x ) = V{x) compact uniformly

on [0, oo).

(3) lim^oon3/2P(Mn <x,Mn-Sn<y) = U(x)v(y) + u(x)V(y) where Mn =
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Proof. Combining Lemmas 1, 2 with (1) of Lemma 3, for each θ > 0, we have

lim nϊφn(θ) =
n—> o o

It is easy to see that the right hand side of the above is φ{θ). If we consider a reversed

random walk {—5n}n>o, we get the assertion for ψ also. By the extended continuity

theorem for Laplace transform, (1) yields (2). In view of (2), (3) can be proved by

applying (2) of Lemma 3 to the following identity ([6], p. 25).

(2.1) P(Mn <x,Mn-Sn<y) = ^^(xK-ifo) n > 0.
3=0

The proof of Lemma 4 is complete. D

We give some definitions. Fix a constant K > 0. For a function / on (—oo, K]

and a constant α € l , set

\\f\\a=aupea*\f{x)\,
x<K

and define a function space C(a):

C(a) = {/ : / i s continuous on (—oo, if] and | | / | | α < oo}.

C(α) is a Banach space with respect to the norm || | |α. From now on we omit a in

|| | |α. By the condition (c), we can take δ > 0 such that E(eδ*) < oo. Let this δ > 0

and arbitrary μ > δ be fixed, and set λ = μ — δ > 0. Let non-negative W G C(—μ)

be fixed. For any / G C(λ), we define a family of transforms {i2*}t>o depending on

Why

(2.2) Λt/ίx) = Ex [/(0{l - e-tw(«};ξ < # ] ,

where ^ denotes the expectation of the random walk starting at x. For any / G

C(—δ), we define a sequence of transforms {Tn}n>0 by

(2.3) Tnf(x) = Ex [f(Sn)-Mn <K], n > 0.

In the sequel, the conditions (a)-(c) are assumed to be satisfied.

Lemma 5. Each Rt is a bounded operator from C(λ) to C(—δ).

Proof. Let / G C(λ). The continuity of Rtf is derived from the condition (b)

and the continuity of / and W. From the assumptions of / and W,

I f(Ύ\ίΛ — p-tw(χ)\\ < tw(τλ\ f(τM < t\\W\\ I f||p(^~λ)χ

\j y^jx / 1 — \ )\J \ )\ — II ii i«/ ii
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By the definition of λ and (2.2),

\Rtf(x)\<t\\W\\\\f\\E(eδ^;ξ<K-x)

< t\\W\\\\f\\es*E(e*).

Therefore we obtain

\\Rt\\<t\\W\\E(eδt)<oo.

The proof of Lemma 5 is complete. D

Lemma 6. Each Tn is a bounded operator from C(—δ) to C(λ), and there
exists a constant C such that \\Tn\\ < Cn~3/2 for n > 1. Here C does not depend
on n.

Proof. Let / G C(—δ). The continuity of Tnf is derived from the condition
(b) and the continuity of/. Direct calculations show ||Γ0 | | = eμK. We will estimate
||Tn | | for n > 1. Since / G C(-δ), we have \f(x)\ < \\f\\eδx. Applying this and (2.1)
to (2.3), we see

|Tn/(x)| < \\f\\eδxE(eδS";Mn<K-x)

Σψn-jiδ) ί X

Using Chebyshev's inequality, we see

rK-xpJ\—X
I eδyduj(y) < eδiκ-χ)Uj(K - x) <

Jo

Thus we have

3=0

which shows

3=0

Applying (2) of Lemma 3 and (1) of Lemma 4 to the right hand side of the above,
we have

C := eμK sup ί n* ̂  Φn-j(δ)φj(λ) } < oo.
n>l I j = Q
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This completes the proof of Lemma 6. •

From Lemma 6 we get the following corollary.

Corollary 7. Let S = Σ^L0

 τn- Then S is a bounded operator from C(-δ) to
C(λ).

Now we consider the limit of n3/2Tn. Let / e C(-δ), x < K and L > 0 be
fixed. Then

Tnf(x) = Ex [/(Sn); Mn <K,Mn-Sn< L]

+ Ex [/(5n); Mn <K,Mn-Sn>L} = an + bn.

