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1. Introduction

Let {¢:}i>1 be a sequence of independent identically distributed random vari-
ables, and set So = 0, S, = Y .-, &, n > 1. Let f(z), h(z) be two functions on
[0,00). For n > 1, set

P,=F

F(€%)h (Z S)

One object of this paper is to obtain an estimate of P, under certain conditions of
&1, f(z) and h(z).

We can consider a similar problem in case of Brownian motion. Let {B(¢) : t >
0} be a Brownian motion with B(0) = 0. We assume that f(z) and h(z) satisfy the
following: for some 0 < a < 8 < oo,

supz~%|f(z)| < oo, sup z°|h(z)| < oco.
>0 z>0

P(t)=E [f(eB(t))h (/Ot eB<S>ds)] .

Applying a very useful formula of Yor ([9],(6.e)), we see as in [5] that

Set

P(t) ~ct™3/?  ast— oo,

where

[N

5 _
c=22T

/// F(@?)h(4/z)e”**usinhudydzdu, A= (1+ y?)/2+ycoshu.
o Jo Jo

Kawazu-Tanaka [5] used this fact to obtain the rate of decay of the tail probability
of the maximum of a diffusion process in a drifted Brownian environment. This
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result in case of a Brownian motion suggests that an analogous result in a random
walk case also holds. In fact we obtain Theorem 1 below. But to our regret, we can
not find the precise value corresponding to c.

The original motivation of this problem is to clarify and simplify the proof of
Afanas’ev’s result [1] on a random walk in a random medium. In the last section
we get Theorem 2 which is a slight extention of the theorem in [1] by using our
Theorem 1.

Now we state the conditions on £ = £; and Theorem 1.

Conditions (a)-(d).

(a) E£=0,0< FE£ =02 < o0

(b) The distribution of ¢ is continuous and E|¢[® < co.

(c) Ee% converges for some 6 > 0.

The condition (b) can be replaced by the following condition (d).

(d) The distribution of ¢ is concentrated on the set {id : i € Z} with some d > 0.

Theorem 1. Let functions f, h and W satisfy the following conditions:
(i) f and h are continuous on [0, o).
(ii) W is continuous on R and non-negative.
(iii) There exist positive numbers o, 3, €,  such that

supa~2|f(z)] < o0, supz?|h(z)| < oo,
x>0 x>0

limsup W(z)e™** < oo, liminf W(z)e™"" > 0,

T——00 z—+00

with Bn > a > 0. If the conditions (a), (b) and (c) are satisfied, then

f(e5)h (i W(SJ)] ~cn 32,

as n — oo with a constant c. The same conclusion holds under the conditions
(a), (d) and (c).

E

REMARK. A sufficient condition for the positivity of ¢ is given in Corollary
10.

2. Preliminaries

We introduce the following quantities together with their corresponding Laplace
transforms.

Un(IL‘) = P(Sl >07"'7S'n—1 >0a0<SnS-’B)7
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’Un(.’E) = P(Sl SO,"‘asn—l S07_mSS’nS0)7

uo(z) = vo(x) = Ljo,00) (%),

en(0) = / e % du,(x), ¥n(8) = / e 9% du, (x).
0 0
The three lemmas below will be used later. We state them without proof.

Lemma 1 (Spitzer-Baxter identity. See [6], p. 49). For any 6 >0, |t| <1,

oo Ootn
1 n(0)t" = ~E(e %5, .
P

n=1 n=1
Lemma 2 (See [2]). If the conditions (a) and (b) hold, then for any 6 > 0,

E(e7%;8, > 0) ~ (\/271'00)‘171—% as n — oo.

Lemma 3 (See [4] and [8]).
(1) Let 3520y ant™ = exp(3oo, bnt™) for |t| < 1. If by ~ bn=3/2, then a, ~
(bexp B)n=3/2 with B =3"2° . b,,.
(2) Letc,>0,d,>0,c, ~cn 32 andd, ~dn=3/2 Ifa, = Z?:o Cn—jd;, then
an ~ (D +dC)n=%2 with C = Y22 (¢, and D =322  d,.

Set
u(z) = Z un (), v(z) = Z v (),
n=0 n=0
and
Ulz) = ;M /O Cu@)dy, (8 = /O ~ et2qu (),
V(z) = T /Oz v(y)dy, Y(0) = /000 e_ede(m').

Then we can prove the following lemma.

