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BY

Yozό MATSUSHIMA

This is a continuation of our paper [9]. In [9] we have studied
the vanishing of the first Betti number of compact, locally symmetric
Riemannian manifolds. We shall study in this paper the ^-th Betti
number of these manifolds from a somewhat different point of view.

Let X be a simply connected, symmetric Riemannian manifold, all
of whose irreducible components are non-euclidean and non-compact. Let
G be the identity component of the group of all isometries of X and let
Γ be a discrete subgroup of G with compact quotient space G/Γ and
without element of finite order different from the identity. The group
Γ acts on X discontinuously and the quotient space M=X/Γ is a compact,
locally symmetric Riemannian manifold. Let Ap be the vector space of
all G-invariant ^-forms on X. By a well-known theorem of E. Cartan,
the covariant derivatives of each form in Ap vanish (see [10]). Since
ΓC^G, each &>eAp is Γ-invariant and hence there exists a ^-form η on
M such that ω = ηopy p denoting the projection of X onto M. Since p is
a locally isometric mapping and the covariant derivatives of ω vanish,
the covariant derivatives of η also vanish. In particular η is a harmonic
^-form. Hence the mapping ω-*η defines an injection of Ap into the
vetcor space fyp of all harmonic p-forms on M. The purpose of this paper
is to study when Ap can be isomrphic to §p.

Let x0 6 X and let K be the subgroup of G of all elements which
leave fixed the point x0. It is well-known that K is a maximal compact
subgroup of G and X is identified with the quotient space K\G. Let g
denote the Lie algebra of G and let ϊ be the subalgebra of g corresponding
to K. Denote by m the orthogonal complement of ϊ in Q with respect
to the Killing form of g. We have then

g = m -f ϊ, [m, m] C[ I, [ΐ, m] C m .

Let gc be the complexification of g and let Gc be the complex Lie group,
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with center reduced to the identity, corresponding to the complex Lie
algebra gc. We may consider G as a subgroup of Gc. Put β« = \/--
Then QU is a compact real form of QC and let Gu be the subgroup of Gc

corresponding to the real subalgebra QU of QC. Gu is a maximal compact
subgroup of Gc containing K and XU=K\GU is a simply connected, compact
symmetric Riemannian manifold which we shall call the compact form of X.

Now we may identify the vector space Ap of all G-invariant ^-forms
on X with the vector space of all ^-forms on the /f-module m which
are invariant by K. On the other hand, the mapping X->\/^ΐX defines
a /f-module isomorphism of m onto \/ — lm It follows that the vector
space A* of all GM-invariant p-forms on Xu is isomorphic to Ap. Since
Xu is symmetric and GM is compact, the dimension of the vector space
AI equals the p-th Betti number bp(Xu) of Xu [4]. Therefore the dimen-
sion of the vector space Ap is equal to bp(Xu). On the other hand we
have seen that Ap is identified with a subspace of the vector space $p of
all harmonic ^-forms of M. Thus we get the inequality bp(M)^bp(Xu),
bp(M} denoting the p-th Betti number of M. Therefore our problem is
stated as follows : Under what condition does the ^-th Betti number of
M equal the p-th Betti number of Xul

A condition for this will be given by Theorem 1 in §8. From
Theorem 1 we shall obtain the following result.

Theorem 2. Let X be an irreducible symmetric bounded domain and
let Xu be the compact form of X. Then the p-th Betti number of the
compact manifold M=X/Γ equals the p-th Betti number of Xu in the follow-
ing cases :

Type of X Xu value of p

'= 2)

Πm (m ̂  3) S0(2m)/U(m) ; p = l (m = 4)

Ill*

VI

E6/Spin (10) XT 1

E7/E6 X T 1
P = 1, 2

(The notations here are those of [2j)t
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In § 10 we shall apply these results to the classification of automor-
phic factors. The method employed in this paper is a natural extension
of that of our paper [9].

I express here my hearty thanks to S. Murakami for his friendly
cooperations. Especially the results in §§2 and 3 owe to him.

§ 1. Throughout this paper G will denote a connected semi-simple
Lie group with center reduced to the identity, all of whose simple
components are non-compact K will denote a maximal compact subgroup
of G. We denote by g the Lie algebra of all right invariant vector
fields on G and by ϊ the subalgebra of g corresponding to K. Let φ
denote the Killing form of g and let

m = {Xeg; φ(X, Y) = 0 for all

Then we have

, T Π A Ϊ = (0);

[m,m]Cϊ, [ϊ,m]Cm, [ ϊ , ϊ ]Cΐ.

