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ON BETTI NUMBERS OF COMPACT,
LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS

Dedicated to Professor K. Shoda on his sixtieth birthday

By

Yozo MATSUSHIMA

This is a continuation of our paper [9]. In [9] we have studied
the vanishing of the first Betti number of compact, locally symmetric
Riemannian manifolds. We shall study in this paper the p-th Betti
number of these manifolds from a somewhat different point of view.

Let X be a simply connected, symmetric Riemannian manifold, all
of whose irreducible components are non-euclidean and non-compact. Let
G be the identity component of the group of all isometries of X and let
I' be a discrete subgroup of G with compact quotient space G/I' and
without element of finite order different from the identity. The group -
I" acts on X discontinuously and the quotient space M=X/I' is a compact,
locally symmetric Riemannian manifold. Let A? be the vector space of
all G-invariant p-forms on X. By a well-known theorem of E. Cartan,
the covariant derivatives of each form in A? vanish (see [10]). Since
I'CG, each w € A? is T'-invariant and hence there exists a p-form % on
M such that @=g7op, p denoting the projection of X onto M. Since p is
a locally isometric mapping and the covariant derivatives of ® vanish,
the covariant derivatives of % also vanish. In particular % is a harmonic
p-form. Hence the mapping ®» —# defines an injection of A? into the
vetcor space H? of all harmonic p-forms on M. The purpose of this paper
is to study when A? can be isomrphic to H2.

Let x,€X and let K be the subgroup of G of all elements which
leave fixed the point x,. It is well-known that K is a maximal compact
subgroup of G and X is identified with the quotient space K\G. Let g
denote the Lie algebra of G and let f be the subalgebra of g corresponding
to K. Denote by m the orthogonal complement of ¥ in g with respect
to the Killing form of g. We have then

a=m+f [mm]E [ m]Cm.
Let g° be the complexification of g and let G° be the complex Lie group,
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with center reduced to the identity, corresponding to the complex Lie
algebra ¢°. We may consider G as a subgroup of G°. Put g,=+/ —1m+%.
Then g, is a compact real form of g° and let G, be the subgroup of G°
corresponding to the real subalgebra g, of g°. G, is a maximal compact
subgroup of G° containing K and X,=K\G, is a simply connected, compact
symmetric Riemannian manifold which we shall call the compact form of X.

Now we may identify the vector space A? of all G-invariant p-forms
on X with the vector space of all p-forms on the K-module m which
are invariant by K. On the other hand, the mapping X —+/—1X defines
a K-module isomorphism of m onto \/—1m. It follows that the vector
space A7 of all G,-invariant p-forms on X, is isomorphic to A?. Since
X, is symmetric and G, is compact, the dimension of the vector space
A% equals the p-th Betti number 6,(X,) of X, [4]. Therefore the dimen-
sion of the vector space A? is equal to 0,(X,). On the other hand we
have seen that A? is identified with a subspace of the vector space %? of
all harmonic p-forms of M. Thus we get the inequality b,(M)=0,(X.),
b,(M) denoting the p-th Betti number of M. Therefore our problem is
stated as follows: Under what condition does the p-th Betti number of
M equal the p-th Betti number of X,?

A condition for this will be given by Theorem 1 in §8. From
Theorem 1 we shall obtain the following result.

Theorem 2. Let X be an irreducible symmetric bounded domain and
let X, be the compact form of X. Then the p-th Betti number of the
compact manifold M=X /1" equals the p-th Betti number of X, in the follow-
ing cases:

Type of X ) X, value of p
Lw  (mzm) | Untm)/Umx U | W >p  (W=3);p=1 (w'=2)
a ;I: ¥(n;;3)77 SO(2m)/ U(m) 5”-212>p (m>4);p=1(m=4)
M, (m=2) Sp(m)/U(m) "I2p m>2)ip=1(m=2)
1V, (m=3) SO(n+2)/S0(2) x SO(#n) v p=1 N -
7\7 - E,/Spin (10)x T* p=1
7 VI E;/E¢X T* p= 17,72 7 7 -

(The notations here are those of [2]),
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In §10 we shall apply these results to the classification of automor-
phic factors. The method employed in this paper is a natural extension
of that of our paper [9].

I express here my hearty thanks to S. Murakami for his friendly
cooperations. Especially the results in §§2 and 3 owe to him.

