

| Title        | On Betti numbers of compact, locally sysmmetric<br>Riemannian manifolds |
|--------------|-------------------------------------------------------------------------|
| Author(s)    | Matsushima, Yozô                                                        |
| Citation     | Osaka Mathematical Journal. 1962, 14(1), p. 1-20                        |
| Version Type | VoR                                                                     |
| URL          | https://doi.org/10.18910/5711                                           |
| rights       |                                                                         |
| Note         |                                                                         |

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Matsushima, Y. Osaka Math. J. 14 (1962), 1–20.

# ON BETTI NUMBERS OF COMPACT, LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS

Dedicated to Professor K. Shoda on his sixtieth birthday

## Вч

## Yozô MATSUSHIMA

This is a continuation of our paper [9]. In [9] we have studied the vanishing of the first Betti number of compact, locally symmetric Riemannian manifolds. We shall study in this paper the p-th Betti number of these manifolds from a somewhat different point of view.

Let X be a simply connected, symmetric Riemannian manifold, all of whose irreducible components are non-euclidean and non-compact. Let G be the identity component of the group of all isometries of X and let  $\Gamma$  be a discrete subgroup of G with compact quotient space  $G/\Gamma$  and without element of finite order different from the identity. The group  $\Gamma$  acts on X discontinuously and the quotient space  $M = X/\Gamma$  is a compact, locally symmetric Riemannian manifold. Let  $A^{p}$  be the vector space of all G-invariant p-forms on X. By a well-known theorem of E. Cartan, the covariant derivatives of each form in  $A^{p}$  vanish (see [10]). Since  $\Gamma \subset G$ , each  $\omega \in A^p$  is  $\Gamma$ -invariant and hence there exists a p-form  $\eta$  on M such that  $\omega = \eta \circ \rho$ ,  $\rho$  denoting the projection of X onto M. Since  $\rho$  is a locally isometric mapping and the covariant derivatives of  $\omega$  vanish, the covariant derivatives of  $\eta$  also vanish. In particular  $\eta$  is a harmonic *p*-form. Hence the mapping  $\omega \rightarrow \eta$  defines an injection of  $A^p$  into the vetcor space  $\mathfrak{h}^{p}$  of all harmonic p-forms on M. The purpose of this paper is to study when  $A^{p}$  can be isomrphic to  $\mathfrak{h}^{p}$ .

Let  $x_0 \in X$  and let K be the subgroup of G of all elements which leave fixed the point  $x_0$ . It is well-known that K is a maximal compact subgroup of G and X is identified with the quotient space  $K \setminus G$ . Let g denote the Lie algebra of G and let t be the subalgebra of g corresponding to K. Denote by m the orthogonal complement of t in g with respect to the Killing form of g. We have then

 $\mathfrak{g} = \mathfrak{m} + \mathfrak{k}, \ [\mathfrak{m}, \mathfrak{m}] \subset \mathfrak{k}, \ [\mathfrak{k}, \mathfrak{m}] \subset \mathfrak{m}.$ 

Let  $g^c$  be the complexification of g and let  $G^c$  be the complex Lie group,

#### Y. MATSUSHIMA

with center reduced to the identity, corresponding to the complex Lie algebra  $g^c$ . We may consider G as a subgroup of  $G^c$ . Put  $g_u = \sqrt{-1} \mathfrak{m} + \mathfrak{k}$ . Then  $g_u$  is a compact real form of  $g^c$  and let  $G_u$  be the subgroup of  $G^c$  corresponding to the real subalgebra  $g_u$  of  $g^c$ .  $G_u$  is a maximal compact subgroup of  $G^c$  containing K and  $X_u = K \setminus G_u$  is a simply connected, compact symmetric Riemannian manifold which we shall call the *compact form* of X.

Now we may identify the vector space  $A^p$  of all *G*-invariant *p*-forms on *X* with the vector space of all *p*-forms on the *K*-module *m* which are invariant by *K*. On the other hand, the mapping  $X \to \sqrt{-1}X$  defines a *K*-module isomorphism of *m* onto  $\sqrt{-1}m$ . It follows that the vector space  $A^p_u$  of all  $G_u$ -invariant *p*-forms on  $X_u$  is isomorphic to  $A^p$ . Since  $X_u$  is symmetric and  $G_u$  is compact, the dimension of the vector space  $A^p_u$  equals the *p*-th Betti number  $b_p(X_u)$  of  $X_u$  [4]. Therefore the dimension of the vector space  $A^p$  is equal to  $b_p(X_u)$ . On the other hand we have seen that  $A^p$  is identified with a subspace of the vector space  $\mathfrak{h}^p$  of all harmonic *p*-forms of *M*. Thus we get the inequality  $b_p(M) \geq b_p(X_u)$ ,  $b_p(M)$  denoting the *p*-th Betti number of *M*. Therefore our problem is stated as follows: Under what condition does the *p*-th Betti number of *M* equal the *p*-th Betti number of  $X_u$ ?

A condition for this will be given by Theorem 1 in  $\S$ 8. From Theorem 1 we shall obtain the following result.

**Theorem 2.** Let X be an irreducible symmetric bounded domain and let  $X_u$  be the compact form of X. Then the p-th Betti number of the compact manifold  $M = X/\Gamma$  equals the p-th Betti number of  $X_u$  in the following cases:

| Type of X                   | X <sub>u</sub>               | value of p                                      |  |
|-----------------------------|------------------------------|-------------------------------------------------|--|
| $I_{m, m'}$ $(m \ge m')$    | $U(m+m')/U(m)\times U(m')$   | $\frac{m'}{2} > p$ $(m' \ge 3); p = 1 (m' = 2)$ |  |
| II <sub>m</sub> $(m \ge 3)$ | SO(2m)/U(m)                  | $\frac{m-2}{2} > p  (m>4); \ p=1 \ (m=4)$       |  |
| $III_m$ $(m \ge 2)$         | Sp(m)/U(m)                   | $\frac{m+2}{4} > p \ (m>2); \ p=1 \ (m=2)$      |  |
| IV <sub>m</sub> $(m \ge 3)$ | $SO(n+2)/SO(2) \times SO(n)$ | p = 1                                           |  |
| V                           | $E_6/Spin$ (10)× $T^1$       | <i>p</i> = 1                                    |  |
| VI                          | $E_7/E_6	imes T^1$           | p = 1, 2                                        |  |

(The notations here are those of [2]),

In § 10 we shall apply these results to the classification of automorphic factors. The method employed in this paper is a natural extension of that of our paper [9].

I express here my hearty thanks to S. Murakami for his friendly cooperations. Especially the results in  $\S$  2 and 3 owe to him.

§ 1. Throughout this paper G will denote a connected semi-simple Lie group with center reduced to the identity, all of whose simple components are non-compact; K will denote a maximal compact subgroup of G. We denote by g the Lie algebra of all right invariant vector fields on G and by  $\mathfrak{k}$  the subalgebra of g corresponding to K. Let  $\varphi$  denote the Killing form of g and let

$$\mathfrak{m} = \{X \in \mathfrak{g} ; \varphi(X, Y) = 0 \text{ for all } Y \in \mathfrak{k}\}.$$

Then we have

(1.1) 
$$g = m + \mathfrak{k}, \qquad m \wedge \mathfrak{k} = (0);$$
$$[m, m] \subset \mathfrak{k}, [\mathfrak{k}, m] \subset m, [\mathfrak{k}, \mathfrak{k}] \subset \mathfrak{k}.$$

We know that the restriction of  $\varphi$  onto m(resp.  $\mathfrak{k}$ ) defines a positive (resp. negative) definite bilinear form on m(resp.  $\mathfrak{k}$ ). Hence we can choose a basis  $X_1, \dots, X_r$  of m and  $X_{r+1}, \dots, X_n$  of  $\mathfrak{k}$  such that

(1.2) 
$$\begin{aligned} \varphi(X_i, X_j) &= \delta_{ij}, \quad 1 \leq i, \ j \leq r; \\ \varphi(X_{\alpha}, X_{\beta}) &= -\delta_{\alpha\beta} \quad r+1 \leq \alpha, \ \beta \leq n. \end{aligned}$$

Throughout this paper we make the following convention: Latin indices  $i, j, k, \dots$ , will range from 1 to r, while Greek indices  $\alpha, \beta, \gamma, \dots$  will range from r+1 to n and the indices  $\lambda, \mu, \nu, \dots$  from 1 to n. Let

$$[X_{\lambda}, X_{\mu}] = \sum_{\nu=1}^{n} c^{\nu}{}_{\lambda\mu} \cdot X_{\nu}.$$

