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Note on Brauer’s Theorem of Simple Groups

By Osamu NAGAI

Using the theory of modular representations of groups, R. Brauer
studied simple groups and obtained very interesting results® concerning
a group which satisfies the following conditions :

(%) The group & contains P of prime order p which commute only
with their own powers P*.

(xx) The commutator-subgroup &' of & is equal to .

By relaxing his conditions about the number of p-Sylow subgroups,
we have the following thegrem:

Theorem. Let & be a group of finite order which satisfies conditions
(x) and (xx). Then g =p(P—1)A +np)/t is the order of S, where 1+np
is the number of conjugate subgroups of order p and t is the number of
classes of conjugate elements of order p in &. If n<p+2 and t is odd,
then p is of the form 2¢—1 and & = LF(2,2*).

It seems probable that the case & =~ LF(3,3) will occur, when ¢ is
even. But it is still an open problem.

Brauer mentioned in his earlier paper® that if & is a simple group
of order g = gp (1 +np) with ¢|p—1 in which the elements of order p
commute only with their own powers and if » < (2p+7)/3, then either
(1) G is cyclic, or (2) @ =~ LF(2,p) or (3) p is a prime of the form
p=2*+1, and @ = LF(2,2*). (We can easily prove these facts by the
slight modifications of his method).»

1. Preliminaries.

The former part of the theorem is obvious, so we shall prove only
the latter half. In this paper we shall use the same notations as
Brauer’s and prove the theorem step by step with a little complicating
numerical calculations.

1) R. Brauer, On permutation groups of prime degree and related classes of groups,
Ann. of Math. 44 (1943), I refer to this paper as [1]-

2) R.Brauer,On the representation of groups of finite order, Proc. Nat. Akad. Sci. 25 (1939).

3) Cf.the proof of [17], Theorem 10. In the proof of Lemma 8 of this paper, we shall
show the outline of them.
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Let & be a group of finite order g which satisfies the condition
(x). Since g contains the prime p only to the first power, Brauer’s
results? can be applied. For the sake of convenience we first mention
those facts which will be needed.

The ordinary irreducible representations of & are of four different
types: (I) Representations 2, of a degree a, =u,p+1. Denote by 4,
the character of 2,. (II) Representations B, of a degree b, =v,p—1.
Denote by B, the character of B,. (III) Representations € of a degree
¢ which is not congruent to 0, 1,—1 (mod p) for ¢4=1. There exist
exactly ¢t such representations €, €@ ... €® that are algebraically
conjugate. Denote by C™ the character of €™ . The degree c is of the
form ¢ = (wp+38)/t, 5 = +1, where w is a positive integer. (These
characters C™ are called “exceptional” and characters 4, and B, are
called “non-exceptional ). (IV) Representations ®, of a degree d, = px..
Denote by D, the character of D,.

Because of the assumption (x), & has only one block B,(p) of lowest
kind and some blocks of highest kind. If B,(p) has « characters
A(p=1,2,--,a) and B characters B,(c =1, 2, ---, ), then the follow-
ing relations hold:

(1) a+B8=m-1)t, |

(2) STA(G)+5C% (G) = B(G) (for p-regular element G of ©).
Pputting G =1, we hdazw;e

(2y gup+(8w+1)/t =:glv,.

Since g is equal to the sum of squares of all the degrees of these
representations, we obtain

(3) éu92+ ZB]v,2+'w2/t+Zxﬁ:(np——n—i-l)/t.
p=1 =1

Furthermore we quote the following results which are useful to
determine the degrees of ordinary irreducible characters.

Theorem A.> If G is a group satisfying the condition (x), then we find
all representations of n in the form n = (AVu”p +u®’ +u® +h) /(U +1)
with positive integers u®™ , ™. The degrees of the irreducible representa-
tions of O, as far as they are prime to p, can only have some of the
values

4) R. Brauer, On groups whose order contains a prime number to the first power I,
II, Amer. Math. Soc. 54 (1942).
5) Cf. [I], Theorem 7.
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(lpzly' ‘I’P:u(V)p+1r ap:np+1,

bo-:p—l) bo‘:U(V)p—li

c=mp+1)/t, ¢c=@¥p+1)/t, c=@m-1)/t, ¢=@Pp—-1)/t
where v is set equal to (n—h™)/u™ .
| Theorem B.® Let & be a group satisfying the condition (x). If &

possesses an irreducible representation of degree p—1, then either the
number t is even or the index of the commutator subgroup &' in & is even.

