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ABSTRACT: The selective detection of methanol by photoluminescence under environmental 

conditions has been a great challenge for materials science. Herein, a reversible, turn-on-type 

photoluminescence triggered by methanol vapor in square-planar palladium(II) and platinum(II) 

complexes, newly prepared from [MCl2(dppp)] and L-cysteine, is reported. Both the ‘turn-on’ 

and ‘turn-off’ states of the complexes were crystallographically characterized, which revealed 

the presence of intermolecular OH···O and CH···π interactions between methanol and the 

complex molecules in the ‘turn-on’ state. These interactions prevent the vibrational quenching of 

the luminescence, leading to the turn-on-type luminescence in this system. 

INTRODUCTION 

Luminescent coordination compounds have attracted considerable attention because of their 

potential availability as chemical sensors to detect volatile organic compounds (VOCs) in a 

manner visible to the naked eye in working environments.
1
 Among VOCs, methanol is 

particularly important for detection because it is readily metabolized to highly toxic 

formaldehyde and formic acid in the human body.
2
 Thus, a number of luminescent metal 

complexes that can detect methanol vapor have recently been developed.
3-9

 However, almost all 

of the methanol detection compounds show a luminescence energy shift (color change) 
3-7

 or 

luminescence quenching (turn-off),
8,9

 which are inferior to the luminescence enhancement from 

darkness (turn-on) in terms of eye visibility. In addition, the compounds often respond to various 

VOCs in addition to methanol.
3-9

 Thus, selective, turn-on-type luminescence triggered by 

methanol vapor under environmental conditions has rarely been achieved by coordination 

compounds.
10

 

As part of our ongoing study on the coordination behavior of a hydrophilic sulfur-containing 

amino acid in the presence of a hydrophobic coligand,
11-13

 we synthesized simple, mononuclear 
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palladium(II) and platinum(II) complexes with mixed 1,3-bis(diphenylphosphino)propane (dppp) 

and L-cysteinate (L-cys), [M(dppp)(L-cys)] (M = Pd
II
, Pt

II
). Whereas these complexes are not 

emissive in the hydrate form, strong yellow emission is observed in the presence of methanol 

molecules of crystallization. Remarkably, the non-emissive hydrate form and the emissive 

methanolic form are reversibly converted to each other by exposure to methanol vapor and by 

standing in an ambient atmosphere (Figure 1). Herein, we report on the preparation and structural 

characterization of both the non-emissive and emissive forms of these complexes, together with 

their emission properties. As far as we know, these are the first examples of reversible, turn-on-

type photoluminescent compounds that sense methanol vapor. 

 

RESULTS AND DISCUSSION 

Synthesis and characterization of [1]. The 1:1:2 reaction of [PtCl2(dppp)],
14

 L-H2cys, and 

KOH in methanol/water (3:1) gave a colorless solution, from which colorless needle crystals (1a) 

were obtained in a high yield. The ESI mass spectrum of 1a in methanol showed a dominant 

signal centered at m/z = 727.1, which corresponds to a protonated form of the platinum(II) 

complex with mixed dppp and L-cys, [Pt(dppp)(L-cys)] ([1]). In the 
1
H NMR spectrum in 

DMSO-d6, a freshly prepared sample of 1a showed a signal due to methanol at δ 3.17, in 

addition to a single set of signals due to [1] (Figure S1),
15

 indicative of the presence of methanol 

molecules of crystallization in 1a. 

The structure of 1a was determined by single-crystal X-ray crystallography. The asymmetric 

unit of 1a contains two crystallographically independent, yet essentially the same, complex 

molecules and three water and three methanol molecules. Each complex molecule has a square-

planar mononuclear structure in [1], coordinated by N,S-chelating L-cys and P,P-chelating dppp 
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ligands (Figure 2a). The Pt–N and Pt–S distances (av. Pt–N = 2.13 Å, Pt–S = 2.33 Å) and the N–

Pt–S angle (av. 85.2
o
) in [1] are similar to those in cis-[Pt(D-pen)2]

2–
.
16

 The Pt–P distance (av. 

