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1. Introduction

In this paper we are interested in incompressible, bounttmgmpressible planar
surfaces, properly embedded in a 3-manifald  with boundsliych has already been
published for the case whet¢  has one torus boundary compa@ngsee in [1], [5],
[6].)

We recall the definition from [6] oplanar boundary-sloped_et (P, dP) C (X, T)
be an essential (i.e., properly embedded, incompressblg,boundary-incompressible)
planar surface inX . All the components 8P N T have the same slope dh . We
call this value theplanar boundary-slopeThe distance A(r, s) between two slopes
ands is their minimal geometric intersection number.

In [8], Gordon and Luecke have proved that distance betwéanap boundary-
slopes is bounded by 1. Our goal is to obtain similar resulerwthe 3-manifoldX
has two torus boundary components. In this case, for eaataplsurface, we have
a pair of boundary-slopes. We give a bound for at least onéheftivo distances be-
tween boundary-slopes, depending on the numbers of boyrdanponents of the sur-
faces. The first approach to this problem was to study thevfallg question: Is it
possible to producé® by a non-trivial surgery on a 2-component link $8? The case
of reducible links inS® (a 2-sphere separates the two components) is alreadydreate
in [7]: these links never yields® by surgery. But there are many known examples of
links for which it is possible (see [1], [3]). Berge has ananced in a preprint ([2])
that there is an infinity of “non-trivial” (each componentnsn-trivial and there is no
essential annulus joining the two components) 2-compolueks in S° yielding S by
surgery with distances between the meridians arbitradlgd. In this paper we give
some conditions for the realization of Berge’s conjectuvhich is the following:

For all integer n, there exists a“non-trivial’ link L = (ky, k) in S3, such that
My (51, B2) ~ S3, and A(B1, a1) > n, A(B2, az) > n, where oy (respectivelyas) is
a meridian slope ok; (resp. k2).

We exclude from our study reducible links. We consider ohly irreducible “non-

trivial” links:
- the components of the link are non-trivial, and
- no annulus cobounds two essential circles on the two baynoamponents of the
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complement of the link, respectively.
The thin position of the link and Cerf theory, as in [7], give & pair of planar sur-
faces, P andQ , properly embedded in the link space. By contriiaatanalysis of
graphs of the intersectio® N Q, we find a bound, depending on the link, for one of
the two distances between meridians. The basic idea of ttat/sis comes from [6].

In Section 2, we introduce definitions and notation necgskarthe theorems and
we state the results. Section 3 gives elements of intecsegraph theory. In Sec-
tion 4, we give some combinatorial lemmas and the proof ofoféma 1. Section 5
treats the case of®.

I would like to thank Michel Domergue, Daniel Matignon and rkillett for
their help and advices. Thank you to Mario Eudave-MufiozHelpfull conversations.

2. Preliminaries

Let X be a 3-manifold with two boundary componentsX = T; U T», where
T; is an incompressible torus iX i, =,1 2. (Throughout, when igl dai be
a 3-manifold, it will also be compact, connected and oriblea Let (P,0P) C
(X, 0X) be a planar surface iX  with boundary componentsTprand 7,. Let a; be
the number of boundary components Bf ®n . We will always asstimta; > 0
anda > 0. All the components obP N T; have the same slopg; on 7;, so we can
assign to the surfac® a pair of slopes= (a1, az), and a pair of positive integers
a = (a1, az). Sometimes we shall call the slopeof P anda the number of boundary
components ofP . Finally, the pain(a) will denote theparametersof P on (71, T2).

Let X(«) be the manifold obtained fronX by attaching a solid tofids and
a solid torusV, along 7y and 7T, respectively so that; bounds a meridian disc iW;
i = 1, 2. Then the manifoldX «) contains a 2-sphert§ which intersectsV; ing;
meridian discsj =1, 2.

In the same way, leW; and W, denote the two Dehn filling solid tori of the man-
ifold X(/3), where 5 = (01, 32) is the slope of a planar surfac€®(9Q) C (X, 0X)
with number of boundary componenks & (b)) on (I1, T2), b; > 0,i =1, 2. Then
the manifold X (3) contains a 2—spher@ intersectingW; inb; meridian discs.