Theorem C.” Let & be a non-cyclic simple group satisfying the
condition (x). If the ewxceptional degree c¢ in By(p) satisfies condition
¢ < (p+1)/2, then & = LF(2, p), (p =2, 3).

If & coincides with its commutator subgroup &', then the l-character
A, is the only character of degree 1. It follows that p—1 ==t, thus, in
particular p == 2.

2. Proof of the theorem.

We may assume that (p+3)/2 < n < p+2, because Brauer proved®
that, if » <(p+3)/2, ¢ must be even.

Lemma 1. Under assumptions (x), (xx) and n<_p+2, & must be
simple.

Proof. This is a direct consequence of Theorem 5 and Corollary
6 in [1].

Lemma 2. Under assumptions (x) and @+3)/2<n<p+2, n is
represented uniquely

(4) n = (up+ut+u+1)/(u+1),
where u is a positive integer. ’

Proof. We set F(p, u®, hA®) = (u®h®p +u™® +u® +h™)/(u® +1).
For #>>0, n = F(p, u, #) is monotone increasing in variable u.

Lemma 3. Under the assumptions of the theorem, the degree b, of
the representation B, (if it may appear) must be equal to (n—1)p/u—1.
And

(5) b, =m—1)p/u—1=@+w)p/(u+1)—1 =(@-1)(D+u+1)/(u+1).

6) Cf. [1], Theorem 9.

7) Cf. H. F. Tuan, On groups whose orders contain a prime number to the first power,
Ann. of Math. 45 (1944), Theorem 4.

8) Cf. [I], Theorem 10.
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Proof. This is a direct consequence of Theorem 4 and B. Accord-
ing to (4), b, is decomposed as above.

Lemma 4. Under assumptlions (x), (xx) and n<_p+2, holds t==1,
except the case &=LF (2, 22).

Proof. Assume t =1. Then we can choose € among p irreducible
representations of degree not divisible by p.

First we shall prove that & does not possess the representation
A, of degree a, = np +1.

If ® possesses at least two such representations 2,, then from (3)

202 < mp—n+1, 202 <np—mn, n < (p—1)/2. This is impossible
under the assumption ¢ =1.

Hence, if & possesses one such representation A, then other
representations of type A, must have the degree a, =up+1 or 1. So,
from (3),

n+@—y—2)ut+y (n—12%/u2+ a2 =np—n+l,y=pB or B+ 1.
Using (4), we obtain

¥ (p? +2up —u' —2u®) < up?—(u* +3u® +2u?+u—1)p+u' +ud—2u*—2u
—-1.

Now we assume y == . Then from n < p+2, we have p >u2® The
above inequality implies
p (ut +3u® +4u? +u—1) < w® +3ut +ud —2u2—-2u—-1,
hence 3ud +3u+u+1<0.
This is impossible, so must hold y < u.
While, from (2)
1+n+u(@—y—2) =y @+uw)/(u+1),
P (u+2u)—u+2 =y (P +u’+2u).
Since y<u, p?+u) < ud+3u>—2.

This is impossible because p > u+2.

Thus, then, B,(p) consists of one 1-character A4,, (p—y—1) charac-
ters A (p 1) of degree o, =up+1 and y characters B, of degree
b, =(p+u)p/(wu+1)—1. Since b, = (p—1)(p+u+1)/(w+1) and p >u?,
p—1=0 (mod (x«+1)). And so up+1=0 (mod (u+1)).

Furthermore, from assumption (x)

g=p®-1)A+np)=p@—-1)(up+1)(@+u+1)/(®+1).
From (2), 1+ X a, = 3)b,, this means a, and b, are relatively prime.
Pl G ‘

9) Since n<p+2 and from (4), we obtain (#pt+u2+u+1)/(#+1)<p+1. Then
p=wu2. But the equality sign does not hold because p is a prime number.
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Hence it follows that for any prime ! dividing up+1 the characters
A, (p #1) are of highest kind. This implies
AP(L) =0 p=1,
for elements L of & whose orders are divisible by I. For the prime m
dividing b, the character B, are of highest kind. Hence
B (M)=0,

for elements M of & whose orders are divisible by m.

On the other hand, the normalizer N (PB) of a p-Sylow subgroup
% contains an element @ of order p—1. Since (p—1)/(u+1)>1,"* and

(up+1)/(w+1)">1, @ must be the element both of type L and of type M.
This contradicts relation (2). Thus ¢==1 is proved.

Corollary 1. Under the assumptions of the theorem, & does not
possess the representation N, of degree np+1.