Lemma 4. If the conditions (a) and (b) hold, then
(1) limpy_ 0o 1320, (0) = (), lim, oo n%/29,(8) = ()  for each § > 0.
) limp_ o7 ?un(z) = U(z), lim,_on®?v,(z) = V(x) compact uniformly
on [0, 00).
(3)  limp_eon®2P(M, < z,M, — S, < y) = U(z)v(y) + uw(z)V(y) where M,, =
maxo<;<n Sj-
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Proof. Combining Lemmas 1, 2 with (1) of Lemma 3, for each § > 0, we have

lim ndp,(6) = \/— - (HZ%«)))

It is easy to see that the right hand side of the above is ¢(0). If we consider a reversed
random walk {-—Sn}nzo, we get the assertion for ¢ also. By the extended continuity
theorem for Laplace transform, (1) yields (2). In view of (2), (3) can be proved by
applying (2) of Lemma 3 to the following identity ([6], p. 25).

(2.1 P(M, <z,M, —S, <y)= Zu, T)vn_j(y) n>0.

The proof of Lemma 4 is complete. ]

We give some definitions. Fix a constant K > 0. For a function f on (—oo, K]
and a constant a € R, set

Iflla = sup e**|f(z)],
z<K

and define a function space C/(a):
C(a) ={f: f is continuous on (—oo, K] and || f|ls < co}.

C(a) is a Banach space with respect to the norm || ||,. From now on we omit a in
|| |la- By the condition (c), we can take § > 0 such that E(e®¢) < oo. Let this § > 0
and arbitrary u > 6 be fixed, and set A = u — § > 0. Let non-negative W € C(—pu)
be fixed. For any f € C()), we define a family of transforms {R;}:>0 depending on
W by

22 Rif(2) = B, /({1 —e WO} < K|,

where F, denotes the expectation of the random walk starting at x. For any f €
C(—6), we define a sequence of transforms {7, }r>0 by

(2.3) Tnf(m) =E; [f(Sn)7 M, < K] ) n 2> 0.

In the sequel, the conditions (a)-(c) are assumed to be satisfied.
Lemma 5. Each R, is a bounded operator from C(X) to C(—6).

Proof. Let f € C()\). The continuity of R, f is derived from the condition (b)
and the continuity of f and W. From the assumptions of f and W,

F@H{1 = ™™ <tW (2)|f (@) < W1 Flle 7.
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By the definition of A and (2.2),

|Ref(2)] < IWIIFIEECHD5€ < K ~2)

tIW I £lle®® B(e’).

IN A

Therefore we obtain
[Re|| < W] E(e%) < oo.

The proof of Lemma 5 is complete. OJ

Lemma 6. Each T, is a bounded operator from C(—6) to C(\), and there
exists a constant C such that |T,|| < Cn=3/2 forn > 1. Here C does not depend
on n.

Proof. Let f € C(—6). The continuity of T, f is derived from the condition
(b) and the continuity of f. Direct calculations show ||Tp|| = e*X. We will estimate
||| for n > 1. Since f € C(—6), we have |f(z)| < || f||e®®. Applying this and (2.1)
to (2.3), we see

ITuf(@)] < £l E(eS™; M, < K — )
n K—x
< 71 S n(6) /0 SV du; (y).

=0

Using Chebyshev’s inequality, we see
K-z
/ e¥duj(y) < SE Dy (K — z) < eEHVE=D),0 ().
0
Thus we have

Tof ()] < [IF1le*5 2 " n_j(6); (V),
7j=0
which shows
IToll < 5> thn_(8)i25 (N).
j=0

Applying (2) of Lemma 3 and (1) of Lemma 4 to the right hand side of the above,
we have

n>1 j=0

C = K sup {n an_j(amw} < 0.
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This completes the proof of Lemma 6. |
From Lemma 6 we get the following corollary.

Corollary 7. LetS =3 > T,. Then S is a bounded operator from C(—6) to
Cc(N).

Now we consider the limit of n®/2T,,. Let f € C(—6), = < K and L > 0 be
fixed. Then

+ E; [f(Sn); M < K, My, — Syp, > L] = an + by.