The distanceA(«, 3) between two slopes = (a1, ap) and 5 = (51, 82) on X is
the pair A (1, 51), A(az, 52)). In the following A; will stand forA &;, 5;).

DeriniTion 1. We shall say thaP? and hawggaph propertiesif P and Q are
in general position, intersect transversely in a finiteadigj union of circles and prop-
erly embedded arcs such that no properly embedded arc isdaguparallel in either
P or Q, and each component @fP N 7; intersects transversely each component of
o0 NT; in A; points,i =1, 2.

Remark. Let Gp and G, be the planar intersection grapis{ Q C TJ) and
(P N Q C Q) respectively, defined as usual. In the case where @nd  haygh gr
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properties, there is narivial loop (disc-face with one single edge in its boundary)
in eitherGp orGy .

Theorem 1. Let X be a 3-manifold with two incompressible torus boundary
components 90X =Ty U Ty, such that
i) X contains no essential annulus with one boundary componanfioand the
other onT5; and
i) None of the manifold{X(a1), 72), (X(a2), T1) contains a properly embedded
Mobius band.
Let P be a planar surface properly embeddedXn  with parameters:), such that
a1 > ap. If Q is a planar surface properly embedded irX, with slope 5 on 90X,
such thatP andQ have graph propertigben eitherA(as, 51) < 30, or A(ag, F2) <
3&11/612.

Remark. It suffices to exchange the roles @f and 7> to have all the cases.

We shall now examine the analogous situationSi Throughout, we will con-
sider only irreducible links (there is no 2-sphere sepagatihe two components).
Let L = (k,1) be a 2-component link ir§® and M; denote its complemens® \
(IntN(k) UInt N(/)), whereN k) andN () are tubular neighbourhoodskof @nd re-
spectively. The manifoldd, has two boundary componemé(k) and ON(l), each
homeomorphic to a torus. Let; and a, be the slopes of a meridian & arid re-
spectively.

We adapt here the definition dfiin positionfor a link. (see [4] or [7].)

Dernimion 2. Note thatS® = §2 x RU {+00, —0o}. We defines :S? xR — R to
be the projection onto the second factor. We shall say thats ageneric presenta-
tion if L € $? xR, and hy; is a Morse function. By an isotopy af , we may always
assume thal. has a generic presentation. Choose a real ngnilsween each pair
of adjacent critical values ok|,. The complexityof this presentation of. is the sum
S ILNh=#)|. A thin presentationof L is a generic presentation of minimal com-
plexity.

Now choose a thin presentation far . Let(y1), ..., (x,, y.) be the pairs of ad-
jacent critical values of; such thatx; < y;, x; corresponds to a local minimum,
and y; to a local maximum. To eadbvel spheref’, = h~Y(r) we can assign itsa-
tio r, = M,/m, > 1, whereM, =max@ Nk|,|P, NI|) andm, =min(P, Nk, |P, N1]).
Every level sphere in aniddle slab{P,, €]x;, yi[} has the same ratio, because they
all intersectk and the same number of times. Then each miwhe{f’,,t elxi, yil}
has a ratior; , defined as = for somes Jx;, y;[. The linking ratio » of this thin
presentation ofL. is the minimum: mirr; . We may define the linkiagio r (L) of L
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to be the minimum number of the linking raties , over all thiregentations for. .

Remarks. (1) The ratior; may be infinite.
(2) SinceL is irreducible, in a thin presentation there abvayist middle slabs which
meet both components of the link. $oL (<)oco.
(3) We may suppose thatL( ) corresponds to the ratior; =r, =|P,#\k|/|P, N1].
There is no loss of generality because it suffices to exchémgeoles ofl andc .

Corollary 1. Let L = (k,[) be a link in $* with linking ratio »(L), « a pair of
meridian slopes ofl, and 5 a pair of slopes oMy, with 51 # a1, B2 # a, Such
that
(i) Mp(Br, B2) ~ S3
(i) there is no essential annulus cobording the two boundarypoorents ofMy;

(iii) M(B1), ML(52), ML (a1), and ML (a2) are boundary irreducible.
Then eitherA(aa, 81) < 30, or A(az, 52) < 30r(L).

Notice that property (iii) implies no component of the link frivial. By [7, The-
orem 2], property (i) implies.. is irreducible.
The link Lg in S2 shall be the core of thé-surgery onL .

