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明示的認識論理学と動的規範論理学

中　山　康　雄

１.はじめに

本稿では、近年私が展開してきた認識と規範に関する論理体系を新たな視点からまと

めるとともに、次の二つのことを目的とする。

　１　いくつかの有名なパズルの解法を提案する。

　２　動的規範論理学（Dynamic Normative Logic, DNL）を用いて、典型的ゲームがど

　のように記述できるかを示す。

まず導入として、本稿のテーマに関するこれまでの私の研究過程を記述しておこう。

本研究は、2010 年の紀要論文と国際ワークショップ SOCREAL 2010 の論文において、

規範体系論理学（Logic for Normative Systems, LNS）を提案したときからはじまってい

る（中山 2010, Nakayama 2010）。LNS は、法的推論や道徳的推論をも含めた規範的推

論を形式的に表現するために構想した体系である。その全貌は、『規範とゲーム』におい

て描かれた（中山 2011）。そこでは、規範体系とゲーム体系という二つの枠組みを基盤

にして社会活動を描くことが試みられた。しかしその後も、このアプローチは拡張され

ている。2012 年の科学基礎論学会での発表「規範体系論理学の特徴づけ」において、典

型的なゲームが LNS の枠組みの中で記述できることが示され、SOCREAL 2013 で動的

論理学の枠組みが提案された（Nakayama 2013）。そして、LNS や DNL を言語行為論

に適用する方法が、中山（2012）や Nakayama (2013, 2014) で提案された。また、この

アプローチの総括的な紹介が、Nakayama (forthcoming) でなされた。さらに、明示的認

識論理学の時間論への適用が中山（2014）で提案されている。

２.明示的認識論理学

明示的認識論理学（Explicit Epistemic Logic, EEL）は、私がさまざまな形で展開して

きた論理学体系の基礎となる枠組みであり、規範体系論理学および動的規範論理学から

認識に関する部分だけを取り出したものとなっている。この節では、EEL の枠組みとそ

の特性を紹介しておく。
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定義１　T を一階述語論理学（First-order Predicate Logic, FOL）の文集合とする。以下、

T を「信念基盤（belief base）」と呼ぶ。また、「⇔」はメタ言語の論理的同値を表すとす

る。そして、「T ⊢  p 」は「T から p が演繹的に証明できる」ことを表わすとする。

(1a) BT p ⇔ def［T ⊢ p & T は無矛盾］。

(1b) MT p ⇔ def［T ⋃ {p} は無矛盾］。

(1c) Cn(T) =def {p : T ⊢ p }。Cn(T) を「信念集合（belief set）」と呼ぶ。

(1d) X が認識主体のとき、X が明示的に信じている文集合のことも X と書くことにす

　　　る。そして、BX p や MX p などの表現を用いることにする。また、X は個人に限定

　　　されていず、集団でもありうるとする。

(1e) B@ p は、現実世界で p が真であることを意味するとする。このとき、@ は極大無

　　　矛盾集合であり、任意の文 p について、「p∈@ または ¬p∈@」が成り立つ。

(1f) ［共通信念基盤］ G は人物の有限集合とする。Ti を i が持っている信念基盤とする

　　　とき、T(G) =def ⋂ i ∈G Cn(Ti) と定義し、T(G) を「グループ G の共通信念基盤」と呼ぶ。

BT p、MT p、B@ p をそれぞれ次のように呼ぶことにする：「信念基盤 T のもとで p が信

じられている」、「信念基盤 T のもとで p が可能だと信じられている」、「現実世界で p は

真である」。BT p と MT p を日常言語で表現すれば、「（認識状態 T を前提にすれば、）p で

あるに違いない」、そして、「（認識状態 T を前提にすれば、）p かもしれない」というこ

とになる。

定義１から命題１が成り立つことは、容易に証明できる。

命題１　⇒はメタ言語の「ならば」、& はメタ言語の「かつ」、not はメタ言語の否定、そ

して、or はメタ言語の「または」を表すとする

(2a)［演繹的閉包性］　BT p ⇒ p∈Cn(T).
(2b)［Modus Ponens］　BT (p⊃q) ⇒ (BT p ⇒ BT q).
(2c)［認識的様相性］　BT p ⇒ MT p.
(2d)［単調性］　(T1⊆T2& T2 は無矛盾 ) ⇒ (BT1 p ⇒ BT2 p).
(2e)［@ の極大無矛盾性］　B@ p ⇔ p ∈@.

