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Abstract

Liquid-solid two-phase flow with heat transfer is directly simulated, to investigate the effects of the ratios

of heat conductivities (solid to liquid) and bulk solid volume fraction from dense to dilute situations. The

interaction between fluid and particles is solved by our original immersed solid approach on a rectangular

grid system. A discrete element method with a soft-sphere collision model is applied for particle-particle

and particle-wall interactions. Governing equation of temperature is time-updated with an implicit treat-

ment for the diffusion term, which enables robust simulation with particles of very high/low ratios of heat

conductivities (from 1/1000 to 1000) to the fluid. The local heat flux at the fluid-solid interface is modelled

by a new flux decomposition technique, and incorporated into the implicit scheme of the temperature. The

method is applied to a 2-D particulate flow in a natural convection in a square domain at a relatively low

Rayleigh number. In the dense condition, for the cases with high ratios of heat conductivity, the heat transfer

is promoted by strong convection, while the particles of low ratios of heat conductivity tend to hinder the

development of the temperature rise in the flow field, causing a weak convection and low Nusselt number.

Under a condition of relatively low solid volume fraction, fixed particles only depress the heat convection

as the number of particles and heat conductivity ratio increase. For the cases with freely-moving particles,

on the other hand, heat conductivity of particles has a stronger influence on the heat transfer of the system

than the number of particles. The above simulation results highlight the effect of temperature distributions

within the particles and liquid.

keywords: Multiphase flow, Solid dispersion, Immersed solid object, Conjugate heat transfer, Heat con-

ductivity ratio
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1 Introduction

Solid-dispersed two phase flows often involve heat (and mass) transfer through the interface. Temperature

distributions in both fluid and solid phases play important roles on the fluid-solid interaction.

In early studies of theoretical and numerical modelling of particulate flows, especially for large systems,

heat and mass transfer problems in dispersed two-phase flows are often treated as a homogeneous media or

continuous and fully inter-penetrating two-fluid media [1]. In such cases with a large number of particles,

most of the existing approaches assume a unique temperature for each point-source particle and simplify

the heat transfer process at the fluid-solid interface.

However, local temperature distribution and flux between particle and fluid are known to affect many

reaction processes. Examples include the fluidazation of functional heating medium to be applied for phar-

maceutical process and heat storage system. Also in the fields of chemical, mineral and petroleum engineer-

ings, the heat transfer between catalyst particle and reactive product is vital for the stable chemical reaction.

To understand the heat transfer mechanism in fluid-solid two-phase flow, it is important to consider the

fluid-particle interaction and temperature distributions within both solid and fluid phases, especially for

finite-sized solid objects.

Numerical study of heat transfer problem in a flow including solid objects has been attempted by many

researchers. Pioneering work was done by MaKenna et al. [2]. They employed unstructured fluid mesh that

fits the surface of the solid object, and studied the size effect of catalyst particles (fixed in the domain) on

the heat exchange with the surrounding fluid. Gan and co-workers [3; 4] reported 2-D flow with particles

settling and melting in a hot fluid of the same material and showed characteristic lateral oscillations of the

settling isothermal particles. Yu et al. [5] simulated heat transfer between fluid and freely-moving particles

by using their distributed Lagrangian multiplier method. They applied the method to analyse the heat

transfer in a uniform flow including nanofluids and sheared non-colloidal suspensions. Their study shows

that the difference in temperature distribution within the particle changes the heat transfer performance of

the system. More fundamental computational studies focus on the boundary conditions for the heat transfer

on the particle surface with immersed boundary techniques. Iaccarino and Moreau [6] proposed a second-

order interpolation scheme (linear in the tangential direction and quadratic in the normal direction) for

immersed boundary problems. Kim et al. [7] and Kim and Choi [8] proposed a heat source/sink method for

imposing iso-thermal and iso-heat-flux boundary conditions at the immersed boundary of a fixed particle.

