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1. Introduction

The object of this paper is to prove the following result.

Theorem. Let Q) be the set of symbols 1,2, ---,n. Let ® be a doublytransi-
tive permutation group on S of order 2p(n—1)n not containing a regular normal
subgroup, where p is an odd prime number, and let & be the stabilizer of symbols 1
and 2. Then we have the following results :

(I) If &is dihedral, then § is isomorphic to either S; or PSL(2, 11) with
n=11.

(II) If & is cyclic, then & is isomorphic to one of the groups PGL(2, %),
PSL(2, ) and the groups of Ree type.

Here we mean by the groups of Ree type the groups which satisfy the
condition of H. Ward ([7], [23]).

Notation:

{---}: the set -

{+++>: the subgroup generated by ---

Nyg(%), Cy(X): the normalizer and the centralizer of a subset % in a group
9, respectively

Z(9) : center of Y

9| : the order of Y

J(1) : the set of symbols of Q fixed by a subset Il of &

a(ll) : the number of symbols in F(1).

2. Proof of Theorem (I)

1. On the order of @. Let © be the stabilizer of the symbol 1. Let
7 be an involution in & and let &, be a normal subgroup of & of order p
generated by an element K. Let I be an involution with the cyclic structure

1) This work was supported by The Sakkokai Foundation.



276 H. KiMura

(1, 2)---. Then I is contained in Ng(&) and hence it may be assumed that 7
and I are commutative. We have the following decomposition of &:

G =9+9I9.

The number of elements of & which are transformed into its inverse by I is
equal to p+1. Let g(2) and A(2) denote the numbers of involutions in & and
9, respectively. Then the following equality is obtained:

2.1) £2) = r2)+(p+1)(n—1).

(See [12] or [13].)

' Let 7 fix 7 (=2) symbols of Q, say 1, 2, ---,7. By a theorem of Witt ([24,
Th. 9. 4]), Cg(7)/<™)> can be considered as a doubly transitive permutation
group on (7). Since every permutation of Cg(7)/<{T)> distinct from (7> leaves
at most one symbol of J(7) fixed, Cg(7)/<T> is a complete Frobenius group
on J(7). Therefore ¢ is a power of a prime number, say ¢” and |Cg(t)ND|
=2(i—1).

At first, let us assume that # is odd. Let A*(2) be the number of in-
volutions in & leaving only the symbol 1 fixed. Then from (2.1) the following
equality is obtained:

(2.2) BA2)ntpu(n—1)[i(i—1) = p(n—1)/(i—1)+h*2)+(p+1)(n—1).

It follow from (2.2) that p+1>A*(2) and n=i(Bi—B-+p)/p, where
B=p-+1—h¥(2).

Next let us assume that #z is even. Let g*(2) be the number of involutions
in ® leaving no symbol of Q fixed. Then the following equality is obtained:

(2.3) g*@)+pu(n—1)[i(i—1) = p(n—1)/(—1)+-(p+1)(n—1) .
Since ® is doubly transitive on Q, g*(2) is a multiple of n—1. It follow from

(2.3) that p+1>g*2)/(n—1) and n=i (Bi—B~+p)/p, where B=p+1
—g*(2)/(n—1)

RemaRrk 1. Let 8’ be the number of involutions with the cyclic structures
(1, 2)--- each of which is conjugate to 7. It is trivial that the number of in-
volutions which are conjugate to 7 and not contained in 9 is equal to 8’ (n—1).
Thus we have the following equality:

p(n—1)n[ii—1) = p(n—1)/(—1)+B'(n—1).
From (2, 2) and (2, 3) it is travial that 3'=g.
2. The case n is odd. Since 7 is odd, so is <.

Lemma 2.1. B=p-p=q or p is a factor of i—1.
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Proof. If B=p, then A*(2)=1. By [6, Cor. 1] ® contains a regular
normal subgroup (see [13, p. 235]). Since # is integer, the second part is trivial.