(2f)［二値性の原理］　B@ p or B@ ¬p.
(2g)［共通信念］　BT(G) p ⇔∀i∈G BTi p. また、BT(G) p と BTi p を、単純に BG p および Bi p
　　　と書くこともある。

　  証明　(2a) は、(1a) と (1c) から直ちに帰結する。(2b) は (1a) から、(2c) は (1a) と (1b) 
から帰結する。 (2d) は (1a) と FOL の単調性から、 (2e) と (2f) は (1e) から、(2g) は 
(1f) から帰結する。　Q.E.D.

本稿で議論する二つのパズルを解くためには、知覚による情報のとり入れを用いる必
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要がある。そこで本稿では、次の知覚原理を認めることにする。

(3) ［知覚原理］　知覚主体 X が適切な条件のもとで知覚し、それにともなって信念 p を

形成したときには、次のことが成り立つ：B@ p ⇒ Bx p.

次に、明示的認識論理学の観点から二つのパズルを解く方法を提案しておく。

３.二少女の色あてパズル

「二少女の色あてパズル」は、「帽子の色あてパズル」の核の部分を取り出して単純化

したパズルであり、八杉・小田（2001）が議論している。それは、次のようなパズルで

ある。

　　二人の少女アンナとビアンカが一列に並んでいる。エンリコが二人に帽子をかぶせ

る。ビアンカの帽子の色は白であるが , アンナの色は何でもよい。アンナはビアンカ

の帽子を見ることができるが自分の帽子は見ることができない。ビアンカはどちらの

帽子も見ることができない。エンリコが二人に告げる：「二人の帽子のうち少なくと

も一方は白です」、と。

　　　エンリコはまずアンナに「あなたの帽子の色は白ですか ?」と聞く。

　　　(A) アンナは「わかりません」と答える。

　　　(B1) ビアンカはこれを聞き , 自分の知識とする。

　　　エンリコは次にビアンカに「あなたの帽子の色は白ですか ?」と聞く。

　　　(B2) ビアンカは「はい」と答える。

このパズルの場合、信念帰属が重要な役割をはたしている。そしてパズルの解法もこ

の信念帰属の仕方と深く関わっている。ビアンカは、なぜアンナが「わかりません」と

答えたかについて考え、そこからアンナの帽子が白であることをビアンカが見ていたと

いう結論に至り、この推論に基づいて「はい」と答えているのである。このパズルを解

くことがむずかしいのは、アンナの知覚を推測してビアンカが見ていないものについて

答えるところにある。私はまず、信念帰属と他者からの知覚情報の受け入れに関する次

の二原理を認めることから出発する。

(4a) B[B(PR) > A] p ⇔ [B が認める原理 B(PR) と A が信じていると B が思っている文集合

から BA p を導くことができる ]。このとき、B[B(PR) > A] p を「原理 B(PR) に基づい

て B が信念 p を A に帰属する」と読むことにする。ただし、このパズルに関し

てビアンカが認める原理 B(PR) は、メタ言語に関する古典論理の推論体系、命題
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１、知覚原理 (3) だとする。

(4b) p が A の知覚内容を表す文のときには、次の規定が成り立つ：B[B(PR) > A] p ⇒ BB p. 
つまりこのようなとき、B は A に帰属させた信念を真なものとして受け入れる。

このとき、ビアンカが自分の帽子が白だと推論できることを次のように証明できる。

〔1〕B[B(PR) > A] ( 帽子 (B, 白 ) >  帽子 (A, 白 )).　　［エンリコの発言を二人とも聴いてい

るから］

〔2〕 not B[B(PR) > A] 帽子 (A, 白 ).　　［ビアンカも知っているように、エンリコの質問に「わ

かりません」とアンナが答えたから］

〔3〕 B@ 帽子 (B, Colour) ⇒ B[B(PR) > A] 帽子 (B, Colour).　　［(3)、(4a) より］

〔4〕 B[B(PR) > A] ( 帽子 (B, Colour) >  Colour ≠ 白 ) ⇒ B[B(PR) > A] 帽子 (A, 白 ).　［〔1〕より］

〔5〕 not B[B(PR) > A] ¬ 帽子 (B, 白 ).　　［〔2〕、〔4〕より］

〔6〕 not B@ ¬ 帽子 (B, 白 ).　　［〔3〕、〔5〕より］

〔7〕 B@ 帽子 (B, 白 ). 　［〔6〕、(2f) より］

〔8〕 B[B(PR) > A] 帽子 (B, 白 ). 　［〔3〕、〔7〕より］

〔9〕 BB 帽子 (B, 白 ).　［〔8〕、(4b) より］

このように、三つの基本的原理 (3)、(4a)、(4b) を認めれば、ビアンカが最後になぜ「は

い」と答えたのかを、EEL の枠組みを用いて説明できる。

４.泥だらけの子供たちのパズル

「泥だらけの子供たち（Muddy Children）のパズル」（Fagin et al 1995, van Benthem 
2011: 12）は、情報更新に関するパズルである。言い換えると、このパズルを解く鍵に