Recall Berge’s conjecture.For any integern, there exists a linkL = (k, ) in S3,
such thatM; has propertyii) of Corollary 1,/ and k are non-trivia) M, (31, B2) =~
§%, and A(B31, a1) > n, A(Be, az) > n, where oy (respectivelya,) is a meridian slope
of k1 (resp. k).

By Corollary 1, if the link verifies Berge's Conjecture far> 30, and if the com-
ponents of the core are non-trivial, then the link must haveudficiently large” link-
ing ratio. More preciselyr I{ ) must be r/30.

Let V; be a solid torus ins® with core knotk; ( = 1, 2). Suppose that there is
an annulusA connectingVy, and 0V,; 0A = c¢3 Uc and¢; wrapsp; -times in longi-
tudinal direction ofV; . Without loss of generality, we may @se 0< p; < p,. We
divide into several cases depending on the pair p».

If p1=p,=0, there is a 2-sphere if intersectingk; in one point, a contradic-
tion.

If p1 =0 andp, =1, thenk; is a trivial knot.

Assume thatp; = 0 and p, > 2, then we can find a lens space summandin
a contradiction.

If p1=p2=1, thenk; andk, are parallel.

If pp =1 andp, > 2, thenk; is a cable ofk,.

Finally suppose that botp; > 2. Let us consider the 3-manifoltf WUN(A)U
Vo; it is a Seifert fiber space over the disk with two exceptiofilaérs k1, and k» of
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indices p1 and p,. Note thatM is boundary-irreducible, then sing#f is a torus,S3—
Int M is a solid torus whose core is a non-trivial torus knotu3the two exceptional
fibersk; and k, form a Hopf link (cf. [10, Theorem 11]).

Hence, if L = €1, kp) is a link in $* with k; non-trivial ¢ = 1, 2) such that/,
contains an annulug , then eithpr = p, = 1 andk; and k, are parallel, orp; = 1
and p, > 2 andk; is a cable ofk,.

This gives us a new corollary:

Corollary 2. Let L = (k,1) be a link in $% with linking ratio (L), such thatk
and/ are non-trivial. Leta be a pair of meridian slopes df, and 5 a pair of slopes
on oMy, with 51 # ai, B2 # as.

SupposeM, (51, 52) ~ S° and the two components dfs are non-trivial. If
A(ag, £1) > 30, and A(az, 52) > 30r (L), then some component &f is a cable of
the other ongor both components represent the same knot.

3. Intersection graphs

Let P and Q be two planar surfaces properly embeddedin , witlamaters
(a,a) and (3,b) on (I, T»). Let P and O be the 2-spheres iX af and X (3) such
that P =X NP, Q = X N Q. As usual we consider a paiGe, Go ) of graphs in
(P, Q). .

Number, from 1 tog; , the components ofP N T;, that we denote by P,
%P, ..., 0. P, in the order in which they appear dfi i, = 1, 2. Number from 1
to b; the components addQ N7;, that we denote by Q, 950, ..., d; Q, in the order
in which they appear off; i, =1, 2.

Now label the endpoints of the properly embedded arc® imQ. Let e be an arc
in PN Q, andt be an endpoint of , saye 9.P N9, Q. Thent is labelledz on
the component), Q in the surfaceQ , and is labelled on the compon@n® in
the surfaceP . Thus around each componendBiNT;, we see the labels 1, 2 ., b;
appearing in cyclic order, and around each compone@®f 7; we see the labels 1,
2,...,a;, these sequences being repeated times, =1, 2.

Assigning (arbitrarily) orientations t@ an@ , we induce aieptation on each
component ofo P and each component @fQ. The orientation ofX induces an orien-
tation for 71 and T>. Here we choose a positive orientation for each unorienit@gls
closed curve with slopey; and each one with slopg;, respecting the orientation of
T;,,i=1, 2.

We assign a sign + to a component @P N7T; or 900 N T; if its induced ori-
entation is the same as the positive orientation of the dl@sgves on7; defined pre-
viously, and assign the sign otherwise. We shall say that two components and
of 9P NT; (or 0Q N T;) are parallel if they have the same sign arahtiparallel if
they have opposite signs. Notice that signs given to compusnef 0P N Ty (respec-
tively 0QNTy) are independant of the signs of the component8 BNT, (respectively
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00 N Ty).