By (1.1) among the structure constants  $c_{\lambda\mu}^{\nu}$  only the  $c_{\alpha\beta}^{\gamma}$ ,  $c_{ij}^{\alpha}$ ,  $c_{\alpha j}^{i}$ ,  $c_{ij}^{i}$ ,  $c_{\alpha j}^{i}$ ,  $c_{ij}^{i}$  can be  $\pm 0$ . We shall write  $c_{\alpha ij}$  instead of  $c_{ij}^{\alpha}$ . From the invariance of the Killing form under the adjoint representation follows that

(1.3) 
$$c^{j}{}_{i\alpha} = -c^{i}{}_{j\alpha} = c^{i}{}_{\alpha j} = c_{\alpha ij}.$$

We get from (1.2):

(1.4) 
$$\sum_{k=1}^{r} \sum_{\alpha=r+1}^{n} c_{\alpha i k} c_{\alpha j k} = \frac{1}{2} \delta_{i j}.$$

For any X,  $Y \in \mathfrak{m}$ , we denote by R(X, Y) the endomorphism of the vector space  $\mathfrak{m}$  defined by

$$R(X, Y) \cdot Z = [[Y, X], Z]$$

for all  $Z \in \mathfrak{m}$ . It can be interpreted as the Riemannian curvature tensor for the Riemannian symmetric manifold  $K \setminus G$  (cf. [10]). We have

$$R(X_k, X_h) \cdot X_j = \sum_{i=1}^r R^i{}_{jkh} \cdot X_i$$
,

where

(1.5) 
$$R^{i}{}_{jkh} = R_{ijkh} = -\sum_{\alpha=r+1}^{n} c_{\alpha i j} c_{\alpha kh}$$

From (1.4) follows:

(1.6) 
$$\sum_{k=1}^{r} R_{ikjk} = -\frac{1}{2} \delta_{ij}.$$

Let  $\omega^{\lambda}(\lambda=1, \dots, n)$  be the right invariant 1-forms on G such that  $\omega^{\lambda}(X_{\mu}) = \delta^{\lambda}{}_{\mu}$ . The symmetric tensor

$$g = \sum_{\lambda=1}^n (\omega^\lambda)^2$$

defines a right invariant Riemannian metric on G.

Now let  $X = K \setminus G$  and let  $\hat{\pi}$  be the projection of G onto X. Put  $\hat{\pi}(e) = x_0$ , e denoting the identity of G. We may identity the vector space m with the tangent vector space of X at the point  $x_0$ . We define a G-invariant symmetric tensor h on X by the condition that the value of h at the point  $x_0$  is equal to the restriction of  $\varphi$  onto m. The tensor h is everywhere positive definite and it defines a G-invariant Riemannian metric on X. X is a simply connected, symmetric Riemannian manifold.

§2. Let  $\Gamma$  be a discrete subgroup of G with compact quotient space  $G/\Gamma$ . We may regard  $\Gamma$  as a discontinuous group of isometries of the symmetric Riemannian manifold X with compact quotient space  $X/\Gamma$ . Put  $M=X/\Gamma$ . From now on, we assume that  $\Gamma$  cotains no element of finite order different from the identity. Then M is a compact orientable manifold without singularties and  $G/\Gamma$  is a principal fiber bundle of base M and structure group K. We may consider M as the space of double cosets :  $M=K\backslash G/\Gamma$ . Let  $\pi$  denote the projection of  $G/\Gamma$  onto M. The symmetric tensor h on X being invariant by the action of  $\Gamma$ , it defines a positive definite symmetric tensor on M which we denote by the same letter h. h defines a Riemannian metric on M. We call M a compact, locally symmetric Riemannian manifold.

The right invariant tensor g on G defines a positive definite symmetric tensor on  $G/\Gamma$  which we shall denote also by g. The right

invariant vector fields  $X_{\lambda}$  (resp. 1-forms  $\omega^{\lambda}$ ) on G define also the vector fields (reap. 1-forms) on  $G/\Gamma$  which we shall denote by the same letter  $X_{\lambda}$  (reap.  $\omega^{\lambda}$ ). Under these notations, consider the symmetric tensor  $\sum_{i=1}^{r} (\omega^{i})^{2}$  on  $G/\Gamma$ . It is easily verified that this tensor is invariant under the action of K on  $G/\Gamma$ . Moreover, the value of this tensor at each point of  $G/\Gamma$  is a symmetric bilinear form on the tangent space which is positive definite modulo the subspace of vectors tangent to the fiber of the bundle  $G/\Gamma$  over M, this latter subspace being spanned by the values of the vector fields  $X_{\alpha}$  ( $\alpha = r+1, \dots, n$ ). From these considerations follows that the symmetric tensor h on M is related to the tensor  $\sum_{i}^{r} (\omega^{i})^{2}$  on  $G/\Gamma$  by the relation

$$(2.1) h \circ \pi = \sum_{i=1}^r (\omega^i)^2.$$

Let dm denote the volme element of M determined by the Riemannian metric defined by h. From (2.1) follows that

$$dm \circ \pi = \omega^1 \wedge \cdots \wedge \omega^r$$
.

We denote by dv the volume element of  $G/\Gamma$  determined by the Riemannian metric g. Then

$$dv = \omega^1 \wedge \cdots \wedge \omega^r \wedge \cdots \wedge \omega^n$$
 .

Further let dk denote the bi-invariant volume element  $\omega^{r+1} \wedge \cdots \wedge \omega^n$  of the compact group K, where  $\omega^{r+1}, \cdots, \omega^n$  are considered as right invariant 1-forms on K.

Lemma 1. Let f be a continuous function on M. Then

$$c\int_{M} f\,dm = \int_{G/\Gamma} (f\circ\pi)dv\,,$$

where c denotes the total volume of K measured by dk.

For the proof of this lemma, see [13].

Now let  $\eta$ ,  $\zeta$  be two *p*-forms on *M*. We denote by  $\langle \eta, \zeta \rangle$  the usual scalar product defined by the Riemannian metric *h*. The global scalar product  $(\eta, \zeta)$  is defined by

$$(\eta,\,\zeta)=rac{1}{p!}\int\limits_{M}\langle\eta,\,\zeta
angle dm\,.$$

In the same way, for any two *p*-forms  $\omega$ ,  $\theta$  on  $G/\Gamma$ , we define  $\langle \omega, \theta \rangle$ 

and  $(\omega, \theta)$  using the Riemannian metric g. Put  $g_{\lambda_1, \dots, \lambda_p} = \omega(X_{\lambda_1}, \dots, X_{\lambda_p})$ and  $h_{\lambda_1, \dots, \lambda_p} = \theta(X_{\lambda_1}, \dots, X_{\lambda_p})$ . Since  $X_1, \dots, X_n$  form an orthonormal basis of the tangent vector space at each point of  $G/\Gamma$ , we have  $\langle \omega, \theta \rangle = \sum_{\lambda_1, \dots, \lambda_p=1}^n g_{\lambda_1, \dots, \lambda_p} h_{\lambda_1, \dots, \lambda_p}$ . Hence

(2.2) 
$$(\omega, \theta) = \frac{1}{p!} \sum_{\lambda_1, \cdots, \lambda_p=1}^n \int_{G/M} g_{\lambda_1, \cdots, \lambda_p} \cdot h_{\lambda_1, \cdots, \lambda_p} dv$$

Now let  $\eta$ ,  $\zeta$  be two *p*-forms on *M*. We see from (2.1) that

$$(2.3) \qquad \qquad \langle \eta, \zeta \rangle \circ \pi = \langle \eta \circ \pi, \zeta \circ \pi \rangle.$$

It follows then from Lemma 1 the following

**Lemma 2.** Let  $\eta$ ,  $\zeta$  be two p-forms on M. Then

$$c \cdot (\eta, \zeta) = (\eta \circ \pi, \zeta \circ \pi)$$
.

We state here the following lemma which will be used frequently in the following.

**Lemma 3.** Let f be a  $C^{\infty}$ -function on  $G/\Gamma$ . Then

$$\int\limits_{G/\Gamma} X_{\lambda} f \cdot dv = 0 , \qquad 1 \leq \lambda \leq n .$$

For the proof, see Weil [12].