Applying (3) of Lemma 4 to an, we have

lim nian = / f(x + a - b)d(U(a)v(b) + u(a)V(b)).
n^°° Jo Jo

Using the method employed in the proof of Lemma 6, we get

1̂ 1 < \\f\\e?κ-χxΣ<f'»-iW Γ^Shdvj{b).
j=0 JL

In view of (1) and (2) of Lemma 4, we apply (2) of Lemma 3 to the right hand side

{ p p

Y\ Ψn(X) / e-δbdV(b) + φ(λ) / e-δbdv(b) \ .j J J
n=0

oo poo
/

The last term goes to 0 as L —> oo. Without loss of generality, we assume / > 0.
Then we have

() ( )
m>n

Going to the limit, first with respect to n, and then with respect to L, we obtain

poo pK — x

(2.4) lim niTnf(x) = / f(x + a - b)d(U(a)υ(b) + u(a)V(b)).
n^°° Jo Jo

Denote by Qf(x) the right hand side of (2.4). It is clear that Qf is continuous by
(2) and (3) of Lemma 4. The definition of Q and Lemma 6 show that

\Qf(x)\ <limsupnf |T n /(x) | < (limsupn§ \\Tn\\) \\f\\e-λx.
n—•oo \ n—•oo /
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Hence we have

||Q||<limsup(ni| |Γn | |) <C.
n—> oo ^ '

Collecting the above results, we get the following lemma.

Lemma 8. Let f e C(-δ). Then we can define Qf{x) = l i m ^ ^ n3/2Tnf(x)
and Q is a bounded operator from C(—δ) to C(λ).

The following corollary will be used hereafter.

Corollary 9. Iff e C(-δ) is positive, then Qf(O) > 0.

Proof. From (2.4) and the assumption of /, we have

Qf(O)> ί ί f(a-b)dU(a)dv(b).
Jo Jo

By the definition of U(x), we see U(K) > K/\/2πσ > 0. The renewal theory
([3], Chap. XI) applied to υ(x) yields linL^oo v(x) = oo, which shows the corol-
lary. D

3. Main Lemma

The lemmas established in the previous section enable us to show Theorem 1
if h{x) = e~tx (t > 0) and W(x) = oo for x > K. That is, we have the following
lemma.

Main Lemma. For any f G C(—δ), non-negative W € C(—μ) andt > 0, the
finite limit

lim n3/2E
n—>-oo

(

ί-'Σ
I t=l

W(Si) } ;M n < K\

exists.

To prove Main Lemma we need some preparations. Let non-negative W e
C(-μ) be fixed. For each / e C(-δ) and t > 0, we put

n
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Then An = {A± }n as a transform, for {ξi}i>i is i.i.d. (2.2) and (2.3) yield TΊ —

Aψ = Rt. Put fn

t] = A$f Then /£> = 4 ^ / n - i = (Ά - Rt)f^lv By induction

we get the following equations in C(λ).

W 1 / JO •/? Jn J-nJ

Taking account of the definitions of An\ Tn and Lemma 6, we have

The operator SRt maps C(λ) to C(λ). Hence we can define

c\ — sup{ί > 0 : ||SΉt|| < 1}.

For a while we assume 0 < t < c\ and omit t in Rt and fn . Then there exists

(1 + SΛ)- 1. By (3.1) and (3.2), F = Σ™=0 fn =

the equation

Sf. Let g e C(λ) satisfy

(3.3) g = Qf~ QRF - SRg.

After some tedius calculations, we rewrite g as follows.

g = (l + SR)-1Q(l+RS)-1f.

We set

#(x) = limsup \nifn(x) - g{x)\.
n—>oo

By (3.2), ll̂ ll < C| |/ | | + ||^|| < CXD. NOW we can start the proof of Main Lemma.

Proof. For fixed N G N, we have

N n-N

Σ+ Σ + Σ Tn-jRfj-1 — In + Jn

j = l j=N+l j=n-N+l

Combining (3.1) and (3.3) with the above, we see

(3.4) \nifn - g\< \n^Tnf - Qf\ + \In - QRF\ + \Kn - SRg\ + \Jn\.