Proof. From the lemma, it is sufficient to prove this in the case
t>3. Then from (3)

n:+1/t < (mp+n+1)/t,
n<(p—-1)/t <(»-1)/3.

This is impossible because t==0 (mod 2)

Corollary 2. Under the assumptions of the theorem, p >3, except
LF (2, 2%).

Proof. If p =3, then (p—1)/t=2 or 1, i.e. t=1 or p—1 =4,
this is a contradiction.

Lemma 5. Under the assumptions of the theorem, & does not possess
the representation € of degree ¢ = (up+1)/t, for p > 3.

Proof. If & possesses the representation € of this degree, then
B,(p) must consist of the followings : one 1-character 4,, (p—1)/t—B—1
characters A,(p # 1) of degree @, = up+1, B characters B, of degree
b, =(m—1)p/u—1 and ¢t characters C™ of degree ¢ = (up+1)/t.

From (5), as in the proof of lemma 4, p—1=0 (mod (u+1)).
We set p—1 =q (u+1), then ¢, =up+1 = (u+1)(ug+1). Since, from
(2), u+1=0 (mod t), wecan set u+1 =st. Then g =p(»—1)(up+1)
(p+u+1)/t(u+1) = (gst+1) gs (gst—q+1) (gst+st+1). But a, = st (gst

10) If p<u+2, then u2<p<wu+2. This means u=:1. But y<#24wu. Thisis the
excepted case. ‘

11) If all Ap, except p==1, do not appear in B;(p), then from (2)/ (u+41)/t==(p-1)/
t—-1)(p+u)/(u+1). Substituting as above, s==(gs—1)(¢+1). This implies s==2 and q=:1.
We obtain #+1=22¢ and p—1=2¢, then p==u+2. "On account of our foot-note 10), this is
impossible.
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—q+1) must divide g'”, hence ¢ =0 (mod ¢). And we set again q = kt.
On substituting these values in (2), we obtain
1+(a—1) st (kst?— ket +1)+s (kst2—kt +1) = B kot (kst® +st +1).
This means (s, k)=1, (s,t)=1.
On the other hand ¢ = (kst?+1) kst (kst®—kt+1) (kst?+st+1).

If s==1, then the characters A,p==1) and C® are of highest
kind for any prime ! dividing s. This implies

A(L)=0 for p=1, C”(L)=0

for elements L of @ whose orders are divisible by I. For the prime m
dividing t the characters B, are of highest kind. Hence

B (M)=0
for elements M of & whose orders are divisible by m.

But the normalizer N (P) of a p-Sylow subgroup P contains an
element Q of order (p—1)/t = kst. Hence 4,(Q)=0 (p=1), C(Q)=0
and B,(Q)=0. This contradicts (2).

If s=1, then u+1 =¢. On substituting these values in (2), we
obtain

(=D u+w+1)/t =B {@+u)/(u+1),
(a—1)(t—-1)+1 =R kt+1). .
Then (¢—1)(—1)+1=pB (mod ) and this gives 2=a+B (mod 7).
Since a+8 = (p—1)/t =kt, 2=0 (mod t). This is a contradiction.

Lemma 6. Under the assumptions of the theorem, & does not possess
the representation © of degree ¢ = (np+1)/t.

Proof. If & possesses the representation € of this degree, then
B,(p) must-consist of the followings: one 1-character A4,, (p—1)/t—B—1
characters 4,(p #=1) of degree a, =up+1, B characters B, of degree
b, =(n—1)p/u—1 and t characters C of degree ¢ = (np+1)/t.

From (5), as in the proof of lemma 5, we can set p—1 =q(u+1).
Then '

g =g+u+1)q(u+1)(uqg+1)(uqg+q+u+2)/t,
a, = (u+1)(ug+1), b, =q(ug+q+u+2) and
c=(ug+1)(uqg+q+u+2)/t.

If the character A,(p ==1) exists really, then a, must divide g. Then,
it follows that ug+g+u+2=0 (mod ¢).*» From (2) n+1 =0 (mod t).

12) From the form of c, we set f==£1fo,uq+1=<£12y/ and ug+q+u -2=1t3¢5’. Since a,
divides g, gto’=0 (mod t;). We get t,/=0 (mod t;), because (g, £ )==1. This means that
uq+-q+u+2=0 (mod t).
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Hence ¢ =0 (mod t). On the other hand, the character B, surely
exists and its degree divides g. Hence u+1=0 (mod ¢). This is a
contradiction. .