§3. The projection  $\pi$  of  $G/\Gamma$  onto M defines an injection of the vector space  $D^{p}(M)$  of p-forms on M into the vector space  $D^{p}(G/\Gamma)$  of p-forms on  $G/\Gamma$ . It is well-known that a p-form  $\omega \in D^{p}(G/\Gamma)$  is in the image of  $D^{p}(M)$  if and only if  $\theta(X_{\alpha})\omega=0$ ,  $i(X_{\alpha})\omega=0$  for  $\alpha=r+1, \cdots, n$ , where  $\theta$  (resp. i) denotes the Lie derivation (resp. interior product). Let  $\eta \in D^{p}(M)$  and put  $\eta'=\eta\circ\pi$ . Then  $d\eta'=d\eta\circ\pi$  and since  $i(X_{\alpha})d\eta'=0$ , we have  $(d\eta')(X_{\lambda_{1}}, \cdots, X_{\lambda_{p+1}})=0$ , if one of the indices  $\lambda_{1}, \cdots, \lambda_{p}$  is  $\geq r+1$ . On the other hand,  $(d\eta')(X_{i_{1}}, \cdots, X_{i_{p+1}})=\sum_{a=1}^{p+1}(-1)^{a-1}X_{i_{a}}\cdot\eta'(X_{i_{1}}, \cdots, \hat{X}_{i_{a}}, \cdots, X_{i_{p+1}})+\sum_{a<b}(-1)^{a+b}\eta'([X_{i_{a}}, X_{i_{b}}], X_{i_{1}}, \cdots, \hat{X}_{i_{a}}, \cdots, \hat{X}_{i_{b}}, \cdots, X_{i_{p+1}})$ . But since  $[X_{i_{a}}, X_{i_{b}}]=\sum_{\alpha}c_{\alpha i_{a}i_{b}}X_{\alpha}$  and  $i(X_{\alpha})\eta'=0$ , we get:

$$(3.1) \quad (d\eta \circ \pi)(X_{i_1}, \cdots, X_{i_{p+1}}) = \sum_{a=1}^{p+1} (-1)^{a-1} X_{i_a} \{ (\eta \circ \pi)(X_{i_1}, \cdots, \hat{X}_{i_a}, \cdots, X_{i_{p+1}}) \} .$$

Let  $\delta$  denote the operator of codifferentiation on the differential forms on M. For any  $\eta \in D^{p}(M)$  and  $\zeta \in D^{p+1}(M)$ , we have  $(d\eta, \zeta) =$  $(\eta, \delta\zeta)$ . For any  $\zeta \in D^{p+1}(M)$ , put

$$(3.2) \qquad \qquad \delta'(\zeta \circ \pi) = \delta \zeta \circ \pi ,$$

Lemma 4. Let  $\zeta' = \zeta \circ \pi$ . Then

$$(\delta'\zeta')(X_{i_1},\cdots,X_{i_p}) = -\sum_{k=1}^r X_k \cdot \zeta'(X_k,X_{i_1},\cdots,X_{i_p}).$$

*Proof.* For any  $\eta \in D^p(M)$ , let  $\eta' = \eta \circ \pi$ . Put  $\eta'(X_{i_1}, \dots, X_{i_p}) = f_{i_1, \dots, i_p}$ and  $\zeta'(X_{i_1}, \dots, X_{i_{p+1}}) = g_{i_1, \dots, i_{p+1}}$ . From (3.1) and (2.2) we get:

$$(d\eta',\,\zeta') = rac{1}{(p+1)!} \sum_{a=1}^{p+1} \sum_{i_1,\cdots,i_{p+1}}^{p-1} (-1)^{a_{-1}} \int_{G/\Gamma} (X_{i_a} f_{i_1,\cdots,\hat{i}_a,\cdots,i_{p+1}}) \cdot g_{i_1,\cdots,i_{p+1}} dv$$

By Lemma 3,

$$\int_{G/L} (X_{i_a} f_{i_1 \cdots \hat{i}_a \cdots i_{p+1}}) \cdot g_{i_1 \cdots i_{p+1}} dv = (-1)^a \int_{G/L} f_{i_1 \cdots \hat{i}_a \cdots i_{p+1}} (X_{i_a} g_{i_a i_1 \cdots \hat{i}_a \cdots i_{p+1}}) dv .$$

Hence we obtain :

$$(d\eta', \zeta') = -\frac{1}{p!} \sum_{j_1, \cdots, j_p} \int_{G/\Gamma} f_{j_1 \cdots j_p} (\sum_k X_k g_{kj_1 \cdots j_p}) dv$$

We define a *p*-form  $\mu'$  on  $G/\Gamma$  by the conditions that

$$\mu'(X_{j_1}, \cdots, X_{j_p}) = -\sum_{k=1}^r X_k g_{k j_1 \cdots j_p}, \ i(X_a) \mu' = 0 \ (r+1 \le \alpha \le n) .$$

Then

$$(d\eta', \zeta') = (\eta', \mu')$$
.

Using  $i(X_{\alpha})\zeta' = 0$ ,  $\theta(X_{\alpha})\zeta' = 0$ , we verify easily that  $\theta(X_{\alpha})\mu' = 0$  for all  $X_{\alpha}$ . Hence there exists a *p*-form  $\mu$  on *M* such that  $\mu' = \mu \circ \pi$ . Then  $(d\eta', \zeta') = (\eta \circ \pi, \mu \circ \pi)$ . On the other hand, by Lemma 2 we have  $(d\eta', \zeta') = c(d\eta, \zeta)$  and  $(\eta \circ \pi, \mu \circ \pi) = c(\eta, \mu)$ . Hence we get  $(d\eta, \zeta) = (\eta, \mu)$ . Since  $\eta$  is arbitrary, this implies  $\mu = \delta \zeta$  and hence  $\mu' = \delta' \zeta'$ . Thus  $(\delta' \zeta')(X_{j_1}, \cdots, X_{j_p}) = -\sum_{h} X_h \cdot \zeta'(X_h, X_{j_1}, \cdots, X_{j_p})$ .

From (3.1), (3.2) and Lemma 4 follows

**Lemma 5.** A p-form  $\omega$  on  $G/\Gamma$  is a  $\pi$ -image of a harmonic p-form on M if and only if the following three conditions are satisfied:

1) 
$$i(X_{\alpha})\omega = \theta(X_{\alpha})\omega = 0, r+1 \leq \alpha \leq n;$$

2)  $\sum_{a=1}^{p+1} (-1)^{a-1} X_{i_a} \cdot \omega(X_{i_1}, \cdots, \hat{X}_{i_a}, \cdots, X_{i_{p+1}}) = 0, \ 1 \leq i_1, \cdots, i_{p+1} \leq r;$ 

3) 
$$\sum_{k=1}^{r} X_k \cdot \omega(X_k, X_{i_1}, \cdots, X_{i_{p-1}}) = 0, \ 1 \leq i_1, \cdots, i_{p-1} \leq r.$$

§4. We retain the notations introduced in the preceding sections. Let  $\omega$  be a *p*-form on  $G/\Gamma$  satisfying the conditions in Lemma 5 and put Y. MATSUSHIMA

$$g_{\lambda_1\cdots\lambda_p} = \omega(X_{\lambda_1},\cdots,X_{\lambda_p}).$$

Then we have the following equalities:

(4.1) 
$$g_{\lambda_1,\dots,\lambda_p} = 0$$
 if one of the indices is  $\geq r+1$ ;

(4.2) 
$$X_{\alpha}g_{i_{1}\cdots i_{p}} = \sum_{a=1}^{r}\sum_{h=1}^{r} (-1)^{a-1}c_{\alpha h i_{a}}g_{h i_{1}\cdots i_{a}\cdots i_{p}},$$
$$r+1 \leq \alpha \leq n, \ 1 \leq i_{1}, \cdots, i_{p} \leq r;$$

(4.3) 
$$X_{k}g_{i_{1}\cdots i_{p}} = \sum_{a=1}^{p} (-1)^{a-1}X_{i_{a}}g_{ki_{1}\cdots i_{a}\cdots i_{p}}, \ 1 \leq k, \ i_{1}, \cdots, i_{p} \leq r;$$
  
(4.4) 
$$\sum_{i=1}^{r} X_{k}g_{ki_{1}\cdots i_{p-1}} = 0, \ 1 \leq i_{1}, \cdots, i_{p-1} \leq r.$$

(4.4) 
$$\sum_{k=1} X_k g_{ki_1 \cdots i_{p-1}} = 0, \ 1 \leq i_1, \cdots, i_{p-1} \leq r$$

Now we have

$$X_j X_k g_{i_1 \cdots i_p} - X_k X_j g_{i_1 \cdots i_p} = \sum_{\alpha} c_{\alpha j k} X_{\alpha} g_{i_1 \cdots i_p}.$$

From (4.2) and (1.5) follows

$$\sum_{\alpha} c_{\alpha j k} X_{\alpha} g_{i_1 \cdots i_p} = \sum_{a=1}^p (-1)^{a-1} \sum_{h} R_{j k i_a h} g_{h i_1 \cdots \hat{i}_a \cdots i_p}.$$

Thus we get

(4.5) 
$$X_{j}X_{k}g_{i_{1}\cdots i_{p}}-X_{k}X_{j}g_{i_{1}\cdots i_{p}}=\sum_{a=1}^{p}(-1)^{a-1}\sum_{k=1}^{r}R_{jki_{a}k}g_{hi_{1}\cdots \hat{i}_{a}\cdots i_{p}}.$$