We know that the restriction of φ onto m(resp. ϊ) defines a positive
(resp. negative) definite bilinear form on m (resp. ϊ). Hence we can choose
a basis X19 ••• ,Xr of m and Xr+19 - ,Xn of ϊ such that

Throughout this paper we make the following convention : Latin indices
ί, jy ky ••• , will range from 1 to r, while Greek indices a, β, γ, ••• will range
from r + 1 to n and the indices λ, μ, v, ••• from 1 to n. Let

By (1.1) among the structure constants cv

λjα only the c^Λβy c*ίjy c1^, cl

 joί>

can be φ 0. We shall write cΛij instead of c"^ . From the invariance of
the Killing form under the adjoint representation follows that

(1. 3) c*iΛ = -cl

ja, = c*Λj = cΛiS .

We get from (1. 2) :

(1.4) Σ Σ ^Λy* = -i-δίy.
k=l oύ=r+l £

For any X, Y G m, we denote by R(X, Y) the endomorphism of the vector
space m defined by
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R(x, r) z
for all Z 6 m. It can be interpreted as the Riemannian curvature tensor
for the Riemannian symmetric manifold K\G (cf. [10]). We have

where
«

(l 5) -K'/fcA =Rfjkh ~ ~ Σ CΛijCΛkh
a=r+ι

From (1. 4) follows :

(1.6) Σ*w*= -4V
A = l Z

Let ωλ(λ = l, •••,«) be the right invariant 1-forms on G such that
= <5λ

μ. The symmetric tensor

defines a right invariant Riemannian metric on G.
Now let X=K\G and let π be the projection of G onto X. Put

τc(e) = xQ9 e denoting the identity of G. We may identity the vector space
tn with the tangent vector space of X at the point x0. We define a G-
invariant symmetric tensor h on X by the condition that the value of h
at the point x0 is equal to the restriction of φ onto m. The tensor h

is everywhere positive definite and it defines a G-invariant Riemannian

metric on X. X is a simply connected, symmetric Riemannian manifold.

§ 2. Let Γ.be a discrete subgroup of G with compact quotient space

G/Γ. We may regard Γ as a discontinuous group of isome tries of the

symmetric Riemannian manifold X with compact quotient space X / Γ .

Put M=X/Γ. From now on, we assume that Γ cotains no element of
finite order different from the identity. Then M is a compact orientable

manifold without singularties and G/Γ is a principal fiber bundle of

base M and structure group K. We may consider M as the space of

double cosets: M=K\G/Γ. Let π denote the projection of G/Γ onto M.

The symmetric tensor h on X being invariant by the action of Γ, it

defines a positive definite symmetric tensor on M which we denote by

the same letter h. h defines a Riemannian metric on M. We call M a

compact, locally symmetric Riemannian manifold.

The right invariant tensor g on G defines a positive definite sym-

mentric tensor on G/Γ which we shall denote also by g. The right
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invariant vector fields Xλ (resp. 1-forms ωλ) on G define also the vector
fields (reap. 1-forms) on G/Γ which we shall denote by the same letter
Xλ (reap. ωλ). Under these notations, consider the symmetric tensor

r

Σ (ω*)2 on G/Γ. It is easily verified that this tensor is invariant under

the action of K on G/Γ. Moreover, the value of this tensor at each
point of G/Γ is a symmetric bilinear form on the tangent space which
is positive definite modulo the subspace of vectors tangent to the fiber
of the bundle G/Γ over M, this latter subspace being spanned by the
values of the vector fields XΛ (α = r + l, ••• , «). From these considerations
follows that the symmetric tensor h on M is related to the tensor Σ (ω«")2

on G/Γ by the relation

(2.1) hoπ = ±(ω*γ.

Let dm denote the volme element of M determined by the Riemannian
metric defined by h. From (2.1) follows that

We denote by dv the volume element of G/Γ determined by the Rieman-
nian metric g. Then

dv = ω α Λ ••• Λ ω r Λ ••• Λ ωw .

Further let dk denote the bi-invariant volume element ωr+1Λ ••• Λα>* of

the compact group K, where ωr+1, ••• , ωn are considered as right invariant

1-forms on K.

Lemma 1. Let f be a continuous function on M. Then

c \ f dm = I (f°τr)dυ ,
M G/Γ

where c denotes the total volume of K measured by dk.

For the proof of this lemma, see [13].