Similar approaches were proposed and fully validated by Pacheco and co-workers [9; 10] and Ren et al. [11]

with a fixed particle, and Zhang et al. [12] applied their heat source/sink approach to a heat transfer problem

around an externally-oscillating cylinder. Ueyama et al. [13] developed a numerical method for fluid-

particle interaction problem considering temperature distribution within the particles, and studied the effect

2



Postprint Flow, Turbulence and Combustion, Vol.92, Issue 1-2, pp.103-119 (2014)
DOI: 10.1007/s10494-013-9498-0

of bulk solid volume fraction and particle arrangement (fixed array or freely-moving particles) on the heat

transfer performance of the system.

Certainly, there are few previous studies that deal with a conjugate heat transfer problem (convective

and conductive heat transfers) in a two-phase flow including freely-moving particles.

In the present work, we study a heat transfer problem in a multiphase flow of dispersed solid particles

including the effect of local heat flux at the liquid-solid surface (and therefore temperature gradient within

the solid object). To facilitate the treatment of interaction problem between fluid and a large number of

relatively moving particles, a fixed grid approach is adopted. The interaction between fluid and particles

is solved with our original immersed solid approach [14; 15] on a rectangular grid system. The method

employs a simple procedure for the momentum exchange by imposing a volume force (as an interaction

force) on both solid and fluid phases. The method has been applied for studying a clustering process with

a total of 1000 spherical particles in a turbulent flow [14; 16; 17]. Also the usefulness of our method has

been demonstrated by Nishiura et al. [18] through the analysis of sedimentation process employing a total

of 105 spherical particles.

To include the effect of conjugate heat transfer in a liquid-solid interaction problem, a heat flux de-

composition model is proposed for the heat conduction at the liquid-solid interface. The model employs a

procedure for solving the temperature field in an Eulerian coordinate system by considering the interface

direction, and it shows good compatibility with our immersed solid approach. The contact of particles may

become one of the important paths for heat transfer in particulate flows, and heat exchange between the

particles is restricted by heat resistance at the surface contacting point. This problem is still explored from

micro and macroscopic views. One of the existing approaches considers the effect of heat resistance with

surface roughness by attaching small grains on the surface of the particle [19]. However, in the present

work, to simplify the phenomenon, only the repulsion is modelled by a discrete element method [20] with

a soft-sphere collision model, and the effect of the heat fluxes between touching particles and particle-wall

is excluded to focus on the heat transfer purely via fluid convection and conduction within each particle.

The present method is applied to a direct numerical simulation of 2-D laminar natural convection of

relatively low Rayleigh number in a confined square domain including multiple particles of round shape.

By including the particles of different ratios of heat conductivities (solid to liquid), we look into the effect

of the solid temperature distribution on the behaviour of the particles, and the heat transfer mechanism is

studied in the solid-dispersed two-phase flow for different bulk solid volume fractions.
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2 Governing Equations and Numerical Methods

2.1 Governing equations

The governing equations for fluid are the equations of continuity, momentum and energy:

∇ · uf = 0 ,

ρf
∂uf

∂t
+ ρfuf · ∇uf = −∇p+ μf∇2uf + ρfβ(T − T0)g ,

∂ρfcfTf

∂t
+ uf · ∇(ρfcfTf ) = ∇ · (λf∇Tf ) ,

where uf is the fluid velocity, ρf the reference density, g the gravitational acceleration, β the coefficient

of thermal expansion, Tf the fluid temperature, T0 the reference temperature, cf the specific heat. Here, an

incompressible fluid is assumed and Boussinesq approximation is employed to include the effect of density

fluctuation. In the following, viscous coefficient (μf ), heat capacity per unit volume (ρfcf ) and thermal

conductivity (λf ) are assumed to be constant.

Governing equations for motion of the solid object are Newton’s equations for momentum and angular

momentum:

mp
dvp

dt
= F +Gp , Ip

dωp

dt
= T +N p

where mp is the mass, Ip the inertia tensor, vp the translating velocity, ωp the angular velocity, F and T

the hydrodynamic force and its moment, respectively, and Gp and N p are the external force and torque,

respectively.