§1. Throughout this paper G will denote a connected semi-simple
Lie group with center reduced to the identity, all of whose simple
components are non-compact ; K will denote a maximal compact subgroup
of G. We denote by g the Lie algebra of all right invariant vector
fields on G and by f the subalgebra of g corresponding to K. Let @
denote the Killing form of g and let

m={Xeg; X, Y)=0 for all Yet}.
Then we have
g=m+t¥, mnt = (0);
[m,m]CE [, m]Cm, [ ] CE.
We know that the restriction of @ onto m(resp. ) defines a positive

(resp. negative) definite bilinear form on m (resp. ). Hence we can choose
a basis X,, -+, X, of m and X,,,, -, X, of £ such that

1.1

¢(Xi;Xj):8ij, 1§Z',].§7’;

1.2)
¢(Xw’Xﬁ) = _Ba.B 7’—|—1§C¥, Bgn.

Throughout this paper we make the following convention: Latin indices
i, j, k, --+ ,will range from 1 to », while Greek indices «, 8, v, --- will range
from 7+1 to » and the indices A, g, v, --- from 1 to n. Let

[X,, X.] = g Xy -

By (1.1) among the structure constants c”,, only the ¢, ¢%;, ¢'s;, ¢'js
can be =#=0. We shall write c,;; instead of ¢%;. From the invariance of
the Killing form under the adjoint representation follows that

1.3 Ciw = —Cjg = C4j = Caij-

We get from (1.2):

n

(1. 4) kE;wZ CoitCojr = %Bij .

=71

For any X, Y €m, we denote by R(X, Y) the endomorphism of the vector
space m defined by
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RX,Y)-Z=1[lY, X1, Z]

for all Z€m. It can be interpreted as the Riemannian curvature tensor
for the Riemannian symmetric manifold K\G (cf. [10]). We have

R(Xk’ Xh)°Xj = 221 Rijkh'Xi ’

where
(1.5) Ry =Ry = "‘aglcmijcmkh .
From (1.4) follows:
1.6) 2 Rigjr = _%Bii .
=1

Let o*(A\=1, -+, ) be the right invariant 1-forms on G such that o*(X,)
=6*,. The symmetric tensor
g =31 (@
A=1
defines a right invariant Riemannian metric on G.

Now let X=K\G and let # be the projection of G onto X. Put
#(e)=x,, ¢ denoting the identity of G. We may identity the vector space
m with the tangent vector space of X at the point x,. We define a G-
invariant symmetric tensor # on X by the condition that the value of &
at the point x, is equal to the restriction of @ onto m. The tensor %
is everywhere positive definite and it defines a G-invariant Riemannian
metric on X. X is a simply connected, symmetric Riemannian manifold.

§2. Let I'.be a discrete subgroup of G with compact quotient space
G/I. We may regard I' as a discontinuous group of isometries of the
symmetric Riemannian manifold X with compact quotient space X/I.
Put M=X/I'. From now on, we assume that I' cotains no element of
finite order different from the identity. Then M is a compact orientable
manifold without singularties and G/I' is a principal fiber bundle of
base M and structure group K. We may consider M as the space of
double cosets: M=K\G/I". Let = denote the projection of G/1' onto M.
The symmetric tensor %# on X being invariant by the action of I it
defines a positive definite symmetric tensor on M which we denote by
the same letter 4. % defines a Riemannian metric on M. We call M a
compact, locally symmetric Riemannian manifold.

The right invariant tensor g on G defines a positive definite sym-
mentric tensor on G/1' which we shall denote also by g. The right
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invariant vector fields X, (resp. 1-forms ®*) on G define also the vector
fields (reap. 1-forms) on G/I' which we shall denote by the same letter
X, (reap. »). Under these notations, consider the symmetric tensor

Zr (@) on G/I". It is easily verified that this tensor is invariant under
i=1

the action of K on G/I. Moreover, the value of this tensor at each
point of G/I' is a symmetric bilinear form on the tangent space which
is positive definite modulo the subspace of vectors tangent to the fiber
of the bundle G/I' over M, this latter subspace being spanned by the
values of the vector fields X, (¢=7+1, ---, ). From these considerations
follows that the symmetric tensor % on M is related to the tensor > (@’)*
on G/I' by the relation ‘

@.1) how = 37 ()2,

i=1

Let dm denote the volme element of M determined by the Riemannian
metric defined by 4. From (2.1) follows that

dmomw = @' A - N@",

We denote by dv the volume element of G/1' determined by the Rieman-
nian metric g. Then

7

dyv = o' A s N® A e A",

Further let dk denote the bi-invariant volume element o *'A .- A" of
the compact group K, where ©”*', .-« | ®” are considered as right invariant
1-forms on K.