Now let 97, ζ be two p-i orms on M. We denote by <?/, £*> the usual

scalar product defined by the Riemannian metric h. The global scalar
product (η, ξ) is defined by

(η, f) = -fi J <??>
^' M

In the same way, for any two ^-forms ω, Θ on G/Γ, we define <ω, <9>
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and (ω, Θ) using the Riemannian metric g. Put gλlt...)λp=ω(Xλιy ••• ,Xλί)
and hλl>...>λp=Θ(Xλιy ••• ,XλJ. Since X19 ••• ,XM form an orthonormal basis
of the tangent vector space at each point of G/Γ, we have <ω, 0> =

λ Σ ^/λi.-.λ/λ!,-^ Hence

(2.2) (ω,

Now let βy, f be two ^-forms on M. We see from (2.1) that

(2.3) \^7> £"/>°7^ " ^^j07^) ζo7^^y

It follows then from Lemma 1 the following

Lemma 2. L0ί η, ζ be two p-forms on M. Then

c*(n> ζ} = (ηQ7r> ζΌ7C}.

We state here the following lemma which will be used frequently
in the following.

Lemma 3. Let f be a C°°-function on G/Γ. Then

J Xλ/ <fo = 0, l^λ^^.
<?/Γ

For the proof, see Weil [12].

§ 3. The projection π of G/Γ onto M defines an injection of the
vector space DP(M) of ^-forms on M into the vector space DP(G/'Γ) of
/>-forms on G/Γ. It is well-known that a j>-form <*>£DP(G/Γ) is in the
image of DP(M) if and only if ^(XΛ)ω = 0, i(-Xώ)ω = 0 for α = r + l, •••,«,
where 61 (resp. i) denotes the Lie derivation (resp. interior product). Let
η£Dp(M} and put η' = ηoτr. Then dη' = dη°π and since i(Xa)dη' = Q9 we
have (dηf)(Xλl, ••• , Zλ/j+1) = 0, if one of the indices λ^ j λ ^ is

On the other hand,

> ̂ J, ̂ v - . -., » , - ,̂ +1). But since

Kv^ J=Σ^βί^ and ί(XΛV = 0, we get:
α

(3.1) (rf. o*)^ , -.. , Xipn) = g ( - l)-'X,β {(,,0 ,r) (X,v - - , ±ia, ... , Xip+ι)} .

Let δ denote the operator of codifferentiation on the differential
forms on M. For any η£Dp(M] and ζ£Dp+l(M), we have (dη, ζ) =
(η, δζ). For any ξ eDp+1(M\ put
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(3.2) S'(ζ °*0 = Sξ °π ,

Lemma 4. Let ξ' = ζ°π. Then

Proof. For any ηeDp(M), let η' = η°τt. Put */(XίV - ,*,,) =/,,.....,,

and r'(*,v - ,^+1)=^v-..-i+1-
 From (3 1) and (2.2) we get:

1 P + l f
(Jl/' n = fΛTϊv Σ, Σ (-1)β~' \ ( .̂Λ. .i.- W -̂ . Wfo^-1-j.;. β-i »1,-,i/,+1 ^r

By Lemma 3,

} (χiafiϊ''*a" ip+dm&ii'"ip+ιdv = (-!)
<?/£

Hence we obtain :

We define a /)-form /*' on G/Γ by the conditions that

μ'(X}l, - , X>,) = -±>Xkgkj,..jp, i(X.)μ' = 0 (r + 1 ̂  α ̂  ») .

Then

Using i(Xβ)r' = 0, θ(Xx)ζ' = 0, we verify easily that θ(Xa)μ' = 0 for all
Xa. Hence there exists a p-form μ on M such that μ' = μ°π. Then
(Λ/, ξ")==('707Γ' μ 07r) On the other hand, by Lemma 2 we have (dη', ξ')
= c(dη,ζ] and (η°π, μoπ) = c(η, μ). Hence we get (dη, ζ) = (η, μ). Since
η is arbitrary, this implies μ=δξ and hence μ' = 8'ζ'. Thus (δ'ξ ')(Xyι, ••• ,

k

From (3.1), (3. 2) and Lemma 4 follows

Lemma 5. A p-form ω on G/Γ is a π-image of a harmonic p-form
on M if and only if the following three conditions are satisfied:

1) i(XJω = θ(XΛ)ω = 0, r + l^a^n;
P+ι9^ NΠ ( ~i\a~ιγ r.\(v γ~ . Y \ n 1 <r" v * <^ *>

^/ / ι V — JL/ ^*-/tf" \^-z'ι> *" > ^»β > > *Λ+I/ = J l y ' » *ρ+ι = ̂  >
α = l N

q\ \fι Y fl)(Y Y ... v \ — Π 1 <Γ 7 . 7 <Γ -r
ύj 2-J A& * ω V A / f e > A/ι > > A*Λ-1/ ~ U> -1 = Z l » > */»-! = " *