2.2 Fluid-solid interaction model: immersed solid approach

Momentum exchange at the fluid-solid interface, where a cell is partially occupied by a solid object, is

solved by the immersed solid approach developed by Kajishima and the co-workers [14; 16; 17], on a

uniformly distributed fixed grid system. This is briefly described below.

A velocity field u is established through volume-averaging of the local fluid velocity uf and the local

particle velocity up in a cell:

u = (1− α)uf + αup , (1)

where α (0 ≤ α ≤ 1) is the local solid volume fraction in the cell. The particle velocity up is decomposed

into translating and rotating components as up = vp +ωp × r. This mixture velocity field u is assumed to

obey the following equation:

∂u

∂t
= −∇p/ρf +Hu + β(T − T0)g + f p , (2)
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where Hu contains the convective and viscous terms. Interaction term f p works to assign the mixture

velocity that satisfies the non-slip boundary condition at the interface [14; 16; 17]. For spatial discretisation

of Eq. (2), second-order finite difference schemes are used. For time-updating Eq. (2), the 2nd-order Adams-

Bashforth and Crank-Nicolson methods are employed for the convective and viscous terms, respectively.

The pressure gradient term in Eq. (2) is treated implicitly by a fractional step method. With the corrected

velocity field ũ, the fluid-solid interaction term f p is modelled as follows:

f p = α
(up − ũ)

Δt
, (3)

where Δt is the time increment.

For motion of the particles, the same force as Eq. (3) applies to the fraction of the solid in the cell with

the opposite sign. The surface integration of the hydrodynamic forces is changed to the integration of f p

over the volume of the particle Vp:

mp

vn+1
p − vn

p

Δt
=

∫
Vp

(−ρff p)dV +Gp , (4)

Ip

ωn+1
p − ωn

p

Δt
=

∫
Vp

r × (−ρff p)dV +N p , (5)

where the superscripts represent time levels.

The above replacement from surface to volume integrations considerably facilitates the computation of

the solid motion, and also the use of the same body force f p for both (fluid and solid) phases in a shared

Cartesian cell ensures no leakage of momentum between the phases. Eqs. (4) and (5) are solved with a

predictor-corrector method [13]. The new position of the particle is obtained after time-updating Eqs. (4)

and (5), and the local solid volume fraction α and surface normal vector n (directing from particle to fluid)

are obtained accordingly.

2.3 Temperature field and interfacial heat conduction

Temperature field is treated in an Eulerian way. The numerical simulation are conducted under ρs = ρf (=

ρ) and cs = cf (= c). The following equation is solved with the distributed material property λ(x):

∂ρcT

∂t
+ u · ∇(ρcT ) = ∇ · (−q)

= ∇ · (λ∇T ) . (6)

In the following, discretised cell temperature is represented by Tij = 〈XsTs +XfTf〉ij , where Xk (k =

s, f ) is the indicator function of k-phase, 〈·〉 means the cell average and the subscripts ij denote the two-

dimensional indices of the computational cell. The discretised temperature gradient ∇T |ij is decomposed
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into surface-normal component (nn) · ∇T |ij and tangential component (I − nn) · ∇T |ij , where I is the

identity tensor and n is the unit outward normal vector at the object surface. In an interfacial cell partially

occupied by the solid object (local solid volume fraction α), the following mean heat conductivities are

defined in the surface normal and tangential directions, respectively:

1

λh

=
1− α

λf

+
α

λs

, λa = (1− α)λf + αλs .

Assuming that the solid and fluid temperatures match with each other at the interface, the heat flux at the

interfacial cell qsurf is given by the following formula:

qsurf = −λh(nn) · ∇T |ij − λa(I − nn) · ∇T |ij

= −
[
λaI + (λh − λa)(nn)

]
ij
·
(

(−Ti−1/2,j + Ti+1/2,j)/Δ
(−Ti,j−1/2 + Ti,j+1/2)/Δ

)
, (7)

where Δ is the uniform grid spacing. At the cell totally occupied by the fluid or solid object, the heat

conductivity λ is set to that of the material. On the other hand, at the fluid-solid interface, where a cell is

partially occupied by a solid object, we apply Eq. (7) as the interfacial heat flux at the cell.