なるのは、適切な情報更新の処理である。このパズルは、次のように描写できる。

三人の子供が外で遊んだ後、三人のうちの二人の子供の額
ひたい

に泥がつく。彼らは他の

子供を見ることができるが、自分自身の状態については知ることができない。さて、

彼らの父親がやってきて、次のように言う：「お前たちのうちの少なくとも一人がよ

ごれている。」そして彼は問う：「自分がよごれているかどうか、誰か知っているか？」

子供たちは、正直に答え、これが繰り返される。問いと回答が繰り返されると、何

が起こるだろうか？

ここで、このパズルを記述するためにいくつかの規定を加えることにする。三人の子

供を、a、b、c と名付けよう。問いと回答が繰り返されるそれぞれの状態を 0 から始ま
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る自然数 n で表そう。また、この三人から成る集合を G と呼ぶ（G = {a, b, c}）。さら

に、状態 n での三人の信念基盤をそれぞれ、a(n)、b(n)、c(n) で表す。そして、G(n) = 
Cn(a(n)) ⋂ Cn(b(n))⋂Cn(c(n)) と定義する。つまり G(n)  は、状態 n での三人の子供たちの

共通信念基盤を表していることになる。

子供は三人おり、子供の額はきれいか汚いかのどちらかであるので、次のような基礎

理論（Elementary Theory）ETmc = {(5a), (5b)} が成り立つ。

(5a) ∀i, j, k (i ≠ j > j ≠ k >k ≠ i ⊃∀m (m = i > m = j > m = k)).

(5b) ∀i ( 額 (i, きれい ) >

額 (i, 汚い )) > ¬∃i ( 額 (i, きれい ) > 額 (i, 汚い )).

a、b、c は「自分たちの額は、きれいか汚いかのどちらかである」ことを知っている。また、

三人は他の子供の額を見ることができる。そこで、次のことが成り立つ。

(5c) ETmc⊆a(0) & ETmc⊆b(0) & ETmc⊆c(0) & ETmc⊆G(0) & ETmc⊆@.

(5d) ∀I, j∈G ∀x (i ≠ j ⇒ (B@ 額 (j, x) ⇒ Bi(0) 額 (j, x))).

このパズルの状況では、知識が保存されるため、(5e) が成り立つ。そしてそこから、

(5f) ～ (5h) が帰結する。ただしここでは、任意の i(n) が無矛盾だと仮定している。

(5e) ∀i ∈G ∀n (i(n) ⊆i(n+1)).

(5f) ∀i ∈G ∀n (Bi(n) p ⇒ Bi(n+1) p).

(5g) ∀n (BG(n) p ⇒ BG(n+1) p).

(5h) ∀i ∈G ∀n (BG(n) p ⇒ Bi(n)  p).

このパズルではまず、「お前たちのうちの少なくとも一人がよごれている」と父親が言

うことにより、全員の信念が更新される：

(5i) すべてのGの構成員 iについて、i(1) = i(0)⋃{∃i額 (i, 汚い )}. よって、G(0) ⋃ {∃i額 (i, 
汚い )} ⊆G(1).

このパズルでは、一人の額が汚い場合、二人の額が汚い場合、三人の額が汚い場合と

いう三種類の可能性がある。ここでそれぞれの場合について、三人とも無矛盾な信念を

持っているという前提のもとに、推論を記述してみよう。まず、一人だけの額が汚い場

合の推論は、次のようになる。

〔1〕　B@ ∃=1i 額 (i, 汚い ).  　［一人だけの額が汚いから］
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〔2〕　∀i ∈G (d =i ⇔額 (i, 汚い )). 　 ［記述を簡略化するために、名前 d を導入］