Lemma 2.2. Assume h*(2)=+0. If a(l)=1, then <K, I> is dihedral and
if a(l)=i, then <K, I)> is abelian. Moreover h*(2)=p and G has just two
conjugate classes of involutions.

Proof. Let J be an involution (3=1) with the cyclic structure (1, 2)---.
Then I is contained in & and J=IK’, where K’ is an element of & Thus the
number of involutions with the cyclic structures (1, 2)--+ is equal to p+1. At
first assume that <I, K> is dihedral. Then I, IK, ..., IK?"* are conjugate.
Therefore if a(I)=i, then B=p by Remark 1, which contradicts Lemma 2.1.
Thus «a(l)=1 and A*(2)=p. Next assume that <{I, K> is abelian. Then
It, I7K, -+, ITK?™" are conjugate. If a(I)=1, then a(l7)=: and B=p by
Remark 1. Hence a(/)=i and B=1.

2.1. The case A*(2)=0. Let & be a Sylow 2-subgroup of Cg(7)
containing I. Then & is also a Sylow 2-subgroup of &. Since Cg(7)/<{7> is a
complete Frobenius group, &/<{7> has just one involution. If & has an
element of order 4, then, since all involutions are conjugate, there exists an
element S of & such that S?=7. On the other hand S{7> is an involution
of Cg(7)/<{T> and hence {S) and <{I, 7> are conjugate. This is impossible.
Therefore ©=<J, 7>. By [8] ® is isomorphic to a subgroup of PT'L(2, r) con-
taining PSL(2, ), where =4 or  is odd. By [15] the subgroups of PT'L(2, r)
containing PSL(2, r) each of which has a doubly transitive permutation repre-
sentation of odd degree and a Sylow 2-subgroup of order 4 are PSL(2, 5)
and PSL(2, 11). Since |&|=2p, @ is isomorphic to PSL(2, 11).

2.2. The case h*(2)=p and p=q. Let P be a Sylow p-subgroup of
Cg(7). P is also a Sylow p-subgroup of & and elementary abelian. Assume
m>1. Put |[Cg(P)|=2p"x. If x=1, then Ng(PB)=Cy(T) since {7 is normal
in Ng(P). By Sylow’s theorem [@: Ng/(B)]=1 (mod p). This is a con-
tradiction. Thus x>1. Let s be a prime factor (%p) of |Cg(P)| and let &
be a Sylow s-subgroup of Cg(P). If s is a factor of |D], then & is conjugate to
a subgroup of  and a(&)=1. Since a(P)=0, a(S)=2. Therefore |S|=2
since |&|=2p. Thus x must be a factor of » and hence p”—1-+p. Let
% be a normal Hall subgroup of Cg() of order x. It can be seen that every
element (1) of Cg(7) is not commutative with any permutation (+1) of % (see
[12, p. 413]). This implies that x—1=2(p™—1), which is a contradiction.
Thus m=1, n=2p—1 and n—1=2(p—1).

Put i’=a(K), By a theorem of Witt ([24, Th. 9.4]) | Ng(R,)|=2pi"(z'—1)
and | Ng(®,)|=2p(i'—1). Since n=2p—1, K has just one p-cycle in its cycle
decomposition. Thus #'=p—1. Since i'—1=p—2 is a factor of n—1
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=2(p—1), p=3. Therefore n=5 and i’=2. Thus & is isomorphic to S,