* = 1

§ 4. We retain the notations introduced in the preceding sections.
Let ω be a ^-form on G/Γ satisfying the conditions in Lemma 5 and put
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Then we have the following equalities :

(4. 1) gx^ .λp = 0 if one of the indices is ^ r + 1

(4. 2) Xtgi^ip - Σ Σ (-Va-lcMaghil...ia...ip ,

(4.3)

(4. 4) Σ Xkgki,..ίp_, = 0, 1 ̂  i,, - , V! < r .
ft— 1

Now we have

From (4.2) and (1.5) follows

P

y1 c - x g- = y1 ( i)*2"1 y1 R g *

Thus we get
P r

(4. 5) XjXkgil...ip — XkXjgil...ip — Σ \ ± ) a l Σ RjkiahShiϊ ia

Now put

(4. 6) Φ = ̂  ^ Σ=ι ^(XiXtg^-XtX&r.rf.

Lemma 6.

\Φdv=- Σ Σ \RJUk(XigMr..tp^(Xkgltΐ tp.lJ / j / Vή-i J,*,*,' J
ίf/Γ (?/Γ

JProo/. From (4.5) follows

2^ iι, ", p h>J*k α = 1 3 *a 3 *l * p 3 «i «^

— Σ Σ Σ (~~l)β~lj^ Λ» (X'Xkgi -i )ghi -/ -i

Put

- »- Σ Σ Σ ( - l)βΛy«β)̂ « = 1 i1, ,ip h,j,k

By Lemma 3 we have

(4.7)
G /Γ G /Γ
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Now we have

v yι? fc.Z-Λ ^LJ LX jkta

— y1 v1/?.„. (—iv*'1!Z_ι ^LJ LVjkίah\ *-) '

= (-ί)-1 Σ Σ#y*
/i. V^-! A,Λ*,/

Hence

(4.8) Φ'= -^ Σ AΣ /

From (4. 8) and (4. 7) follows the lemma.

Lemma 7.

(^Yΐ]σ. . = —JLσ. . 4-2 V ( — lY+b V* /?. . L σ L. ί ί .
V^_j •**• */oti"-z/, o OSI / Λ ' " ̂ _j \ -*-/ ^_ι •L^ι^hιaκ^hkiι ιι) ιa tfy

k £, b<a k,h^l

Proof. Put

We let operate Xk on the both sides of (4. 3) and summing up on k we
get:

F = Σ (-IT-1 Σ X*XlagUl...ίa...ip

Since XkXia = XiaXk+'ΣcakiaXa and since (4.4) holds, we get
oί>

(4. 9) F = Σ (-ir J Σ Σ W*^γ *V^) -

By (4. 2), XΛghil...ίa...ip = Σ cMgMl...ja...ip

+Σ {Σ (~i)δ cct,hib^hki^-ib-ia-iph b<a *

Replacing this in (4. 9) and using (1. 4) and (1. 5) we obtain the lemma.

Lemma 8.

Σ (-Dα+6

h,k,i ,,-•-, i

Proof. By Lemma 3 we have
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Σ J (Xkgwtfdυ = - j (ΣXl
0/Γ flt/Γ

By Lemma 7, - J (Σ2 Xϊft^ft,. V
β /Γ

= j- J g*tl...lpdv-2g Σ (-D0+* J R
ff/Γ ' ff/Γ

It is easily verified that

.
*ι "mιρ h>k

From these equalities follows the lemma.

§5. From (4.5) and (1.5) follows:

p
W 1) P n

= Σ JΣj^Σ (—iYCajkC<χ£ahgh£l-ϊa ~£p

Calculating 2pΦ directly from (5.1) as in [9], §4, we find :

oί,β i\t"',iρ h,l

where ψ (X, Y)(X, F€l) denotes the bilinear form on ϊ defined by

, Y) = Tr(admX admY) ,

admX denoting the representation of ϊ on the vector space m defined by
admX Z=[X, Z~] for all Zem. In particular we have

a, Xβ) = — Σ CΛijCβij .
i,i~ i

Now let

where 5 denotes the center of ϊ and ΐί9" ,lq denote the simple ideals
of ϊ. As we have shown in [9], §4, we can choose a basis {Xr+l, ,Xn}
of ϊ satisfying the following conditions : 1) each XΛ belongs to 5 or to
one of the simple ideals; 2) φ(XΛ , Xβ) = - δaβ 3) ψ(XΛ,Xβ) = Q for αφ/3.
Moreover, if XΛ 6 5, we have ψ(XΛ , XJ = — 1 and if Xa 6 ϊs , ^(XΛ , XJ =
— <2S, where ^5 a real number such that 0<X<^1 depending on f5 (see
[9], §4).