〔3〕　B@∃
=2i 額 (i, きれい ). 　［〔1〕、(5a)、(5b)、(5c) より］

〔4〕　∀i∈G (i ≠ d ⇒ B@ 額 (i, きれい )). 　［〔1〕、〔2〕、〔3〕、(5a) より］

〔5〕　∀i∈G (i ≠ d ⇒ Bd(1) 額 (i, きれい )). 　 ［〔4〕、(3)、(5d)、(5f) より］

〔6〕　Bd(1) ∃
=2i (i ≠ d > 額 (i, きれい )). 　［〔3〕、〔4〕、〔5〕より］

〔7〕　Bd(1) ∃i 額 (i, 汚い ). 　［(1a)、(5i) より］

〔8〕　Bd(1) 額 (d, 汚い ). 　［〔6〕、〔7〕、(1a)、(5a)、(5c)、(5e) より］

〔9〕　B@ ∃=1i 額 (i, 汚い ) ⇒∃i∈G Bi(1) 額 (i, 汚い ). 　［〔1〕、〔8〕より］

このように、一人だけの額が汚い場合には、その額の汚い一人の子供だけが「自分は知っ

ている。自分の額は汚い」と答えるはずである。

二人の額が汚い場合には、「自分がよごれているかどうか、誰か知っているか？」とい

う最初の問いかけに対しては誰も答えられず、誰も「知らない」と答える。

〔1〕　B@∃
=2i 額 (i, 汚い ).  　［二人の額が汚いから］

〔2〕　B@∃
=1i 額 (i, きれい ). 　［〔1〕、(5a)、(5b) 、(5i) より］

〔3〕　BG(2)∃
≥ 2i 額 (i, 汚い ). 　［最初の問いかけに誰も答えられなかったので、二少女の

　　　  色合わせパズルと同様にして示すことができる］

〔4〕　額 (d1, 汚い ) > 額 (d2, 汚い ) >d1 ≠ d2.　［〔1〕と〔2〕に基づき名前の導入］

〔5〕　Bd1(2)∃i (i ≠ d1 > 額 (i, きれい )). 　［〔2〕、〔4〕、(3) より］

〔6〕　Bd1(2)∃
≥ 2i 額 (i, 汚い ).　　［〔3〕、(5h) より］

〔7〕　B d1(2) 額 (d1, 汚い ). 　［〔5〕、〔6〕、(5a) より］

〔8〕　B@∃
=2i 額 (i, 汚い ) ⇒∃i∈G Bi(2) 額 (i, 汚い ). 　［〔1〕、〔7〕より］

このように二人の額が汚い場合には、最初の問いかけに三人とも答えられなかった後

に、二回目の問いかけには額が汚い子供は「自分は知っている。自分の額は汚い」と答

えるはずである。そして、額が汚い子供は二人いるので、このように答える子供は二人

いるはずである。

三人の額が汚い場合には、「自分がよごれているかどうか、誰か知っているか？」とい

う二回の問いかけに対して誰も答えられず、誰もが「知らない」と二回答えることになる。

〔1〕　B@∃
=3i 額 (i, 汚い ).　［三人の額が汚いから］

〔2〕　BG(2)∃
=3i 額 (i, 汚い ). 　［二回の問いかけに誰も答えられなかったので、二少女の

　　　  色合わせパズルと同様にして示すことができる］

〔3〕　∀i∈G Bi(3) 額 (i, 汚い ). 　［〔2〕、(2g) より］
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このように三人の額が汚い場合には、二回の問いかけに三人とも答えられなかった後

に、三回目の問いかけには三人の子供全員が「自分の額は汚い」と答えるはずである。

５.規範体系論理学と動的規範論理学

この節では、明示的認識論理学を基盤にして規範体系論理学と動的規範論理学を定義

することにする。

(6a) T と OB は FOL の文の集合とする。また、T を「信念基盤」、OB を「義務基盤」と呼ぶ。

　　　さらに、NS =〈T, OB〉を規範体系（normative system, NS）と呼ぶ。 
(6b) BNS p ⇔def BT p, 
(6c) MNS p ⇔def MT p.

(6d) ONS p ⇔def [BT ⋃OB p & not BT p].

(6e) FNS p ⇔def ONS ¬p.

(6f) PNS p ⇔def [MT ⋃OB p & not BT p].

(6g) 規範体系 NS が無矛盾なのは、T⋃OB が無矛盾なとき、かつ、そのときに限る。

ONS p、FNS p、PNS p をそれぞれ、「NS で p は義務である」、「NS で p は禁止されている」、

「NS で p は許されている」と読むことにする。

ここで、規範体系論理学の諸定理のうち代表的なものを記しておく。

命題２　NS =〈T, OB〉は無矛盾な規範体系とする。このとき、次の諸定理が成り立つ。 
(7a1) ONS p ⇒ PNS p.

(7a2) FNS p ⇒ not PNS p.

(7a3) PNS p ⇒ not FNS p.

(7a4) ONS p ⇒ not BNS p. 

(7a5) BNS p ⇒ (MNS p & not ONS p & not FNS p & not PNS p).

(7b1) (ONS (p ⊃ q) & BNS p) ⇒ ONS q.

(7b2) (ONS (p ⊃ q) & ONS p) ⇒ ONS q. 

(7b3) (ONS (p >q) & not BNS p) ⇒ ONS p.

(7b4) (ONS (p >q) & BNS p) ⇒ ONS q.

(7b5) (ONS (p

> q) & BNS ¬p) ⇒ ONS q.

(7b6) (ONS (p

> q) & FNS p) ⇒ ONS q.