Now put

(4.6) 
$$\Phi = \frac{1}{2p} \sum_{i_1, \cdots, i_p=1}^r \sum_{j_1, k=1}^r (X_j X_k g_{i_1 \cdots i_p} - X_k X_j g_{i_1 \cdots i_p})^2.$$

Lemma 6.

$$\int_{G/\Gamma} \Phi \, dv = -\sum_{\iota_1, \cdots, \iota_{p-1}} \sum_{j,k,h,l} \int_{G/\Gamma} R_{jklh} (X_j g_{ht_1 \cdots t_{p-1}}) (X_k g_{lt_1 \cdots t_{p-1}}) dv \, .$$

Proof. From (4.5) follows

$$\begin{split} \Phi &= \frac{1}{2p} \sum_{i_1, \cdots, i_p} \sum_{h, j, k} \sum_{a=1}^p (-1)^{a-1} R_{jki_ah} (X_j X_k g_{i_1 \cdots i_p} - X_k X_j g_{i_1 \cdots i_p}) g_{hi_1 \cdots \hat{i}_a \cdots i_p} \\ &= \frac{1}{p} \sum_{a=1}^p \sum_{i_1, \cdots, i_p} \sum_{h, j, k} (-1)^{a-1} R_{jki_ah} (X_j X_k g_{i_1 \cdots i_p}) g_{hi_1 \cdots \hat{i}_a \cdots i_p}. \end{split}$$

Put

$$\Phi' = \frac{1}{p} \sum_{a=1}^{p} \sum_{i_1, \cdots, i_p} \sum_{h, j, k} (-1)^a R_{jki_ah}(X_k g_{i_1 \cdots i_p})(X_j g_{hi_1 \cdots \hat{i}_a \cdots i_p}),$$

By Lemma 3 we have

(4.7) 
$$\int_{G/\Gamma} \Phi \, dv = \int_{G/\Gamma} \Phi' \, dv \, .$$

Now we have

$$\begin{split} &\sum_{i_1,\cdots,i_p} \sum_{h,j,k} R_{jki_ah}(X_k g_{i_1\cdots i_p})(X_j g_{hi_1\cdots i_a\cdots i_p}) \\ &= \sum_{i_1,\cdots,i_p} \sum_{h,j,k} R_{jki_ah}(-1)^{a-1} (X_k g_{i_ai_1\cdots i_a\cdots i_p})(X_j g_{hi_1\cdots i_a\cdots i_p}) \\ &= (-1)^{a-1} \sum_{t_1,\cdots,t_{p-1}} \sum_{h,j,k,l} R_{jklh}(X_k g_{lt_1\cdots t_{p-1}})(X_j g_{ht_1\cdots t_{p-1}}) \,. \end{split}$$

Hence

(4.8) 
$$\Phi' = -\sum_{t_1, \cdots, t_{p-1}} \sum_{h, j, k, l} R_{jklh}(X_k g_{lt_1 \cdots t_{p-1}})(X_j g_{ht_1 \cdots t_{p-1}}).$$

From (4.8) and (4.7) follows the lemma.

Lemma 7.

$$(\sum_{k} X_{k}^{2})g_{i_{1}\cdots i_{p}} = -\frac{p}{2}g_{i_{1}\cdots i_{p}} + 2\sum_{b < a}(-1)^{a_{+b}}\sum_{k,h=1}^{r}R_{i_{b}hi_{a}k}g_{hki_{1}\cdots \hat{i}_{b}\cdots \hat{i}_{a}\cdots i_{p}}.$$

Proof. Put

$$F=(\sum_{k}X_{k}^{2})g_{i_{1}\cdots i_{p}}.$$

We let operate  $X_k$  on the both sides of (4.3) and summing up on k we get:

$$F = \sum_{a=1}^{p} (-1)^{a-1} \sum_{k} X_{k} X_{i_{a}} g_{ki_{1} \cdots \hat{i}_{a} \cdots i_{p}}.$$

Since  $X_k X_{i_a} = X_{i_a} X_k + \sum_{\alpha} c_{\alpha k i_a} X_{\alpha}$  and since (4.4) holds, we get

(4.9) 
$$F = \sum_{a=1}^{p} (-1)^{a-1} \sum_{k} \sum_{\alpha} c_{\alpha k i_{a}} (X_{\alpha} g_{k i_{1} \cdots \hat{i}_{a} \cdots i_{p}}).$$

By (4.2), 
$$X_{\alpha}g_{hi_1\cdots\hat{i}_a\cdots i_p} = \sum_h c_{\alpha hk}g_{hi_1\cdots\hat{i}_a\cdots i_p}$$
  
  $+\sum_h \left\{\sum_{b  
  $+\sum_{a$$ 

Replacing this in (4.9) and using (1.4) and (1.5) we obtain the lemma.

Lemma 8.

$$\sum_{i_1,\cdots,i_p} \int_{G/\Gamma} g^2_{i_1\cdots i_p} dv = \frac{2}{p} \sum_{k,i_1,\cdots,i_p} \int_{G/\Gamma} (X_k g_{i_1\cdots i_p})^2 dv$$
$$+ \frac{4}{p} \sum_{b < a} \sum_{k,k,i_1,\cdots,i_p} (-1)^{a+b} \int_{G/\Gamma} R_{i_b h i_a k} g_{h i_1} \cdots \hat{i}_b \cdots i_p \cdot g_{k i_1} \cdots \hat{i}_a \cdots i_p dv .$$

Proof. By Lemma 3 we have

$$\sum_{k} \int_{G/\Gamma} (X_k g_{i_1 \cdots i_p})^2 dv = - \int_{G/\Gamma} (\sum_{k} X_k^2 g_{i_1 \cdots i_p}) g_{i_1 \cdots i_p} dv.$$

By Lemma 7,  $-\int_{\mathcal{G}/\Gamma} (\sum_{k} X_{k}^{2} g_{i_{1}\cdots i_{p}}) g_{i_{1}\cdots i_{p}} dv$  $= \frac{p}{2} \int_{\mathcal{G}/\Gamma} g_{i_{1}\cdots i_{p}}^{2} dv - 2 \sum_{b < a} \sum_{h,k} (-1)^{a+b} \int_{\mathcal{G}/\Gamma} R_{i_{b}hi_{a}k} g_{hki_{1}\cdots \hat{i}_{b}\cdots \hat{i}_{a}\cdots i_{p}} g_{i_{1}\cdots i_{p}} dv .$ 

It is easily verified that

$$\sum_{i_1,\cdots,i_p}\sum_{h,k}R_{i_bhi_ak}g_{hki_1\cdots\hat{i}_b\cdots\hat{i}_a\cdots i_p}g_{i_1\cdots i_p}$$
$$=\sum_{i_1,\cdots,i_p}\sum_{h,k}R_{i_ahi_bk}g_{hi_1\cdots\hat{i}_b\cdots i_p}g_{ki_1\cdots\hat{i}_a\cdots i_p}.$$

From these equalities follows the lemma.

§5. From (4.5) and (1.5) follows:

(5.1)  
$$X_{j}X_{k}g_{i_{1}\cdots i_{p}} - X_{k}X_{j}g_{i_{1}\cdots i_{p}}$$
$$= \sum_{a=1}^{p}\sum_{\alpha=r+1}^{n}\sum_{k}(-1)^{a}c_{\alpha j k}c_{\alpha i_{a}h}g_{h i_{1}\cdots \hat{i}_{a}\cdots i_{p}}$$

Calculating  $2p\Phi$  directly from (5.1) as in [9], §4, we find:

$$2p\Phi = -\sum_{a,b=1}^{p} (-1)^{a+b} \sum_{\alpha,\beta} \sum_{i_1,\cdots,i_p} \sum_{h,l} \psi(X_{\alpha}, X_{\beta}) c_{\alpha i_a h} c_{\beta i_b l} g_{h i_1 \cdots \hat{i}_a \cdots i_p} g_{l i_1 \cdots \hat{i}_b \cdots i_p},$$

where  $\psi(X, Y)(X, Y \in \mathfrak{k})$  denotes the bilinear form on  $\mathfrak{k}$  defined by

 $\psi(X, Y) = Tr(ad_{\mathfrak{m}}X \cdot ad_{\mathfrak{m}}Y),$ 

 $ad_{\mathfrak{m}}X$  denoting the representation of  $\mathfrak{k}$  on the vector space  $\mathfrak{m}$  defined by  $ad_{\mathfrak{m}}X \cdot Z = [X, Z]$  for all  $Z \in \mathfrak{m}$ . In particular we have

$$\psi(X_{\alpha}, X_{\beta}) = -\sum_{i,j=1}^{r} c_{\alpha i j} c_{\beta i j}.$$