2.3. The case h*(2)=p and p+=q. Assume a(f)=1. Then {, K is
dihedral. Put 7’=«a(8R,). At first we shall prove that i'=2=qa(K). Let j be
a symbol of F(RK,). If J(7) does not contain j, then 7 and K7 are involutions
with the cyclic structures (j, j)--. Since 8=1, by Remark 1. 7=Kr, which
is a contradiction. Thus J(&,)=J(R). Assume i’ is odd. Then JF()NIF(R,)
has just one symbol k of Q. I, IK, -+, IK?7? and IK?™' leave only the symbol
k fixed and an involution of Cg(I) which is conjugate to I under & is equal to
I since h*(2)=p. Thus by [6] & contains a regular normal subgroup. There-
fore i/ is even and since Ng(®)=Ng(®,) and Ng®)/R is a complete
Frobenius group, i’ is a power of two, say 2. Let R be a normal subgroup
of Ng(R) containg & such that R/ is a regular normal subgroup of Ng(R)/R.
R/R is an elementary abelian group of order 2™’. Let R be an element of R
of order 4. Then R? is contained in & and is conjugate to 7. Butas in §2.2.1
it may be prove that Cg() dose not contain an element of order 4. Let & be a
Sylow 2-subgroup of R containg 7. Then & is elementary abelian. Thus
Cg(T) contains &. Since a Sylow 2-subgroup of Cg(7)/{7> is cyclic or
(generalized) quaternion, &/{7> is of order 2 and hence m’'=1. Since
Cg(IT) contains &, and a(I7)=i, Cg(T) contains a subgroup which is conjugate
to 8,. Let P be a subgroup of Cg(7) which is conjugate to ®,. Since i—1 is
divisible by p, we may assume that 3 is contained in a subgroup of Cg(7) which
is conjugate to DN Cg(7) under Cg(7). Thus J(7)N J(P) contains a symbol
of Q. On the other hand, since '=2 J(I7)NJ(R,) contains no symbol of
Q, which is a contradiction.

Thus there exists no group satisfying the conditions of Theorem in this case.

3. The case nis even. Since # is even, so is 7, say 27,

Lemma 2.3. If g*(2)%0, then g*(2)=n—1 or p(n—1) and & has just
two classes of involutions.

Proof. We may assume a(f)=0. If J is a involution with the cyclic
structure (1, 2)---, then IJ is contained in &. If <K, I> is dihedral, then
I, IK, .-, IK?™* are conjugate and hence B=1. If <K, I> is abelian, then
I, I7K, .-, ITK?™" are conjugate and hence B=p. Thus the proof is
completed.

Let & be a Sylow 2-subgroup of Cg(7). Then S/{7> is a regular normal
subgroup of Cg(7)/{7)> and elementary abelian. Since Cg(7)/<{T> is complete
Frobnius group on J(7), every element (=7) of &/{7) is conjugate to I<{T> under
HN Cg(7)/[{t>. Therefore every element (1, 7) of & is conjugate to I or It
under 9N Cg(7). Thus & is elementary abelian.

3.1 'The case g%(2)=0. Since g*(2)=0 and & is a Sylow 2-subgroup of
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&, all involutions of & are conjugate under Ng(&). Thus | Ng&|=(2""—1)
|Cg(7)]. Since n=2"{(p+1)(2"—1)+p}/p and n—1=2"—1){(p+1)2"+-p}/p
and 2”—1 is divisible by p, 2”"'—1 is a factor of {(p+1)2"—1)+p}{(p+1)
27+ p}.  The following equality is obtained:

(p—1)Bp+1) = (27" —1).
Set 2”—1=rp. This implies that;

= —1(mod. p); x =yp—1 and y>0;
3p—2 =2ryp—2r+y; 2ry—3)p = 2r—y—2.

If y>1, then 2ry—3>2r—y—2. If y=1, p=1.

This is a contradiction.
Thus there exists no group satisfying the conditions of Theorem, (I) in this
case.

3.2. The case g*(2)=p(n—1). Assume «a(l)=0. From the proof of
Lemma 2.3 <K, I> is dihedral. Since a(/)=0 and JF(K)'=J(K), a(K) is
even. Since B=1, as in 2.3 J(®,)=J(K). Since J(7) contains JF(K) and
a(l)=0, IJ(IT)NJ(K) is empty. Since &, is contained in Cg(I7) and I7 is con-
jugate to 7, &, acts on J(I7) and i=a(I7)=0 (mod p), which is a contradiction.

Thus there exists no group satisfying the conditions of Theorem, (I) in
this case.