Cap off the components a?P N 7; (respectivelyoQ N 7;) with discs, we regard
these discs as “fat” vertices of type of the gragh (respebtiGp), i = 1, 2.
Thus there are two types of vertices @np aod) , just as there veoetypes of

edges: thesimple edgef Gp (respectivelyG, ) correspond to arcs #fN Q in P
(respectivelyQ ) whose boundary components are in the samedboy component of
0X, the mixed edge®f Gp (respectivelyG, ) correspond to arcs 8fnN Q in P (re-
spectively 0 ) with one boundary component @h and the other orif. In the fol-
lowing, we shall consider edges 6f,  at®, as arcsPim Q and keep the same
notation for both, and the labels and signs assigned to moyncbmponents will be
kept the same for the vertices.

If P and Q have graph properties, then there is tnvial loop (disc-face with
one single edge in its boundary) in eithétp onp and the paritg still works
for simple edges:

If a simple edge joins parallel vertices i@, , it joins antipdlel vertices inG, and
vice versa.

Two edgese and’ in a graphG aredirectly parallel if they connect the two
same vertices, and cobound a disc-faceGin . Theyparallel if there exist a finite
set{e; =e¢, ez, ...,e, =€’} Of edges ofG such that;, ang., are directly parallel,
forie{1,...,n—1}.

Recall that thereduced graphf} of a graphG is obtained frond; by replacing
each family of parallel edges by a single edge. We shall u§@,\@) to denote the
valency of a vertex in the grap&

4. Proof of Theorem 1

Lemma 1 ([6, Lemma 4.1]). Let I' be a finite graph in the&-sphere with no
1-sided faces. Suppose every vertexIof  has otdeb. ThenI” has two parallel
edges.

Supposef is a family of edges of the paity, Gp ), the@p £)is the subgraph
of Gp consisting of all edges of and their attached vertices.

Lemma 2. Supposer; > az and Ay > 30, Ay > 30a1/az. ThenGy has a family
of parallel edgest, and Gp(€) has two parallel edges.

Proof. Let@ be the reduced graph @, . By Lemma&E has a vertexwo
so that valfo, Gp) < 5. But

Ajas if wg is of type 1

val(wo, Gg) = { Aqas if wo is of type 2°
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Hence val{o, G o) > 30a, andgg has an edg& of order> 6a; which is incident to
wo. The edgef in éz is a family of at least & parallel edges inG

Suppose the edges 6éfare mixed. We rename and the vertices of type 1 and
2 respectively, attached t6. Sincea; > ay, for eachi in{1, 2 ...,a;1} there are at
least 6 endpoints of labelledi ondu, and for eachj in{1, 2 ...,ay} there are at
least 6 endpoints of labelledj ondv. Hence every vertex i p &) has valency 6.

By Lemma 1,Gp €) has two parallel edges. Notice that they are mixed.

Now suppose the edges éf are simple. They join two vertices of same type ,
which we callu andv . Sincei; > az, £ contains at least&® edges. So for each
m; € {1, 2...,a;}, there are at least 6 endpoints of edge<itabelledm; ondu,
and the same oWv. Thus every vertex ofGp &) is of typei and has valeney 12.

If there is no trivial loop InGp £), we can apply Lemma 1 to show thét, £)(has
two parallel edges.

If Gp(&) contains a trivial loop, then the both endpoints of eacheenigE have
the same label ot and Gy . All the edges &fare loops inGp §). By
Lemma 3 below,Gp» §) must contain at least two parallel edges (which are loops).
In all cases we can choose two edggse, directly parallel inGp £). O

Lemma 3. If every edge of is a loop in Gp(E), then Gp(E) contains two par-
allel edges.

Proof. For this lemma, we just neetl to be a family of exactly & mutually
parallel adjacent edges. The edgesfofire loops inGp . Thus inG, they join two
antiparallel vertices. There are two cases, according tethen& joins in G, vertices
of type 1, or vertices of type 2.

First assume the vertices @p ) are of type 1. ThenGp &) (on the sphere
13) consists ofa; connected components, each of which is a 6-bouquet. Here; an
bouquet will be a graph with one vertex and loops.