Lemma 1. Let f be a continuous function on M. Then

chdm:S(fon)dv,
M /T
where ¢ denotes the total volume of K measured by dk.
For the proof of this lemma, see [13].
Now let #, ¢ be two p-forms on M. We denote by <7, ¢> the usual
scalar product defined by the Riemannian metric 2. The global scalar
product (n, ¢) is defined by

(7, £) = }}!-S o, E>dm.

In the same way, for any two p-forms e, & on G/I', we define <o, 6>
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and (o, 6) using the Riemannian metric g. Put g, ..\,=o Xy, =, Xy,
and 4, ..., =0(X,,, -+, X,,). Since X,, -, X, form an orthonormal basis
of the tangent vector space at each point of G/1, we have <o, 6>=

n
21 &yaghag,-a,. Hence
AR =1
1 ”

G/M

@2.2) (@, ) =

Now let 7, £ be two p-forms on M. We see from (2.1) that

@3 (n, Eyom = (o, Eom).
It follows then from Lemma 1 the following

Lemma 2. Let 5, § be two p-forms on M. Then

c+(n, §) = (nom, fom).

We state here the following lemma which will be used frequently
in the following.

Lemma 3. Let f be a C*-function on G/I. Then

SXAf-dv:O, 1<x<n.

e/T

For the proof, see Weil [12].

§3. The projection = of G/I' onto M defines an injection of the
vector space D?(M) of p-forms on M into the vector space D?(G/I) of
p-forms on G/I. It is well-known that a p-form ® € D?(G/I") is in the
image of D?(M) if and only if (X,)e=0, i(X,)e=0 for a=r+1, -, n,
where 0 (resp. 7) denotes the Lie derivation (resp. interior product). Let
n € D?(M) and put 5’=now. Then dn’=dnon and since #(X,)dn =0, we
have (d7)(X,,, ", X,,,,)=0, if one of the indices A, -+ ,X, is =7+1.

On the other hand, (@r)(X,,, -, X,,, ) =23 (— 1) Xp o (X, ++, Xy, o
X,-P+l)+a2<b(——1)a+b n/([Xia’ Xi[,]) Xil’ e, Xia’ TN Xib’ TN Xip+1)' But since
[X:, Xi,1=>2C0i,:,Xs and 1(X,)n'=0, we get:

1

a’
A

(3 1) (dﬁoﬂ)(Xin Tt Xipn) = iﬁ (‘1)a“1Xia {(770”) (Xiﬂ T Xia’ o Xip+1)} .

Let 6 denote the operator of codifferentiation on the differential
forms on M. For any € D?(M) and &€ D?"' (M), we have (dy, {)=
(n, 6¢). For any &€ D?*™ (M), put
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3.2) §(gom) = 8om
Lemma 4. Let {'=CFom. Then
ENXs, o, X)) = —ZE X' X, Xiys -+, Xi,)

Proof. For any n € D?(M), let o' =nom. Put #'(X;, -, X;)="Ffi, i,
and ¢'(X;,, «++, X;,,) =&iyipy,- From (3.1) and (2.2) we get:

sy 1 25 —1)e-? A o
@, 0) = i 28, 3, D7 | Kifiptarip) g

G¢/T
By Lemma 3,
[ Koo irtaigd Gtpae = D | FivotipKiaiateotiy )0
G/L ¢/L
Hence we obtain :
g 1
@, €)= 51 33 | 1052 Kalf s

e/

We define a p-form ' on G/I' by the conditions that
WXy o Xip) = =23 Xi8ripipy 1K) =0 rHl=a=n).

Then
dy, ) = (v, ).

Using i(X,)¢’ =0, 0(X,)¢’ =0, we verify easily that 0(X,)x' =0 for all
X,. Hence there exists a p-form p on M such that u' = pow. Then
(dy', &)= (nom, wow). On the other hand, by Lemma 2 we have (d7/, {’)
=c(dn, &) and (yom, pow)=c(n, p). Hence we get (dn, {)=(n, p). Since
n is arbitrary, this implies =98¢ and hence x/'=4&¢’. Thus (8'¢)(X;,, -,
ij): _kZXIfé‘,(Xk’ XJ'1> R Xiﬁ)'

From (3.1), (3.2) and Lemma 4 follows

Lemma 5. A p-form o on G/ is a m—image of a harmonic p-form
on M if and only if the following three conditions are satisfied :

1) (X))o =0X,)e =0, r+l1<a<un;

2) Iﬁ(_l)a—lXia°w(Xily ] Xia’ ’Xizz+1) = O’ 1= il) )ip+1 =r;
D) N XpeoX, Xiy, o, Xs, ) =0, L=d,, e iy =7
k=1