(7b7) (ONS p & BNS ¬(p >q)) ⇒ not PNS q. 

(7c1)  ONS (p ⊃ ¬ q) ⇔ FNS (p >q). 

(7c2) (ONS (p ⊃ ¬ q) & BNS p) ⇒ FNS q.
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(7c3) (FNS (p >q) & BNS p) ⇒ FNS q.

(7c4) (FNS (p >q) & ONS p) ⇒ FNS q. 

(7d1) (PNS (p ⊃ q) & BNS p) ⇒ PNS q.

(7d2) (PNS (p ⊃ q) & PNS p) ⇒ PNS q.

(7d3) (PNS (p

> q) & BNS¬p) ⇒ PNS q.

(7d4) (PNS (p

> q) & FNS p) ⇒ PNS q.

(7d5) (PNS p & not BNS (p

> q)) ⇒ PNS (p

> q).

(7e1) (ONS ∀x1 … ∀xn (P(x1, …, xn) ⊃ Q(x1, …, xn)) & BNS P(a1, …, an) & not BNS Q(a1, …, an))

　　   ⇒ ONS Q(a1, …, an).

(7e2) ONS ∀x1 … ∀xn (P(x1, …, xn) ⊃¬Q(x1, …, xn)) ⇔ FNS∃x1 … ∃xn (P(x1, …, xn) >Q(x1, …, xn)). 

(7e3) (FNS∃x1 …∃xn (P(x1, …, xn) >Q(x1, …, xn)) & BNS P(a1, …, an) & not BNS¬Q(a1, …, an))

　　   ⇒ FNS Q(a1, …, an).

(7e4) (PNS ∀x1 … ∀xn (P(x1, …, xn) ⊃ Q(x1, …, xn)) & BNS P(a1, …, an) & not BNS ¬Q(a1, …, an))

　　   ⇒ PNS Q(a1, …, an).
証明　(7a1) ～ (7a5) は定義 (6b) ～ (6f) から直ちに帰結する。(7b1) を証明するために、

　ONS (p ⊃ q) と BNS p を仮定する。すると (6b) と (6d) から、BT⋃OB (p ⊃ q) & not BT (p ⊃ q) 

　& BT p が成り立つことがわかる。よって、BT⋃OB qが成り立つ。ここで、BT qと仮定すると、

　BT (p ⊃ q) が帰結するが、これは not BT (p ⊃ q) と矛盾する。よって、not BT q が成り立

　つ。すると、(6d) から ONS q が帰結する。よって、(7b1) が成り立つ。他の命題も同様

　の仕方で証明できる。　Q.E.D.

拙著『規範とゲーム』（2011）においては、(7e1) ～ (7e4) の表現において前件に not 
BNS Q(a1, …, an) や not BNS ¬Q(a1, …, an) の条件が欠けている。ここには、前著の誤りを訂

正した定理が記されている。

動的規範論理学では、k を自然数とするとき、規範体系 NS の代わりに規範的状態

（Normative State）NS(k) を用いる。規範的状態は、信念状態 T(k) と義務状態 OB(k) から

構成され、NS(k) = 〈T(k), OB(k)〉が成り立つ。ちなみに NS(k) は、k 時点での規範的状態

を表わしている。動的規範論理学は、規範的状態の更新（update）を許すような論理体

系である。信念状態も義務状態もともに更新できるが、本稿ではおもに信念状態の更新

について考察する。

６.動的規範論理学のゲームへの適用

『規範とゲーム』では、一人ゲームは次のように、状態と行為空間と行為選択を規定す

ることによって特徴づけられている（p. 100）。
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(8a)［初期状態］初期状態は、ゲームの出発点における状態のことである。

(8b)［行為空間算出関数］行為空間算出関数は、与えられた状態でプレイヤーの行為 
　　　  空間（プレイヤーに許されている行為タイプの集合）を算出する関数である。

(8c) ［行為選択］与えられた状態によって対応する行為空間からひとつの行為タイプを

　　　  選択し、これを実行することにより、行為選択は実行される。

(8d)［状態算出関数］状態算出関数は、先行状態とプレイヤーの先行行為から規定さ

　　　  れる状態を算出する関数である。

(8e)［終了条件］ ゲームが終了する条件を規定する。

この節で示したいのは、典型的なゲームの場合には、このゲーム体系の規定が動的規

範論理学の枠組みの中で描けるということである。ここでは、三方陣形成の例を用いて

このことを示そう。三方陣というのは、魔方陣（magic square）のひとつであり、正方

形の 3 × 3 のマスに数字を配置し、縦・横・斜めのいずれの列についても、その列の数

字の合計が同じになるもののことである。

本稿では、三方陣形成の一人ゲームを記述するのに、次のようなタイプの命題や関数

が用いることにする。ただし、k はゲームの進行段階を表わす自然数（これを「ゲーム内

時点」と呼ぶ）とする。

行為命題：　書く ( 数 , 位置 , k).
状態命題：　占領 (k)、未占領 (k)、未使用 (k)、終了 (k)、勝利 (k).