3.3. The case such that g*(2)=n—1 and i—1 is not divisible by p. Let
B be a normal 2—complement in N Cg(7). Then every Sylow subgroup of B
is cyclic since Cg(7)/<7> is a Frobenius group. As in [12, Case C] ® has a
normal subgroup 2, which is a complement of B. Let ' be a normal sub-
group of H of order p(*—1). Then B=AN Y’ is a normal subgroup of H
and 7 induces a fixed point free automorphism of B. Therefore B is abelian.
Since A is a product of B and a Sylow 2-subgroup of 9, A is solvable ([18]).
Thus @ is solvable and hence it contains a regular normal subgroup.

Thus there exists no group satisfying the conditions of Theorem, (I) in
this case.

3.4. The case such that g*(2)=n—1 and i—1 is divisible by p. It is
trivial that & contains all involutions in Cg(7). Assume «(l)=0. By the
proof of Lemma 2.3 <K, I is abelian.

Lemma 2.4. Let G be an element of &. If @°N& contains an involution
which is conjugate to T, then G is contained in Ng(©).

Proof. Let 7’ be an involution of &°N & which is conjugate to 7. Then
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Cg(7') contains & and &C. Since & is a normal Sylow 2-subgroup of Cg(7),
S=6e°.

Lemma 2.5. Let7 and { be different involutions. If a(n)=a(t)=0, then
a(n)=0.

Proof. See [14, Lemma 4.7]

Corollary 2.6. A set &, consisting of all involutions of © each of which is
not conjugate to T and the identity element is a characteristic subgroup of © of
order 1.

Lemma 2.7. Let 7' be an involution of Ng(&). If 7' is conjugate to T,
then ' is contained in &.

Proof. Put 7'=7¢ Let J be an involution of &. Since 7 is even,
a(<r, J>)=0. Since every involution (#7) of & is conjugate to I or IT and
a(IT)=i, the number of involutions of & each of which is conjugate to T is
equal toz. Since n=7*, for a symbol j of Q there exists just one involution of &
which is conjugate to T and which leaves j fixed. Let & be a symbol of J(7")
and let { be an involution of & such than & is contained in J(¢). Then since
¢ is an element of & and & is contained in J(¢™'), ¢ =¢. Since &F is normal
in Cg(7"), it contains {. Thus &N&SC contains ¢ and hence =& by Lemma
2.4. Finally 7’ is an element of .

Lemma 2.8. Let 1 be an involution which is not contained in &. If
a(n)=0, then a(m7)=0 and the order of ™ is equal to 2" with r>1.

Proof. Itcanbe proved by the same way as in the proof of [14, Lemma 4.10]
that a(m7)=0. Assume that | 77| is not equal to a power of two. If |79|=pt,
then a((m7)")#*1, since a(™)=0 and n is not divisible by p. Thus {(m)">
is conjugate to K, and <{(7y),,n) is dihedral. This is a contradiction. If
| 77| =p’t for a prime number p’ (2, p), then a((z7)’)=1 and hence a(m7)=1.
Therefore || is equal to a power of two.

Lemma 2.9. Let 7 be an involution which is not conjugate to . Then 7
is contained in Ng(S).

Proof. See [14, Lemma 4.11].

Since 9 is solvable and i41 is relatively prime to 2p(i—1), there exists
a hall subgroup T of  of order 7+1. Since § has a normal subgroup of
index 2, by the Frattini argument it may be assume that 7 is contained in
Ng() and hence Wr=W " for every element W of 28.

Lemma 2.10. Let W be an element (1) of B. Then S," N S,=1.
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Proof. At first we shall prove that J()"NJ(r)={1}. Let a=b"
be a symbol (*1) of J(r)"NJ(r), where b is a symbol of J(r). Then 7%
leaves the symbol a fixed. Let & be the stabilizer of the set of symbols 1 and
a. Since 7 and 7% are contained in &, there exists an element K of & of order
p such that 7% =7W?=71K. Therefore Wis of order p. But | W] is not divisible
by p. This is a contradiction. Next let J be an involution of &, with the
cyclic structure (1, ¢)---. Then ¢ is contained in J(7) and J% has the cyclic struc-
ture (I, c%)---. Since ¢¥ is not contained in J(7), /¥ is not contained in
Cg(7). Thus we have that &' N &,=1.

