

Title	Dehn fillings on a two torus boundary components 3-manifold
Author(s)	Mayrand, Elsa
Citation	Osaka Journal of Mathematics. 2002, 39(4), p. 779–793
Version Type	VoR
URL	https://doi.org/10.18910/5719
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

DEHN FILLINGS ON A TWO TORUS BOUNDARY COMPONENTS 3-MANIFOLD

ELSA MAYRAND

(Received January 22, 2001)

1. Introduction

In this paper we are interested in incompressible, boundary-incompressible planar surfaces, properly embedded in a 3-manifold X with boundary. Much has already been published for the case where X has one torus boundary component T . (see in [1], [5], [6].)

We recall the definition from [6] of *planar boundary-slopes*: Let $(P, \partial P) \subset (X, T)$ be an essential (i.e., properly embedded, incompressible, and boundary-incompressible) planar surface in X . All the components of $\partial P \cap T$ have the same slope r on T . We call this value the *planar boundary-slope*. The *distance* $\Delta(r, s)$ between two slopes r and s is their minimal geometric intersection number.

In [8], Gordon and Luecke have proved that distance between planar boundary-slopes is bounded by 1. Our goal is to obtain similar results when the 3-manifold X has two torus boundary components. In this case, for each planar surface, we have a pair of boundary-slopes. We give a bound for at least one of the two distances between boundary-slopes, depending on the numbers of boundary components of the surfaces. The first approach to this problem was to study the following question: Is it possible to produce S^3 by a non-trivial surgery on a 2-component link in S^3 ? The case of reducible links in S^3 (a 2-sphere separates the two components) is already treated in [7]: these links never yield S^3 by surgery. But there are many known examples of links for which it is possible (see [1], [3]). Berge has announced in a preprint ([2]) that there is an infinity of “non-trivial” (each component is non-trivial and there is no essential annulus joining the two components) 2-component links in S^3 yielding S^3 by surgery with distances between the meridians arbitrarily large. In this paper we give some conditions for the realization of Berge’s conjecture, which is the following:

For all integer n , there exists a “non-trivial” link $L = (k_1, k_2)$ in S^3 , such that $M_L(\beta_1, \beta_2) \cong S^3$, and $\Delta(\beta_1, \alpha_1) > n$, $\Delta(\beta_2, \alpha_2) > n$, where α_1 (respectively α_2) is a meridian slope of k_1 (resp. k_2).

We exclude from our study reducible links. We consider only the irreducible “non-trivial” links:

- the components of the link are non-trivial, and
- no annulus cobounds two essential circles on the two boundary components of the

complement of the link, respectively.

The thin position of the link and Cerf theory, as in [7], give us a pair of planar surfaces, P and Q , properly embedded in the link space. By combinatorial analysis of graphs of the intersection $P \cap Q$, we find a bound, depending on the link, for one of the two distances between meridians. The basic idea of this analysis comes from [6].

In Section 2, we introduce definitions and notation necessary for the theorems and we state the results. Section 3 gives elements of intersection graph theory. In Section 4, we give some combinatorial lemmas and the proof of Theorem 1. Section 5 treats the case of S^3 .

I would like to thank Michel Domergue, Daniel Matignon and Ken Millett for their help and advices. Thank you to Mario Eudave-Muñoz for helpfull conversations.

2. Preliminaries

Let X be a 3-manifold with two boundary components: $\partial X = T_1 \cup T_2$, where T_i is an incompressible torus in X , $i = 1, 2$. (Throughout, when X is said to be a 3-manifold, it will also be compact, connected and orientable). Let $(P, \partial P) \subset (X, \partial X)$ be a planar surface in X with boundary components on T_1 and T_2 . Let a_i be the number of boundary components of P on T_i . We will always assume that $a_1 > 0$ and $a_2 > 0$. All the components of $\partial P \cap T_i$ have the same slope α_i on T_i , so we can assign to the surface P a pair of slopes $\alpha = (\alpha_1, \alpha_2)$, and a pair of positive integers $a = (a_1, a_2)$. Sometimes we shall call α the *slope* of P and a the number of boundary components of P . Finally, the pair (α, a) will denote the *parameters* of P on (T_1, T_2) .

Let $X(\alpha)$ be the manifold obtained from X by attaching a solid torus V_1 and a solid torus V_2 along T_1 and T_2 respectively so that α_i bounds a meridian disc in V_i , $i = 1, 2$. Then the manifold $X(\alpha)$ contains a 2-sphere \widehat{P} which intersects V_i in a_i meridian discs, $i = 1, 2$.

In the same way, let W_1 and W_2 denote the two Dehn filling solid tori of the manifold $X(\beta)$, where $\beta = (\beta_1, \beta_2)$ is the slope of a planar surface $(Q, \partial Q) \subset (X, \partial X)$ with number of boundary components $b = (b_1, b_2)$ on (T_1, T_2) , $b_i > 0$, $i = 1, 2$. Then the manifold $X(\beta)$ contains a 2-sphere \widehat{Q} intersecting W_i in b_i meridian discs.

The *distance* $\Delta(\alpha, \beta)$ between two slopes $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2)$ on ∂X is the pair $(\Delta(\alpha_1, \beta_1), \Delta(\alpha_2, \beta_2))$. In the following Δ_i will stand for $\Delta(\alpha_i, \beta_i)$.

DEFINITION 1. We shall say that P and Q have *graph properties* if P and Q are in general position, intersect transversely in a finite disjoint union of circles and properly embedded arcs such that no properly embedded arc is boundary parallel in either P or Q , and each component of $\partial P \cap T_i$ intersects transversely each component of $\partial Q \cap T_i$ in Δ_i points, $i = 1, 2$.