Now let

 $\mathbf{t} = \mathbf{z} + \mathbf{t}_1 + \dots + \mathbf{t}_q,$ 

where  $\mathfrak{z}$  denotes the center of  $\mathfrak{k}$  and  $\mathfrak{k}_1, \cdots, \mathfrak{k}_q$  denote the simple ideals of  $\mathfrak{k}$ . As we have shown in [9], §4, we can choose a basis  $\{X_{r+1}, \cdots, X_n\}$ of  $\mathfrak{k}$  satisfying the following conditions: 1) each  $X_{\alpha}$  belongs to  $\mathfrak{z}$  or to one of the simple ideals; 2)  $\varphi(X_{\alpha}, X_{\beta}) = -\delta_{\alpha\beta}$ ; 3)  $\psi(X_{\alpha}, X_{\beta}) = 0$  for  $\alpha = \beta$ . Moreover, if  $X_{\alpha} \in \mathfrak{z}$ , we have  $\psi(X_{\alpha}, X_{\alpha}) = -1$  and if  $X_{\alpha} \in \mathfrak{k}_s$ ,  $\psi(X_{\alpha}, X_{\alpha}) =$  $-a_s$ , where  $a_s$  a real number such that  $0 < a_s < 1$  depending on  $\mathfrak{k}_s$  (see [9], §4).

Choose a basis  $\{X_{r+1}, \dots, X_n\}$  of t satisfying these conditions. We get then

(5.2) 
$$2p\Phi$$

$$=\sum_{a,b=1}^{p} (-1)^{a+b} \sum_{i_{1},\cdots,i_{p},h,l} \left\{ \sum_{X_{\alpha} \in \mathfrak{F}} c_{\alpha i_{a}h} c_{\alpha i_{b}l} g_{h i_{1}} \cdots \hat{i}_{a} \cdots i_{p} g_{l i_{1}} \cdots \hat{i}_{b} \cdots i_{p} \right\}$$

$$+\sum_{s=1}^{q} a_{s} \sum_{X_{\alpha} \in \mathfrak{K}_{s}} c_{\alpha i_{a}h} c_{\alpha i_{b}l} g_{h i_{1}} \cdots \hat{i}_{a} \cdots i_{p} g_{l i_{1}} \cdots \hat{i}_{b} \cdots i_{p} \right\} .$$

§6. From now on we assume that g is simple. Let

$$A = \operatorname{Min} (a_1, \cdots, a_s).$$

Then 0 < A < 1. We know that the center  $\mathfrak{z}$  of  $\mathfrak{k}$  is (0) or 1-dimensional. Suppose first that dim  $\mathfrak{z}=1$  and let  $\mathfrak{z}=\{X_{r+1}\}$ . Then

$$\begin{split} & 2p\Phi \\ & \geq A\sum_{a,b=1}^{p}(-1)^{a+b}\sum_{i_{1},\cdots,i_{p},h,l}\sum_{\alpha}c_{\alpha i_{\alpha}h}c_{\alpha i_{b}l}g_{hi_{1}\cdots\hat{i}_{a}\cdots i_{p}}g_{li_{1}\cdots\hat{i}_{b}\cdots i_{p}} \\ & +(1-A)\sum_{i_{1},\cdots,i_{p}}(\sum_{a=1}^{p}\sum_{h=1}^{r}(-1)^{a}c_{r+1i_{a}h}g_{hi_{1}\cdots\hat{i}_{a}\cdots i_{p}})^{2} \,. \end{split}$$

From (1.5) and (4.2) follows:

(6.1) 
$$\geq -A_{a,b=1}^{p} \sum_{i_{1},\cdots,i_{p},h,\iota} (-1)^{a+b} R_{i_{a}hi_{b}l} g_{hi_{1}\cdots\hat{i}_{a}\cdots i_{p}} g_{li_{1}\cdots\hat{i}_{b}\cdots i_{p}} + (1-A) \sum_{i_{1},\cdots,i_{p}} (X_{r+1}g_{i_{1}\cdots i_{p}})^{2}.$$

Put

$$\Theta = \sum_{b < a} \sum_{i_1, \cdots, i_p, h, l} (-1)^{a+b} R_{i_a h i_b l} g_{h i_1 \cdots \hat{i}_a \cdots i_p} g_{l i_1 \cdots \hat{i}_b \cdots i_p}.$$

By an easy calculation we see that the first term of the right hand side of the inequality (6.1) equals  $A \frac{p}{2} \sum_{i_1 \cdots i_p} g_{i_1 \cdots i_p}^2 - 2A\Theta$ . Hence we get finally the following inequality:

(6.2) 
$$\Phi \ge \frac{A}{4} \sum_{i_1, \cdots, i_p} g_{i_1 \cdots i_p}^2 - \frac{A}{p} \Theta.$$

It should be noted that, if  $\mathfrak{k} = \mathfrak{z}$  (this is the case if and only if dim  $\mathfrak{g} = 3$ ), we have

$$\Phi = \frac{1}{4} \sum_{i_1,\cdots,i_p} g^2_{i_1\cdots i_p} - \frac{1}{p} \Theta.$$

Therefore we put A=1 in this case.

We see in a similar way that the inequality (6.2) holds also in the case  $\mathfrak{z}=(0)$ . Moreover, if  $\mathfrak{k}$  is simple, the equality holds in (6.2).

§7. Integrating the both sides of (6.2) we get:

$$\int_{G/\Gamma} \Phi dv \geq \frac{A}{4} \sum_{i_1, \cdots, i_p} \int_{G/\Gamma} g_{i_1 \cdots i_p}^2 dv - \frac{A}{p} \int_{G/\Gamma} \Theta dv \, .$$

On the other hand, we have by Lemma 8

$$\begin{split} &\sum_{i_1,\cdots,i_p} \int_{\mathcal{G}/\Gamma} g^2_{i_1\cdots i_p} dv \\ &= \frac{2}{p} \sum_{k,i_1,\cdots,i_p} \int_{\mathcal{G}/\Gamma} (X_k g_{i_1\cdots i_p})^2 dv + \frac{4}{p} \int_{\mathcal{G}/\Gamma} \Theta dv \,. \end{split}$$

Hence we get:

(7.1) 
$$\int_{G/\Gamma} \Phi \, dv \ge \frac{A}{2p} \sum_{k,i,\cdots,i_p} \int_{G/\Gamma} (X_k g_{i_1\cdots i_p})^2 dv \, .$$

From (7.1) and Lemma 6 follows

Lemma 9.

$$0 \ge \frac{A}{2p} \sum_{k,i_1,\cdots,i_p} \int_{G/\Gamma} (X_k g_{i_1\cdots i_p})^2 dv + \sum_{i_1,\cdots,i_{p-1}} \sum_{i,j,k,l} \int_{G/\Gamma} R_{iklj} (X_i g_{ji_1\cdots i_{p-1}}) (X_k g_{li_1\cdots i_{p-1}}) dv .$$

If g is simple and  $\mathfrak{z} \neq (0)$ , the symmetric space of G is an irreducible symmetric bounded domain. From the classification of such domain, it is known, except in the case of classical domain of type  $I_{m,m'}$   $(m \ge m' \ge 2)$ ,  $\mathfrak{k}$  has only one simple factor. In the case, where  $\mathfrak{k}$  has only one simple factor, we have shown in [9], § 6, that

(7.2) 
$$A = \frac{1}{\dim \mathfrak{k} - 1} \left( \frac{\dim \mathfrak{m}}{2} - 1 \right),$$

while in the case where the corresponding domain is of type  $I_{m,m'}$  ( $m \ge m' \ge 2$ ),

$$(7.3) A = \frac{m'}{m+m'}.$$

In the case, where  $\mathfrak{z} = (0)$  and  $\mathfrak{k}$  is simple, we have

$$(7.4) A = \frac{\dim \mathfrak{m}}{2\dim \mathfrak{k}}$$

(see [9], §7).