By Lemma 2.10 there exist just i+1 subgroups &,, -+, &;,, such that
they are conjugate under B and &,NS,=1 for t+u. By Lemma 2.9 &S, is
the direct product &,x&,. Thus N=S,U---US,,, is a group by Lemma 2.5
and the equality g*(2)=:i>—1. Hence N is a regular normal subgroup of ®.

Thus there exists no group satisfying the conditions of Theorem, (I) in
this case.

This completes the proof of Theorem, (I).

3. Proof of Theorem (II)

1. On the order of &. Let  be the stabilizer of the symbol 1. & is
of order 2p and it is generated by a permutation K. Let us denote the unique
involution K? in & by 7. Let I be an involution with the cyclic structure
(1,2)---. Then Iis contained in Ng(&) and we have the following decomposition
of &:

® =95+ 9I9.

Let d be the number of elements of & each of which is transformed into its
inverse by I. Thus if (K, I) is abelian, then d is equal to two and if <K, I> is
dehedral, then d is equal to 2p. Let g(2) and A(2) denote the numbers of
involutions in & and 9, respectively. Then the following equality is obtained:

(3.1) ¢(2) = h@)+d(n—1).
(See [12] or [13].)

Let 7 keep 7 (> 2) symbols of Q, say 1, 2, ---, 7, unchanged. By a theorem
of Witt ([26, Th. 9.4]), Cg(7) is doubly transitive on J(7). Let &, be the
kernel of this permutation representation of Cg(7) on (7). Then &,={7) or K.
Put &,=Cg(7)/®,. Thus if & =D, then |®,|=pi(i—1) and if K,=§, then
[®, | =i(—1).

At first, let us assume that # is odd. Let #*(2) be the number of involu-
tions in O leaving only the symbol 1 fixed. Then from (3.1) the following
equality is obtained:
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(3.2) KQ)ntnn—1)ili—1) = (n—1)/(i—1)
+h*(2)+d(n—1).

It follows from (3.2) that d>h*(2) and n=i(Bi—B-1), where B=d—h*(2).
Next let us assume that 7 is even. Let g*(2) be the number of involutions
in @ leaving no symbol of Q fixed. Then the following equality is obtained:

(33) g*@+n(n—1)ili—1) = (n—1)(i—1)+d(n—1).

Since & is doubly transitive on Q, g*(2) is multiple on n—1. It follows from
(3.3) that d(n—1)>g*(2) and n=i(Bi—B+1), where B=d—g*(2)/(n—1).
We shall prove the following lemmas.

Lemma 3.1. Let ® be as in Theorem, (11). Assume <K, I> is dihedral.
Then B=p or 2p. If B=p, then & has just two conjugate classes of involutions.

Proof. Let J be an involution with the cyclic structure (1,2)---. Then
I] is contained in & and [ is an element of I®. Since <K, I> is dihedral, every
involution is conjugate to 7, I or It and the number of involutions with the
cyclic structure (1, 2)--- which are conjugate to [ is equal to p. If B=42p,
then it may be assumed that I is not conjugate to 7 and I7 is conjugate to T.

In this case Remark 1 in §2 is also true. Thus S=p and every involution of &
is conjugate to I or IT.

Next lemma is trivial since @ is doubly transitive ([24, Th. 11.5]).

Lemma 3.2. Let G be as in Theorem (I1). Then & has no solvable normal
subgroup.

Lemma 3.3. Let & be as in Theorem, (11). Assume <K, I> is dihedral.
If an element of & has a 2—cycle in its cyclic decomposition, then it is an involution.

Proof. By Lemma 2.1 B8=p or 2p. Let a,(G) denote the number of
2—cycles in the cyclic decomposition of G, is an element of &. Then, since
® is doubly transitive, the following relation is well known (Frobenius, [16,
Prop. 14.6]):

_1
(34) GE@%(G) =3 (] .