Applying (3) of Lemma 4 to a,, we have

lim n?a, = /OL /OK_m flz+a—=0)dU(a)v(b) + u(a)V(b)).

n—oo

Using the method employed in the proof of Lemma 6, we get
bl < 171223 o) [ ey 8.
=0 L
In view of (1) and (2) of Lemma 4, we apply (2) of Lemma 3 to the right hand side

S * —6b
> on) [ e ave) + o) [

n=0

limsupn?|b,| < || flleK = {
n—oo

e-“’dv(b)} )

The last term goes to 0 as L — oo. Without loss of generality, we assume f > 0.
Then we have

n%an < n%Tnf(ac) < n%an + sup (m%bm).
m>n

Going to the limit, first with respect to n, and then with respect to L, we obtain

oo pK-zx
@4)  lim n3T,f(z) = /0 /0 f(z +a — b)d(U(a)o(b) + u(@)V ().

Denote by Qf(z) the right hand side of (2.4). It is clear that Qf is continuous by
(2) and (3) of Lemma 4. The definition of @ and Lemma 6 show that

Q70| < limsupn T, 1(a)| < (tmsupnd IZ,] ) 7™,
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Hence we have
@l < lmsup (n?|T5l)) < C.
n—oo
Collecting the above results, we get the following lemma.

Lemma 8. Let f € C(—6). Then we can define Q f(x) = lim,,_, o, n*/?T,, f(x)
and Q is a bounded operator from C(—6) to C(\).

The following corollary will be used hereafter.
Corollary 9. If f € C(-6) is positive, then Qf(0) > 0.

Proof. From (2.4) and the assumption of f, we have

o) K
Q(0) > /0 /0 f(a — b)dU (a)du(b).

By the definition of U(z), we see U(K) > K/v/2mo > 0. The renewal theory
([3], Chap. XI) applied to v(z) yields lim,_,o, v(z) = oo, which shows the corol-
lary. O

3. Main Lemma

The lemmas established in the previous section enable us to show Theorem 1
if h(z) = e7®® (t > 0) and W (z) = oo for z > K. That is, we have the following

lemma.

Main Lemma. For any f € C(—6), non-negative W € C(—u) andt > 0, the
finite limit

lim n%2E
n—oo

f(Sp)exp {—th:W(S,-)} s My < K]

exists.

To prove Main Lemma we need some preparations. Let non-negative W €
C(—pu) be fixed. For each f € C(—6) and ¢ > 0, we put

AP f(@) = f(@), APf(@)=E, lf(Sn) exp {—t Z W(si)} s My, < K}, n>1.
=1
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Then AY) = {A{"}" as a transform, for {&};>1 is i.i.d. (2.2) and (2.3) yield T} —
AY = R, Put £ = AP f. Then £ = AP P = (1y — R,)f{,. By induction
we get the following equations in C()).

3.1) D=t =T f - Tu RS, nx1.
j=1
Taking account of the definitions of Aﬁf ), T, and Lemma 6, we have
(3.2) IF21 < ITalfll < ClIfIn~2.
The operator SR, maps C()) to C()A). Hence we can define
¢ =sup{t >0:||SR:|| < 1}.

For a while we assume 0 < ¢t < ¢; and omit ¢ in R; and f,(f’). Then there exists
(1+SR)":. By (3.1)and (3.2), F =307, fo = (1+ SR)"1Sf. Let g € C()) satisfy
the equation

(3.3) g=Qf —QRF — SRy.
After some tedius calculations, we rewrite g as follows.

g=00+SR)'Q(1+ RS)7'f.
We set

g(z) = limsup |n? f,,(z) — g(z)|.

n—oo

By (3.2), ||g]l £ C|Ifll + |lgll < co. Now we can start the proof of Main Lemma.

Proof. For fixed N € N, we have
5 n s N n—N n
nz ZT"_ijj_l =n?2 Z + Z + Z Tn—ijj—l =1I,+ Jn + K.
j=1 j=1 j=N+1 j=n—N+1
Combining (3.1) and (3.3) with the above, we see
(34)  In?fn — g| < [nITnf — Qf| +|In — QRF| + |Kyn — SRg| + | Jnl.