We define for each simple non-compact Lie algebra g a quadratic form  $H^p_q(\xi)$  on the linear space of tensors  $\xi = (\xi_{i_1 \cdots i_{p+1}})$  by putting

$$H_{\mathfrak{g}}^{p}(\xi) = \frac{A}{2p} \sum_{i_{1}, \cdots, i_{p+1}} \xi_{i_{1}\cdots i_{p+1}}^{2} + \sum_{t_{1}, \cdots, t_{p-1}} \sum_{i, j, k, l} R_{iklj} \xi_{ijt_{1}\cdots t_{p-1}} \xi_{klt_{1}\cdots t_{p-1}}.$$

Then by Lemma 9 we have

$$0 \geq \int_{G/\Gamma} H^p_{\mathfrak{g}}((X_k g_{i_1 \cdots i_p})) dv.$$

*Remark.* In the case p=1 we have already defined in [9] a quadratic form  $H_{\mathfrak{g}}(\xi) = b(\mathfrak{g}) \sum_{i,j} \xi_{ij}^2 + \sum_{i,j,k,l} R_{iklj} \xi_{ij} \xi_{kl}$ . The constant  $b(\mathfrak{g})$  is strictly greater than  $\frac{1}{2}A$ . This is because we have omitted the factor  $\sum_{i_1,\cdots,i_p} (X_{r+1}g_{i_1\cdots i_p})^2$ to obtain (6.2), while in the case p=1 we have a convenient equality  $\sum_i (X_{r+1}g_i)^2 = \frac{1}{r} \sum_i g_i^2$  under a suitable normalisation of  $X_{r+1}$  (see [9], §5); hence we obtain

$$\Phi \ge rac{1}{2} b(\mathfrak{g}) \sum_i g_i^2$$

in place of (6.2), with  $b(g) = \frac{1}{2}A + \frac{1}{r}(1-A)$ . Remark that the term containing  $\Theta$  is missing in the case p=1.

§8. We prove now the following theorem.

**Theorem 1.** Let X be a simply connected, irreducible symmetric Riemannian manifold which is non-compact and non-euclidean. Let G be the identity component of the group of all isometries of X. Let  $\Gamma$  be a discrete subgroup of G with compact quotient  $G/\Gamma$  and without element of finite order different from the indentity, so that  $\Gamma$  is a discontinuous group of isometries of X with compact quotient  $M=X/\Gamma$ . Let  $X_u$  be the compact form of X. Suppose that the quadaatic form  $H^m_{\mathfrak{g}}(\xi)$  is positive definite. Then the p-th Betti number  $b_p(M)$  of M equals the p-th Betti number  $b_p(X_u)$  of  $X_u$ .

*Proof.* Let  $A^p$  denote the vector space of all *G*-invariant *p*-form of *X*. Since  $\Gamma \subset G$ , each *p*-form  $\alpha \in A^p$  is  $\Gamma$ -invariant and hence there exists a *p*-form  $\eta$  of *M* such that  $\alpha = \eta \circ \rho$ ,  $\rho$  denoting the projection of *X* onto *M*. As we have stated in the introduction,  $\eta$  is a harmonic *p*-form on *M* and the mapping  $\alpha \to \eta$  defines an injection of  $A^p$  into the vector space  $\mathfrak{h}^p$  of all harmonic *p*-form on *M*. Moreover, we know that the dimension of  $A^p$  equals the p-th Betti number  $b^p(X_u)$  of  $X_u$  (see Introduction). We have  $b_p(X_u) = b_p(M)$  if and only if the mapping  $\alpha \to \eta$  is a surjection of  $A^p$  onto  $\mathfrak{h}^p$ . Now let  $\eta \in \mathfrak{h}^p$  and let  $\omega = \eta \circ \pi$ ,  $\pi$  denoting the projection of  $G/\Gamma$  onto  $X/\Gamma = M$ . We retain the notations introduced in the preceding sections and put

$$g_{\lambda_1\cdots\lambda_p} = \omega(X_{\lambda_1}, \cdots, X_{\lambda_p})$$
.

Then these  $g_{\lambda_1 \cdots \lambda_p}$  satisfy the relations (4.1)-(4.4). By Lemma 9 we have

$$0 \ge \int_{G/\Gamma} H^p_{\mathfrak{g}}((X_k g_{i_1 \cdots i_p})) dv \, .$$

Since  $H^p_{\mathfrak{a}}(\xi)$  is positive definite by assumption, this implies:

(8.1)  $X_k g_{i_1 \cdots i_p} = 0, \quad 1 \leq k, i_1, \cdots, i_p \leq r.$ 

Then  $X_j X_k g_{i_1 \cdots i_p} - X_k X_j g_{i_1 \cdots i_p} = 0$ . On the otoer hand  $X_j X_k g_{i_1 \cdots i_p} - X_k X_j g_{i_1 \cdots i_p}$ =  $\sum_{a} c_{ajk} X_a g_{i_1 \cdots i_p}$  and hence

(8.2) 
$$\sum_{\alpha=r+1}^{n} c_{\alpha j k} X_{\alpha} g_{i_{1}\cdots i_{p}} = 0, \quad 1 \leq j, \, k, \, i_{1}, \cdots, i_{p} \leq r.$$

Now we know that the representation  $X \to ad_{\mathfrak{m}}X$  of the Lie algebra  $\mathfrak{k}$  on the vector space  $\mathfrak{m}$  defined by putting  $ad_{\mathfrak{m}}X \cdot Z = [X, Z]$  for all  $Z \in \mathfrak{m}$  is faithful. For any real numbers  $\xi_{\alpha}$ , we have  $[\sum_{\alpha} \xi_{\alpha} X_{\alpha}, X_{k}] = \sum_{j} (\sum_{\alpha} c_{\alpha j k} \xi_{\alpha}) X_{j}$ . Hence, if  $\sum_{\alpha} c_{\alpha j k} \xi_{\alpha} = 0$  for  $j, k = 1, \dots, r$ , we must have  $\xi_{\alpha} = 0$ . Thus (8.2) implies

$$(8.3) X_{\alpha}g_{i_1\cdots i_p} = 0, \quad r+1 \leq \alpha \leq n, \quad 1 \leq i_1, \cdots, i_p \leq r.$$

From (8.1) and (8.3) follows that  $g_{i_1\cdots i_p}$  are constant. On the other hand, by (4.1)  $g_{\lambda_1\cdots\lambda_p}=0$  if one of the indices is >r and hence  $g_{\lambda_1\cdots\lambda_p}$  is constant for any indices  $\lambda_1, \cdots, \lambda_p$ . Let  $\tilde{\rho}$  denote the projection of G onto  $G/\Gamma$ and put  $\tilde{\omega} = \omega \circ \tilde{\rho}$ .



As in §1,  $X_{\lambda}$  denotes here the right invariant vector field on G. Then

 $\tilde{\omega}(X_{\lambda_1}, \dots, X_{\lambda_p}) = g_{\lambda_1 \dots \lambda_p}$  are constant and hence  $\tilde{\omega}$  is a right invariant p-form on G. Moreover, since  $i(X_{\alpha})\omega = \theta(X_{\alpha})\omega = 0$ , we have also  $i(X_{\alpha})\tilde{\omega} = \theta(X_{\alpha})\tilde{\omega} = 0$ . Therefore there exists a G-invariant p-form  $\alpha$  on  $X = K \setminus G$  such that  $\tilde{\omega} = \alpha \circ \tilde{\pi}$ ,  $\tilde{\pi}$  denoting the projection of G onto  $K \setminus G$ . Since  $\pi \circ \tilde{\rho} = \rho \circ \tilde{\pi}$  and  $\tilde{\omega} = (\eta \circ \pi) \circ \tilde{\rho}$  we have  $\tilde{\omega} = (\eta \circ \rho) \circ \tilde{\pi}$ . Since  $\tilde{\omega} = \alpha \circ \tilde{\pi}$ , we get  $\alpha = \eta \circ \rho$  and this shows that the harmonic p-form  $\eta$  is the image of the G-invariant p-form  $\alpha$  on X. Since  $\eta$  is arbitrary, the mapping  $A^p \to \mathfrak{h}^p$  defined above is surjective. Then we get  $b_p(M) = b_p(X_u)$ . Theorem 1 is thus proved.

§9. We discuss here when the quadratic form  $H_g^p(\xi)$  is positive definite. For any tensor  $\eta = (\eta_{ij})$  put

$$F_p(\eta) = rac{A}{2p}\sum_{i,j}\eta_{ij}^2 + \sum_{i,j,k,l}R_{iklj}\eta_{ij}\eta_{kl}\,.$$

Let  $\eta = \eta' + \eta''$ , where  $\eta' = (\eta'_{ij})$  is symmetric and  $\eta'' = (\eta'_{ij})$  is alternating in the indices *i*, *j*. Using the property  $R_{iklj} = R_{jlki}$ , we see easily that

$$F_{p}(\eta) = F_{p}(\eta') + F_{p}(\eta'')$$
.