If n is odd and B8=p, then it may be assumed that a(I)=1 and every involution
is conjugate to 7 or I. Since the number of involutions with the cyclic struc-
tures (1, 2)--- which are conjugate to I is equal to p, the number of involutions
not contained in © which are conjugate to I is equal to p(n—1). Since h*(2)
=p, by Lemma 2.1 the number of involutions which is conjugate to I is equal

to pn. Thus |Cg(I)|=2(n—1). Since a,(t)=(n—1)/2=Li(i—1)/2 and a,(])
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=(n—1)/2, [S: Cg(m)] a(T)=[S: Cy(D)]a(I)=pBn(n—1)/2. If n is odd and
B=2p, then [: Co(r)] ats(r)=pn(n—1).

If n is even and B=p, then it may be assumed that a(I)=0. Since the
number of involutions with cyclic structures (1, 2)... which are conjugate to
I is equal to p, the number of involutions which are conjugate to I is equal to
p(n—1). Thus [Cyg(I)|=2n. Since a,(I)=n/2, [&: Cg(T)]a,(r)=[S: Cg(I)]
a,(I)=pn(n—1)/2. If n is even and B=2p, then [®: Cg(7)] a,(7)=pn(n—1).
This proves the lemma.

Lemma 3.4. Let ® be as in Theorem, (I1). Assume that S=2p. In this
case (K, I'> is dihedral, and a Sylow 2—subgroup of & is elementary abelian.

Proof. Every involution of ® is conjugate to 7. If S is an element of & of
order 4, then a(S)=0 or 1 and a(S?)=i. But a,(S)=0 by lemma 2.3 and
hence «(S?)=0 or 1. This is a contradiction. Thus every 2—element (==1)
of ® is of order 2. Hence a Sylow 2-subgroup of & is elementary abelian.

2. The case n is odd and &, contains a regular normal subgroup. Since
®, is doubly transitive on J(7) and contains a regular normal subgroup, 7 is a
power of a prime number, say ¢”. Let R be a normal subgroup of Cg(7)
containing &, of order 7| &, | such that R/, is a regular normal subgroup of &,.

2.1. Case n=¢* (8=1). By Lemma 3.1 (K, I> is abelian and d=2.
Therefore h*(2)=1. By [6, Cor. 1] & contains a solvable normal subgroup
(see [13, 2.2]). By Lemma 3.2 there exists no group satisfying the conditions
of theorem in this case.

2.2. Case n=i (2i—1). By Lemma 3.1 (K, I> is abelian. At first we
shall prove the following.

Lemma 3.5. If®,=8 and d=2, then a(t)=a(K?),i.e., K has no 2—cycle

in its cyclic decomposition.

Proof. Assume a(7)<a(K?). «a(K?) is odd and Ng(KK®)/[KK? is a
doubly transitive group on (K?*) of order 2a(K?)(a(K?)—1) by a theorem
of Witt([24, Th. 9. 4]). By [12] Ng(<K?*>)/<K?> contains a regular normal sub-
group and a(K?)=#*. Thus |Ng((K?>)|=2pi*(*—1). Thus n is divisible by
Pt This is a contradiction.

2.2-1. Case 8=8&, and ¢=+p. From Lemma 3.5 Ng(<(K*>)=Cg(7). Let
be Q a Sylow g¢-subgroup of R. Then Q is elementary abelian of order ¢
since NR/® is elementary abelian. Assume that Q is not contained in Cg(8).
Since Ng(f)/® is a Frobenius group, Cg(®) contains R or is contained in R.
From the above assumption R contains Cx(R®). Therefore [Ng(R): Cg(R)] is
divisible by i—1. Since |Aut (8)| =p—1, i—1 is a factor of p—1 and hence
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i<p. On the other hand, n—i=2{(i—1) must be divisible by 2p. This is
impossible and hence we may assume that Q is contained in Cg(®). By the
splitting theorem of Burnside Q is normal in Ng(&). Set |Cg(Q)|=2piy. As
in [12, Case B] we have y>1. Since n—i=2i(i—1) is divisible by 2p, n is not
divisible by p and hence a Sylow p-subgroup of ® is contained in a subgroup
which is conjugate to . If y is divisible by p, then a Sylow p-subgroup of Cg(X2)
leaves just one symbol of J(K?) fixed. But every element (3=1) of Q leaves no
symbol of Q fixed. This is a contradiction. Thus y is a factor of 27—1. Since
Ng(®)N Cg(Q)=Cg(®) N Cx(Q), there exist a normal subgroup Y of Cg(X)
of order y. 9 is even normal in Ng(Q). Since every element (1) of 9
leaves no symbol of Q fixed, every element (1) of © N Ng(8R) is not commutative
with any element (1) of §). This implies y—1=2p(i—1), which is a con-
tradiction.