Let 7 be the set of faces ofip £] (as a graph on a sphere), anfd, f> and
f3 be the numbers of disc faces 6fp £)(with one side, two sides and at least three
sides, respectively. Then an Euler characteristic cdiouaives

a1—6a1+2x(f)=2-

fEF

But

DX = fit fat 3+ > X(f) < A+ fot fa
feF fEF,f norrdisc face
Thus f1+ fo+ f3 > 2+ 5ay.
To prove the first case, it is sufficient to show th&t> 0. So we assumg; = 0,
and reach a contradiction. Thefi + f3 > 2 + %;. Since Gp has no trivial loop,
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each 1-sided face ofip £ must contain, inGp , at least one vertex. This vertex is
of type 2 becaus& p &) already contains all the vertices of type 1. Thfis < a».
Sincea; > ap, we havefz > 2 + 4a;.

CLav 1. A 6-bouquet on a sphere has at most two disc-faces with 3ae m
sides.

Proof of Claim 1. Embed a 6-bouquét  on a sphere. Then by Eulermula,
1-6+) x(face) = 2. Note that all faces are disc.

Let g1, g2 and gz be the number of disc faces with 1 side, 2 sides, and at least 3
sides, respectively. Thegy +2g,+3g3 < 2x 6 = 12. Sinceg; +g>+g3 = > x(face) =7,
we have 23 < g2 +2¢3 < 5. Thusgs < 2. O

Hence each connected component®j &) bas at most two 3-sided disc faces,
and so f3 < 2a;. Then we have @ > 2 + 4a;, a contradiction.

Next suppose that the vertices 6fp £)(are of type 2. Recall thaf is a family
of 6a; parallel edges. Thew p ] hasa, vertices, anda, connected subgraphs, each
being ann; -bouquet for some integer > 6. Note that) 2, n; = 6a.

A similar proof as the one of Claim 1 gives Claim 2:

Ciam 2. An n;-bouquet on a sphere has at most- 1)/2 disc-faces with 3 or
more sides.

Keep the same notation as for the above case&s pn€) we now have

a—6a1+ Y x(f)=2,

fer

which leads tofi+ fo+ f3 > 2—a»+6a;. Assumef, = 0 for contradiction. Sincefy < a;
(becauseG p §) contains all the vertices of type 2 a@r  has no trivial lodhgn
f3>2—ay+5a;. By Claim 2,

2 o —1 a
fsﬁz( ):3611——2-
i=1

2 2
Hence
2-az+5a, < fo< 30— 3.
Sincea; < aq, then we have 4 +@ < 0, a contradiction. Ol

We shall say that two arcs a? N Q are parallel inP if they cut off a disc iP
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Fig. 1. a 6-bouquet

Lemma 4 ([5, Lemma 2.1]). Let P and Q be two properly embedded planar
surfaces in a3-manifold X such thathX contains a torusT, and assumeP and
have boundary components dh . Suppose that @nd intersewdveesely and
each component aP N T intersects each component @ N T minimaly. LetA, A’
be two arcs ofP N Q, properly embedded ifX, T), and parallel in bothP andQ . If
DNE=AUA, whereD andE are the discs i? an@ respectivehat realize
the parallelism ofA and A’, then D andE cannot be identified along and A’ as
illustrated in Fig. 2

In the following, & will always denote this family with at leasta$ parallel edges
in Go. Under the assumptiotn; > 30 and A, > 30a;1 /a2, Lemma 2 implies an ex-
istence of two parallel edges i6p £), which contradicts the assumption (i) or (i)
in Theorem 1 by Lemma 5 or 6 below. This completes the proof lidofem 1. [

Lemma 5. Let e; and e; be parallel edges inGp(E). Supposee; and e; are
simple. ThenX(«1), T2) or (X(ap), T1) contains a properly embeddeddidius band.