REMARK. Let G_P and G_Q be the planar intersection graphs $(P \cap Q \subset \widehat{P})$ and $(P \cap Q \subset \widehat{Q})$ respectively, defined as usual. In the case where P and Q have graph

properties, there is no *trivial loop* (disc-face with one single edge in its boundary) in either G_P or G_Q .

Theorem 1. *Let X be a 3-manifold with two incompressible torus boundary components: $\partial X = T_1 \cup T_2$, such that:*

- i) *X contains no essential annulus with one boundary component on T_1 and the other on T_2 ; and*
- ii) *None of the manifolds $(X(\alpha_1), T_2)$, $(X(\alpha_2), T_1)$ contains a properly embedded Möbius band.*

Let P be a planar surface properly embedded in X with parameters (α, a) , such that $a_1 \geq a_2$. If Q is a planar surface, properly embedded in X , with slope β on ∂X , such that P and Q have graph properties, then either $\Delta(\alpha_1, \beta_1) < 30$, or $\Delta(\alpha_2, \beta_2) < 30a_1/a_2$.

REMARK. It suffices to exchange the roles of T_1 and T_2 to have all the cases.

We shall now examine the analogous situation in S^3 . Throughout, we will consider only irreducible links (there is no 2-sphere separating the two components). Let $L = (k, l)$ be a 2-component link in S^3 and M_L denote its complement, $S^3 \setminus (\text{Int } N(k) \cup \text{Int } N(l))$, where $N(k)$ and $N(l)$ are tubular neighbourhoods of k and l respectively. The manifold M_L has two boundary components $\partial N(k)$ and $\partial N(l)$, each homeomorphic to a torus. Let α_1 and α_2 be the slopes of a meridian of k and l respectively.

We adapt here the definition of *thin position* for a link. (see [4] or [7].)

DEFINITION 2. Note that $S^3 = S^2 \times \mathbf{R} \cup \{+\infty, -\infty\}$. We define $h: S^2 \times \mathbf{R} \rightarrow \mathbf{R}$ to be the projection onto the second factor. We shall say that L has a *generic presentation* if $L \subset S^2 \times \mathbf{R}$, and $h|_L$ is a Morse function. By an isotopy of L , we may always assume that L has a generic presentation. Choose a real number t_i between each pair of adjacent critical values of $h|_L$. The *complexity* of this presentation of L is the sum $\sum_i |L \cap h^{-1}(t_i)|$. A *thin presentation* of L is a generic presentation of minimal complexity.

Now choose a thin presentation for L . Let $(x_1, y_1), \dots, (x_n, y_n)$ be the pairs of adjacent critical values of $h|_L$ such that $x_i < y_i$, x_i corresponds to a local minimum, and y_i to a local maximum. To each *level sphere* $\widehat{P}_t = h^{-1}(t)$ we can assign its *ratio* $r_t = M_t/m_t \geq 1$, where $M_t = \max(|\widehat{P}_t \cap k|, |\widehat{P}_t \cap l|)$ and $m_t = \min(|\widehat{P}_t \cap k|, |\widehat{P}_t \cap l|)$. Every level sphere in a *middle slab* $\{\widehat{P}_t, t \in]x_i, y_i[\}$ has the same ratio, because they all intersect k and l the same number of times. Then each middle slab $\{\widehat{P}_t, t \in]x_i, y_i[\}$ has a ratio r_i , defined as $r_i = r_t$ for some $t \in]x_i, y_i[$. The *linking ratio* r of this thin presentation of L is the minimum: $\min_i r_i$. We may define the linking ratio $r(L)$ of L

to be the minimum number of the linking ratios r , over all thin presentations for L .

REMARKS. (1) The ratio r_i may be infinite.
 (2) Since L is irreducible, in a thin presentation there always exist middle slabs which meet both components of the link. So $r(L) < \infty$.
 (3) We may suppose that $r(L)$ corresponds to the ratio $r = r_j = r_t = |\widehat{P}_t \cap k|/|\widehat{P}_t \cap l|$. There is no loss of generality because it suffices to exchange the roles of l and k .

Corollary 1. *Let $L = (k, l)$ be a link in S^3 with linking ratio $r(L)$, α a pair of meridian slopes of L , and β a pair of slopes on ∂M_L , with $\beta_1 \neq \alpha_1$, $\beta_2 \neq \alpha_2$, such that*

- (i) $M_L(\beta_1, \beta_2) \simeq S^3$;
- (ii) *there is no essential annulus cobounding the two boundary components of M_L ;*
- (iii) $M_L(\beta_1)$, $M_L(\beta_2)$, $M_L(\alpha_1)$, and $M_L(\alpha_2)$ are boundary irreducible.

Then either $\Delta(\alpha_1, \beta_1) < 30$, or $\Delta(\alpha_2, \beta_2) < 30r(L)$.

Notice that property (iii) implies no component of the link is trivial. By [7, Theorem 2], property (i) implies L is irreducible.

The link L_β in S^3 shall be the core of the β -surgery on L .

Recall Berge's conjecture. *For any integer n , there exists a link $L = (k, l)$ in S^3 , such that M_L has property (ii) of Corollary 1, l and k are non-trivial, $M_L(\beta_1, \beta_2) \simeq S^3$, and $\Delta(\beta_1, \alpha_1) > n$, $\Delta(\beta_2, \alpha_2) > n$, where α_1 (respectively α_2) is a meridian slope of k_1 (resp. k_2).*

By Corollary 1, if the link verifies Berge's Conjecture for $n \geq 30$, and if the components of the core are non-trivial, then the link must have a "sufficiently large" linking ratio. More precisely, $r(L)$ must be $> n/30$.