2.2-2. Case 8=8, and p=q. Let P be a Sylow p-subgroup of Ng(8).
Then P is normal in Ng(®). Since Ng(®)/Cg(R) is isomorphic to a subgroup
of Aut ((K2)), B is contained in Cg(R) and K? is an element of Z($P). Remark
that Cg(%B) is contained in Ng(R®). Since Ng(R)/R is a Frobenuius group with
the kernel R/, Cg(P)=2Z(P)<7>. This proves Cx(P)=Z(P)<7> and (7> isa
normal Sylow 2-subgroup of Cg(®B), and hence {7)> is even normal in Ng().
Therefore Ng(P)=Cg(T)=Ng(R®). Since P isa Sylow p-subgroup of &, from
Sylow’s theorem we must have that (2p”—1) (2p™+1)=1 (mod p), which is a
contradiction.

2.2-3. Case 8 =<7> and p+q. If a(K) is even, then the number of p-
cycles contained in the cyclic decomposition of K is odd. Since I induces a
permutation on the set of thoes p-cycles, I leaves at least one p-cycle fixed and
hence it must leave at least p symbols of $(7). This is a contradiction. Hence
a(K) is odd. If a(K)=a(K?), then n—i=2i(i—1) is divisible by p and sois
n—1. If a(K)<a(K?), then by [12] a(K?*)=(a(K))* since a(K) is odd and
Ng(<K?>)/<K*> is a doubly transitive permutation group on J(K?). If 7 is
divisible by p, so is a(K?) since n—a(K?) is divisible by p. Thus a(K) is divi-
sible by p. On the other hand, since i—a(K) is divisible by p and p=+¢, a(K)
is not divisible by p. Thus we may assume that 7 is not divisible by p.

Let Q be a Sylow g-subgroup of Cg(7) which is normal in Cg(7). Then
L is a Sylow g¢-subgroup of &. Set |Cg(Q)|=2¢"y. If y=1, then Ng(Q)
=Cg(7) and [G: Ng(Q)]=(2i—1) (24+1)=—1 (mod g¢), which contradicts the
Sylow’s theorem. Thus y>1. Let s be a prime factor (+¢) of Cg(X)) and
let & be a Sylow s-subgroup of Cg(Q)). Assume a(&)=1. Since every element
(*1) of Q fixes no symbol of O, we have a(&)=7 and & is conjugate to a sub-
group of R. If s=2, then |&|=2 and if s=p, then |&|—p. Thusy is a factor
of pn.  Assume that y is divisible by p. Let ® be a Sylow p-subgroup of Cg(Q).
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Since # is not divisible by p, B is conjugate to a subgroup of © and hence a(P)=:
as above. Thus P is conjugate to <K*>. By Frattini argument 7 is contained
in Ng(P). Since Cg(LQ) contains a normal subgroup of index 2 and <K, I>
is abelian, (B, 7> is abelian. Thus P is contained in Cg(7). On the other
hand any element (1) of P{T>/<{™> is not commutative with every element
of QH[(7>, for if an element (1) of PL7>/<{T> is commutative with every
element of Q(™>/<7), then J(P)DOJ(7) and &, =R. Therefore y is a factor
of 2¢™—1.