ここで、規範的状態 NSms(k) =〈Tms(k), OBms〉& Tms(k) =ETms⋃STATE(k) を考える。た

だし、ETms は三方陣の基礎理論（elementary theory）を、OBms は三方陣の義務基盤を、

STATE(k) は k 時点での状態を表わすとする。

 [ 三方陣の基礎理論 ]　 ETms = {(ET1), (ET2), (ET3)}。なお、集合論の（有限集合に

　限定された）基本的体系は前提されているとする。

(I)［状態遷移に関する規定］　プレイヤーが一桁の数字 x をマス y に置くと、この行為

　の結果として、マス y がこの数字で占領され、状態が更新される。

(ET1) ∀ x ∀ y ∀ n ( 書く (x, y, n) ⊃ ( 未占領 (n) = 未占領 (n － 1) － {y} > 占領 (n) = 占領

　　　(n － 1) ⋃ {〈x, y〉} > 未使用 (n) = 未使用 (n － 1) － {x})).

(II)［終了条件に関する規定］　ゲームは、九マスすべてが数字で占領されたときに終

　了する。このとき、縦列および横列および斜め列の数を足し合わせた合計がすべて同

　一になったときにプレイヤーの勝利となる。

(ET2) ∀n ( 終了 (n)≡未占領 (n) =○／).

(ET3) ∀n ( 勝利 (n)≡ ( 終了 (n) > ∀xa ∀xb ∀xc ∀xd ∀xe ∀xf ∀xg ∀xh ∀xi ( 占領 (n) =
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　　　〈xa, a〉,〈xb, b〉,〈xc, c〉,〈xd, d〉,〈xe, e〉,〈xf, f〉,〈xg, g〉,〈xh, h〉,〈xi, i〉} ⊃∃s (xa+xb+xc = s >xd+xe+xf

 　　　= s >xg+xh+xi = s >xa+xd+xg = s >xb+xe+xh = s >xc+xf+xi = s >xa+xe+xi = s >xc+xe+xg = s)))).
[ 三方陣の義務基盤 ]　 OBms = {(OB1), (OB2), (OB3), (OB4)}。
(OB1) ∀n (¬終了 (n－1)⊃∃

=1x∃=1y (書く (x, y, n) >x∈未使用 (n－1) >y∈未占領 (n－1)).
　　　（ゲームが未終了なら、プレイヤーは未使用の数字ひとつをまだ数字が書き込ま

　　　　れていないひとつのマスの中に書かなければならない。）

(OB2) ∀n ¬∃>1x ∃y 書く (x, y, n). 
　　　（一度に複数の数をマスに書き込んではならない。）

(OB3) ∀n ¬∃x ∃y ( 書く (x, y, n) >¬ x∈未使用 (n － 1)). 
　　　（一度使用された数字を書き込んではならない。）

(OB4) ∀n ¬∃x ∃y ( 書く (x, y, n) >¬ y ∈未占領 (n － 1)).
　　　（数字がすでに書き込まれたマスに新たに数字を書き込んではならない。）

このとき、BNSms(n) p ⇒ BTms(n) p が証明できる。また、「ゲームが未終了なら、未占領領域

に未使用の数を書き入れることが許されている（PNSms(n) (¬ 終了 (n) ⊃∀x ∀y (x ∈未使用

(n) >y∈未占領 (n) ⊃書く (x, y, n+1)))）」ということが、有限モデルの提示によって証明

できる。それでは、三方陣のゲームの進行例を動的規範倫理学の枠組みを用いて記述し

てみよう。

（表１）　初期状態

   STATE(0) = { 未使用 (0) = {1,2,3,4,5,6,7,8,9}, 未占領 (0) = {a, b, 
   c, d, e, f, g, h, i}, 占領 (0) =○／}.
   Tms(0) = ETms⋃STATE(0).

（表２）　行為選択「書く (5, e, 1)」後の状態

   STATE(1) = STATE(0) ⋃{ 書く (5, e, 1)} & Tms(1) = ETms⋃ STATE(1).

   BTms(1) (未使用 (1) = {1,2,3,4,6,7,8,9} > 未占領 (1) = {a, b, c, d, f, g, 
   h, i} > 占領 (1) = {〈5, e〉} >¬ 終了 (1)).  