Let V_i be a solid torus in S^3 with core knot k_i ($i = 1, 2$). Suppose that there is an annulus A connecting ∂V_1 and ∂V_2 ; $\partial A = c_1 \cup c_2$ and c_i wraps p_i -times in longitudinal direction of V_i . Without loss of generality, we may assume $0 \leq p_1 \leq p_2$. We divide into several cases depending on the pair p_1, p_2 .

If $p_1 = p_2 = 0$, there is a 2-sphere in S^3 intersecting k_i in one point, a contradiction.

If $p_1 = 0$ and $p_2 = 1$, then k_2 is a trivial knot.

Assume that $p_1 = 0$ and $p_2 \geq 2$, then we can find a lens space summand in S^3 , a contradiction.

If $p_1 = p_2 = 1$, then k_1 and k_2 are parallel.

If $p_1 = 1$ and $p_2 \geq 2$, then k_1 is a cable of k_2 .

Finally suppose that both $p_i \geq 2$. Let us consider the 3-manifold $M = V_1 \cup N(A) \cup V_2$; it is a Seifert fiber space over the disk with two exceptional fibers k_1 and k_2 of

indices p_1 and p_2 . Note that M is boundary-irreducible, then since ∂M is a torus, $S^3 - \text{Int } M$ is a solid torus whose core is a non-trivial torus knot. Thus the two exceptional fibers k_1 and k_2 form a Hopf link (cf. [10, Theorem 11]).

Hence, if $L = (k_1, k_2)$ is a link in S^3 with k_i non-trivial ($i = 1, 2$) such that M_L contains an annulus A , then either $p_1 = p_2 = 1$ and k_1 and k_2 are parallel, or $p_1 = 1$ and $p_2 \geq 2$ and k_1 is a cable of k_2 .

This gives us a new corollary:

Corollary 2. *Let $L = (k, l)$ be a link in S^3 with linking ratio $r(L)$, such that k and l are non-trivial. Let α be a pair of meridian slopes of L , and β a pair of slopes on ∂M_L , with $\beta_1 \neq \alpha_1$, $\beta_2 \neq \alpha_2$.*

Suppose $M_L(\beta_1, \beta_2) \simeq S^3$, and the two components of L_β are non-trivial. If $\Delta(\alpha_1, \beta_1) \geq 30$, and $\Delta(\alpha_2, \beta_2) \geq 30r(L)$, then some component of L is a cable of the other one, or both components represent the same knot.

3. Intersection graphs

Let P and Q be two planar surfaces properly embedded in X , with parameters (α, a) and (β, b) on (T_1, T_2) . Let \widehat{P} and \widehat{Q} be the 2-spheres in $X(\alpha)$ and $X(\beta)$ such that $P = X \cap \widehat{P}$, $Q = X \cap \widehat{Q}$. As usual we consider a pair (G_P, G_Q) of graphs in $(\widehat{P}, \widehat{Q})$.

Number, from 1 to a_i , the components of $\partial P \cap T_i$, that we denote by $\partial_1^i P, \partial_2^i P, \dots, \partial_{a_i}^i P$, in the order in which they appear on T_i , $i = 1, 2$. Number from 1 to b_i the components of $\partial Q \cap T_i$, that we denote by $\partial_1^i Q, \partial_2^i Q, \dots, \partial_{b_i}^i Q$, in the order in which they appear on T_i , $i = 1, 2$.

Now label the endpoints of the properly embedded arcs in $P \cap Q$. Let e be an arc in $P \cap Q$, and t be an endpoint of e , say $t \in \partial_n^i P \cap \partial_m^j Q$. Then t is labelled n on the component $\partial_m^j Q$ in the surface Q , and t is labelled m on the component $\partial_n^i P$ in the surface P . Thus around each component of $\partial P \cap T_i$, we see the labels $1, 2, \dots, b_i$ appearing in cyclic order, and around each component of $\partial Q \cap T_i$ we see the labels $1, 2, \dots, a_i$, these sequences being repeated Δ_i times, $i = 1, 2$.

Assigning (arbitrarily) orientations to P and Q , we induce an orientation on each component of ∂P and each component of ∂Q . The orientation of X induces an orientation for T_1 and T_2 . Here we choose a positive orientation for each unoriented simple closed curve with slope α_i and each one with slope β_i , respecting the orientation of T_i , $i = 1, 2$.

We assign a sign + to a component x of $\partial P \cap T_i$ or $\partial Q \cap T_i$ if its induced orientation is the same as the positive orientation of the closed curves on T_i defined previously, and assign the sign - otherwise. We shall say that two components x and y of $\partial P \cap T_i$ (or $\partial Q \cap T_i$) are *parallel* if they have the same sign and *antiparallel* if they have opposite signs. Notice that signs given to components of $\partial P \cap T_1$ (respectively $\partial Q \cap T_1$) are independent of the signs of the components of $\partial P \cap T_2$ (respectively

$\partial Q \cap T_2$.

Cap off the components of $\partial P \cap T_i$ (respectively $\partial Q \cap T_i$) with discs, we regard these discs as “fat” vertices of type i of the graph G_P (respectively G_Q), $i = 1, 2$. Thus there are two types of vertices in G_P and G_Q , just as there are two types of edges: the *simple edges* of G_P (respectively G_Q) correspond to arcs of $P \cap Q$ in P (respectively Q) whose boundary components are in the same boundary component of ∂X , the *mixed edges* of G_P (respectively G_Q) correspond to arcs of $P \cap Q$ in P (respectively Q) with one boundary component on T_1 and the other on T_2 . In the following, we shall consider edges of G_P and G_Q as arcs in $P \cap Q$ and keep the same notation for both, and the labels and signs assigned to boundary components will be kept the same for the vertices.