(This and the following arguments are those of Weil [12]). Moreover, since  $\eta''$  is alternating,

$$\sum_{i,j,k,l} R_{iklj} \eta_{ij}^{\prime\prime} \eta_{kl}^{\prime\prime} = -\sum_{i,j,k,l} R_{ilkj} \eta_{ij}^{\prime\prime} \eta_{kl}^{\prime\prime} = \sum_{i,j,k,l} R_{iljk} \eta_{ij}^{\prime\prime} \eta_{kl}^{\prime\prime} \,.$$

From this and from Bianchi identity  $R_{iklj} + R_{iljk} + R_{ijkl} = 0$  follows:

$$2\sum_{i,j,k,l}R_{iklj}\eta_{ij}^{\prime\prime}\eta_{kl}^{\prime\prime} = -\sum_{i,j,k,l}R_{ijkl}\eta_{ij}^{\prime\prime}\eta_{kl}^{\prime\prime} = \sum_{\alpha}(\sum_{i,j}c_{\alpha ij}\eta_{ij}^{\prime\prime})^{2}.$$

Therefore  $F_p(\eta') \ge 0$  and  $F_p(\eta'') = 0$  implies  $\eta'' = 0$ . Suppose that  $F_p(\eta') > 0$ for any symmetric  $\eta' \ne 0$  and we show that  $H_g^n(\xi)$  is then positive definite. In fact, we write  $\xi = \xi' + \xi''$ , where  $\xi' = (\xi'_{ijt_1\cdots t_{p-1}})$  is symmetric and  $\xi'' = (\xi'_{ijt_1\cdots t_{p-1}})$  is alternating in the indices i, j. Since  $H_g^n(\xi) =$  $\sum_{t_1,\dots,t_{p-1}} F_p((\xi_{ijt_1\cdots t_{p-1}}))$ , we have  $H_g^n(\xi) = H_g^n(\xi') + H_g^n(\xi')$  and  $H_g^n(\xi') \ge 0$ . Now since  $F_p((\xi'_{ijt_1\cdots t_{p-1}})) \ge 0$  by assumption, we have  $H_g^n(\xi') \ge 0$  and hence  $H_g^n(\xi) \ge 0$ . If  $H_g^n(\xi) = 0$ , we have  $H_g^n(\xi') = 0$  and  $H_g^n(\xi'') = 0$  and hence  $F_p((\xi'_{ijt_1\cdots t_{p-1}})) = F_p((\xi''_{ijt_1\cdots t_{p-1}})) = 0$  for any  $t_1, \cdots, t_{p-1}$ . This implies  $\xi'_{ijt_1\cdots t_{p-1}} =$  $\xi'_{jit_1\cdots t_{p-1}} = 0$  for any indices  $i, j, t_1, \cdots, t_{p-1}$  and hence  $\xi = 0$ . Thus  $H_g^n(\xi)$ is positve definite.

Let P denote the linear transformation of the vector space of all symmetric tensor  $\eta'$  defined by putting

$$P(\eta')_{ij} = \sum_{k,l} R_{iklj} \eta'_{kl}$$

Then  $(P(\eta'), \zeta') = (\eta', P(\zeta')), (\eta, \zeta')$  denoting usual inner product:  $(\eta', \zeta') = \sum_{i,j} \eta'_{ij} \zeta'_{ij}$ .

The linear transformation P of the vector space of  $\eta'$  is thus symmetric. The quadratis form  $F_p(\eta')$  is written

$$F_p(\eta') = rac{A}{2p}(\eta',\,\eta') + (\eta',\,P(\eta')) \ .$$

 $F_p(\eta')$  is positive definite, if (and only if) the absolute value of the minimal eigen-value  $\lambda_1$  of P is strictly smaller than  $\frac{A}{2b}$ .

We consider the case where X is an irreducible symmetric bounded domain. In this case, the value of A is calculated by (7.2) and (7.3), while the minimal eigen-value  $\lambda_1$  of P is already known (see [1] [2] and [9], § 11). We obtain the following table.

| Type of X                      | $\frac{A}{2}$       | $\lambda_1$         | $rac{A}{2p} + \lambda_1$ |
|--------------------------------|---------------------|---------------------|---------------------------|
| $I_{m, m'}$ $(m \ge m' \ge 1)$ | $rac{m'}{2(m+m')}$ | $-\frac{1}{m+m'}$   | $rac{m'-2p}{2p(m+m')}$   |
| II <sub>m</sub> $(m \ge 3)$    | $rac{m-2}{4(m-1)}$ | $-\frac{1}{2(m-1)}$ | $\frac{m-2-2p}{4p(m-1)}$  |
| $III_m  (m \ge 2)$             | $rac{m+2}{4(m+1)}$ | $-\frac{1}{m+1}$    | $\frac{m+2-4p}{4p(m+1)}$  |
| $IV_m  (m \ge 3)$              | $\frac{1}{m}$       | $-\frac{1}{m}$      |                           |
| V                              | $-\frac{1}{6}$      | $-\frac{1}{12}$     | $\frac{2-p}{12p}$         |
| VI                             | $\frac{1}{6}$       | $-\frac{1}{18}$     | $\frac{3-p}{18p}$         |

Therefore  $H^p_{\mathfrak{g}}(\xi)$  is positive difinite in the following cases :

Type I
$$\frac{m'}{2} > p$$
;Type II $\frac{m-2}{2} > p$ ;Type III $\frac{m+2}{4} > p$ ;Type V, $p = 1$ ;Type VI, $p = 1, 2$ .

But we have proved in [9] that, except in the case of type  $I_{m,1}$ , the first Betti number of M vanishes. On the other hand, the first Betti number of a compact, simply connected symmetric space vanishes. From

16

Theorem 1 and from the above results follows Theorem 2 stated in the introduction.

§ 10. It is known that, for any simply connected compact Hermitian symmetric space  $X_u$ , we have  $b_{2q+1}(X_u) = 0$  and  $b_{2q}(X_u) = h_{q,q}(X_u)$ , where  $h_{r,s}(X_u)$  denotes the dimension of the complex vector space of all harmonic forms of type (r, s) on  $X_u$  [5]. Moreover, if  $X_u$  is irreducible, we have  $b_2(X_u) = h_{1,1}(X_u) = 1$ . The argument used in proving the inequality  $b_p(M) \ge b_p(X_u)$  shows that  $h_{r,s}(M) \ge h_{r,s}(X_u)$ . Since M is Kählerian, we have  $b_p(M) = \sum_{r+s=p} h_{r,s}(M)$ . Therefore, if  $b_p(M) = b_p(X_u)$ , we must have  $b_p(M) = 0$  for odd p and  $b_p(M) = h_{q,q}(M)$  for p = 2q. In particular, if  $b_2(M) = b_2(X_u)$  and if  $X_u$  (therefore X) is irreducible, we have  $b_2(M) = h_{1,1}(M) = 1$ . From Theorem 2 we obtain the following theorem.

**Theorem 3.** Let X be an irreducible symmetric bounded domain of one of the following types:  $I_{m,m'}(m \ge m' \ge 6)$ ,  $II_m(m \ge 7)$ ,  $III_m(m \ge 7)$ , VI. Then we have

$$b_1(M) = 0$$
,  $b_2(M) = h_{1,1}(M) = 1$ .

We apply this result to the classification of automorphic factors. Let X be a symmetric bounded domain and let  $\Gamma$  be a discontinuous group on X without element of finite order different from the identity and with compact quotient space  $X/\Gamma$ . An automorphic factor k (with respect to  $\Gamma$ ) is a mapping of  $X \times \Gamma$  into  $C^*$  such that

$$k(z, \gamma \delta) = k(z\gamma, \delta)k(z, \gamma)$$

for any  $z \in X$ ,  $\gamma$ ,  $\delta \in \Gamma$  and that  $k(z, \gamma)$  is holomorphic in z. If k and k' are automorphic factors, so are the mappings  $(z, \gamma) \rightarrow k(z, \gamma) \cdot k'(z, \gamma)$  and  $(z, \gamma) \rightarrow k(z, \gamma)^{-1}$ . Two automorphic factors k and k' are equivalent  $(k \sim k')$ , if there exists a non-vanishing holomorphic function f on X such that

$$k'(z, \gamma) = k(z, \gamma) f(z) f(z \gamma)^{-1}$$

for any  $(z, \gamma) \in X \times \Gamma$ .

The equivalence classes of automorphic factors form a group F with respect to the multiplication defined above.