8§4. We retain the notations introduced in the preceding sections.
Let ® be a p-form on G/I" satisfying the conditions in Lemma 5 and put
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Gy = oKy, 0, X))

Then we have the following equalities :

4.1 Erpnp = 0 if one of the indices is =7-+1;
b r
4.2) Xo8iip = a;‘ }le (— 1)a_lcwhiaghi1~--3a-~ip ,

rls=a<=mn 1=<i, - ,i,=<7;
4.3) Xigii, = aZ:}I(~1)"“X,~agk,~1.‘,ga...,~p, 1=k, i, i, =7;
4.4) ;ngk"l""'ﬁ-l =0, 14y, 0,0, =7.
Now we have

X;Xo8iyiy— XiX&iriy = ? CajrXaiyip-
From (4.2) and (1.5) follows
S ConXoGivoip = z:: (=D 3 Ripiandlr- iy

Thus we get
(4.5) X Xu@iy1,— XX iyt = ;’-i'( 1" 3 Ry

Now put

(4.6) ® = ZL 2 2 XXy XX 8iip)
D i =t
Lemma 6.
foa—— 51 5 [ RunXorn, )Xo, N0
e/ ey DAL o

Proof. From (4.5) follows

CI) - 2? 2 IZ& Z( 1)a IR]kzah(X ngq ‘ip XkXngl lp)ghlf"la"'tp
,1 ‘ﬁ J a=1

Z___] i Z 2( 1)“ 1R]klah(X ngz1 ’p)ghix"'la"'lp

sip bk

1
Y
Put

/

= B B S D R Kt ) K diy)

1
b
By Lemma 3 we have

4.7 S(I)dv :S(I)’dv.

G/ G/T
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Now we have
2 22 Rikign(Xe&iyi J X 8iyi i)

i hip ok

t, " htp—1 Bidsk,

= (=D X : IRjkIh(ngItl‘“ti,_l)(nghtl"'tp_1) .
Hence '

(4.8) P=—- > Rjklh(ngltl-“tp_l)(nghtl“'tp_l) .

RN NN

From (4.8) and (4.7) follows the lemma.

Lemma 7.

(; X&iyip = ——jzlg,-l...,-p—l-Z bzq (— 1)a+bk,hZZIRibhiakghkir~~2b~»§a~~-ip .

Proof. Put
F = (S XDgis,-

We let operate X, on the both sides of (4.3) and summing up on k2 we
get:

. ?»
F= ?‘:l (=1)* ; XX 8riyigip -

Since X, X; =X; X,+>] €4, X, and since (4.4) holds, we get

»
4.9) F= EE‘ (=1)* ; ; cwkia(Xwgkiy"fa'“ip) .
By (4.2), Xoguiyigrip = ; Conk8hiyigip
+Zh g’; (=1) Coniy8hkiy-iy-iq-ip
+§ (_l)b'1cwhibghk£1'-‘2a'~'2b~"ip} .
Replacing this in (4.9) and using (1.4) and (1.5) we obtain the lemma.

Lemma 8.

g 2 ,
2 S gi,i,d0 = = Z S (X1, AV
i /T kyiq, »ip T
4 ar
+=32 2 (=D S R phi g 8hiy-iyi p* Biyrigi yAU

p b<a hkyig,ip
/T

Proof. By Lemma 3 we have
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p3 S (XuGiys)'do = —S (X318 1500

/T @/T

By Lemma 7, — S (32 X8, )Gy , AV
&@/T *
= é—)— j gfr--.‘pd”—zbz:; g (—1)e+® ) R i gh8utiy-iyiri p8iyi j0V -

e/T e/T

It is easily verified that
22 2 Riphi qh8hbiydyd goi y8ir i

i g Bk

=21 ; Riahibkghil---:’,,--~i1,gki1~~-f',,---ip .
iy hy

From these equalities follows the lemma.
§5. From (4.5) and (1.5) follows:

X;X08:iy— XX 81y
6.1) T T
= >3 23(-1) CajkCaigh8hiy-igip

a=1 @=7r+1 ph

Calculating 2pd directly from (5.1) as in [9], §4, we find :

where (X, Y)(X, Y €f) denotes the bilinear form on f defined by
Yv(X, Y) = Tr(ad, X-ad,Y),

ade denoting the representation of f on the vector space m defined by
ad X-Z=[X, Z] for all Zem. In particular we have

V(Xas Xp) = —,;Cwijcﬁij .