2.28 Å) trans to the S atom is slightly longer than that (av. 2.24 Å) trans to the N atom because of 

the stronger trans influence due to the S atom. The carboxylate group in [1] does not participate 

in the coordination and exists in the deprotonated form, consistent with its IR spectrum, which 

shows a C=O stretching band at 1603 cm
–1

 (Figure S2).
15,17

 The five-membered N,S-chelate ring 

in [1] adopts a δ gauche conformation such that the carboxylate group has an axial orientation, 

whereas the six-membered P,P-chelate ring has a chair conformation. 

Luminescence behavior of [1]. At ambient temperature, fleshly prepared needle crystals of 

1a ([1]·1.5MeOH·1.5H2O) showed an intense yellow emission with a quantum yield of 10% in 

the solid state. The maximal wavelengths of the emission and the excitation spectra of 1a are 531 

nm (18.8×10
3
 cm

–1
) and 348 nm (23.7×10

3
 cm

–1
), respectively (Figure 3b). The large Stokes 

shift (4.9×10
3
 cm

–1
), together with the long emission lifetime of a microsecond order (τ = 1.11 

μs), is indicative of the phosphorescent character of its emission.
18

 The density functional theory 

(DFT) calculations revealed that the highest occupied molecular orbital (HOMO) is dominantly 

composed of p(S) and d(Pt) orbitals, while the lowest unoccupied molecular orbital (LUMO) is 

comprised of the π*(dppp) orbital. Thus, the phosphorescence can be assigned as arising from a 

triplet MLL’CT (Pt-S -> phosphine) transition. 

When 1a was placed in air at ambient temperature, its yellow emission gradually decreased 

and completely disappeared within several hours (Figure 3c). The elemental analytical data of 

this non-emissive, colorless, crystalline sample (1b) were consistent with a hydrate form of [1].
19

 

In addition, the 
1
H NMR spectrum of 1b in DMSO-d6 was identical with that of 1a, except for 

the lack of signals due to methanol (Figure S1).
15

 Thus, methanol molecules of crystallization are 
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released from 1a in air with the concomitant incorporation of water molecules, giving the non-

emissive sample 1b.
20

 The powder X-ray diffraction (PXRD) pattern for 1b is different from that 

for 1a (Figure S3),
15

 indicative of the difference in the crystal packing structures between 1a and 

1b. The reverse conversion from 1b to 1a was also investigated. When 1b was exposed to 

methanol vapor, the intense yellow luminescence was recovered within 1 minute (Figure 3d). In 

addition, the PXRD pattern of the recovered sample was superimposable with that of 1a, which 

indicates reversible crystal-to-crystal conversion between 1a and 1b (Figure S3).
15

 The on-off 

luminescence switching was repeatable for at least 5 cycles (Figure 3e). 

To check whether a similar reversible conversion is induced by other volatile organic 

compounds (VOCs), a solid sample of 1b was exposed to several common VOCs, including 

acetone, CHCl3, CH2Cl2, C2H5OH, CH3CN, THF, toluene, benzene, cyclohexane, and CH3NH2. 

However, no emission was observed after exposure of these VOCs to 1b (Figure S4).
15,21

 The 
1
H 

NMR spectroscopy showed that these VOCs were not incorporated in a solid sample of 1b, 

indicating that this compound is a turn-on-type luminescence sensor that is highly selective 

toward methanol vapor.  