This treatment of the heat flux would be essential when the heat conductivities of fluid and solid are

different by orders of magnitude, where the local tangential heat flux could be relatively large compared

with the surface normal flux. Note that this treatment of heat flux at the surface shows good compatibility

with our immersed solid approach; since the local solid volume fraction α distributes in the interfacial cells

where the interaction term Eq. (3) is calculated, then the heat flux is simply constructed by Eq. (7) with n.

In the following sections, the above formula is applied to circular geometry. However, the formula is also

applicable to solid objects of arbitrary geometry with an algorithm of calculating α for non-circular/non-

spherical objects [15].

Eq. (6) is time-updated with the Crank-Nicolson method for the diffusion term with the treatment of

Eq. (7). This semi-implicit scheme stabilises the computation and enables simulation with particles of very

high/low heat conductivities.
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Figure 1: Schematic of off-centre cylinder in a square domain.

2.4 Interparticle and particle-wall collision model

A soft-sphere model is used to allow multiple-body collisions for interparticle and particle-wall collisions.

A spring and dashpot model is employed to calculate the contact forces. In the model, the spring constant

determines the characteristic time scale. The larger the spring constant is, the smaller the time step should

be. In the present study, the same parameter values as Tsuji et al. [20] are used for the spring constant,

restitution coefficient and friction coefficient.

Tsuji et al. [20] suggested the following condition for determining the time increment to sufficiently

resolve the eigen oscillation of the mass-spring system:

Δt ≤ π

n

√
mp

k
(n ≥ 10) . (8)

In the present study, the smallest value of the right hand side of the above equation is found to be

1.47 × 10−3 for the smallest mp employed in the following section. Therefore, considering the numerical

accuracy of the momentum and energy equations from our preliminary study, the time increment is fixed

to Δt = 5.0 × 10−4, hereafter. In the present study, the largest CFL number based on this time increment

is found to be 1.01 × 10−2, and the CFL condition is less influential in comparison with the condition of

Eq. (8).

In the present study, no heat exchange or heat source is modelled in the interparticle collisions, and

interparticle cohesive force is assumed to be negligible.
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Figure 2: (a)(b)Streamlines and iso-contours of temperature in a square region with an off-centre cylinder
of d = 0.2L placed at εx = −0.15L, εy = −0.15L. (c)(d)Temperature and velocity profiles on the vertical
and horizontal centrelines for a natural convection in a square domain with a heated cylinder of d = 0.2L
placed at εx = −0.3L and εy = 0.3L. The solid lines show the present simulation result and the dotted
lines are the result by Moukalled and Darwish [21]. Velocities are normalised by

√
gβΔTL.

2.5 Verification: natural convection with a fixed particle

The proposed method is applied to a problem of laminar natural convection from a heated cylinder placed

off-centre of a square domain (side length L) as illustrated in Figure 1. The cylinder has a diameter

d = 0.2L, and its centre is located at (εx, εy) with respect to the domain centre. The cylinder has a non-

dimensional wall temperature T = 1, and the surrounding four walls are maintained at T = 0. Rayleigh

number is 105. The number of grid point is 200 in both horizontal and vertical directions.

Figures 2(a) and (b) show streamlines and isotherms. Two well-defined rotating vortices are observed

from the streamlines. From the temperature contours, a strong thermal plume rises slightly in the left

direction. The same natural convection problem has been studied by Moukalled and Darwish [21] using a

8



Postprint Flow, Turbulence and Combustion, Vol.92, Issue 1-2, pp.103-119 (2014)
DOI: 10.1007/s10494-013-9498-0

L
Dp

L√
Np

x

y

T = 1

T = 0

∂T
∂x

= 0

Figure 3: Schematic of the initial arrangement of particles.

bounded skew central-difference scheme, Sadat and Couturier [22] with a meshless diffuse approximation

method, Pan [23] with an unstructured-Cartesian-mesh immersed boundary method and Pacheco-Vega et

al. [10] using a direct forcing fixed-grid method. From the comparison, the present numerical results agree

well with those presented in the above literatures.