We estimate each term of the right hand side of (3.4). Using Lemmas 5, 6 and 8, we

have

7 - 1 oo.
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Therefore we get

(3.5)

Rewriting Kn, we have

N

j=N

N

N

By Corollary 7,

\Kn-SRg\<
j=N+l

The first term of the right hand side is bounded from above by the quantity

Using Fatou's lemma, we see

N-l

(3.6) limsup \Kn - SRg\ < £ TjRg + ̂  TjR\g\.
i=o J=N

Here we note that TjRg is well-defined. Applying Lemmas 5, 6 and (3.2) to J m

n-N

\\Jn\\<C2\\R\\\\f\\ni
j=N+l

Using (2) of Lemma 3, we have

(3.7) limsup μ n | | <
j=N

Collecting (3.4)-(3.7) and letting N -» oo, we have 0 < g < SRg. Thus \\g\\ <
||57?t||||<7||. Since t € [0,ex), this estimate implies \\g\\ — 0, i.e., g = 0, which shows
the following: If 0 < t < cu then for each / e C(-δ) and x < K,

(3.8) lim i
n—•oo

^f(x) = (1 + SR^Qil + JRt5)-1/(x).
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If ci = oo, this completes the proof of Main Lemma. We consider the case of ci < oo.

Let arbitrary t0 G (0,cχ) be fixed. For / € C(—δ) and x < K, set

oo

n > 0 and S —
71=0

Since 0 < Tnf(x) < Tnf(x) if / > 0, everything of the above is well-defined. For

/ e C(λ) and ί > 0, set

Rtfix) = Ex

Let / e C(-δ). In view of (3.8), we define Qf(x) as follows.

Qf(x) = lim niT n /(x) = 1

n^oo

Now exactly the same argument as the above is possible if we replace Tn, Rt, Q

by Tn, Rt, Q respectively. Therefore setting c2 = sup{ί > 0 : ||5i2t|| < 1} where

5Γβ£ = 5(Λ t), we get the following: If 0 < t < c2, then

(3.9) lim niA^f(x) = (1 + SΛtJ-^ίl +
n—•oo

On the other hand, we have the following relations from the definitions.

Rt = Rt+t0 - Rt0, S = S~SRt0S. (cf. (3.1))

Using the above relations, we get

(l + SRt0+t),

(l + Rt0+tS).

From these identities and the definition of Q, we see that the right hand side of (3.9)

is equivalent to (1 + SR^+t^Qil + Rt+toS)'1 f(x). Hence we can rewrite (3.9) in

the following way: If 0 < t < c\ + c2, then

(3.10) lim n*AV>f(x) = (1 + SR^Qil +
n»oo

Comparing 5, ~Rt with S, Rt, we easily see \\SRt\\ < \\SRt\\. Thus 0 < cλ < c2.

From this fact, the method on the above can be iterated infinitely often. Therefore

(3.10) holds for all t > 0. This finishes the proof of Main Lemma. D
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4. Proof of Theorem 1

In this section functions /, h and W are assumed to satisfy the conditions (i),
(ii) and (iii) in Theorem 1. We devide the proof into three parts. For any K > 0,
set

Ln = E

= E

Ki=l

STEP 1. For any K > 0, the finite limit limn^o o n3jί2Hn(K) exists.

Proof. Let K > 0 be fixed. From the conditions (c) and (iii), we can choose
two numbers μ and δ such that 0 < δ < μ < min(α,ε) and E(e6^) < oo. We
easily see f(ex) e C(—δ) and W e C(—μ). From the conditions of h, there exists a
sequence of functions {/ιm}m>i satisfying sup x > 0 \h(x) — /ιm(x)| < m~λ and hm(x)
is a finite linear combinations of {e~nx}n>o. Hence by Main Lemma we can define
Cm as follows.

\f(es")h n < κ\ .