ON BETTI NUMBERS OF COMPACT, LOCALLY SYMMETRIC RIEMANNIAN MANIFOLDS 11

Choose a basis {Xr+1, ••• ,XJ of ϊ satisfying these conditions. We
get then

2pΦ

(5.2) =βg(-l)β+ft Σ A f (Σ WW*«ι ίβ «̂ι V ί,

X-at, € \s

6. From now on we assume that g is simple. Let

A = Min (a19 ••• , «,) .

Then Q<^A<^1. We know that the center 3 of ϊ is (0) or 1-dimensional.
Suppose first that d imj = l and let %={Xr+1}. Then

2pΦ

^ A Σ (-l)α+* Σ Σ c^^c
a,b~l i,'",i,h,l Λ

From (1.5) and (4.2) follows

2pΦ

(6. 1) ^ - A Σ Σ ( - l)

Put

». - Σ ̂ Σ A/-l)β+^iβw6/&ir^^^^^

By an easy calculation we see that the first term of the right hand side

-ζ- Σ
Δ f,.....T,

of the inequality (6. 1) equals A-ζ- Σ g*1...fύ—2A®. Hence we get finally

the following inequality :

It should be noted that, if l = % (this is the case if and only if dimg = 3),
we have
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Therefore we put A = l in this case.
We see in a similar way that the inequality (6.2) holds also in the case
3^(0). Moreover, if ϊ is simple, the equality holds in (6.2).

§ 7. Integrating the both sides of (6. 2) we get:

G/Γ ' l f '*• W / J L

On the other hand, we have by Lemma 8

Σ
*Ί»""»*'ί

= - Σp >Ί, ,ij, ̂ /r

Hence we get:

(7.1) \Φdv-Tt^< $
ff/Γ -̂  ''' >tp G/Γ

From (7. 1) and Lemma 6 follows

Lemma 9.

Σ Σ \
tϊ, ' ,tί)-ί i,j,k,l J

PG /T

If g is simple and 5Φ(0), the symmetric space of G is an irreducible
symmetric bounded domain. From the classification of such domain, it
is known, except in the case of classical domain of type /m>m

/ (m2>mxj>2),
f has only one simple factor. In the case, where f has only one simple
factor, we have shown in [9], § 6, that

(7.2) A= - * - (dimm-lV
' dim 1-1 \ 2 /

while in the case where the corresponding domain is of type Im

(7. 3) A = m'
m+m'

In the case, where s = (0) and f is simple, we have

dim m(7.4) A =
2dimϊ
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(see [9], § 7).
We define for each simple non-compact Lie algebra g a quadratic form
H^(ξ) on the linear space of tensors £ = (!v ίj+1) by putting

Λ

Then by Lemma 9 we have

G /Γ

Remark. In the case /> = ! we have already defined in £9] a quadratic
form HQ(ξ) = b(s) Σ £?j + Σ Riki£i£ki The constant 6(β) is strictly greater

i,j ij,k,l

than -~-A. This is because we have omitted the factor Σ (Xr+ig^ i^)2

to obtain (6.2), while in the case p = l we have a convenient equality

Σ (Xr+igi)2 = — Σ £< under a suitable normalisation of Xr+1 (see [9], § 5)
i r ί

hence we obtain

in place of (6.2), with b($ =—A + — (jL-A). Remark that the term con-
ί.1 r

taining Θ is missing in the case p = \.

§8. We prove now the following theorem.

Theorem 1. Let X be a simply connected, irreducible symmetric Rieman-
nian manifold which is non-compact and non-euclidean. Let G be the identity
component of the group of all isometries of X. Let Γ be a discrete subgroup
of G with compact quotient G/Γ and without element of finite order
different from the indentity, so that Γ is a discontinuous group of isometries
of X with compact quotient M=X/Γ. Let Xu be the compact form of X.
Suppose that the quadaatic form H%(ξ) is positive definite. Then the p-th
Betti number bp(M) of M equals the p-th Betti number bp(Xu} of Xu.