Figures 2(c) and (d) show the temperature and velocity distributions on the vertical and horizontal cen-

trelines for the same Rayleigh number. The result is compared with those by Moukalled and Darwish [21],

and the temperature and velocities show reasonable agreement with each other. Together with the validation

of Eq. (7) reported in [24], the applicability of the present method is established, and the present method is

applied to a thermal flow problem developing around a particle in the following section.

3 Results and Discussion

Solid-dispersed two-phase flow under natural convection is studied for different heat conductivity ratios

(solid to fluid) and solid volume fractions. The non-dimensional numbers used are Rayleigh number (Ra)

and Prandtl number (Pr).

In the present work, the computational domain is a square shape of side length L, and the particles are

initially arranged regularly in the domain as illustrated in Figure 3. Temperature difference between the

top and bottom walls is kept constant (ΔT = 1), and no heat flux is given at the lateral walls. The no-slip

boundary condition and the Neumann condition are applied for the velocity and pressure, respectively, on

the solid walls. The equations are non-dimensionalised with the reference length L, the reference velocity

U =
√
gβΔTL, the reference pressure ρfU

2 and the characteristic temperature difference ΔT . The ratio
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Figure 4: Instantaneous flow field (t = 1500) of Rayleigh number 104 including a single particle of (a)
λs/λf = 10−2 and (b) λs/λf = 102. Colour shows the magnitude of the fluid velocity and iso-contours of
temperature are plotted at constant intervals. The particle is fixed at the domain centre and the surface is
represented with a black line.

Table 1: Simulation parameters (dense case).
Num. of grid points Nx ×Ny 200× 200
Spatial resolution L/Δ 200

Number of particles Np 142

Diameter of particles Dp 0.05L
Rayleigh number Ra 1× 105

Heat conductivity ratio λs/λf 10−3, 100, 101, 102, 103

of the particle diameter to grid spacing is Dp/Δ = 10, which allows reasonable accuracy for the drag

coefficient in the present particle Reynolds number range [14; 25]. And the grid dependency for the heat

conduction model is verified in [24]. To investigate the effect of natural convection on the particle behaviour

and heat transfer, Prandtl number, density ratio and specific heat ratio are set to unity.

Prior to the study of behaviour of freely-moving particles, Figure 4 shows two typical snapshots of the

flow fields around a particle fixed at the centre of the domain under the above boundary conditions. For the

case employing particles of a low conductivity ratio (λs/λf = 10−2) in Figure 4(a), once a large temperature

gradient develops within the particle, it takes a long time until the temperature imbalance is resolved. On

the other hand, a nearly flat temperature distribution immediately develops within the particle of a high

conductivity (λs/λf = 102) as shown in Figure 4(b). Similar temperature and velocity distributions are

reported by Yu et al. [5] in a shear flow with a fixed particle.

In the following, interaction between the fluid and particles is simulated with different ratios of heat

conductivity and solid volume fractions.
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(b) λs/λf = 103

Figure 5: Instantaneous flow field and contours of temperature for different heat conductivities. Rayleigh
number is 105 and bulk solid volume fraction is 38.5%. Colour shows the magnitude of the fluid velocity
and iso-contour of temperature.

3.1 Effect of heat conductivity ratio of solid to fluid

We look into the effect of the heat conductivity ratio on the particle motion in a natural convection of

Rayleigh number 105. The corresponding particle Reynolds number (based on Dp and the natural convec-

tion speed driven by the vertical temperature difference across Dp) is approximately 80 at most for a fixed

particle. The other parameters are summarised in Table 1. The bulk solid volume fraction is 38.5%.