Now let
E=3+5+--+1,,

where 3 denotes the center of f and f,, -+, f, denote the simple ideals
of . As we have shown in [9], § 4, we can choose a basis {X,.,, -, X,}
of ¥ satisfying the following conditions: 1) each X, belongs to 3 or to
one of the simple ideals; 2) (X, , Xp)=—08,5; 3) V(X,, Xp)=0 for a=-8.
Moreover, if X, €3 we have J(X,, X,)=—1 and if X, €f,, y(X,, X,)=
—a,, where a, a real number such that 0< a,<’1 depending on f, (see

[9], §4).
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Choose a basis {X,.,, -+, X,} of  satisfying these conditions. We
get then

2p®
»
6. 2) =a§1(—1)“+b_ PR D CoighCoipt8hiyigipBliy-ipy-iy

i gl X €3

q
+21a; 20 Cwiahcmi,,zghil-~~$a~-~ipg1i1-~z°b-~£p} .
=i Xa € ts

§6. From now on we assume that g is simple. Let
A = Min (a,, -+, a,) .

Then 0<CA< 1. We know that the center 3 of f is (0) or 1-dimensional.
Suppose first that dim =1 and let 3= {X,.,}. Then

2p®

)
—1\a+b \ \
= Aﬂ;l( 1) i 1? CaighCaipt iy igi p8irv-iyip
W= ip ’

ik,

From (1.5) and (4. 2) follows :
2p®
»
(6.1) =-A> > (—1)“bRiah;,,lghi1~~«?a~~il,g1i1---?b~--ip

aB=1 iy, ks
+(1—A) 2 (Xr18i1)" -
1 ,'",lp

1

Put
0= > (_1)“+bRiahib1ghi1-~-?a~~£pg1i1-~-3b-~-ip .

6<a iy, ip,h,t
By an easy calculation we see that the first term of the right hand side

of the inequality (6. 1) equals A:g > gi »,—2A0. Hence we get finally

Jeent

the following inequality :

A A
6.2 p=4 2=
( ) 4 ingpg v y
It should be noted that, if f=3 (this is the case if and only if dim g=3),
we have

0.

1 3 1
*= 17 ilgiﬂ gflmip—y ;(ﬂ .
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Therefore we put A=1 in this case.
We see in a similar way that the inequality (6.2) holds also in the case
3=(0). Moreover, if ¥ is simple, the equality holds in (6. 2).

§ 7. Integrating the both sides of (6.2) we get:

S(degé 3 Sg?l..‘,-pdv——% S Odv.

i
@/T RS /T

On the other hand, we have by Lemma 8

5 (gt

i g

G/T
=2 2 S (ngil"'ip *dv —I—i S Odv.
p kyig, " "yip T p o
Hence we get:
A .
(7.1) [ean=2 51 | g, av.
é/T 2p BT

From (7.1) and Lemma 6 follows

Lemma 9.

0= A 2] S (ngil"'ip)zdv+ > ;g: S Riklj(Xigjt1-~-t1,_1)(ngnln-tp_1)dv .

2prinip @/T S @/T

If g is simple and 3==(0), the symmetric space of G is an irreducible
symmetric bounded domain. From the classification of such domain, it
is known, except in the case of classical domain of type I,/ (imn=m'=2),
f has only one simple factor. In the case, where f has only one simple
factor, we have shown in [9], §6, that

7.2 A:dimlf—1<dh;m_l)’

while in the case where the corresponding domain is of type I, ,/ (m=
m =2),

(7.3) A=_"_
m-+m

In the case, where 3=(0) and f is simple, we have

(7. 4) A — dim m
) 2dim £
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(see [9], §7).
We define for each simple non-compact Lie algebra g a quadratic form
H?*(&) on the linear space of tensors &§=(& ) by putting

A
= 2 Bipat 2 2 Ruuiner, vty -

2D i1 i gy iadl

i1 piy
H g(f) =
Then by Lemma 9 we have

0= | Hy(Xugis )

G/

Remark. In the case p=1 we have already defined in [9] a quadratic
form Hy(&)=0(g) 32 &1+ Ris;6i6m.  The constant b(g) is strictly greater
i,7 i,7,k,!

than %A. This is because we have omitted the factor > (X,..8;-:,)°
WS,

to obtain (6.2), while in the case p=1 we have a convenient equality
SV(X,4.8:)° _1 S g% under a suitable normalisation of X, ,, (see [9], §5);
i V4 i

hence we obtain

®z%M®2ﬂ

in place of (6.2), with b(g)z%AjLi(l—A). Remark that the term con-
r
taining ® is missing in the case p=1.
§8. We prove now the following theorem.