If the character A,(p # 1) does not exist, then taking the forms of
b, and ¢ in account, we obtain that #+1=0 (mod ¢) and ug+1=0

(mod t).'» We set again u+1 =kt and ug+1 =st. It follows from
(2) that
1+s(st+kt+q) =(gk—1)q (st+kt+q).

This is a contradiction. Thus we see that & does not possess the
representation € of degree (np+1)/¢t, q.e. d.

From Theorem C, @ can not possess the exceptional characters of
degree ¢ =(p—1)/t, because ¢ must be even in LF(2,p). So from
Theorem A, the following is the only possible case.

Lemma 7. Under the asumptions of the theorem, & possesses
the representations € of degree ¢ = (n—1)p/u—1 and p is of the form
2¢*—1 and & =~ LF(2, 2+), for p>3.

Proof. If & possesses the representation € of this degree, then
B,(p) consists of the followings: one 1-character A,, (p—1)/t—B—1
characters A4,(p == 1) of degree a, =up+1, B characters B, of degree

b, =(n—1)p/u—1 and t characters C® of degree ¢ =»(L"-D-§'Z/L_—1 .

Applying analogous method as in the proof of Lemma 5, we shall
conclude that 8 =0. First we set p—1 =kt (v+1). As b, divides g,
we can set again u+1 =st. From (2), if k==1, then the characters
A, (p == 1) are of highest kind for any prime dividing ¢ and the characters
B, and C® are of highest kind for any prime dividing %. This contradicts
that N (P) has an element @ of order (p—1)/t. If k=1, then p =st2+1
and u =st—1. Then from n<_p+2, we obtain ¢(s—1)< 2. This is
impossible.

Hence & does not possess the representation 8,. Then, we can
set again p—1 =Fkt(u+1). From (2) (k(u+1)—1)u =£Fk, this means
kE(u?+u—1)=u. Then we can conclude v =1 and k¥ =1. Substituting
these values in %, we obtain n = (p +3)/2.

Thus, by the following lemma we have Lemma 7.

13) From the form of ¢, we can set ug+1=<£)t)/, #==t,f and ug+q-+u-2=ty45’. But (2)’
means n+1=0 (mod t), then we set again #7+u+2=t/t. Comparing these, we find ¢=0
(mod ty) and u 1-2=0 (mod t3). Since b, divides g, we find (#+1)¢’=0 (mod %) and
t1/=0 (mod t;). This means #ug+1=0 (mod {). This contradicts ¢=0 (mod ¢;). Then
t, must be equal to 1. Hence #q+1=0 (moZ t). On the other hand p-1==q(%+1)=0
(mod t) and (q, t)=1, hence u+1=0 (mod t).
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Lemma 8. Under the assumptions (x), (xx), n =(p+3)/2 and t==0
(mod 2), p is of the form 2*—1 and & = LF(2, 2*).

Proof. We can prove this lemma in an analogous manner as in
Brauer’s main theorem.!®

As we proved above, & does not prossess the representation B, .
Since n = (p+3)/2, we obtain easily t = (p—1)/2 and g =p (p+1) (P +2).
Furthermore @, =1, ¢, =p+1 and ¢ = p+2 are the full table of degrees
of irreducible characters belonging to B(p).

We can classify the elements of ® into four distinct sets: (I) the
unit element, (II) the elements of order p, (II) the elements L whose
orders are divisible by at least one prime factor of p+1, (IV) the elements
M whose orders are divisible by at least one prime factor of p+2. Now
we decompose each irreducible character of & into the irreducible
characters of N (P) = {P, Q}. Considering their linear characters only,
we can conclude from the orthogonality relations for group characters
that any L is conjugate with @ in &. Since @ has order 2, p +1 must
be a power of 2, say p+1=2* px>2. At the same time the 2-Sylow
subgroup £ of & must be an abelian group of type (2,2, -.-,2). We
may assume that ¢ contains . Then we obtain that the normalizer
N (L) has the index p+2 in ©.

Hence it follows that & possesses a permutation representaticn of
degree p+2. As easily be seen, & is three times transitive, then from
a theorem of Zassenhaus,'® & = LF(2, p+1). This finishes the proof
of Lemma 8.

By these facts proved in § 2, we can examine all the possible cases
which may occur under those assumptions: (x), (%), # < p+2 and
t==0 (mod 2). Thus our main theorem is proved completely.

(Received March, 16, 1952)

14) Cf. [1], Theorem 10. .
15) Cf. H. Zassenhaus: Kennzeichung endlicher linearer Gruppen als Permutations-
gruppen, Hamb. Abh. 11 (1936).