The structural characterization of the non-emissive 1b by single-crystal X-ray crystallography, 

together with that of the emissive 1a, is required to clarify the mechanism of this switchable, 

selective, turn-on-type luminescence phenomenon. Initial attempts to determine the structure of 

the needle crystals of 1b, which were obtained by allowing crystals of 1a to stand in air, were 

unsuccessful because of the poor crystal quality. However, X-ray quality crystals of 1b were 

produced from non-emissive block crystals of 1c ([1]·7H2O), which were obtained by 

recrystallizing 1a from methanol/water (1:3), that is, standing crystals of 1c in air at room 
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temperature for 1 day gave non-emissive block crystals of 1b, the PXRD pattern of which is 

matched well with that of 1b derived from 1a. (Figure S5).
15 

X-ray analysis demonstrated that both 1b and 1c contain complex molecules of [1] and several 

solvated water molecules in the asymmetric unit. No significant difference in the molecular 

structure of [1] is observed between 1a, 1b, and 1c (Figures 4a and 4c), but the packing motifs of 

the complex molecules in the crystals are quite different. In the emissive 1a, an amine group of 

[1] forms a strong intermolecular hydrogen bond with a carboxylate group of a neighboring 

complex molecule (N···O = 2.66 Å), constructing a four-fold helix structure with left-

handedness (Figures 2b and 2c). In 1a, methanol molecules of crystallization exist in the void 

space and are connected to carboxylate groups through O–H···O hydrogen bonds (2.72 Å). 

Moreover, each methanol molecule forms a C–H···π interaction with two dppp phenyl groups 

from two different complex molecules (av. 3.9 Å) (Figure 2d). In the non-emissive 1b and 1c, an 

amine group forms a weak intermolecular hydrogen bond with a carboxylate group of an 

adjacent complex molecule (N···O = 2.97 Å for 1b and 2.93 Å for 1c), affording dimeric and 

tetrameric structures, respectively (Figures 4b and 4d). However, no clear interactions exist 

between the guest water molecules and dppp ligands in 1b and 1c. It is assumed that the co-

existence of N–H···O and C–H···π interactions in 1a, which effectively prevent the emission 

quenching by molecular vibration, is responsible for the strong emission of 1a at ambient 

temperature.
22,23

 Whereas several examples of vapor-induced turn-on-type photoluminescent 

compounds have been reported, they commonly involve only a single type of non-covalent 

interaction, such as coordination, hydrogen-bonding, or π···π interactions, between the guest and 

host molecules.
24-26
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Synthesis and characterization of [2]. Prompted by the unique emission properties found for 

[1], we also synthesized the corresponding palladium(II) complex, [Pd(dppp)(L-cys)] ([2]). This 

complex was initially isolated as yellow needle crystals that contained both methanol and water 

molecules of crystallization, [2]·1.5MeOH·1.5H2O (2a), from the reaction solution of 

[PdCl2(dppp)]
27

 with L-cys in methanol/water (3:1). Two other types of crystals containing only 

water molecules of crystallization, [2]·4H2O (2b) and [2]·7H2O (2c), were prepared by the same 

procedures used for 1b and 1c.  

The structures of 2a, 2b, and 2c were established by single-crystal X-ray crystallography, 

which revealed that 2a, 2b, and 2c are isostructural with 1a, 1b, and 1c, respectively (Figures S6-

S8).
15

 Crystals of 2a exhibited an orange emission at 635 nm with a quantum yield of 1.7% at 

room temperature (Figure S9).
15

 The DFT calculation study showed that the HOMO of 2a is 

dominated by p(S) orbital and its LUMO is composed of π*(dppp) and d(Pd) orbitals, implying 

that the emission of 2a is assignable as a triplet LML’CT (S to Pd-phosphine) transition. This 

emission origin is different from the origin assigned for 1a (MLL’CT). It is considered that the 

lower energy of the dx2-y2 orbital of Pd
II
 relative to that of Pt

II
 due to the smaller ligand-field 

splitting stabilizes the LUMO of 2a to decrease its emission energy. As in the case of 1a, the 

orange emission for 2a gradually disappeared in air and was quickly recovered after exposure to 

methanol vapor (Figure S10), accompanied by structural conversion between 2a and 2b.
15

 Eye-

detectable emission at ambient temperature for palladium(II) compounds is relatively rare and is 

limited for those containing porphyrin or cyclometalate ligands
28,29

 because of the lower energy 

of metal-centered excited state(s), which results in a facile non-radiation deactivation via 

molecular distortion.
28

 To our knowledge, the on/off-switching of emission for palladium(II) 

compounds in response to outer factors has not been reported. 
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EXPERIMENTAL SECTION 

Caution! Methanol is volatile, flammable, and poisonous. 