Theorem 1. Let X be a simply connected, irveducible symmetric Rieman-
nian manifold which is non-compact and non-euclidean. Let G be the identity
component of the group of all isometries of X. Let I’ be a discrete subgroup
of G with compact quotient G/I' and without element of finite order
different from the indentity, so that 1" is a discontinuous group of isometries
of X with compact quotient M=X/I". Let X, be the compact form of X.
Suppose that the quadaatic form HZ(E) is positive definite. Then the p-th
Betti number b,(M) of M equals the p-th Betti number b,X,) of X,.

Proof. Let A? denote the vector space of all G-invariant p-form
of X. Since I'CCG, each p-form a € A? is 1'-invariant and hence there
exists a p—-form 5 of M such that a«=%op, p denoting the projection of
X onto M. As we have stated in the introduction, » is a harmonic p-form
on M and the mapping «— % defines an injection of A? into the vector
space H? of all harmonic p-form on M. Moreover, we know that the



14 Y. MATSUSHIMA

dimension of A? equals the p-th Betti number b?(X,) of X, (see Intro-
duction). We have b,(X,)=0,(M) if and only if the mapping a—7 is a
surjection of A? onto H2. Now let 5 €9H? and let =907, # denoting
the projection of G/I' onto X/I'=M. We retain the notations introduced
in the preceding sections and put

&nap = Xy, Xo )
Then these g,,..., satisfy the relations (4.1)-(4.4). By Lemma 9 we have

0= | Hy(Xugi ).

G/T

Since Hj(£) is positive definite by assumption, this implies :
8.1 Xe&iiy=0, 1=Fk,i,,i,<7.
Then Xkagiip_XkX]gtliI,ZO‘ Ol'l the Otoer hal'ld Xinghip_XkXigi]lp
=2 CojrXs&i:, and hence

8.2) SV CoiXaii, =0, L3, by, oo,y =7.
@=7+1

Now we know that the representation X—ad, X of the Lie algebra { on
the vector space m defined by putting ad X-Z=[X, Z] for all Zem is
faithful. For any real numbers £,, we have [>1€,X,, X;]=>1(X] ¢,;:€a) X

Hence, if 3> ¢,£,=0 for j, k=1, -+, 7, we must have £,=0. Thus (8.2)
implies
(8.3) Xo&iviy,=0, r+l=a=n, 1=i, " ,i,=7.

From (8.1) and (8.3) follows that g;,..;, are constant. On the other hand,
by (4.1) g,..,=0 if one of the indices is > and hence g,,..., is constant
for any indices A, -:-,),. Let p denote the projection of G onto G/I’
and put @=wop.

G
2T
\ /

M

As in §1, X, denotes here the right invariant vector field on G. Then
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a(Xy,, -, Xy ) =8\, are constant and hence & is a right invariant p-
form on G. Moreover, since #(X,)o=0(X,)»=0, we have also i(X,)6=
0(X,)o=0. Therefore there exists a G-invariant p-form « on X=K\G
such that &=ao%, # denoting the projection of G onto K\G. Since
wop=pow and &=(nom)op we have &=(yop)ow. Since d=aow#, we get
a=nop and this shows that the harmonic p-form 7 is the image of the
G-invariant p-form « on X. Since 7 is arbitrary, the mapping A?—H?
defined above is surjective. Then we get b,(M)=0,X,). Theorem 1 is
thus proved.

§9. We discuss here when the quadratic form H2() is positive
definite. For any tensor 7=(7;;) put

A ;
Fyn) = = 2 7%+ 2 Rt
2p i,j i,7,k,0
Let n=%"+7%", where »'=(5{;) is symmetric and 7" =(%%}) is alternating in
the indices 7, j. Using the property R;.,;=R;.;, We see easily that
Fp("7) = Fp(ﬁ/)+Fp(’7//) .

(This and the following arguments are those of Weil [12]). Moreover,
since 7” is alternating,