Now, given an automorphic factor  $k(z, \gamma)$ , we can define a complex line bundle  $E_k$  over the complex manifolds  $X/\Gamma$  as follows.  $E_k$  is the quotient of  $X \times C$  by the equivalence relation:  $(z, \xi) \sim (z\gamma, k(z, \gamma) \cdot \xi)$ . It is known that the two line bundle  $E_k$  and  $E_{k'}$  over  $X/\Gamma$  are isomorphic if and only if the automorphic factor k and k' are equivalent. A line bundle E over  $X/\Gamma$  is defined by an automorphic factor in the above way if and only if the induced bundle  $\rho^* E$  over X is analytically trivial, where  $\rho$  denotes the projection of X onto  $X/\Gamma$ . (For these facts on line bundles, cf. [11]). Now, since X is a homogeneous bounded domain in  $C^n$ , it is a domain of holomorphy by a theorem of Thullen and hence a Stein manifold. Moreover X is homeomorphic to a euclidean space. It follows then from the fundamental theorem (Theorem B) on Stein manifolds (see [6]) that every complex line bundle over X is analytically trivial (this is also a special case of a more general result of Grauert). Therefore every complex line bundle over  $X/\Gamma$  is defined by an automorphic factor and the group of equivalence classes of complex line bundles over  $X/\Gamma$  is isomorphic to the group F.

Consider now the exact sequence of sheaves over  $X/\Gamma$ :

$$0 \rightarrow \mathbf{Z} \rightarrow \mathfrak{O} \rightarrow \mathfrak{O}^* \rightarrow 0$$
,

where Z,  $\mathfrak{O}$ ,  $\mathfrak{O}^*$  denote respectively the constant sheaf isomorphic to the additive group of integers, the sheaf of germs of holomorphic functions and the sheaf of germs of non-vanishing holomorphic functions on  $X/\Gamma$  (cf. [7]). We get the exact sequence of cohomologies:

$$\to H^1(X/\Gamma, \mathfrak{Q}) \to H^1(X/\Gamma, \mathfrak{Q}^*) \to H^2(X/\Gamma, \mathbb{Z}) \to H^2(X/\Gamma, \mathfrak{Q}) \to H^2(X/\Gamma, \mathfrak{Q})$$

Suppose now that  $b_1(X/\Gamma) = 0$  and  $b_2(X/\Gamma) = h_{1,1}(X/\Gamma) = 1$ . Since  $X/\Gamma$  is Kählerian, the dimensions of the complex vector spaces  $H^1(X/\Gamma, \mathfrak{O})$  and  $H^{2}(X/\Gamma, \mathfrak{O})$  equal  $h_{0,1}(X/\Gamma)$  and  $h_{0,2}(X/\Gamma)$  respectively by a theorem of Dolbeault (see [7]). It follows then that  $H^{1}(X/\Gamma, \mathfrak{O}) = H^{2}(X/\Gamma, \mathfrak{O}) = (0)$ and hence  $H^1(X/\Gamma, \mathfrak{O}^*) \simeq H^2(X/\Gamma, \mathbb{Z})$ . The group  $H^1(X/\Gamma, \mathfrak{O}^*)$  is identified with the group of equivalence classes of complex line bundles over  $X/\Gamma$ and hence isomorphic to **F**. Thus  $F \simeq H^2(X/\Gamma, \mathbb{Z})$ . Since  $b_2(X/\Gamma) = 1$ , it follows that the group F is a direct product of an infinite cyclic subgroup  $F_1$  and a finite subgroup  $F_2$ . For an automorphic factor k we denote by [k] the equivalence class containing k. Let  $[k] \in F_2$ . Then there exists an integer  $m \ge 0$  and a non-vanishing holomorphic function f on X such that  $k(z, \gamma)^m = f(z) \cdot f(z \cdot \gamma)^{-1}$  for any  $(z, \gamma) \in X \times \Gamma$ . Since X is simply connected and  $f(z) \neq 0$  for any  $z \in X$ , we can find a holomorphic function h on X such that  $h(z)^m = f(z)$  for any  $z \in X$ . Let  $\chi(z, \gamma) = k(z, \gamma) \cdot h(z)^{-1} \cdot h(z \cdot \gamma)$ . Then  $k \sim \chi$  and  $\chi(z, \gamma)^m = 1$ . It follows that  $\chi(z, \gamma)$  is independent of z and hence  $\chi(z, \gamma) = \chi(\gamma)$  is a 1-dimensional unitary representation on  $\Gamma$ , i.e. a character of the finite abelian group  $\Gamma/\Gamma'$ ,  $\Gamma'$  denoting the commutator group of  $\Gamma$  (note that  $\Gamma/\Gamma'$  is finite, because  $b_1(X/\Gamma)=0$ ). Thus each equivalence class in  $F_2$  contains a character of  $\Gamma/\Gamma'$ . Conversely an equivalence class containing a character of  $\Gamma/\Gamma'$  is clearly of finite order. Now let  $\chi_1$  and  $\chi_2$  be two characters contained in one and the

same equivalence class and let  $\chi = \chi_1 \cdot \chi_2^{-i}$ . Then there exists a nonvanishing holomorphic function f on X such that  $f(z \cdot \gamma) = \chi(\gamma) \cdot f(z)$  for any  $(z, \gamma) \in X \times \Gamma$ . Then  $d \log f$  is a holomorphic 1-form on X invariant by  $\Gamma$  and hence it defines a holomorphic 1-form on  $X/\Gamma$ . Since  $b_1(X/\Gamma)$ =0, we must have  $d \log f = 0$ . Then f is a constant and hence  $\chi = 1$  and we get  $\chi_1 = \chi_2$ . Thus each equivalence class of finite order contains one and only one character of  $\Gamma/\Gamma'$ . Therefore  $F_2$  is isomorphic to the character group of the finite abelian group  $\Gamma/\Gamma'$ .

Let  $k_0$  be an automorphic factor such that  $[k_0]$  is a generator of the infinite cyclic group  $F_1$ . For each automorphic factor k, there exist an integer n and a character  $\chi$  of  $\Gamma/\Gamma'$  such that [k] is written uniquely in the form:

$$[k] = [k_0^n] \cdot [\mathcal{X}].$$

Combined with Theorem 3 we get

**Theorem 4.** Let X be an irreducible symmetric bounded domain of one of the following types:  $I_{m,m'}(m \ge m' \ge 6)$ ,  $II_m(m \ge 7)$ ,  $III_m(m \ge 7)$ , VI. Let  $\Gamma$  be a discrete subgroup of the identity component of the automorphism group of X. Suppose that the quotient space  $X/\Gamma$  is compact and that  $\Gamma$ contains no elements of finite order different from the identity. Then the group **F** of equivalence classes of automorphic factors is direct product of an infinite cyclic group and a finite abelian group, the latter being isomorphic to the character group of the finite abelian group  $\Gamma/\Gamma'$ , where  $\Gamma'$  denotes the commutator group of  $\Gamma$ . Therefore there exists an automorphic factor  $k_0$  with the following property: For each automorphic factor k, there exist a unique character X of  $\Gamma/\Gamma'$  and a unique integer n such that  $k \sim k_0^n \cdot X$ .

It will be an interesting problem to determine a "standard"  $k_0$  for each type of X.

**OSAKA UNIVERSITY** 

(Received November 27, 1961)

#### Bibliography

- [2] E. Calabi and E. Vesentini: On compact, locally symmetric Kähler manifolds, Ann. of Math. 71(1960), 472-507.
- [3] E. Cartan: La théorie des groupes finis et continus et l'analysis situs, Mém. Sci. Math., Gauthier-Villar, Paris, Nouveau tirage (1952),

<sup>[1]</sup> A. Borel: On the curvature tensor of the hermitian symmetric manifolds, Ann. of Math. 71 (1960), 508-521.

### Y. Matsushima

- [4] E. Cartan: Sur les invariants intégraux de certains espaces homogènes clos et les propriétés topologiques de ces espaces, Oeuvres complètes, Partie I, Vol. 2, 1081-1125.
- [5] E. Cartan: Sur les propriétés topologiques des quadriques complexes, Oeuvres complètes, Partie I, Vol. 2, 1227-1246.
- [6] H. Cartan: Variétés analytiques complexes et cohomologie, Colloque sur les fonctions de plusieurs variables, Centre belge de Recherches mathématiques, (1953) 41-45.
- [7] F. Hirzebruch: Neue topologische Methoden in der algebraischen Geometrie, Ergebnisse der Math., Springer (1956).
- [8] F. Hirzebruch: Automorphe Formen und der Satz von Riemann-Roch, Symposium inter. de topologia., Univ. de Mexico 1958, 129-143.
- [9] Y. Matsushima: On the first Betti number of compact quotient spaces of higher-dimensional symmetric spaces, Ann. of Math. 75 (1962), 312-330.
- [10] K. Nomizu: Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33-65.
- [11] S. Nakano: An example of deformations of complex analytic bundles, Memoirs of the College of Sci., Univ. Kyoto 31 (1958), 181-190.
- [12] A. Weil: On discrete subgroups of Lie groups, II, Ann. of Math. 75 (1962), 578-602.
- Added in Proof.
- [13] Y. Matsushima and S. Murakami: On vector bundle valued harmonic forms and automorphic forms on symmetric riemannian manifolds, to appear.