We estimate each term of the right hand side of (3.4). Using Lemmas 5, 6 and 8, we
have

Jj=1

N 2 N
In = ];1 (ni.]) (n—j)%Tn—ijj—l — ZQRfj—l as n — o0.
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Therefore we get

(3.5) lim (QRF —I,,) = > QRf;.
j=N

Rewriting K,,, we have

3

N N 2 .
o =nd S TRy =30 (25 ) s {0 s}
j=1

Jj=1

By Corollary 7,

N oo
|Kn — SRg| < |Kn— ) Tj1Rg|+ Y T;-1Rlgl.
J=1 j=N+1

The first term of the right hand side is bounded from above by the quantity

N 3 . N 3
Z(nﬁ]) Tj-lR’(n—j)sfn_j—g!+Z{(n"ij> —1}T,-_1R|g|-
Jj=1

=1

Using Fatou’s lemma, we see

N-1 [e9)
(3.6) limsup |K, — SRg| < Y_ T;Rg+ > T;Rlg|.
n—oe j=0 j=N

Here we note that T; Rg is well-defined. Applying Lemmas 5, 6 and (3.2) to J,,

n—N
ITall < C2RI£lIn2 Y (n—35)"3(G —1)7%.

j=N+1
Using (2) of Lemma 3, we have
(3.7 limsup ||| < 2C2RI|I £l S 5%,

j=N

Collecting (3.4)-(3.7) and letting N — oo, we have 0 < g < SRg. Thus ||g|| <
IISR:||||g|l- Since ¢ € [0,cy), this estimate implies ||g|| = 0, i.e., g = 0, which shows
the following: If 0 < t < ¢y, then for each f € C(—6) and z < K,

(3.8) lim n2 AW f(z) = (14 SR,)"'Q(1 + R,S) " f(x).
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If ¢; = oo, this completes the proof of Main Lemma. We consider the case of ¢; < oo.
Let arbitrary to € (0,¢;) be fixed. For f € C(—6) and z < K, set

Tnf(z) = A®) f(z) n>0and S_:ZT"'
n=0

Since 0 < T, f(z) < Tnf(x) if f > 0, everything of the above is well-defined. For
feC()) andt >0, set

Rif(@) = By [f(©)e W Of1 - W Oe < K.
Let f € C(=6). In view of (3.8), we define Q f(x) as follows.

Qf(®) = lim niT,f(z) = (1+ SRy) ' Q(1 + Ry, S) ™' f().

n—oo

Now exactly the same argument as the above is possible if we replace T,, R:, Q
by Tn, R:, Q respectively. Therefore setting c; = sup{t > 0 : ||SR;|| < 1} where

SR; = S(R;), we get the following: If 0 < ¢t < c,, then

(3.9) nlirglon%Aﬁlt+t°)f(x) = (1+SR:)'Q(1 + R:S) "' f(=).

On the other hand, we have the following relations from the definitions.
R;=Ri14, — Ryy, S=8S—SRy,S. (cf. (3.1))

Using the above relations, we get

(1 + SRto)(l + -S_ﬁt) = (1 + SRt0+t),

(1 + RtS)(l + RtoS) = (1 + Rt0+ts).

From these identities and the definition of @, we see that the right hand side of (3.9)
is equivalent to (1 + SR, +¢) " 'Q(1 + Ri44,S) ! f(x). Hence we can rewrite (3.9) in
the following way: If 0 < t < ¢; + ¢, then

(3.10) nlixgon%Aff)f(m) = (1+SR)'Q(1 + R.S)™' f(z).

Comparing S, R; with S, R,, we easily see |SR:|| < ||SR;||. Thus 0 < ¢; < cs.
From this fact, the method on the above can be iterated infinitely often. Therefore
(3.10) holds for all ¢ > 0. This finishes the proof of Main Lemma. J
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4. Proof of Theorem 1

In this section functions f, h and W are assumed to satisfy the conditions (i),
(ii) and (iii) in Theorem 1. We devide the proof into three parts. For any K > 0,
set

L,=E {f(esn)h (i: W(si)ﬂ

=1

=E [f(es")h (Zn: W(S») i M, < K| +E |f(e5)h (i W(S,-)) i M, > KJ
=1 =1
= H,(K) + Jo(K).

Step 1. For any K > 0, the finite limit lim,, o, n%/2H,(K) exists.

Proof. Let K > 0 be fixed. From the conditions (¢) and (iii), we can choose
two numbers p and § such that 0 < § < u < min(a,e) and E(e’*) < oco. We
easily see f(e*) € C(—6) and W € C(—pu). From the conditions of h, there exists a
sequence of functions {Am, }m>1 satisfying sup,~ |h(z) — hm(z)] < m~! and hp,(z)
is a finite linear combinations of {e~"},>o. Hence by Main Lemma we can define
C,, as follows.