If P and Q have graph properties, then there is no *trivial loop* (disc-face with one single edge in its boundary) in either G_P or G_Q and the parity rule still works for simple edges:

If a simple edge joins parallel vertices in G_P , it joins antiparallel vertices in G_Q and vice versa.

Two edges e and e' in a graph G are *directly parallel* if they connect the two same vertices, and cobound a disc-face in G . They are *parallel* if there exist a finite set $\{e_1 = e, e_2, \dots, e_n = e'\}$ of edges of G such that e_i and e_{i+1} are directly parallel, for $i \in \{1, \dots, n-1\}$.

Recall that the *reduced graph* \widehat{G} of a graph G is obtained from G by replacing each family of parallel edges by a single edge. We shall use $\text{val}(v, G)$ to denote the valency of a vertex v in the graph G .

4. Proof of Theorem 1

Lemma 1 ([6, Lemma 4.1]). *Let Γ be a finite graph in the 2-sphere with no 1-sided faces. Suppose every vertex of Γ has order ≥ 6 . Then Γ has two parallel edges.*

Suppose \mathcal{E} is a family of edges of the pair (G_Q, G_P) , then $G_P(\mathcal{E})$ is the subgraph of G_P consisting of all edges of \mathcal{E} and their attached vertices.

Lemma 2. *Suppose $a_1 \geq a_2$ and $\Delta_1 \geq 30$, $\Delta_2 \geq 30a_1/a_2$. Then G_Q has a family of parallel edges \mathcal{E} , and $G_P(\mathcal{E})$ has two parallel edges.*

Proof. Let $\widehat{G_Q}$ be the reduced graph of G_Q . By Lemma 1, $\widehat{G_Q}$ has a vertex w_0 so that $\text{val}(w_0, \widehat{G_Q}) \leq 5$. But

$$\text{val}(w_0, G_Q) = \begin{cases} \Delta_1 a_1 & \text{if } w_0 \text{ is of type 1} \\ \Delta_2 a_2 & \text{if } w_0 \text{ is of type 2} \end{cases}.$$

Hence $\text{val}(w_0, G_Q) \geq 30a_1$, and $\widehat{G_Q}$ has an edge \mathcal{E} of order $\geq 6a_1$ which is incident to w_0 . The edge \mathcal{E} in $\widehat{G_Q}$ is a family of at least $6a_1$ parallel edges in G_Q .

Suppose the edges of \mathcal{E} are mixed. We rename u and v the vertices of type 1 and 2 respectively, attached to \mathcal{E} . Since $a_1 \geq a_2$, for each i in $\{1, 2, \dots, a_1\}$ there are at least 6 endpoints of \mathcal{E} labelled i on ∂u , and for each j in $\{1, 2, \dots, a_2\}$ there are at least 6 endpoints of \mathcal{E} labelled j on ∂v . Hence every vertex in $G_P(\mathcal{E})$ has valency ≥ 6 . By Lemma 1, $G_P(\mathcal{E})$ has two parallel edges. Notice that they are mixed.

Now suppose the edges of \mathcal{E} are simple. They join two vertices of same type i , which we call u and v . Since $a_1 \geq a_2$, \mathcal{E} contains at least $6a_i$ edges. So for each $m_i \in \{1, 2, \dots, a_i\}$, there are at least 6 endpoints of edges in \mathcal{E} labelled m_i on ∂u , and the same on ∂v . Thus every vertex of $G_P(\mathcal{E})$ is of type i and has valency ≥ 12 . If there is no trivial loop in $G_P(\mathcal{E})$, we can apply Lemma 1 to show that $G_P(\mathcal{E})$ has two parallel edges.

If $G_P(\mathcal{E})$ contains a trivial loop, then the both endpoints of each edge in \mathcal{E} have the same label on u and v in G_Q . All the edges of \mathcal{E} are loops in $G_P(\mathcal{E})$. By Lemma 3 below, $G_P(\mathcal{E})$ must contain at least two parallel edges (which are loops). In all cases we can choose two edges e_1, e_2 directly parallel in $G_P(\mathcal{E})$. \square

Lemma 3. *If every edge of \mathcal{E} is a loop in $G_P(\mathcal{E})$, then $G_P(\mathcal{E})$ contains two parallel edges.*

Proof. For this lemma, we just need \mathcal{E} to be a family of exactly $6a_1$ mutually parallel adjacent edges. The edges of \mathcal{E} are loops in G_P . Thus in G_Q they join two antiparallel vertices. There are two cases, according to whether \mathcal{E} joins in G_Q vertices of type 1, or vertices of type 2.

First assume the vertices of $G_P(\mathcal{E})$ are of type 1. Then $G_P(\mathcal{E})$ (on the sphere \widehat{P}) consists of a_1 connected components, each of which is a 6-bouquet. Here, an n -bouquet will be a graph with one vertex and n loops.