 

Preparation of [Pt(dppp)(L-cys)]·1.5H2O·1.5MeOH (1a) and [Pt(dppp)(L-cys)]·4H2O (1b). 

To a white suspension of [PtCl2(dppp)] (500 mg, 0.74 mmol) in methanol (30 mL) was added a 

colorless solution containing L-H2cys (91 mg, 0.75 mmol) in 1.0 M aqueous KOH (1.5 mL, 1.5 

mmol). The mixture was stirred at room temperature for 4 h, which afforded a colorless solution. 

To the solution was added water (10 mL), followed by allowing to stand at room temperature for 

4 d. The resulting colorless needle crystals of 1a suitable for X-ray analysis were collected by 

filtration. When the colorless needle crystals of 1a were allowed to stand in air for 1 day, they 

are effloresced to give a white crystalline powder of 1b. Yield: 394 mg (68%). Anal. Calcd for 

[1]·3H2O = C30H37NO5P2PtS: C, 46.15; H, 4.78; N, 1.79%. Found: C, 46.47; H, 4.53; N, 1.86%. 

ESI-MS (CH3OH, m/z): 727.1 (M+H)
+
. 

1
H NMR (CD3OD, ppm from TMS): 1.92-2.33 (2H, m, 

CH2), 2.80-3.03 (6H, m, CH2), 3.44-3.64 (1H, m, CH), 7.32-7.73 (20H, m, Ph). 
31

P NMR 

(CD3OD, ppm from 80% H3PO4): -9.42 (t, JPPt = 1591 Hz), -4.21 (t, JPPt = 1252 Hz). Electronic 

absorption spectrum in CH3OH [v, 10
3
 cm

-1
 (log , M

-1
 cm

-1
)]: 29.85 (2.39 sh), 34.79 (3.46), 

40.92 (4.37), 45.25 (4.63). CD spectrum in CH3OH [v, 10
3
 cm

-1
 (, M

-1
 cm

-1
)]: 29.05 (+0.175), 

33.83 (-0.15), 38.82 (-0.146). 

Preparation of [Pt(dppp)(L-cys)]·7H2O (1c) and conversion of 1c to 1b. The colourless 

block crystals of [1]·7H2O (1c) suitable for X-ray analysis were obtained by recrystallization of 

1a from H2O/CH3OH (v/v = 3:1). Anal. Calcd for [1]·7H2O = C30H45NO9P2PtS: C, 42.25; H, 

5.32; N, 1.64%. Found: C, 42.37; H, 5.63; N, 1.66%. When the resulting block single-crystals of 

1c were allowed to stand in air at room temperature for 1 day, they were converted to single-
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crystals of 1b, which were also suitable for X-ray analysis, through a single-crystal to single-

crystal transformation process. 

Preparation of [Pd(dppp)(L-cys)]·1.5H2O·1.5MeOH (2a) and [Pd(dppp)(L-cys)]·4H2O 

(2b). To a pale pink suspension of [PdCl2(dppp)] (500 mg, 0.85 mmol) in methanol (30 mL) was 

added a colorless solution containing L-H2cys (104 mg, 0.86 mmol) in 1.0 M aqueous KOH (1.9 

mL, 1.9 mmol). The mixture was stirred at room temperature for 2 h, which afforded a yellow 

solution. To the solution was added water (10 mL), followed by allowing to stand at room 

temperature for 4 d. The resulting yellow needle crystals of 2a suitable for X-ray analysis were 

collected by filtration. When the yellow needle crystals of 2a were allowed to stand in air for 1 

day, they are effloresced to give a yellow crystalline powder of 2b. Yield: 388 mg (66%). Anal. 