. 3 -
Cn = nll'n;onZE [f(es")hm (Z W(Si)>;Mn < K] .
i=1
It is obvious that {Cp, }m>1 is a Cauchy sequence. Set Coo = limy,— 00 Crp. Then

[0 Hy(K) — Cuc] < —n B[|7(e%)]; My < K]

Therefore we have

limsup|n%Hn(K) —Cx| < 2 +|Cm — Coo] — 0 as m — o0,
n— oo m

where a = lim,_,o n%/2E[|f(e5")|; M, < K]. Thus we obtain the assertion of
Step 1. (]

STEP 2. limsupg_, . limsup,,_, . n®?|J,(K)| = 0.

Proof. From the condition (iii), there exist positive constants A, B and
K which satisfy the following: |f(z)| < Az*, |h(z)| < Az=P for z > 0, and
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W(z) > Be"™ for x > K. Hence we have |f(eS")| < Ae*S and the inequality,
|R(3r, W(S;))| < AB=Pe=PnMn_ holds on (M, > K). Applying these estimates
to J,(K) and using (2.1), we have

|Jn(K)| < constE(e*S»—AnMn. pr > K

< constzwn_j(a)/;o e~ du,;(x),

Jj=0

where const = A2B~8, b= 8n— a > 0. In view of (1) (2) of Lemma 4, we apply
(2) of Lemma 3 to the last term of the above.

limsupn?|J, (K)| < const {Z Yn () /;0 e %2dU () + (a) /K°° e_bzdu(m)} .
n=0

n—o0

Since the last term goes to 0 as K — oo, Step 2 is proved. O
STep 3. The finite limit lim,_,o, n3/2L,, exists.

Proof. Without loss of generality, we assume that f and A are non-negative. By
Step 1 we can define H(K) = lim,_,o, n%2H,(K). Then H(K) is a non-decreasing
and bounded. Set H = limg_,o, H(K). Since

nf Hy(K) < n¥L, <nfH,(K)+ sup (m?J (K )),

m>n
taking account of Step 2 we easily see that n3/2L,, goes to H as n — oo. Finally
Theorem 1 is established under the conditions (a), (b) and (c). O

REMARK. To prove Theorem 1 under the conditions (a), (c) and (d), we enu-
merate the modified points. Under the conditions (a) and (d), the local limit theorem

lim [su VnP(S, = dk) — d ex {— (dk)® } ] =0
n—oo keg " V2o P 2no?
holds (See e.g. [3]), which implies, for 8 > 0

d e—dG

E(e %S, >0) ~ ——n"
( ) 27r01—6—d9n

=

as n — 0.

This corresponds to Lemma 2. If U and V are defined by

U(z) =—\/_— ; u(dj) (d<z<(@+1)d), =0 (0<z<d),
V(z) = Z (id < z < (i + 1)d),

0<j
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then (1) of Lemma 4 holds, and (2) (3) of Lemma 4 hold at every continuous
point. Fix K € N. For a function f on D = {id : i < K} and a € R, set || f]lo =
sup,cp e*®|f(z)| and C(a) = {f : ||flla« < oo}. Then z in the expectation symbol
E, takes value on D. Having these modifications, the proof of Theorem 1 under
the conditions (a), (c) and (d) are carried out analogously. We give the following
corollary used in the next section.

Corollary 10. If f is positive on (0,00) and h is positive on [0,00), then the
finite limit in Theorem 1 is positive.

Proof.  Set v,(z) = E[f(e5"); > i, W(S;) < z]. Then for any t > 0,

/Oooe_mdvn(x)zE[f exp{ tZW S)}}

Apply Theorem 1 and the extended continuity theorem for Laplace transform to the
above. Then there exists a measure v satisfying the following: For each ¢ > 0,

lim n%/ e " du, () =/ e " dy(z) < oco.
0 0

n—oo

On the other hand, (3.10) implies
/ e_tzdll(it) Z (1 + SRt)_lQ(l + RiS)—lf(O),
0

where f(z) = f(e®). Letting t — 0, we see v(co) > Qf(0) > 0. The last inequality
follows from Corollary 9. Hence we can choose a positive constant z such that
0 < v(z) < oo and lim,, o, n3/?v,(z) = v(z). By the assumptions of h, we have