Let \mathcal{F} be the set of faces of $G_P(\mathcal{E})$ (as a graph on a sphere), and f_1, f_2 and f_3 be the numbers of disc faces of $G_P(\mathcal{E})$ with one side, two sides and at least three sides, respectively. Then an Euler characteristic calculation gives

$$a_1 - 6a_1 + \sum_{f \in \mathcal{F}} \chi(f) = 2.$$

But

$$\sum_{f \in \mathcal{F}} \chi(f) = f_1 + f_2 + f_3 + \sum_{f \in \mathcal{F}, f \text{ non-disc face}} \chi(f) \leq f_1 + f_2 + f_3.$$

Thus $f_1 + f_2 + f_3 \geq 2 + 5a_1$.

To prove the first case, it is sufficient to show that $f_2 > 0$. So we assume $f_2 = 0$, and reach a contradiction. Then $f_1 + f_3 \geq 2 + 5a_1$. Since G_P has no trivial loop,

each 1-sided face of $G_P(\mathcal{E})$ must contain, in G_P , at least one vertex. This vertex is of type 2 because $G_P(\mathcal{E})$ already contains all the vertices of type 1. Thus $f_1 \leq a_2$. Since $a_1 \geq a_2$, we have $f_3 \geq 2 + 4a_1$.

CLAIM 1. A 6-bouquet on a sphere has at most two disc-faces with 3 or more sides.

Proof of Claim 1. Embed a 6-bouquet G on a sphere. Then by Euler's formula, $1 - 6 + \sum \chi(\text{face}) = 2$. Note that all faces are disc.

Let g_1 , g_2 and g_3 be the number of disc faces with 1 side, 2 sides, and at least 3 sides, respectively. Then $g_1 + 2g_2 + 3g_3 \leq 2 \times 6 = 12$. Since $g_1 + g_2 + g_3 = \sum \chi(\text{face}) = 7$, we have $2g_3 \leq g_2 + 2g_3 \leq 5$. Thus $g_3 \leq 2$. \square

Hence each connected component of $G_P(\mathcal{E})$ has at most two 3-sided disc faces, and so $f_3 \leq 2a_1$. Then we have $2a_1 \geq 2 + 4a_1$, a contradiction.

Next suppose that the vertices of $G_P(\mathcal{E})$ are of type 2. Recall that \mathcal{E} is a family of $6a_1$ parallel edges. Then $G_P(\mathcal{E})$ has a_2 vertices, and a_2 connected subgraphs, each being an n_i -bouquet for some integer $n_i \geq 6$. Note that $\sum_{i=1}^{a_2} n_i = 6a_1$.

A similar proof as the one of Claim 1 gives Claim 2:

CLAIM 2. An n_i -bouquet on a sphere has at most $(n_i - 1)/2$ disc-faces with 3 or more sides.

Keep the same notation as for the above case. In $G_P(\mathcal{E})$ we now have

$$a_2 - 6a_1 + \sum_{f \in \mathcal{F}} \chi(f) = 2,$$

which leads to $f_1 + f_2 + f_3 \geq 2 - a_2 + 6a_1$. Assume $f_2 = 0$ for contradiction. Since $f_1 \leq a_1$ (because $G_P(\mathcal{E})$ contains all the vertices of type 2 and G_P has no trivial loop), then $f_3 \geq 2 - a_2 + 5a_1$. By Claim 2,

$$f_3 \leq \sum_{i=1}^{a_2} \frac{(n_i - 1)}{2} = 3a_1 - \frac{a_2}{2}.$$

Hence

$$2 - a_2 + 5a_1 \leq f_3 \leq 3a_1 - \frac{a_2}{2}.$$

Since $a_2 \leq a_1$, then we have $4 + 3a_1 \leq 0$, a contradiction. \square

We shall say that two arcs of $P \cap Q$ are parallel in P if they cut off a disc in P .

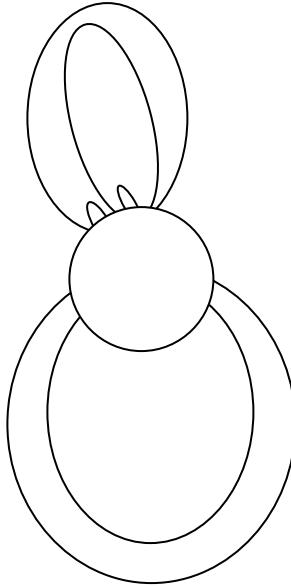


Fig. 1. a 6-bouquet

Lemma 4 ([5, Lemma 2.1]). *Let P and Q be two properly embedded planar surfaces in a 3-manifold X such that ∂X contains a torus T , and assume P and Q have boundary components on T . Suppose that P and Q intersect transversely and each component of $\partial P \cap T$ intersects each component of $\partial Q \cap T$ minimally. Let $\mathcal{A}, \mathcal{A}'$ be two arcs of $P \cap Q$, properly embedded in (X, T) , and parallel in both P and Q . If $D \cap E = \mathcal{A} \cup \mathcal{A}'$, where D and E are the discs in P and Q respectively, that realize the parallelism of \mathcal{A} and \mathcal{A}' , then D and E cannot be identified along \mathcal{A} and \mathcal{A}' as illustrated in Fig. 2.*

In the following, \mathcal{E} will always denote this family with at least $6a_1$ parallel edges in G_Q . Under the assumption $\Delta_1 \geq 30$ and $\Delta_2 \geq 30a_1/a_2$, Lemma 2 implies an existence of two parallel edges in $G_P(\mathcal{E})$, which contradicts the assumption (ii) or (i) in Theorem 1 by Lemma 5 or 6 below. This completes the proof of Theorem 1. \square

Lemma 5. *Let e_1 and e_2 be parallel edges in $G_P(\mathcal{E})$. Suppose e_1 and e_2 are simple. Then $(X(\alpha_1), T_2)$ or $(X(\alpha_2), T_1)$ contains a properly embedded Möbius band.*