Proof. Let Ap denote the vector space of all G-invariant ^-form
of X. Since ΓdG, each ^-form a^Ap is Γ-invariant and hence there
exists a ^-form η of M such that a = η°p, p denoting the projection of
X onto M. As we have stated in the introduction, η is a harmonic ^-form
on M and the mapping a-^η defines an injection of Λp into the vector
space f)p of all harmonic ^-form on M, Moreover, we know that the
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dimension of Ap equals the p-th Betti number bp(Xu) of Xu (see Intro-
duction). We have bp(Xu) = bp(M) if and only if the mapping a-*η is a
surjection of Ap onto t .̂ Now let η £§p and let ω = <ηoπ, π denoting
the projection of G/Γ onto X/Γ = M. We retain the notations introduced
in the preceding sections and put

Then these gλl...λp satisfy the relations (4. l)-(4. 4). By Lemma 9 we have

β /τ

Since H^(ξ) is positive definite by assumption, this implies :

(8.1) ,̂v.,> = 0, l^k.ii. .i^r.

Then AyX»ft...,ί-X»Xyίr<l...ίί=0. On the otoer hand XjXllgll...ip-X^)g{r..ip

=Έc«jkXagί1 ίp and hence

(8. 2) ± cajkXagi,..ip = 0 , l^j,k,ilt ,ip^r.
Λ=r+ι p

Now we know that the representation X-*admX of the Lie algebra ϊ on
the vector space m defined by putting admX Z=[X, Z~] for all Zem is
faithful. For any real numbers ξΛ, we have [Σl1 ,̂ X"*]=Σ(Σ c<*jk%«)Xj>

a j a

Hence, if *ΣcΛjkξΛ = Q for j, k = l, ••• , r, we must have fΛ = 0. Thus (8.2)
Cύ

implies

(8.3) XΛgil...ip = Q, r + l^a^n, 1 ̂  ί,, - , ip< r .

From (8. 1) and (8. 3) follows that gil ..ip are constant. On the other hand,
by (4. 1) gλι...λp = 0 if one of the indices is ^>r and hence gλl...λp is constant
for any indices \19 ••• ,λ/?. Let /δ denote the projection of G onto G/Γ
and put ώ = ωop.

G

As in § 1, Xλ denotes here the right invariant vector field on C, Then
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ω(Xλl, ••• , Xλp)=gλl...λp are constant and hence ώ is a right invariant p-
form on G. Moreover, since i(XΛ)o> = θ(X^ω = 0, we have also i(XΛ)ώ =
θ(XΛ)ω = Q. Therefore there exists a G-invariant p-form a on X=K\G
such that ώ = αo7r, 7Γ denoting the projection of G onto K\G. Since
τrop = poτr and ώ = (ηoπ)op we have ώ = (η°p)°π. Since ώ = <Xoτrf we get
<x = ηop and this shows that the harmonic ^-form η is the image of the
G-invariant ^-form a on X. Since η is arbitrary, the mapping Ap->$p

defined above is surjective. Then we get bp(M) = bp(Xu). Theorem 1 is
thus proved.

§9. We discuss here when the quadratic form Hζ(ξ) is positive
definite. For any tensor η = (^) put

Fp(*i) = ^~ Σ ?!j + Σ RikiViflu -
Δp iJ i,j,k,l

Let η = ηf Λ-η" y where η' = (η'tj) is symmetric and η" = (η'ύ) is alternating in
the indices i, j. Using the property Riklj = RjlkiJ we see easily that

(This and the following arguments are those of Weil [12]). Moreover,
since η" is alternating,

Σ RtkitfiWi = - Σ Ruk&'tWi = Σ Rwn'iWi -
i,i,k,ι i,/,*,/ ι ,y ,A,/

From this and from Bianchi identity Rikij + Rnjk + Rijki = Q follows:

2 Σ RwrfWi = - Σ

Therefore F/^7) ̂  0 and Fp(η") = 0 implies η" = 0. Suppose that Fp(^ > 0
for any symmetric η'φQ and we show that H^(ξ) is then positive
definite. In fact, we write ξ = ξ' + ξ", where S/ = (^i/t1-tp,ί) is symmetric
and ξ" = (ξijtl...tp_j) is alternating in the indices ί, j. Since ί/g(l) =

Σ Fp((ξijt,..tp_^ we have Hffi = H%(ξ'} + H»(ξ") and #^")^0. ' Now
Ί,—,^-ι

since Fp((ξ'ijtl...tp_^)^Q by assumption, we have JϊgdO^O and hence
Hffl^O. If fiΓ5(D = 0, we have H^^O and #£(£") = 0 and hence

^((«y*1.»^-ι)) = ̂ ((«5*ι-*ί-ι)) = 0 for any A, "•,*,_,. This implies fiy^..^.,
= ̂ «ίι ίί_ι = 0 f°r anY indices i,j,t19 ••• ,ί/,_1 and hence § = 0. Thus #g(!)
is positve definite.