Proof. The edgeg; and e, come from the family€ of edges inG, , so they
are parallel in bothG, andrp &). First we can assume; and e, are directly par-
allel in Gp(£). Assume nowe; and e, have their boundaries off;. Let u, v andx ,
y denote the vertices attached ép ande, in Gp and G, respectively. (We can have
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Fig. 2. a,b,c,d are the points of intersection between the arckthe boundary
components ofP an@

u=v orx =y). Since each labél ifl, 2 ...,a;} appears as an endpoint of an edge
of £in Gy, the graphGp §) contains all the vertices of type 1 ¢fp . Hence the cy-
cle given by the edges; and e, bounds a discD inP such that in the interior of
the cycle there are no vertices of type 1. But, there may b#cesrof type 2 ofGp

in the interior of the cycle. LetE be the disc that realizes gazallelism between
the arcse; ande; in Q. Each arc ofE N P corresponds to an edge 6f Then, since
e1 and e, are directly parallel inGp &), DN E = e1 Ue, UC, whereC is a union

of circles. By a cut and paste method we can eliminate cirofastersection, and ob-
tain two discs (we shall call them agaid afd ) such thatE =e;Uep. There are
two possibilities for the way in whictkE and@d are identified agjory and ey, illus-
trated by Fig. 3 and Fig. 4. Notice that the diBc  isRna)C X(ap). The surfaces
P(ap) and Q are transverse and their boundary component®; dntersect minimaly.
By Lemma 4, case (i) is impossible. In case (iB,U D is a Mobius band properly
embedded inX ). O

ReEmARK. Supposex =v M = D U E is a Mobius band properly embedded
in (X(ay), T1). But OM also bounds a Mobius bandt’ in X(a1) = X U Vi, where
M’ is the union of the meridian dise df; and a discA onl; (see Fig. 5). The
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€2

e1” graphGp €)

€2y graphGy

u elv

Fig. 3. case (i)

€2

e1” graphGp €)

egv

v e graphGy

Fig. 4. case (ii)

union of the two Mobius bands is a Klein bottle M| J,,, M’ in the manifold
X (a1, ap). The Dehn filling solid torusV; intersectsk in a single component.

Lemma 6. Lete; and e, be parallel edges in botltyy, and p(€). Supposee;
and e; are mixed. ThenX contains an essential annubisch that one of the bound-
ary components is irf; and the other in7x.

Proof. Assumee;, e, are directly parallel inGp ). Let u, v andx ,y be the
pairs of vertices inGp and;, respectively, attached to the fmratigeses, e2. Sup-
poseu andx are of type 1, whike and are of type 2. First notice&hia a family
of at least @; parallel edges. Hence each {d, 2,...,a;} labels an endpoint ofx
of some edge irf, and every label of type 2 is an endpoint m of some edge irf.
Then Gp €) contains all the vertices ofip . lé1 ande, are non parallel inGp , then
e; ande; cut off in Gp a subgraph which contains at least one vertexGef  thy
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previous remark, this vertex is also a vertex®} &),(which contradicts the fact that
e1 ande; are parallel inGp £). Therefore the edges ande, are also parallel irGp
(but in general they are not directly parallel), so Bt (extjvely £) be the disc in
P (respectivelyQ ) that realizes the parallelism betweerand e,. If the discs and
D contain circles in their intersection, by cut and paste washwe may build two
new discs (let's call these disd8 amdl  again), such that thirsect only along
e1 ande;. Since the edges;, ¢; are mixed, the only possibility for the way in which
E and D are identified along; ande; is illustrated in Fig. 6. The unio® (J, ,, D
is an annulusA with two boundary componewtsA C T; and 0-A C T,, where
0:A=CUC’, and0_A=0UJ¢ (see Fig. 6).

Let | ang | be the geometric intersection number between the two edeotirves
« and 3, and .3 be their algebraic intersection number.

We suppose without loss of generality th@t.ou > 0. We have

0+A.0u = C'.0u — 1,

and| C'Ndu |> 2. Theno. A intersects the meridiadu of T, at least once and always
with the same orientation. The annulds joifisto T, and its boundary components
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graph Gy

Fig. 6. verticesu and of type 1, vertices amd of type 2

are non-trivial onT; and T, respectively. Thereforél is essential. Ol

5. Proof of Corollary 1

For the proof of Corollary 1, we’ll follow the same argumerst for Theorem 1.
It suffices to find two planar surface® adl  which verify hypsik of Theorem 1
in the case wher&X #;

For a proof by contradiction, we consider a lidk % { ) withouvial com-
ponents which produceS® by a non-trivial surgery, such that the cores of the surgery
are non-trivial. We may suppose it is an irreducible link dgse if it were reducible, it
wouldn't give S2 by a non-trivial surgery. (This is an immediate consequesfc&he-
orem 2 in [7]).