1,1’ o0’ rr_ 17
Z“R;klj’?u"?u = — EIRukjmﬁ?kz = ZIRujkmﬂ?kz .
i3k, i3k, i35k,

From this and from Bianchi identity R;.;;+ R+ R;j.,=0 follows :
2 ,zk:IRiklf'”%’I% = — .ZklRijkl"?,z'g??% = 2(2 CaijNty)" -
1,7,k, i,7,k, (7 1,7
Therefore F,(»”")=0 and F,(»"/)=0 implies »"’=0. Suppose that F,(»") >0

for any symmetric 7’40 and we show that Hj(§) is then positive
definite. In fact, we write £§=§+&”, where & =(,,..,,) is symmetric

and & = (i%,.., ,) is alternating in the indices 4,j. Since H%(¢)=
> Fy(Eijeyr,n), we have HE(E)=H3(E)+ H3(E") and Hy(E")=0. Now
Hoiatp—1

since F,((&i;1,-+, ))=0 by assumption, we have H3(¢)=0 and hence

H7(6=0. If Hp)=0, we have Hj(&)=0 and H%(¢”)=0 and hence
F (et p )= F (st ))=0 for any ¢,,-+,¢,.,. This implies &;,...,_,
=&ise, , =0 for any indices 4, j,¢,, -+, ¢, and hence £=0. Thus Hj()
is positve definite.

Let P denote the linear transformation of the vector space of all
symmetric tensor 7’ defined by putting

-P("/)ij = Z] Rikljﬁ;z@ .
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Then (P(n), {)=(@', P(")), (n, ¢) denoting usual inner product: (%, {’)
= 2 Wéjé' Ly

The linear transformation P of the vector space of 7’ is thus symmetric.
The quadratis form F,(»") is written

F ) = %(W’, o)+ (s P()) .

F (') is positive definite, if (and only if) the absolute value of the minimal

eigen-value A, of P is strictly smaller than %

We consider the case where X is an irreducible symmetric bounded
domain. In this case, the value of A is calculated by (7.2) and (7.3),
while the minimal eigen-value A, of P is already known (see [1] [2]
and [9], §11). We obtain the following table.

A

Type of X _‘g A 2_1>+ A
W 2wz | gty | i S o0
T (=9 R% ‘2<m1~1) Zﬁ?ri:?;
v, (m=3) _’1'7 _,% \
v _(1;_ _ 11_2 %—?ﬁ
VI % _ % ?%9

Therefore H}() is positive difinite in the following cases:

Type L, ., % >p;
Type 1L, %2 >p;
Type III,,, Z”_l‘lt% > p;
Type V, ’ p=1;
Type VI, p=12.

But we have proved in [9] that, except in the case of type L,,, the
first Betti number of M vanishes. On the other hand, the first Betti
number of a compact, simply connected symmetric space vanishes. From
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Theorem 1 and from the above results follows Theorem 2 stated in the
introduction.

§10. It is known that, for any simply connected compact Hermitian
symmetric space X,, we have 0,,,,(X,)=0 and 0,,(X,) =, (X,), where
h, ;(X,) denotes the dimension of the complex vector space of all harmonic
forms of type (»,s) on X, [5]. Moreover, if X, is irreducible, we have
b(X.)=h,,(X,)=1. The argument used in proving the inequality b,(M)
=b,X,) shows that &, (M)=h, (X,). Since M is Kihlerian, we have
b,(M) :,g_]ﬁh,ls(M). Therefore, if b,(M)=0,(X,), we must have b,M)=0

for odd p and b,(M)=h, (M) for p=2¢q. In particular, if b,(M)=>0,X,)
and if X, (therefore X) is irreducible, we have b,(M)=#h, ,(M)=1. From
Theorem 2 we obtain the following theorem.

Theorem 3. Let X be an irrveducible symmetric bounded domain of
one of the following types: 1, m=m=6), 1L, (m=7), III,, (m=7), VL
Then we have

bl(M> = 0: bz(M) = hll(M) =1.

We apply this result to the classification of automorphic factors.
Let X be a symmetric bounded domain and let I' be a discontinuous
group on X without element of finite order different from the identity
and with compact quotient space X/I'. An automorphic factor £ (with
respect to I') is a mapping of XX I' into C* such that

k(z, ¥8) = k(zv, d)k(z, v)

for any z€X, v, 8 €I and that k(z, v) is holomorphic in z. If 2 and ¥
are automorphic factors, so are the mappings (z, v) —k(z, v)-k'(z, v) and
(2, v)—>k(z, v)"'. Two automorphic factors k£ and &’ are equivalent (k~F%’),
if there exists a non-vanishing holomorphic function f on X such that

k'(z, v) = k(z, )f(2) f(2y)™"

for any (z, y) € XxTI.

The equivalence classes of automorphic factors form a group F with
respect to the multiplication defined above.