Figure 5 shows instantaneous flow and temperature fields at t=1500 by employing the particles of

λs/λf = 10−3 and 103. In both cases, the particles and fluid are found to constantly circulate in one direc-

tion around the domain centre after the initial developing stage. However, the local concentrations of the

particles and time-averaged flow fields are different for the two cases. Figure 6 compares the time-averaged

temperature and velocity fields for the two heat conductivity ratios.

For the particles of λs/λf = 10−3, the temperature gradient within the particle hardly re-distributes

within the particle or to the fluid. The concentrated isothermal lines near the top and bottom walls in

Figure 6(a) suggest that, once a layer of particles is formed in those regions, the heat transfer from/to the wall

is blocked by the particles of poor-conductivity, resulting in poor development of the temperature gradient

in the fluid phase (and in turn, weak buoyancy force). In addition, the particles of low heat conductivity

take a long time to fall/rise after cooled/heated by the top/bottom wall. Therefore, low heat conduction in

the particle could cause weak fluid convection.

On the other hand, for the case of λs/λf = 103, the particles near the hot wall transfer the heat to the fluid

and the particles near the cold wall efficiently release the heat to the top wall from the fluid. The generated

temperature gradient in the fluid phase causes fluid convection as observed in Figure 6(b), and a circulating
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Figure 6: Time-averaged temperature and velocity fields for different heat conductivities. Rayleigh number
is 105. Average is taken between t = 500 and 1500. Magnitude the fluid velocity are levelled by colour,
and iso-contours of temperature are plotted at constant intervals.

flow of the heated particles further promotes the heat transfer of the system. It is also characteristic, from

Figure 5(b), that a region of low number density of the particles is found near the domain centre due to high

rotating speed of the particulate flow.

The heat transfer rate in two-phase natural convection system is compared for different particle conduc-

tivities. For evaluating heat transfer rate, the following Nusselt number is used with the heat flux at the hot

(bottom) wall:

Nu =
1

ΔT

∫ L

0

(
−∂T

∂y

)
y=0

dx . (9)

Figure 7 compares the time evolutions of Nusselt number for three different λs/λf cases. The case of the

lowest conductivity ratio (λs/λf = 10−3) exhibits very low Nusselt number over the time range tested,

as expected. The profiles of λs/λf = 101 and 102 (not shown here) fall between the curves of “without

particles” and λs/λf = 103, and the average level of the Nusselt number is found to increase with increasing

the heat conductivity ratio. The oscillatory behaviour of the Nusselt number is due to the fluctuation of the

number density distribution of particles. The concentration of particles in the vicinity of conductive walls

affects the instantaneous heat transfer. In case of employing high conductive particles, this tendency is

enhanced resulting in the larger fluctuation of the Nusselt number.

The above results show that the solid heat conductivity largely influences the flow pattern in solid-

dispersed two-phase flows and that the circulation of the particles enhances the heat transfer rate by trans-

porting the heat from bottom to top.
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Figure 7: Comparison of time evolutions of Nusselt number for different ratios of heat conductivity. Solid
volume fraction is 38.5%

Table 2: Simulation parameters (dilute case).
Num. of particles Np 0, 1, 22, 32, 52, 62, 102

Diameter of particles Dp
0.3L√
Np

Rayleigh number Ra 1× 105

Heat conductivity ratio λs/λf 10−2, 100, 101, 102

3.2 Effect of the particle size

Heat transfer performance of the system is compared for different particle sizes. The particle sizes are

varied by keeping the bulk solid volume fraction 7.1%. Therefore, the heat capacities of the individual

particles for each case are different, but the bulk heat capacity of the solids is the same. To investigate the

effect of the motion of the particles, two cases employing fixed particles and freely-moving particles are

tested. The spatial resolution is fixed to Dp/Δ = 10 (except for the cases of Np = 1 and 22, which are

Dp/Δ = 30 and 20, respectively), and the number of grid points along each side of the domain (L/Δ) is

changed accordingly. The other simulation parameters are summarised in Table 2.

In the cases with fixed particles, steady flow and temperature fields develop. And, in all the cases with

freely-moving particles, the fluid and particles are observed to steadily go around the domain centre.