第２、３、４、５、６、７段階については、状態描写を省略し、どのような手がそれ

ぞれ実行され、どのような状態更新がなされたのかだけを記述することにする。

STATE(2) = STATE(1) ⋃{ 書く (8, a, 2)} & Tms(2) = ETms⋃  STATE(2).

a b c 

d e f 

g h i 

a b c 

d 5 f 

g h i 
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STATE(3) = STATE(2) ⋃{ 書く (2, i, 3)} & Tms(3) = Ems⋃  STATE(3).
STATE(4) = STATE(3) ⋃{ 書く (6, c, 4)} & Tms(4) = ETms⋃  STATE(4).
STATE(5) = STATE(4) ⋃{ 書く (4, g, 5)} & Tms(5) = ETms⋃  STATE(5).
STATE(6) = STATE(5) ⋃{ 書く (3, d, 6)} & Tms(6) = ETms⋃  STATE(6).
STATE(7) = STATE(6) ⋃{ 書く (1, f, 7)} & Tms(7) = ETms⋃  STATE(7).

（表３）　行為選択「書く (7, f, 8)」後の状態

   STATE(8) = STATE(7) ⋃{ 書く (7, f, 8)} & Tms(8) = ETms⋃  STATE(8).
   BTms(8) ( 未使用 (8) = {9} > 未占領 (8) = {h} > 占領 (8) = {〈5, e〉,
   〈8, a〉,〈2, i〉,〈6, c〉,〈4, g〉,〈1, b〉,〈3, d〉,〈7, f〉} >¬ 終了 (8)).

  

（表４）　行為選択「書く (9, h, 9)」後の状態

   STATE(9) = STATE(8) ⋃{ 書く (9, h, 9)} & Tms(9) = ETms⋃  STATE(9).
   BTms(9) ( 未使用 (9)=○／ > 未占領 (9) =○／ > 占領 (9) = {〈5, e〉,〈8, a〉,
   〈2, i〉,〈6, c〉,〈4, g〉,〈1, b〉,〈3, d〉,〈7, f〉, 〈9, h〉} > 終了 (9) > 勝利 (9)).

  
  

このように、「書く（数 , 位置 , k）」というタイプの行為の遂行によってゲームの状態

は進行していき、最終的に終了状態に達することになる。またより複雑な典型的ゲーム

に関しても、同様な方法で動的規範論理学による記述が可能である 1)。

７.カードのパズル

カードのパズルというものがある（van Benthem 2011: 8）。本稿では、このパズルを

一種のゲームとして記述することにする。

　 H、S、N の三人にそれぞれ、赤、白、青のカードが一枚ずつ分けられているとする。

各プレイヤーは自分のカードを見ることはできるが、他の人のカードを見ること

はできない。実際の分配は、H が赤を持ち、M が白を持ち、S は青を持つという

ものだったとする。ここで、会話が開始される。

　 M は H に問う：「青のカードを持っていますか？」

　 H は正直に「いいえ」と答える。

8 1 6 

3 5 7

4 h 2

8 1 6 

3 5 7

4 9 2
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動的規範論理学を用いてこの会話の進行を描くために、規範体系 NSX(k) の構成要素と

なる集団 G のための基礎理論と義務基盤を規定する。

[I]  G = {H, M, S} とする。そして、変項 X は G か H か M か S であるとする。

 NSX(k) =〈X(k), OBG〉& X(k) = ETG⋃ STATEX(k).

[II] 集団 G のための基礎理論 ETG = {(9a), (9b)}.

(9a)∀i∃=1x (持つ (i, x) > (x = 赤

> x = 白

> x = 青 )) >¬∃i∃j∃x (i≠ j > 持つ (i, x) > 持つ (j, x)).
(9b) ∀n ( ∀i ∀x ( 答える (i, x,「はい」, n ) ⊃持つ (i, x)) >∀i∀x ( 答える (i, x,「いいえ」, n)

　　⊃ ¬持つ (i, x))).

[III] 集団 G のための義務基盤： OBG = {(9c)}

(9c) ∀n∀i∀j∀x ( 問う (i, j, x, n) ⊃ (( 持つ (j, x) ⊃答える (j, x,「はい」, n+1)) > (¬ 持つ (j, x)

　　⊃答える (j, x,「いいえ」, n+1)))).

[IV] 初期状態： 
(9d) STATEG(0) =○／& STATEH(0) = { 持つ (H, 赤 )} & STATEM(0) = { 持つ (M, 白 )} & 
　　STATES(0) = { 持つ (S, 青 )}.