Let P denote the linear transformation of the vector space of all
symmetric tensor η' defined by putting
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Then (P(η'),ζ') = (η',P(ζ'}},(η,ζ') denoting usual inner product: (η1, ξ1)

The linear transformation P of the vector space of η is thus symmetric.
The quadratis form Fp(η') is written

-̂Δp

Fp(η') is positive definite, if (and only if) the absolute value of the minimal
Λ

eigen-value \ of P is strictly smaller than
Zp

We consider the case where X is an irreducible symmetric bounded
domain. In this case, the value of A is calculated by (7.2) and (7.3),
while the minimal eigen-value λx of P is already known (see [ΐ] \2~\
and [9], § 11). We obtain the following table.

Tϊ

Type of X

W 0.̂ 1)

Π ( wi "!> ̂

IIIW (m > 2)

IVW (m ̂  3)

V

VI

lerefore H^β) is po

Type lm^ ,

Type Πm ,

TΛrr»ί> TTT

2̂

wx

2(m + mO

m-2
4(m-l)

m + 2
4(w + l)

1
m

1
6

1
6

sitive difinite in

m-2
2

m + 2

1̂
m + mx

1
2(m-l)

1
w+1

1
m

1
12

1
18

I

mf-2p
2Xw-fw')

m-2-2p
4/»(m-l)

m + 2-4^
4Km + l)

^̂ ^̂ _̂

2-/»

12̂

3-£
18̂ >

the following cases :

Type V, /» = 1
Type VI, P = l,2.

But we have proved in [9] that, except in the case of type lml, the
first Betti number of M vanishes. On the other hand, the first Betti
number of a compact, simply connected symmetric space vanishes. From
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Theorem 1 and from the above results follows Theorem 2 stated in the
introduction.

§ 10. It is known that, for any simply connected compact Hermitian
symmetric space Xu, we have £>2(7+1(XM) = 0 and b2g(Xu) = hgtg(Xu), where
hr)S(XM) denotes the dimension of the complex vector space of all harmonic
forms of type (r, s) on Xu [5]. Moreover, if Xu is irreducible, we have

= hll(Xu) = l. The argument used in proving the inequality bp(M)
) shows that hr>s(M}^hr>s(X^). Since M is Kahlerian, we have

bP(M) = Σ hrs(M\ Therefore, if bp(M) = bp(Xu)9 we must have bp(M) = Q
r+s=p ' " μ p

for odd p and bp(M} = hqtq(M) for p = 2q. In particular, if b2(M} = b2(XM)
and if Xu (therefore X) is irreducible, we have δ2(M) = A l f l (Λf) = l. From
Theorem 2 we obtain the following theorem.

Theorem 3. Let X be an irreducible symmetric bounded domain of
one of the following types: Im>w/(mS>m/2^6), Πm(ra^7), lllm (m^T), VI.
Then we have

= 0 , fta(M) - A l f l(Af ) - 1 .

We apply this result to the classification of automorphic factors.
Let X be a symmetric bounded domain and let Γ be a discontinuous
group on X without element of finite order different from the identity
and with compact quotient space X/Γ. An automorphic factor k (with
respect to Γ) is a mapping of XxΓ into C* such that

k(z, 7δ) = k(zγ, 8)k(z, 7)

for any z 6 X, γ, S e Γ and that k(z, γ) is holomorphic in z. If k and k'
are automorphic factors, so are the mappings (z, 7)— >&(2, γ) k'(zy 7) and
(z, γ)-»&(2, γ)"1. Two automorphic factors k and kr are equivalent (&~&')>
if there exists a non-vanishing holomorphic function / on X such that

V(z, 7) = *(*, 7)/W(*7Γ1

for any (z, tf^XxΓ.
The equivalence classes of automorphic factors form a group F with

respect to the multiplication defined above.
Now, given an automorphic factor k(zy 7), we can define a complex

line bundle Ek over the complex manifolds X/Γ as follows. Ek is the
quotient of XxC by the equivalence relation: (z,ξ) — (27, k(z, y) l).
It is known that the two line bundle Ek and JSΛ/ over X/Γ are isomorphic
if and only if the automorphic factor k and kr are equivalent. A line
bundle E over X/Γ is defined by an automorphic factor in the above
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way if and only if the induced bundle p*E over X is analytically trivial,
where p denotes the projection of X onto X/Γ. (For these facts on line
bundles, cf. [11]). Now, since X is a homogeneous bounded domain in
Cn, it is a domain of holomorphy by a theorem of Thullen and hence a
Stein manifold. Moreover X is homeomorphic to a euclidean space. It
follows then from the fundamental theorem (Theorem B) on Stein mani-
folds (see [6]) that every complex line bundle over X is analytically
trivial (this is also a special case of a more general result of Grauert).
Therefore every complex line bundle over X/Γ is defined by an auto-
morphic factor and the group of equivalence classes of complex line
bunles over X/Γ is isomorphic to the group F.