It is obvious that {Cm}m>i is a Cauchy sequence. Set C^ = limm_>oo C m . Then

Cool < -n%E[\f(es")\;Mn<K]

rfiE f(es")hm \Mn<K
\i=l

-cn

Therefore we have

limsup \n*Hn(K) - C^ < - + \Cm ~ Ct
m

0 as m —> oo,

where a = l imn_, o on 3/ 2£'[ |/(e 5 n) |;Mn < K]. Thus we obtain the assertion of
Step 1. D

STEP 2. lim s u p ^ ^ lim s u p ^ ^ n3/21 Jn (K) | = 0.

Proof. From the condition (iii), there exist positive constants A, B and
K which satisfy the following: |/(x)| < Axa, \h(x)\ < Ax~β for x > 0, and
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W(x) > Beηx for x > K. Hence we have \f(eSn)\ < AeaSn and the inequality,

\HΣ7=iw(si))\ < AB-Pe-foM", holds on (M n > K). Applying these estimates

to Jn{K) and using (2.1), we have

\Jn(K)\ < constE(eaS"-βηM";Mn > K)
n ΛOO

< consty~^ψn-j(a) / e~hxduj(x),

where const = A2B~@, b = βη — a > 0. In view of (1) (2) of Lemma 4, we apply

(2) of Lemma 3 to the last term of the above.

z oo

e~bxdU(x) + ψ(a) / e~bxV ψn(ά) / e~bxdU(x) + ψ(a) / e~bxdu(x) \ .
n=0 J κ J κ J

Since the last term goes to 0 as K —• oo, Step 2 is proved. D

STEP 3. The finite limit limn^oo n3/2Ln exists.

Proof. Without loss of generality, we assume that / and h are non-negative. By

Step 1 we can define H(K) = linin^oo n3/2Hn(K). Then H(K) is a non-decreasing

and bounded. Set H = limκ^oo H(K). Since

niHn{K) < n*Ln < n^Hn{K) + sup (m% Jm(K)) ,
m>n V /

taking account of Step 2 we easily see that n 3 / 2 L n goes to H as n —> CXD. Finally

Theorem 1 is established under the conditions (a), (b) and (c). D

REMARK. TO prove Theorem 1 under the conditions (a), (c) and (d), we enu-

merate the modified points. Under the conditions (a) and (d), the local limit theorem

lim [sup = dk) - -β=- exp ( -
V2 {

= 0

holds (See e.g. [3]), which implies, for θ > 0

_Qg d e~ _i
Eye. n ; Sn > 0) ~ —-.— -jxτι 2 as n —> oo.

V2πσ 1 — e~
This corresponds to Lemma 2. If U and V are defined by

U(x) = —j=^ Σ u(dJ) (id<x < (i + l)d), =0 (0 < x < d),
V 2πσ (

V(x) = -]L- ^ v(dj)
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then (1) of Lemma 4 holds, and (2) (3) of Lemma 4 hold at every continuous

point. Fix K e N. For a function / on D = {id : i < K} and a G R, set | | / | | α =

suPzeD^I/WI a n d C(α) = {/ : | | / | | α < oo}. Then x in the expectation symbol

Ex takes value on D. Having these modifications, the proof of Theorem 1 under

the conditions (a), (c) and (d) are carried out analogously. We give the following

corollary used in the next section.

Corollary 10. Iff is positive on (0, oo) and h is positive on [0, oo), then the

finite limit in Theorem 1 is positive.

Proof. Set ι/n(x) = E[f(es-); ΣΓ=i W(S») < x\. Then for any t > 0,

Jo

Apply Theorem 1 and the extended continuity theorem for Laplace transform to the

above. Then there exists a measure v satisfying the following: For each t > 0,

/»OO /»OO

lim 77,2 / e~txdun(x) = / e~txdv{x) < oo.
n->o° Jo Jo/o

On the other hand, (3.10) implies

Γ e~txdv{x) > (1 + SRt)-λQ(\
Jo

where f(x) = f(ex). Letting t —• 0, we see z/(oo) > Q/(0) > 0. The last inequality

follows from Corollary 9. Hence we can choose a positive constant x such that

0 < v{x) < oo and limn_>oo n
3/2z/n(x) = v(x). By the assumptions of h, we have

E = / h(s)dun(s) > min h(s)vn(x),
Jθ 0<s<x

which proves Corollary 10. •

5. Application to a random walk in a random medium

Let {pi : i G Z} be a sequence of i.i.d. random variables with values in [0,

1], and let T be the σ-field generated by the sequence {pi}. A random walk in a

random medium {pi} is a sequence of random variables {Xt : ί = 0,1,2, •} which

satisfy the following:

Xo = 0, P(Xt+1 =Xt + l\Γ,X0,Xir ,Xt=i)=Pi,
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Set σι = pi/(1 — Pi). In [7] it was shown that the condition —oo < £71ogσ0 < 0
implies lim^oo Xt = — oo a.s. Hence maxt>0 Xt is finite a.s. In [1] Afanas'ev showed
the asymptotic behavior of the probability Pn = P(maxt>o Xf > n) under the
condition Eσ$ < 1 which implies — oo < ϋ?logσo < 0 by Jensen's inequality. We
consider the same problem under the conditions

(5.1) -oo < £Ίogσ0 < 0, Eσ0 < oo.

Theorem 2. Let σ0 satisfy (5.1).
(1) IfEσ0 log σ0 < 0, then

ς)) oo.

g2
(2) If Έσ0 log σ0 = 0 and Eσ0 log2 σ0 < oo, then

Pn ~ c2n~1/2(Eσ0)
n as n -> oo.

(3) If Eσ0 log σ0 > 0 β«rf the distribution of log σ0 is continuous or supported on
a lattice, then

Pn ~ c 3 n~ 3 / 2 7 n as n —• oo,

7 = mino<t<i £̂CΓQ β«rf ci, c2, c3 are positive numbers independent of
n. In case of (I) and (2), i£σ0 < 1 holds automatically.

Proof. Set ζi = logα^-i, Sn = Σ7=i &> n — ^ Then we have the following
identity (See [1]).

I where p = 1 + /"^ σ_iσ_2 σ_̂  < oo α.s.

Since {^} are i.i.d., {ζi}i>ι are i.i.d. and independent of p. Set h(x) = Ep(p-\-x)~1.
Then we can rewrite Pn using h{x).

Set φ(t) = Eexptζi. The condition (5.1) ensures that φ(t) is well defined on
[0, 1], φ"(t) > 0 on (0, 1) and lim^o Φ'(t) = Elogσ0 < 0. From the assumptions
of (1) and (2), ]imtyι φ'(t) = Ea0loga0 < 0. Since φ'{t) is monotone increasing
on (0,1), these estimates imply 0(1) = Eσ0 < 1. Thus (1) and (2) are reduced to
Afanas'ev's theorem in [1].
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In case of (3), we have ]imt\o φ'(t) < 0 and l im^i φ'(t) > 0. Therefore there
exists a unique point r e (0,1) where φ(t) attains its minimum 7 < 1, i.e., φ'{τ) = 0
and φ(τ) = 7 < 1. Set a proper distribution function

G(x) = - Γ eτ

7 J-00

Let {ξi}i>i be i.i.d. and —ζι has the distribution function G(x). By the assumption
of (3) and the definition of G(x)9 we see that ξι satisfies the conditions in Section
1. In fact we obtain

a n d Eξ, = - = 0.

The former of the above shows that the Laplace transform of £1 exists in some
neighborhood of the origin and ϋ?|ξi|fe < 00 for all k E N. Put 5 0 = 0 and Sn =

rc > 1. We express Pn by 5».2^i=l

(5.2)

Let a number β satisfying r < β < 1 and <£(/?) < 1 be fixed. By the definitions of p
and φ(t), B = Epβ < Σ™=0 φ{β)n < 00. Using Chebyshev's inequality, P(p > y) <
By~P for y > 0. Applying integration by parts to h(x) and using the above result,
we have

< /
Jo

Hence for x > 0,

(5.3) 0
πβ

sinπ/3

Taking account of (5.2) and (5.3), we can apply Theorem 1 and Corollary 10 to
PnΊ~n Consequently we have the following positive finite limit

c3 = lim n 3 / 2

7 - " P n = lim nz'2E
n—>oo n—>-oo

This finishes the proof of (3). D
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