Proposition 1. Let L = (k,/) be a link in $® such thatkc and are non-trivial
and with a linking ratior(L) in some thin presentation. Let be a pair of meridian
slopes ofL . IfM () is homeomorphic t&® for a slopes # o on OM;, and M. (531),

My (32) are boundary-irreduciblethen there exist two properly embedded planar sur-
facesP andQ inM,, such thatP has parameter§y, a), and Q has parameters
(8,b) on OMy, r(L) =a1/az, and P andQ have graph properties.

Proof. We consider a thin presentation for  §A such that the linking ratio of
this presentation ig I( ). Sinc#, B)~ S3, the link is irreducible, so there is at least
one middle slab{P;, t €lx;j, y;[} such that each level sphe® in this middle slab
intersects bottk andl . Its ratip 5 is finite, and suppese r I= ( gt ih to say
this middle slab realizes L( ).

Now we choose a thin presentation for the core of the surdgery (ks, [3) in the
copy M, (3) = S35 of S%. The link L is irreducible. As above, we choose a middle
slab{@t,t €lx;,y; } which intersects botlts andig.
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Applying the method of [7, Proposition 1] to a 2-componenklin $3 with non-
trivial components, we find two surfacds agd , whére 13,@ M; for somet in
Ix;, y;[ and Q is homeomorphic tQ, N (S35 \ Int N(Lg)), with ¢ in Jx;, y; [. In order
to apply the general definitions of Section 1 and Section 2repaceX byM; Ty
by ON(k) and T> by ON(l). The planar surface® an@  are properly embedded in
My, with parametersd a), (3, b) respectively ¢ > 0,b; > 0), P realizesr L ) and
they have graph properties. U

We may assume I ){:13, N k|/|13, N1|, soai > az. We apply Theorem 1, which
leads us to the following conclusion: Eithg#f,  contains areesal annulus that joins
its two boundary components or one of the two manifoMgs a1),( M, («2) contains
a properly embedded Mobius band. The first case contradigisthesisi ) of Corol-
lary 2. We will see that the second case is impossible too.

The Mobius band we have built in the proof of Theorem 1 leada tontradiction
in each case. We shall describe exactly what happens.

Consider the case (ii) of Fig. 4, and we suppose without Idsgeoerality thatu
and v are meridian discs fa?N (k). In fact, we shall divide the case (ii) in the three
following subcases:

(ilu=v

(ii).2 u Zv, u andv are antiparallel

(i).3u #v, u andv are parallel.

We are going to see that all the subcases are impossible.

Keep the same notation (disés amd , vertieesy x , @&nd ) as inghe g
eral case, changing the vertices of type 1 (respectivelyypé t2) into vertices corre-
sponding to boundary components @ (k) (respectivelyoN(l)). First, for these three
cases, chang& anBl by cut and paste or isotopy if necessafiyninate singular
surfaces as previously.

(i)).1 The Mobius bandM = DUJ,, ,, E is properly embedded is2 \ Int N (k). But
OM also bounds a Mobius bant1’ properly embedded i/, of) ~ S°\ IntN(I):
M’ is the union of the meridian disc aof df and a disc OW(k), (see Fig. 5).
The unionK =M J,,, M’ is a Klein bottle embedded i§3, which is impossible.
(ii).2 There is a Mobius band® M, of ~ S B is the union of the disdD C
$%\ IntN(k), a meridian disc (in facu om ) ok and a disc &N (k) (see [6],
Fig. 4). The discE inQ has the same boundary as the Mobius Bantien,B U E

is a projective plane embedded §i, which is impossible.

(i)).3 Then, by the parity rulex and are antiparallel ¢, . As the previous
case, we can build a Mobius bang’ which is the union of the disc , a disc
on ON(kg) and a meridian disc oV k3). The Mbbius bandB’ is properly embed-
ded in M, (1) ~ S — IntN(l5), and it has the same boundary Bs . The projective
plane D U B’ is embedded ins2, which is impossible. O
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