Now, given an automorphic factor k(z, v), we can define a complex
line bundle E, over the complex manifolds X/I' as follows. E, is the
quotient of XxC by the equivalence relation : (z, &)~ (27, k(z, v)-£).
It is known that the two line bundle E, and E,, over X/I' are isomorphic
if and only if the automorphic factor k2 and k' are equivalent. A line
bundle E over X/I' is defined by an automorphic factor in the above
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way if and only if the induced bundle p*E over X is analytically trivial,
where p denotes the projection of X onto X/I'. (For these facts on line
bundles, cf. [11]). Now, since X is a homogeneous bounded domain in
C”, it is a domain of holomorphy by a theorem of Thullen and hence a
Stein manifold. Moreover X is homeomorphic to a euclidean space. It
follows then from the fundamental theorem (Theorem B) on Stein mani-
folds (see [6]) that every complex line bundle over X is analytically
trivial (this is also a special case of a more general result of Grauert).
Therefore every complex line bundle over X/I' is defined by an auto-
morphic factor and the group of equivalence classes of complex line
bunles over X/I' is isomorphic to the group F.
Consider now the exact sequence of sheaves over X/I':

0>Z—->0->90%*-0,

where Z, O, O* denote respectively the constant sheaf isomorphic to
the additive group of integers, the sheaf of germs of holomorphic func-
tions and the sheaf of germs of non-vanishing holomorphic functions on
X/ (cf. [7]). We get the exact sequence of cohomologies :

— H'X/I, Q) — H'(X/T, Q*) — H(X/I, Z) — H*X/T, Q) —

Suppose now that 4,(X/I)=0 and b,(X/I")=#h, (X/T)=1. Since X/I' is
Kihlerian, the dimensions of the complex vector spaces H'(X/I, ©) and
H¥X/I, O) equal £, ,(X/I') and #&,,(X/I') respectively by a theorem of
Dolbeault (see [7]). It follows then that H(X/I', O)=H*X/I', O)=(0)
and hence H'(X/I, O*) =~ H*X/I", Z). The group H*(X/I', O%) is identified
with the group of equivalence classes of complex line bundles over X/I'
and hence isomorphic to F. Thus F= H*X/I', Z). Since b,(X/I)=1, it
follows that the group F is a direct product of an infinite cyclic subgroup
F, and a finite subgroup F,. For an automorphic factor £ we denote by
[#] the equivalence class containing k. Let [k] € F,. Then there exists
an integer m=0 and a non-vanishing holomorphic function f on X such
that k(z, )" =f(2)-f(z-y)™" for any (2, y) € XxI. Since X is simply con-
nected and f(2)==0 for any z€X, we can find a holomorphic function %
on X such that 4(2)”=f(z) for any z€ X. Let X(z, v)=k(z, v)-h(2) -h(z-7).
Then k~X and X(z, y)”=1. It follows that X(z, v) is independent of z
and hence X(z, v)=X(y) is a 1-dimensional unitary representation on I,
i.e. a character of the finite abelian group I'/I”, IV denoting the com-
mutator group of I' (note that I'/IV is finite, because 4,(X/I")=0). Thus
each equivalence class in F, contains a character of T'/IV. Conversely
an equivalence class containing a character of I'/IV is clearly of finite
order. Now let X, and X, be two characters contained in one and the
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same equivalence class and let X=X,.X;*. Then there exists a non-
vanishing holomorphic function f on X such that f(z-y)=X(y)-f(z) for
any (2, v) € XxI. Then dlog f is a holomorphic 1-form on X invariant
by I' and hence it defines a holomorphic 1-form on X/I". Since b,(X/I")
=0, we must have dlog f/=0. Then f is a constant and hence X=1 and
we get X,=X,. Thus each equivalence class of finite order contains one
and only one character of I'/IV. Therefore F, is isomorphic to the
character group of the finite abelian group I'/I".

Let &, be an automorphic factor such that [k,] is a generator of the
infinite cyclic group F,. For each automorphic factor k, there exist an
integer #» and a character X of I’/IV such that [k] is written uniquely
in the form :

[£] = [ke]-[X].
Combined with Theorem 3 we get

Theorem 4. Let X be an irreducible symmetric bounded domain of
one of the following types: I, ., m=m =6), I, (m=7), 1L, (m=7), VL
Let T be a discrete subgroup of the identity component of the automorphism
group of X. Suppose that the quotient space X/|T' is compact and that ©
contains no elements of finite order different from the identity. Then the
group F of equivalence classes of automorphic factors is divect product of
an infinite cyclic group and a finite abelian group, the latter being isomorphic
to the character group of the finite abelian group U'/IY, where IV denotes
the commutator group of I'. Therefore there exists an automorphic factor
k, with the following property: For each automorphic factor k, theve exist
a unique character X of U/IY and a unique integer n such that k~Fkg-X.

It will be an interesting problem to determine a ‘“standard” k, for
each type of X.
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