Proof. The edges e_1 and e_2 come from the family \mathcal{E} of edges in G_Q , so they are parallel in both G_Q and $G_P(\mathcal{E})$. First we can assume e_1 and e_2 are directly parallel in $G_P(\mathcal{E})$. Assume now e_1 and e_2 have their boundaries on T_1 . Let u, v and x, y denote the vertices attached to e_1 and e_2 in G_P and G_Q respectively. (We can have

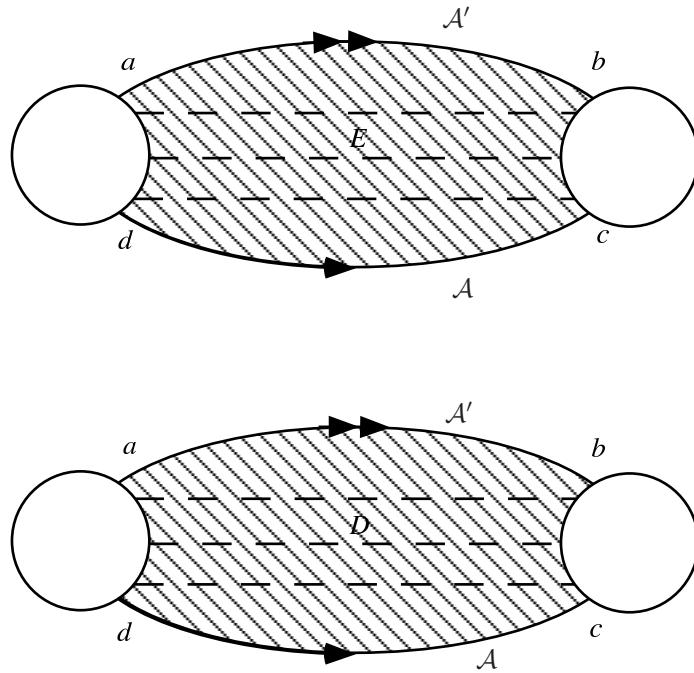


Fig. 2. a, b, c, d are the points of intersection between the arcs and the boundary components of P and Q .

$u = v$ or $x = y$). Since each label i in $\{1, 2, \dots, a_1\}$ appears as an endpoint of an edge of \mathcal{E} in G_Q , the graph $G_P(\mathcal{E})$ contains all the vertices of type 1 of G_P . Hence the cycle given by the edges e_1 and e_2 bounds a disc D in \widehat{P} such that in the interior of the cycle there are no vertices of type 1. But, there may be vertices of type 2 of G_P in the interior of the cycle. Let E be the disc that realizes the parallelism between the arcs e_1 and e_2 in Q . Each arc of $E \cap P$ corresponds to an edge of \mathcal{E} . Then, since e_1 and e_2 are directly parallel in $G_P(\mathcal{E})$, $D \cap E = e_1 \cup e_2 \cup \mathcal{C}$, where \mathcal{C} is a union of circles. By a cut and paste method we can eliminate circles of intersection, and obtain two discs (we shall call them again D and E) such that $D \cap E = e_1 \cup e_2$. There are two possibilities for the way in which E and D are identified along e_1 and e_2 , illustrated by Fig. 3 and Fig. 4. Notice that the disc D is in $P(\alpha_2) \subset X(\alpha_2)$. The surfaces $P(\alpha_2)$ and Q are transverse and their boundary components on T_1 intersect minimally. By Lemma 4, case (i) is impossible. In case (ii), $E \cup D$ is a Möbius band properly embedded in $X(\alpha_2)$. \square

REMARK. Suppose $u = v$, $\mathcal{M} = D \cup E$ is a Möbius band properly embedded in $(X(\alpha_2), T_1)$. But $\partial \mathcal{M}$ also bounds a Möbius band \mathcal{M}' in $X(\alpha_1) = X \cup V_1$, where \mathcal{M}' is the union of the meridian disc u of V_1 and a disc Δ on T_1 (see Fig. 5). The

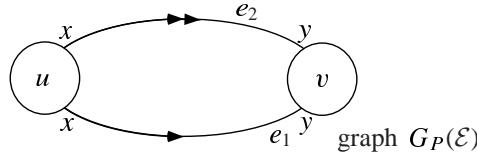
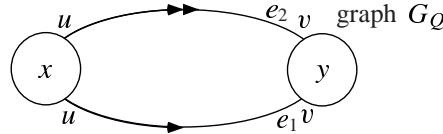


Fig. 3. case (i)

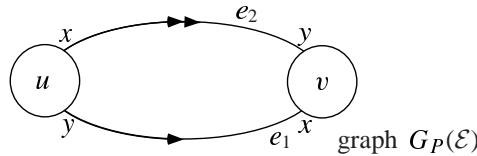
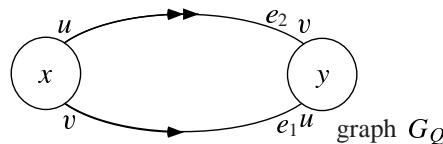
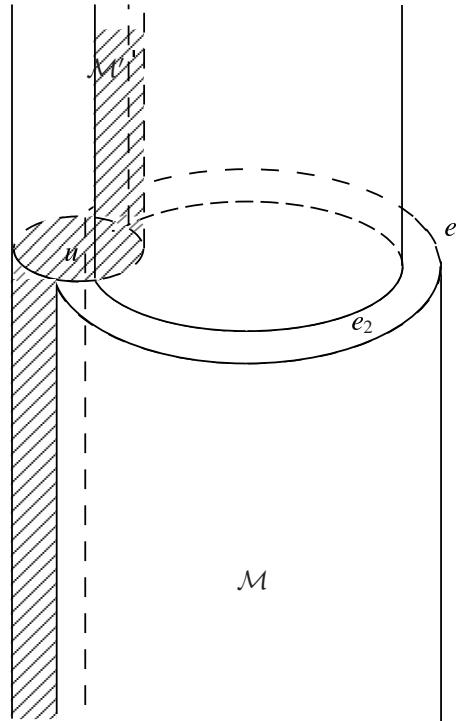