Calcd for [2]·3H2O = C30H37NO5P2PdS: C, 52.07; H, 5.39; N, 2.02%. Found: C, 52.16; H, 5.31; 

N, 2.08%. ESI-MS (CH3OH, m/z): 638.1 (M+H)
+
. 

1
H NMR (CD3OD, ppm from TMS): 1.97-

2.24 (2H, m, CH2), 2.67-2.97 (6H, m, CH2), 3.65-3.69 (1H, m, CH), 7.33-7.71 (20H, m, Ph). 
31

P 

NMR (CD3OD, ppm from 80% H3PO4): -1.21 (s), 11.40 (s). Electronic absorption spectrum in 

CH3OH [v, 10
3
 cm

-1
 (log , M

-1
 cm

-1
)]: 24.62 (2.17 sh), 34.25 (4.16), 39.28 (4.31), 44.76 (4.73). 

CD spectrum in CH3OH [v, 10
3
 cm

-1
 (, M

-1
 cm

-1
)]: 24.39 (+0.216), 34.72 (-2.30), 39.6 (-2.49), 

43.9 (-1.09). 

Preparation of [Pd(dppp)(L-cys)]·7H2O (2c) and conversion to 2b. The yellow block 

crystals of [2]·7H2O (2c) suitable for X-ray analysis were obtained by recrystallization of 2a 

from H2O/CH3OH (v/v = 3:1). When the resulting block single-crystals of 2c were allowed to 

stand in air at room temperature for 1 day, they were converted to single-crystals of 2b, which 
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were also suitable for X-ray analysis, through a single-crystal to single-crystal transformation 

process. 

Vapour Diffusion of Volatile Organic Compounds (VOCs) for 1b and 2b. 

Vapour diffusion experiments were carried out using air saturated with various VOCs. 

Physical measurements. The elemental analyses (C, H, N) were performed at Osaka 

University using Yanaco CHN coda MT-5 or MT-6. The IR spectra were recorded on a JASCO 

FT/IR-4100 infrared spectrometer using KBr disks at room temperature. The 
1
H and 

31
P NMR 

spectra were recorded with a JEOL GSX400 (400 MHz) or a JEOL ECA500 (500 MHz) 

spectrometers at 25 ˚C using tetramethylsilane (TMS, δ 0.00 ppm) as the internal standard for 
1
H, 

triphenylphosphate (δ –17.60 ppm) as the external standard for 
31

P. The NMR data were 

illustrated as Figures S11 and S12.
15

 The electronic absorption spectra were recorded with a 

JASCO V-660 spectrophotometer at room temperature. The diffuse reflection spectra were 

measured with a JASCO V-670 UV/Vis/NIR spectrometer. The circular dichroism (CD) spectra 

were recorded with a JASCO J-820 spectropolarimeter at room temperature. Electrospray 

ionization (ESI) mass spectra were recorded on a QSTAR Elite LC-MS/MS System in CH3OH. 

Luminescence measurements. The luminescence spectra were recorded on a JASCO FP-

8500 spectrometer at room temperature in the solid state. The emission quantum yields (Φ) were 

measured with a lab-made absolute emission quantum yield measuring system using an 

integrating sphere (6 in., Labsphere Inc.), the internal surface of which was coated with highly 

reflective Spectralon. A sample powder in a flat quartz cell (10 mm diameter, 1 mm height) 

placed at the bottom of the integrating sphere was excited with a monochromated light (355−365 

nm) introduced from the top of the integrating sphere through a liquid light guide (deep UV 
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model, Newport Co.). The emission from a detection exit of the integrating sphere was focused 

into a grating spectrometer (Triax 1900, Jobin Yvon) equipped with a CCD image sensor (S7031, 

Hamamatsu). The absolute quantum yield of emission was calculated according to the method 

described in the literature.
30

 The emission lifetimes were determined using the measuring system 

previously reported.
31

 The sample was photoexcited using the third harmonic of a Q-switched 

Nd
3+

:YAG laser (Continuum Surelite I-10, λ 355 nm). The observed decay profile of the 

emission intensity was fit to two or three exponential functions with convolution of the 

instrumental response function of the measuring system. The data were summarized as Table 1. 

