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Abstract
For all integersn � 3 we show the existence of many triples(d; g; �) such that

there is a smooth non-degenerate curveC � Pn with degreed, genusg and index
of regularity �. The curveC lies in a smoothK3 surfaceS � Pn.
1. Index of regularity

Let C � Pn be a curve, i.e. a locally Cohen-Macaulay pure one-dimensional
closed subscheme. Set�(C) := minft : h1(Pn; IC(x)) = 0 for every x � tg. We will
call �(C) the index of regularity ofC. Since the old works of Castelnuovo, the inte-
ger �(C) is considered a fundamental invariant ofC ([5], [2]). In all cases we will
consider in this paper we will haveh1(C;OC(� � 1)) = 0 and hence by Castelnuovo-
Mumford lemma in this case the integer�(C) will be also the regularity index of the
minimal free resolution ofC ([2]): another very good reason to consider it a funda-
mental invariant ofC. Thus for any fixed integern � 3 it seems nice to show the
existence of many triples (d; g; �) such that there is a smooth non-degenerate curveC � Pn with degreed, genusg and index of regularity�. A weaker, but very impor-
tant problem, classical problems is to find at least “almost all” pairs (d; g) that may
appear as (degree;genus) of a smooth non-degenerate curveC � Pn. For this clas-
sical problem (whenn = 3) S. Mori used aK3 surface ([4]). Later, A.L. Knutsen
extended Mori’s idea to the casen � 4. Using Knutsen’s paper it was possible to con-
struct curvesC such that certain cohomology groupsh1(Pn; IC(x)) vanish ([1]). Here
we adapt the proofs in [1] to get results on the index of regularity.

Theorem 1. Fix integersd; g; n such thatn � 3 and 0 � d � n < g < d2=(4n�
4)� (n�1)=4. Setr := b(d�pd2 � (4n� 4)g=(2n�2)
, d0 := d� (2n�2)r and g0 :=
(n�1)r2�dr+g. Thenr � 1 and 0� g0 � d0�n. There is a smooth and arithmetically
Cohen-Macaulay degree2n � 2 K3 surfaceS � Pn with the following properties. SetH := OS(1). There is a smooth and connected curveC0 � S such thatdeg(C0) = d0,pa(C0) = g0, h1(C0;OC0(1)) = 0, h0(S;OS(H � C0)) = h0(S;OS(C0 � H )) = 0, Pic(S)
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is freely generated by the classes ofH and C0, and the general element ofjC0 + rH j
is a smooth and connected non-degenerate curve with degreed and genusg. We havee(C0) = 0 if g0 > 0 and e(C0) = �1 if g0 = 0. Take anyC 2 jC0 + rH j. Then�(C) = �(C0) + r and e(C) = e(C0) + r. C is arithmetically normal if and only ifC0 is
projectively normal and this is the case if and only ifd0 = g0 + n and h1(Pn; IC0(2)) =
0. If d0 = g0 + n and n > g0, thenC0 is projectively normal.

REMARK 1. Use the notation of Theorem 1. The existence ofS was proved in
[1], proof of Th.1.4. By [1], Th.1.4, we haveh1(Pn; IC(r + 1)) = d0 � g0 � n andh1(Pn; IC(t)) = 0 for every integert such that 0� t � r.

By Theorem 1 the computation of the index of regularity�(C) of C is reduced
to the computation of the integer�(C0). Sinced � d0, the following remark may be
useful.

REMARK 2. Let C � Pm be an integral degreed non-degenerate curve. Ifm = 2,
then �(C) = 0. However, ifm = 2, thenh1(C;OC(t)) = 0 if and only if t � d � 2.
Now assumem � 3. By [2] we have�(C) � d + 1� m and �(C) = d + 1� m if and
only if C is smooth and rational and eitherd � m + 1 or d � m + 2 andC has a
(d + 2�m)-secant line. Furthermore,h1(C;OC(z)) = 0 for all z � d �m.

We work over an algebraically closed fieldK such that char(K) = 0.

Proof of Theorem 1. The existence of the pair (S;C0) was checked in [1], proof
of Th.1.4 (see in particular the last two lines of that proof for the critical conditionh1(C0;OC0(1)) = 0). Sinceh1(C0;OC0(1)) = 0, we havee(C0) � 0. Hencee(C0) = 0
if g0 > 0 and e(C0) 2 f�2;�1g if g0 = 0. Sinceh0(S;OS(H � C0)) = 0, C0 is not a
line and hencee(C0) = �1 if g0 = 0. The construction of the pair (S;C0) used in an
essential way the construction of many curves in suitableK3 surfaces due to S. Mori
([4]) for n = 3 and to A.L. Knutsen ([3]) for arbitraryn. Fix an integera � 0 and anyT 2 jC0 + aH j. For all integerst we have the following exact sequence

(1) 0! OS((t � a)H � C0)! OS(tH )! OT (t)! 0

If t � a and (t; a) 6= (0;0), then h1(S;OS(tH )) = h2(S;OS(tH )) = 0 and henceh1(T ;OT (t)) = h2(S;OS((t � a)H � C0)) = h0(S;OS(C0 + (a � t)H )). From this re-
lation for a = 0 and a = r we get e(C) = e(T ) = e(C0) + r. Since this relation is
obvious for r = 0, we do not need the case (t; a) = (0;0). By [1], Th.1.4, (its proof
does not require the smoothness ofC) we haveh1(Pn; IT (t)) = 0 if 0 � t � r andh1(Pn; IT (r + 1)) = d0 � g0 � n. Now assumea 2 f0; rg and take an arbitrary integert � r + 2. SinceS is projectively normal,h1(Pn; IT (t)) = h1(S;OS((t � a)H � C0)).
Hence�(C) = �(C0) + r. The projective normality of a degreed0 linearly normal em-
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bedding ofC0 if d0 � 2g0 + 1 was proved by D. Mumford ([5], Cor. at p.55).

REMARK 3. The proof of Theorem 1 shows that�(C) is the minimal integert
such thath1(S;OS((t � r � 1)H � C0)) 6= 0.
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