Consider now the exact sequence of sheaves over X/Γ :

where Z, O, O* denote respectively the constant sheaf isomorphic to
the additive group of integers, the sheaf of germs of holomorphic func-
tions and the sheaf of germs of non-vanishing holomorphic functions on

X/Γ (cf. [7]). We get the exact sequence of cohomologies :

- H\X/r, Q) -> H^X/Γ, £>*) - H\X/Γ9 Z) - H2(X/Γ, D) -

Suppose now that b1(X/Γ) = Q and bz(X/Γ) = h l t l ( X / Γ ) = l. Since X/Γ is
Kahlerian, the dimensions of the complex vector spaces H^X/Γ, O) and
H2(X/Γ, O) equal h0ιl(X/Γ) and h0t2(X/Γ) respectively by a theorem of
Dolbeault (see [7]).' It follows then that H1(X/r9&) = H2(X/r,!0) = (Q)
and hence H\X/Γy O*) ̂  H2(X/Γ, Z). The group H\X/Γ, O*) is identified
with the group of equivalence classes of complex line bundles over X/Γ
and hence isomorphic to F. Thus F^H2(X/Γ, Z). Since b2(X/Γ) = l, it
follows that the group .F is a direct product of an infinite cyclic subgroup
F1 and a finite subgroup F2 . For an automorphic factor k we denote by
[&] the equivalence class containing k. Let [&] G F2 . Then there exists
an integer m^O and a non- vanishing holomorphic function / on X such

that k(z, τ)m=f(z) f(z r)~1 for any (z, γ) eXxΓ. Since X is simply con-
nected and f ( z ) Φ 0 for any z 6 X, we can find a holomorphic function h
on X such that h(z)m=f(z) for any z eX. Let %(*, j} = k(z, i) h(zYl h(z i).
Then &~% and X(z, τ)m = l. It follows that %(*, 7) is independent of ^
and hence %(̂ , γ) = %(γ) is a 1-dimensional unitary representation on Γ,
i.e. a character of the finite abelian group Γ/ΓX, Γ' denoting the com-
mutator group of Γ (note that Γ/Γ' is finite, because b1(X/Γ) = Q). Thus
each equivalence class in F2 contains a character of Γ/Γ'. Conversely
an equivalence class containing a character of Γ/Γ' is clearly of finite
order. Now let %} and %? be two characters contained in one and the
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same equivalence class and let % = %1 %2l Then there exists a non-
vanishing holomorphic function / on X such that f(z y) = 'X>(ry) f(z) for
any (z, γ) eXxΓ. Then d\ogf is a holomorphic 1-form on X invariant
by Γ and hence it defines a holomorphic 1-form on X/Γ. Since b^X/Γ)
= 0, we must have dlog f=Q. Then / is a constant and hence % = 1 and
weget%! = %2. Thus each equivalence class of finite order contains one
and only one character of Γ/Γ'. Therefore F2 is isomorphic to the
character group of the finite abelian group Γ/Γ7.

Let k0 be an automorphic factor such that [&0] is a generator of the
infinite cyclic group Flm For each automorphic factor k, there exist an
integer n and a character % of Γ/Γ' such that [k~\ is written uniquely
in the form :

Combined with Theorem 3 we get

Theorem 4. Let X be an irreducible symmetric bounded domain of
one of the following types: lm^(m^m!^^\ Πw(m^7), ΠIm(m^7), VI.
Let Γ be a discrete subgroup of the identity component of the automorphism
group of X. Suppose that the quotient space X/Γ is compact and that Γ
contains no elements of finite order different from the identity. Then the
group F of equivalence classes of automorphic factors is direct product of
an infinite cyclic group and a finite abelian group, the latter being isomorphic
to the character group of the finite abelian group Γ/Γ', where Γ' denotes
the commutator group of Γ. Therefore there, exists an automorphic factor
k0 with the following property : For each automorphic factor k, there exist
a unique character % of Γ/Γ7 and a unique integer n such that k~ko %.

It will be an interesting problem to determine a "standard" k0 for
each type of X.
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