Powder X-ray diffraction measurements. High quality powder X-ray diffraction pattern 

were recorded for 1a, 1b prepared from 1a, 1c, 2a, 2b prepared from 2a, and 2c at room 

temperature, in transmission mode [synchrotron radiation λ = 1.000 Å; 2θ range = 0–78°; step 

width = 0.01°; data collection time = 3 min] on a diffractometer equipped with a white imaging 

plate detector at SPring-8 BL02B2 beamline. The crystals were put into 0.3 mm glass capillary 

tubes. The samples were rotated during the measurements. The diffraction patterns were 

collected with a large Debye−Scherrer camera. The powder simulation patterns were generated 

from the single-crystal X-ray structures using Mercury 3.0, and corrected for thermal expansion. 

The synchrotron radiation experiments were performed at the BL02B2 of SPring-8 with the 

approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 

2015A1506 and 2015A1520). The high quality powder X-ray diffraction patterns were illustrated 

in Figures S13 and S14.
15

 Other powder X-ray diffraction measurement experiments were 

performed on a RIGAKU RINT2000 in reflection mode [CuKa (λ = 1.5418 Å); 2θ range = 0–

30°; step width = 0.02°; data collection time = 15 min]. 
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X-ray Structural Determinations. The single crystal X-ray diffraction measurements for 

crystals 1a, 1b, 1c, 2a, 2b, and 2c were performed on a Rigaku R-AXIS VII imaging plate and 

Vari-Max with graphite monochromated Mo-Kα radiation (λ = 0.71075 Å). The intensity data 

were collected by the ω-scan technique and empirically corrected for absorption. The structures 

of complexes were solved by direct methods using SHELXS-97.
32

 The structure refinements 

were carried out using full matrix least-squares using SHELXL-2014.
32

 Several unusual 

diffractions were omitted by OMIT commands so as to improve data quality. The crystal data 

were summarized in Table 2. 

For 1a, hydrogen atoms were placed at calculated positions, except those of water molecules, 

and were calculated using riding models. All non-hydrogen atoms except for those of several 

water molecules were refined anisotropically. For 1c and 2c, several DFIX restraints were used 

in order to avoid unusual contact among water molecules. Hydrogen atoms were placed at 

calculated positions, except those of water molecules, and were calculated using riding models. 

All non-hydrogen atoms except for those of several water molecules were refined anisotropically. 

For 1b, 2a, and 2b, hydrogen atoms were placed at calculated positions, except those of water 

molecules, and were calculated using riding models. All non-hydrogen atoms were refined 

anisotropically. 

DFT calculations. To elucidate the origin of emission bands observed for 1a and 2a, 

molecular orbital (MO) calculations were performed using the Gaussian 09 program 
33

 at the 

B3LYP 
34

 level using a Lanl2DZ 
35

 basis set. The single-point and time-dependent DFT 

calculations were carried out for [Pt(dppp)(L-cys)] ([1]) and [Pd(dppp)(L-cys)] ([2]). The 

structural parameters were taken from the single-crystal X-ray structures of 1a and 2a. The 

components of the MOs are listed in Tables S1 and S3.
15

 The contour plots of selected MOs near 
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frontier orbitals are demonstrated in Figures S15 and S16.
15

 The results of Mulliken polulation 

analysis of MOs near frontier orbitals, as well as TD-DFT calculations, are summarized in 

Tables S2 and S4.
15

 

For [1], the LUMO is dominated by dppp (81%) orbitals, and the HOMO possesses large 

contributions from sulfur 3p (72%) and platinum 5d (17%) orbitals. TD-DFT calculations 

indicated that the lowest-energy transition occurs centered at 361 nm, which involves several 

one-electron transitions from the HOMO to the LUMO and LUMO + 2. This result is consistent 

with the appearance of an intense absorption band at 331 nm for [1], and thus the origin of this 

band is assignable as arising from Pt(5d)-S(3p) to dppp(π*), which can be interpreted as the 

metal(platinum)-ligand(thiolate) to ligand(phosphine) charge transfer (MLL’CT) transition. 