Fig. 4. case (ii)

union of the two Möbius bands is a Klein bottle $K = \mathcal{M} \cup_{\partial \mathcal{M}} \mathcal{M}'$ in the manifold $X(\alpha_1, \alpha_2)$. The Dehn filling solid torus V_1 intersects K in a single component.

Lemma 6. *Let e_1 and e_2 be parallel edges in both G_Q and $G_P(\mathcal{E})$. Suppose e_1 and e_2 are mixed. Then X contains an essential annulus, such that one of the boundary components is in T_1 and the other in T_2 .*

Proof. Assume e_1, e_2 are directly parallel in $G_P(\mathcal{E})$. Let u, v and x, y be the pairs of vertices in G_P and G_Q respectively, attached to the parallel edges e_1, e_2 . Suppose u and x are of type 1, while v and y are of type 2. First notice that \mathcal{E} is a family of at least $6a_1$ parallel edges. Hence each i in $\{1, 2, \dots, a_1\}$ labels an endpoint on ∂x of some edge in \mathcal{E} , and every label of type 2 is an endpoint on ∂y of some edge in \mathcal{E} . Then $G_P(\mathcal{E})$ contains all the vertices of G_P . If e_1 and e_2 are non parallel in G_P , then e_1 and e_2 cut off in G_P a subgraph which contains at least one vertex of G_P . By the

Fig. 5. case $u = v$

previous remark, this vertex is also a vertex of $G_P(\mathcal{E})$, which contradicts the fact that e_1 and e_2 are parallel in $G_P(\mathcal{E})$. Therefore the edges e_1 and e_2 are also parallel in G_P , (but in general they are not directly parallel), so let D (respectively E) be the disc in P (respectively Q) that realizes the parallelism between e_1 and e_2 . If the discs E and D contain circles in their intersection, by cut and paste methods we may build two new discs (let's call these discs E and D again), such that they intersect only along e_1 and e_2 . Since the edges e_1 , e_2 are mixed, the only possibility for the way in which E and D are identified along e_1 and e_2 is illustrated in Fig. 6. The union $E \cup_{e_1, e_2} D$ is an annulus A with two boundary components $\partial_+ A \subset T_1$ and $\partial_- A \subset T_2$, where $\partial_+ A = C \cup C'$, and $\partial_- A = \delta \cup \delta'$ (see Fig. 6).

Let $|\alpha \cap \beta|$ be the geometric intersection number between the two oriented curves α and β , and $\alpha \cdot \beta$ be their algebraic intersection number.

We suppose without loss of generality that $C' \cdot \partial u \geq 0$. We have

$$\partial_+ A \cdot \partial u = C' \cdot \partial u - 1,$$

and $|C' \cap \partial u| \geq 2$. Then $\partial_+ A$ intersects the meridian ∂u of T_1 at least once and always with the same orientation. The annulus A joins T_1 to T_2 and its boundary components



Fig. 6. vertices u and x of type 1, vertices v and y of type 2

are non-trivial on T_1 and T_2 respectively. Therefore A is essential. \square

5. Proof of Corollary 1

For the proof of Corollary 1, we'll follow the same argument as for Theorem 1. It suffices to find two planar surfaces P and Q which verify hypothesis of Theorem 1 in the case where $X = M_L$.

For a proof by contradiction, we consider a link $L = (k, l)$ without trivial components which produces S^3 by a non-trivial surgery, such that the cores of the surgery are non-trivial. We may suppose it is an irreducible link because if it were reducible, it wouldn't give S^3 by a non-trivial surgery. (This is an immediate consequence of Theorem 2 in [7]).

Proposition 1. *Let $L = (k, l)$ be a link in S^3 such that k and l are non-trivial, and with a linking ratio $r(L)$ in some thin presentation. Let α be a pair of meridian slopes of L . If $M_L(\beta)$ is homeomorphic to S^3 for a slope $\beta \neq \alpha$ on ∂M_L , and $M_L(\beta_1)$, $M_L(\beta_2)$ are boundary-irreducible, then there exist two properly embedded planar surfaces P and Q in M_L , such that P has parameters (α, a) , and Q has parameters (β, b) on ∂M_L , $r(L) = a_1/a_2$, and P and Q have graph properties.*

Proof. We consider a thin presentation for L in S^3 such that the linking ratio of this presentation is $r(L)$. Since $M_L(\beta) \simeq S^3$, the link is irreducible, so there is at least one middle slab $\{\widehat{P}_t, t \in]x_j, y_j[\}$ such that each level sphere \widehat{P}_t in this middle slab intersects both k and l . Its ratio $r_t = r_j$ is finite, and suppose $r_j = r(L)$, that is to say this middle slab realizes $r(L)$.

Now we choose a thin presentation for the core of the surgery $L_\beta = (k_\beta, l_\beta)$ in the copy $M_L(\beta) = S^3_\beta$ of S^3 . The link L_β is irreducible. As above, we choose a middle slab $\{\widehat{Q}_t, t \in]\bar{x}_j, \bar{y}_j[\}$ which intersects both k_β and l_β .