E [f(esn)h (ZW(S,))} :/Ooo h(s)dva(s) = min_h(s)vn(a),

which proves Corollary 10. O

5. Application to a random walk in a random medium

Let {p; : ¢ € Z} be a sequence of i.i.d. random variables with values in [0,
1], and let F be the o-field generated by the sequence {p;}. A random walk in a
random medium {p;} is a sequence of random variables {X; : t = 0,1,2, - - -} which
satisfy the following:

X0=0, P(Xt+1 =Xt+1|.7'-,X0,X1,"',Xt Zi)=p,‘,
P(Xt+1 =-Xt_1|]:5X07X15"'7Xt =7’)= l—pz
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Set o; = p;/(1 — p;). In [7] it was shown that the condition —oo < Flogog < 0
implies lim;_,, X; = —oo a.s. Hence max;>o X is finite a.s. In [ 1] Afanas’ev showed
the asymptotic behavior of the probability P, = P(max;>oX; > n) under the
condition Eogy < 1 which implies —oo < Flogog < 0 by Jensen’s inequality. We
consider the same problem under the conditions

(5.1) —o00 < Elogog <0, Fog< oco.

Theorem 2. Let oy satisfy (5.1).
(1) If Eoglogog <0, then

P, ~ci1(Eoo)™ as n — 0o.
(2) If Eoglogog =0 and Eog log2 oo < 00, then
P, ~ Cz’n_l/2(E0'0)n as n — 0o.

(3) If Eoglogog > 0 and the distribution of logaq is continuous or supported on
a lattice, then

P, ~ C3n_3/2fy" asn — 0o,

where v = ming<i<1 Ec{ and ci, c3, c3 are positive numbers independent of
n. In case of (1) and (2), Eoy < 1 holds automatically.

Proof. Set ¢; = logo;_1, S, = 3.1, Gi» n > 1. Then we have the following
identity (See [1]).

n -1 [e9)
Panp<p+Ze_Si> where p=1+20_10_2~--a_i<oo a.s.

i=1 i=1

Since {p;} are i.i.d., {¢;};>1 are i.i.d. and independent of p. Set h(z) = Ep(p+z)~*.
Then we can rewrite P, using h(z).

P.=Eh (ie—@') .
i=1

Set ¢(t) = Eexpt(i. The condition (5.1) ensures that ¢(t) is well defined on

[0, 1], ¢”(t) > 0 on (0, 1) and lims o ¢'(t) = E'logoo < 0. From the assumptions

of (1) and (2), limy ~ ¢'(t) = Eoplogop < 0. Since ¢'(t) is monotone increasing

n (0,1), these estimates imply ¢(1) = Eoo < 1. Thus (1) and (2) are reduced to
Afanas’ev’s theorem in [1].
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In case of (3), we have lims\ o ¢'(t) < 0 and lim; ~ ¢'(t) > 0. Therefore there
exists a unique point 7 € (0, 1) where ¢(t) attains its minimum v < 1, i.e.,, ¢'(7) =0
and ¢(7) = v < 1. Set a proper distribution function

Ga)== [ evap(c <)
Let {£;}i>1 be i.id. and —¢; has the distribution function G(z). By the assumption
of (3) and the definition of G(z), we see that &; satisfies the conditions in Section
1. In fact we obtain

= 0.

_ /
Eefé = Ee(m—9)6 — o(r - 0) and F¢ = _¢_(T__)
v Y

The former of the above shows that the Laplace transform of &; exists in some
neighborhood of the origin and E|&;|* < oo for all k € N. Put Sy = 0 and S,, =
S &, n>1. We express P, by S;.

(52) P, = Eh (ie—si) —E [efsnh (i esi)] .

=1 =1

Let a number g satisfying 7 < 8 < 1 and ¢(8) < 1 be fixed. By the definitions of p
and ¢(t), B= EpP <322 ¢(8)™ < oo. Using Chebyshev’s inequality, P(p > y) <
By~? for y > 0. Applying integration by parts to h(z) and using the above result,
we have

h(z) = /0 WP(p > y)dy

o0 T
< By Pdy
/0 (y +z)?

o 4B
= Bx_ﬂ/ t—-dt.
o (1+1)?

Hence for z > 0,

w3 8
(5.3) 0< h(z) < sinwﬁBm .

Taking account of (5.2) and (5.3), we can apply Theorem 1 and Corollary 10 to
P,y~". Consequently we have the following positive finite limit

n
cs = lim n3/2y"p, = Jim n3/?E [eTS"h (Z es‘)} )

i=1

This finishes the proof of (3). O
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