For [2], the LUMO is possesses large contributions from dppp (45%) and palladium 4d (29%) 

orbitals, and the HOMO has large contributions from sulfur 3p (75%) orbitals. TD-DFT 

calculations indicated that the lowest-energy transition occurs centered at 444 nm, which 

involves several one-electron transitions from the HOMO to the LUMO. This result is consistent 

with the appearance of an intense absorption band at 418 nm for [2], and thus the origin of this 

band is assignable as arising from S(3p) to Pd(4d)-dppp(π*), which can be interpreted as the 

ligand(thiolate) to metal(palladium)-ligand(phosphine) charge transfer (LML’CT) transition. 

CONCLUDING REMARKS 

In this study, we created a simple but functional square-planar coordination system of 

platinum (II) that shows an on-off switch with yellow emission. The switch of emission was 

selectively turned on by methanol vapor and automatically turned off under environmental 

conditions. The same result was achieved for the corresponding palladium(II) system, which 
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shows an on-off switch with orange emission. X-ray quality single-crystals for both the ‘turn-on’ 

and ‘turn-off’ states of the platinum(II) and palladium(II) complexes were successfully prepared, 

which revealed the importance of O–H···O and C–H···π interactions between the host complex 

molecules and the guest methanol molecules for the appearance of photoluminescence. This 

study shows that the introduction of both hydrophilic and hydrophobic moieties in a luminophore 

is a promising way to create sensing materials that are highly selective toward small volatile 

molecules under ambient conditions. 
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Table 1. Diffuse reflection, excitation (ex), and emission (em) data in the solid state at room 

temperature. 

compounds reflection: 

max/ nm 

ex: max/ nm em: max/ nm Φ  /s, (fraction) 

[1]·1.5H2O·1.5

CH3OH (1a) 

338 286, 315, 

348 

531 0.10 1.11 

[1]·4H2O (1b)    0.015 0.32(12%), 

0.069(25%), 

0.016(63%) 

[2]·1.5H2O·1.5

CH3OH (2a) 

418 352, 444 635 0.017  

[2]·4H2O (2b)    <0.003  
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Table 2. Crystal data of Complexes. 

 

  

 

[1]·1.5CH3O

H·1.5H2O 

(1a) 

[1]·7H2O 

(1c) 

[1]·4H2O 

(1b) 

[2]·1.5CH3O

H·1.5H2O 

(2a) 

[2]·7H2O 

(2c) 

[2]·4H2O 

(2b) 

empirical 

formula 

C63H74N2O10

P4Pt2S2 

C120H124N4O

36P8Pt4S4 

C120H124N4O

24P8Pt4S4 

C63H74N2O10

P8P4Pd2S2 

C120H124N4O

36P8Pd4S4 

C120H124N4O

24P8Pd4S4 

fw 1597.42 3354.58 3162.58 1420.04 2999.82 2807.82 

size / mm
3
 

0.15 x 0.02 x 

0.02 

0.20 x 0.20 x 

0.10 

0.12 x 0.10 x 

0.10 

0.15 x 0.05 x 

0.03 

0.20 x 0.20 x 

0.10 

0.15 x 0.10 x 

0.10 

crystal 

system 

Orthorhombi

c 
Triclinic Triclinic 

Orthorhombi

c 
Triclinic Triclinic 

space 

group 
P212121 P1 P1 P212121 P1 P1 

a / Å 13.0435(7) 13.0894(2) 13.352(2) 13.1259(2) 13.1073(8) 13.375(2) 

b / Å 18.7020(10) 15.7129(3) 14.784(3) 18.8248(3) 15.7964(8) 14.699(3) 

c / Å 27.3566(19) 19.3044(4) 19.314(4) 27.4833(5) 19.3997(8) 19.198(4) 

α /˚ 90 79.510(6) 75.711(5) 90 79.292(6) 75.569(5) 