M は自分が白のカードを持っていることを知っている。そこで M は、他の人のカード

の色を知るためには、他の誰かに、「赤を持っているか」、あるいは、「青を持っているか」

ということを聞けばよい。そこで M は、「青のカードを持っているか？」と H に聞いた

のである。H は「いいえ」と答えたので、H は青ではなく赤のカードを持っていること

になる。そこで残る S は、青のカードを持っていることがわかる。この推論を形式的に

描くと次のようになる。

〔1〕 PM(0) 問う (M, H, 青 , 1).　［有限モデルの構成より］

〔2〕 B@(1) 問う (M, H, 青 , 1). 　 ［M が H に「青か」と問う］

〔3〕 STATEG(1) = STATEG(0)⋃{ 問う (M, H, 青 , 1)}.　 ［〔2〕、(3) より］

〔4〕 BH(1) ¬ 持つ (H, 青 ). 　［(5f)、(9a)、(9d) より］

〔5〕 OH(1) 答える (H, 青 ,「いいえ」, 2). 　［〔3〕〔4〕、(9c) より］

〔6〕 B@(2) 答える (H, 青 ,「いいえ」, 2).  ［H が M に「いいえ」と答える］

〔7〕 STATEG(2) = STATEG(1)⋃{ 答える (H, 青 ,「いいえ」, 2)}.　 ［〔6〕、(3) より］

〔8〕 BG(2) ¬ 持つ (H, 青 ). 　［〔7〕、(9b) より］

〔9〕 BM(2) ¬ 持つ (H, 青 ). 　［〔8〕、(2g) より］

〔10〕 BM(2) 持つ (M, 白 ). 　［(5f) 、(9d) より］

〔11〕 BM(2) ( 持つ (H, 青 ) >

持つ (H, 赤 )).  　［〔10〕、(9a) より］

〔12〕 BM(2) 持つ (H, 赤 ). 　［〔9〕、〔11〕より］

〔13〕 BM(2) 持つ (S, 青 ).  　［〔10〕、〔12〕、(9a) より］
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このように、カードのパズルはコミュニケーションを用いた一種のゲームとして解釈

できることがわかる。そして、動的規範論理学は、このパズルの記述に適用できること

が明らかになった。

８.まとめ

本稿では、明示的認識論理学、規範体系論理学、動的規範論理学の体系を紹介し、そ

れを用いてどのようにパズルを解くのか、どのように典型的ゲームを表現するのかを示

した。これらの論理体系は、命題論理学ではなく一階述語論理学を用いること、および、

信念状態や規範状態を明示的に表現できることにその特徴がある。また、ヴィトゲンシュ

タインの原初的言語ゲームを、動的規範論理学を用いて記述できることが Nakayama 
(2013a, forthcoming) で示唆されている。

注

1） 二人ゲームに関しては、誰が手番にあるかを示す状態述語が必要になる。そして、手

番にない者にはゲームに関する行為が許されておらず、手番にある者は次の一手を自

らの行為空間から選択しなければならない。
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Explicit Epistemic Logic and Dynamic Normative Logic 

Yasuo NAKAYAMAAKAYAMA

　In this paper, I report and summarize my recent researches on dynamic change of epistemic and 
normative states. I systematically redefi ne Explicit Epistemic Logic (EEL), Logic for Normative 
Systems (LNS), and Dynamic Normative Logic (DNL). There are several logical frameworks 
for change of epistemic and normative states. Approaches in this paper, have two characteristic 
features. 
　1. These frameworks explicitly express information of epistemic and normative states. 
　2. These frameworks deal with fi rst-order logic.
The paper can be divided into four parts. 
　In the fi rst part, EEL is defi ned and its fundamental propositions are introduced and explained. 
EEL is a framework that represents a belief state based on a belief base T. In EEL, "p is believed 
under the belief base T" is represented as BT p. In the second part, EEL is applied to two problems, 
namely to puzzle of two girls in Yasugi and Oda (2001) and puzzle of Muddy Children in van 
Benthem (2011). To solve these puzzles, I accept a perception principle and a principle for 
ascription of beliefs. For Muddy Children, additionally, the belief update has to be taken into 
consideration.
　In the third part of this paper, LNS and DNL are defi ned. A normative system NS is defi ned as a 
pair composed of a belief base T and an obligation base OB (NS = 〈T, OB〉 ). Now, we can express 
not only that p is believed in NS but also that p is obligated (or forbidden or permitted) in NS. 
They are represented as BNS p, ONS p, FNS p, and PNS p. DNL is an extension of LNS equipped with 
devices for update of the belief base and the obligation base (NS(k) = 〈T(k), OB(k)〉 ).
　Finally, in the fourth part, DNL is applied to a description of typical games, namely to a play for 
construction of a magic square and puzzle of cards in van Benthem (2011). Furthermore, DNL can 
be used to describe primitive language games.