Applying the method of [7, Proposition 1] to a 2-component link in S^3 with non-trivial components, we find two surfaces P and Q , where $P = \widehat{P}_t \cap M_L$ for some t in $[x_j, y_j]$ and Q is homeomorphic to $\widehat{Q}_t \cap (S^3 \setminus \text{Int } N(L_\beta))$, with t in $[\bar{x}_j, \bar{y}_j]$. In order to apply the general definitions of Section 1 and Section 2, we replace X by M_L , T_1 by $\partial N(k)$ and T_2 by $\partial N(l)$. The planar surfaces P and Q are properly embedded in M_L , with parameters (α, a) , (β, b) respectively ($a_i > 0, b_i > 0$), P realizes $r(L)$ and they have graph properties. \square

We may assume $r(L) = |\widehat{P}_t \cap k|/|\widehat{P}_t \cap l|$, so $a_1 \geq a_2$. We apply Theorem 1, which leads us to the following conclusion: Either M_L contains an essential annulus that joins its two boundary components or one of the two manifolds $M_L(\alpha_1)$, $M_L(\alpha_2)$ contains a properly embedded Möbius band. The first case contradicts hypothesis *i*) of Corollary 2. We will see that the second case is impossible too.

The Möbius band we have built in the proof of Theorem 1 leads to a contradiction in each case. We shall describe exactly what happens.

Consider the case (ii) of Fig. 4, and we suppose without loss of generality that u and v are meridian discs for $\partial N(k)$. In fact, we shall divide the case (ii) in the three following subcases:

- (ii).1 $u = v$
- (ii).2 $u \neq v$, u and v are antiparallel
- (ii).3 $u \neq v$, u and v are parallel.

We are going to see that all the subcases are impossible.

Keep the same notation (discs E and D , vertices u , v , x and y) as in the general case, changing the vertices of type 1 (respectively of type 2) into vertices corresponding to boundary components on $\partial N(k)$ (respectively $\partial N(l)$). First, for these three cases, change E and D by cut and paste or isotopy if necessary to eliminate singular surfaces as previously.

- (ii).1 The Möbius band $\mathcal{M} = D \bigcup_{e_1, e_2} E$ is properly embedded in $S^3 \setminus \text{Int } N(k)$. But $\partial \mathcal{M}$ also bounds a Möbius band \mathcal{M}' properly embedded in $M_L(\alpha_1) \simeq S^3 \setminus \text{Int } N(l)$: \mathcal{M}' is the union of the meridian disc of u of k and a disc on $\partial N(k)$, (see Fig. 5). The union $K = \mathcal{M} \bigcup_{\partial \mathcal{M}} \mathcal{M}'$ is a Klein bottle embedded in S^3 , which is impossible.
- (ii).2 There is a Möbius band B in $M_L(\alpha) \simeq S^3$: B is the union of the disc $D \subset S^3 \setminus \text{Int } N(k)$, a meridian disc (in fact u or v) of k and a disc of $\partial N(k)$ (see [6], Fig. 4). The disc E in Q has the same boundary as the Möbius band B , then $B \cup E$ is a projective plane embedded in S^3 , which is impossible.
- (ii).3 Then, by the parity rule, x and y are antiparallel in G_Q . As in the previous case, we can build a Möbius band B' which is the union of the disc E , a disc on $\partial N(k_\beta)$ and a meridian disc of $N(k_\beta)$. The Möbius band B' is properly embedded in $M_L(\beta_1) \simeq S^3 - \text{Int } N(l_\beta)$, and it has the same boundary as D . The projective plane $D \cup B'$ is embedded in S^3 , which is impossible. \square

References

- [1] J. Berge: *The knots in $D^2 \times S^1$ which have non-trivial Dehn surgeries that yield $D^2 \times S^1$* , Topology and its Appl. **38** (1991), 1–19.
- [2] J. Berge: *Embedding the exterior of one-tunnel knots and links in the 3-sphere*, preprint.
- [3] M. Domergue and Y. Mathieu: *Noeuds qui ne sont pas déterminés par leur complément dans les 3-variétés à bord*, Bull. Soc. Math. France, **119** (1991), 327–341.
- [4] D. Gabai: *Foliations and the topology of 3-manifolds III*, J. Diff. Geometry, **26** (1987).
- [5] C.McA. Gordon: *Boundary slopes of punctured tori in 3-manifolds*, Trans. Amer. Math. Soc. **350** (1998), 1713–1790.
- [6] C.McA. Gordon and R.A. Litherland: *Incompressible planar surfaces in 3-manifolds*, Topology and its Appl. **18** (1984), 121–144.
- [7] C.McA. Gordon and J. Luecke: *Knots are determined by their complements*, J. Amer. Math. Soc. **2** (1989), 371–415.
- [8] C.McA. Gordon and J. Luecke: *Reducible manifolds and Dehn surgery*, Topology, **35** (1996), 385–409.
- [9] Y. Mathieu: *Sur les noeuds qui ne sont pas déterminés par leur complément et problèmes de chirurgie dans les variétés de dimension 3* Thèse, Marseille (1990).
- [10] H. Seifert: *Topology of 3-dimensional fibered spaces*, Academic Press, (1980), 360–418.

L.A.T.P, équipe de topologie
U.R.A 0225

CENTRE DE MATHEMATIQUES ET D'INFORMATIQUE,
13453 MARSEILLE Cedex 13, FRANCE
e-mail: elsa.mayrand@cmi.univ-mrs.fr