β /˚ 90 70.921(5) 69.782(5) 90 71.117(5) 70.129(5) 

γ /˚ 90 70.034(5) 65.683(5) 90 69.573(5) 65.587(5) 

V / Å
3
 6673.4(7) 3515.6(2) 3235.6(10) 6790.92(19) 3549.5(4) 3206.0(10) 

Z 4 1 1 4 1 1 

T / K 200(2) 200(2) 200(2) 200(2) 200(2) 200(2) 

R(int) 0.0735 0.0189 0.0176 0.0290 0.0141 0.0137 

ρcalcd / g 

cm
–3

 
1.590 1.584 1.623 1.389 1.403 1.454 

μ (Mo Kα), 

mm
–1

 
4.402 4.190 4.541 0.740 0.720 0.785 

θMax /˚ 27.49 30.03 27.49 27.48 27.48 27.48 

total no. of 

data 
49579 40637 25632 54510 28711 25700 

no. of 

unique data 
15252 33304 22855 15525 25436 22901 

no. of 

parameters 
763 1445 1477 754 1445 1477 

flack 0.026(4) 0.019(3) 0.008(4) 0.001(5) –0.004(6) 0.000(9) 

R 

(I>2σ(I))
a
 

0.0668 0.0324 0.0304 0.0433 0.0369 0.0322 

Rw
b
 0.1249 0.0908 0.0810 0.1140 0.1034 0.0827 

a) R1 = Σ||Fo|–|Fc|| / Σ|Fo|.  

b) wR2 = [Σ(w(Fo
2
–Fc

2
)

2
) / Σw(Fo

2
)

2
]

1/2
. 
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Figure 1. Molecular structure of [M(dppp)(L-cys)] (left). Interconversion among three different 

crystalline states; (i) stored in air, (ii) exposed to methanol vapor, (iii) recrystallized from a 

mixture of methanol/water (1:3), and (iv) stored in air (right). 

 

Figure 2. (a) The perspective view of one of two independent complex molecules with 50% 

ellipsoids in 1a. (b) Top and (c) side views of the left-handed four-fold helix. (d) CH– 

interactions found around one methanol molecule. Dashed lines indicate hydrogen bonds. 

 

 

Figure 3. (a) Diffuse reflection spectra of 1a (red), 1b (black), and 1c (blue). (b) Excitation and 

emission spectra of 1a (λex = 350 nm, λem = 530 nm). (c) The change of emission spectra of 1a in 

air. (d) The change of emission spectra of 1b in methanol vapor. (e) A plot of the relative 

intensity of the emission of 1b during repeated experiments of methanol exposure and storage in 

air. (f) Photographs of 1a, (g) 1b, (h) 2a, (i) 2b under UV light irradiation. 

 

Figure 4. (a) The perspective view of one of four independent complex molecules with 50% 

ellipsoids and (b) a perspective view of the tetrameric structure in 1b. (c) The perspective view 

of one of four independent complex molecules with 50% ellipsoids and (d) a perspective view of 

the dimeric structure in 1c. Dashed lines indicate hydrogen bonds. 
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Figure 1 

 

 

  

[1]·1.5H2O·1.5CH3OH (1a)
[2]·1.5H2O·1.5CH3OH (2a)

emissive

[1]·7H2O (1c)
[2]·7H2O (2c)
non-emissive

(iii)(i)

(ii)

[1]·4H2O (1b)
[2]·4H2O (2b)
non-emissive

(iv)

[M(dppp)(L-cys)]
(M = Pt ([1]), Pd ([2]))
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Figure 2 
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Figure 3 
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Figure 4 
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For Table of Contents Only 

 

Square-planar palladium(II) and platinum(II) systems show reversible turn-on-type 

photoluminescence triggered by methanol vapor. Single-crystal X-ray crystallography revealed 

that methanol molecules form O-H···O and CH···π interactions with the complex molecules, 

which prevent vibrational emission quenching. 

CH3OH
vapor in air