Figure 8 shows the average Nusselt number, and Figure 9 shows the root mean square (r.m.s.) of the

magnitude of velocity to see the development of convection of the fluid. Time-average is taken in the range

from the time reached quasi-steady state to t = 1500.

In Figure 8(a) (the cases with fixed particles), only the configuration of Np = 22 shows an improved

heat transfer rate than the case without particles. After taking the maximum Nusselt numbers at Np = 22

for all the heat conductivity cases, an overall decreasing trend of the average Nusselt number is observed

with increasing the number of particles. Interestingly, at Np = 22 and 32, the average Nusselt numbers for
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Figure 8: Average Nusselt number as a function of number of particles for different heat conductivity ratios.
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(b) Moving particle cases

Figure 9: Average root mean square of velocity as a function of number of particles for different heat
conductivity ratios.

λs/λf = 10−2 and 100 are larger than those of the higher heat conductivity ratios. This is explained that,

due to the poor heat conduction in the fixed particles of the low heat conductivities, most of the energy input

from the hot wall is transferred to the fluid for the low conductivity cases. The r.m.s. values at Np = 22

and 32 in Figure 9(a) also show this. However, from Figure 9(a), the fixed array of particles works to hinder

the development of the fluid convection as the number of particles and the heat conductivity ratio increase.

These results suggest a possibility of promoting the heat transfer of the system by a proper choice of the

number and arrangement of fixed particles.

In the cases with freely-moving particles, on the other hand, Figure 8(b) shows a higher Nusselt number

for a case with a higher λs/λf . However, the Nusselt numbers are found to be insensitive to the number

of particles (in the range
√
Np > 3) for each heat conductivity ratio. Especially for the case with particles

of the same heat conductivity as the fluid (λs/λf = 100), the average Nusselt number is almost the same

level as the case without particles. These results seem that, for the cases with freely-moving particles, heat
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conductivity of the particles has a stronger influence on the heat transfer of the system than the number of

particles.

From Figures 8(a) and 9(a), for the cases with fixed particles, the heat convection is depressed and the

heat transfer of the system decreases in proportion to the number of particles. However, from Figure 9(b),

the levels of r.m.s. are also in accordance with the heat conductivity ratio, and only slight changes of the

r.m.s. values are found with the number of particle (except for the case of
√
Np = 2). Figures 8(b) and 9(b)

indicate that the convection is the major heat transfer means for the case of low λs/λf , and that, as λs/λf is

increased, the contributions of the convection (Figure 9(b)) and the heat conduction (Figure 8(b)) increase

in the dilute conditions of the present study.

4 Conclusions

To simulate solid-dispersed two-phase flow with heat transfer, a method considering the effects of temper-

ature distribution within a particle was developed based on a discrete-element and our original immersed

solid methods. The proposed method is verified by solving the problem of natural convection in a square

domain with a heated cylinder.

The method is applied to a 2-D liquid-solid two-phase flow from dilute to dense solid concentrations

under a relatively low Rayleigh number. In the dense condition with freely-moving particles, the particles of

a high heat conductivity induce the heat convection of the fluid, and promote the heat transfer of the system.

On the other hand, for particles of a low heat conductivity, the particles move slowly and concentrate in

the near-wall regions. Those particles tend to intercept the heat transfer from the hot wall to the fluid,

resulting in low Nusselt number. In the dilute condition, fixed particles hinder the development of the

heat convection for each heat conductivity ratio as the number of particles increases. For freely-moving

particles, the Nusselt number and r.m.s. of the magnitude of the velocity are found to be less sensitive to

the number of particles, whereas the heat conductivity ratio has a stronger influence on the heat transfer of

the system. The results indicate that, in the dilute conditions, the convection is the major contributor for

the heat transfer in the system of both fixed and freely-moving particles, and the heat conduction through

the particles further influences the convection in a moving-particle system as the heat conductivity ratio is

increased.

These results highlight the effect of temperature distributions within the particles as well as liquid on

the overall heat transfer performance in the multiphase flow.
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