Let 9 be a normal subgroup of Cg(Q) of order y. 9) is normal in Ng(Q).
Let Y be an element (1) of §. Set T=Cg(Y)N Co(7). Then |Z| is odd
and a(T)=2 since a(Y)=0and y is prime to | Cg(7)|. Since Co(T)is contained
in Ng(Q), it acts on 9. If |E|=1, then y—1=2b(¢"—1). Thus ¥ is con-
jugate to <K*>, y=2¢"—1 and all elements (1) of ¥ are conjugate under
Cg(7). Therefore 2¢”—1 must equal to a power of a prime number 7 (p)
and 9) must be an elementary abelian 7-group.

Next assume that| Ng((K?>)| is divisible by 2¢™—1. Since by a theorem
of Witt | Ng((K»)| =2pa(K?)(a(K?)—1), a(K?) is divisible by 2¢™—1. Since
a(K) is odd, by [13]a(K?)is equal to a power of a prime number. Thus a(K?)
=2¢"—1 and |Ng(<K>)|=4p(2¢”—1)(¢"—1). But |&] is not divisible by
4(¢™—1). This proves that Cg(9)=2% and hence Ng(P)=Ng(). On
the other hand, it is easily seen that [&: Ng(Q)]=2¢"+1. Thus 2¢"+41=2
(mod 7), which contadicts the Sylow’s theorem.

2.2-4. Case ®,=<(> and p=q. Then, since Ng(®)/® is a complete
Frobenius group on J(&) and i—a(K) is divisible by p, «a() is equal to a
power of p, say p™. If i"=a(K?)>a(K), then a(K?)=a(K)*=p™ by [12].

Let ¥’ be a normal p-subgroup of Cg(7) such that R'(7>/{)> is a regular
normal subgroup of Cg(7)/<{m>. Set P=P<CK?>. Then P is a Sylow
p-subgroup of ®. Since Ng(R)=Ng(KK>)NCg(T), Ng(PR) contains Ng(R).
Set | Cg(B)|=2y|Z(P)|. Let &S be a Sylow 2—-subgroup of Cx(p). If S| >2,
then a(&)=1. Therefore Cg(®) is contained in a subgroup which is conjugate
to ©. But P is not contained in any subgroup which is conjugate to 9.
Therefore|&|=2. Similarly it may be proved that y and n—1 are relatively
prime and hence y is a factor of 2.—1. If y=1, then (7> is normal in Cg(P)
and hence in Ng(PB). Ng(B) is contained in Cg(7). Since [Cg(T): Ng(P)]=1
(mod p),

[8: Ng(P)] = [6: Cg(M)][Co(7): Ne(P)]
= (2p"—1)(2p"+1D)[Ce(7): Neg(P)] = —1 (mod p),

which is a contradiction. Thus y>1. On the other hand, it is trivial that
Cg(B) is contained in Ng(C(K>). [Ng(<K»): Co(B)]=2pi"(i"—1)/2y| Z(P)].
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Since i"—1 is a factor of n—1, ¥ is a factor of pi” and hence y is equal to a
power of p. This is a contradiction.

Thus there exists no group satisfying the conditions of Theorem, (II) in the
case n=1(2{—1).

2.3. Case n=i(pi—p+1). In this case <K, I> is dihedral. At first we
shall prove that @¢(K) is odd. If & =8, then a(r)=a(f). Therefore it may
be assumed that & =<{7>. Assume that a(f) is even. Since Ng(R)/f is
a complete Frobenius group, a(R) is a power of two, say 2. Let © be a
Sylow 2-subgroup of Ng(®) containing I. Then SR/ is a regular normal
subgroup of Ng(®)/R and every element (1) of SR/® is conjugate to IR
under YN Ng(R)/R. Thus every element (%1, ) of & can be represented in
the from IK’, where 7 and K’ are elements of © N Ng(®) and &, respectively.
Therefore & is elementart abelian. Since Ng(®)/Cg(®) is cyclic and 7 is
unique involution in Cg(R), &=<7, I> and m’'=1. Thus Cg(7)/<{T)> is a
Zassenhaus group on (7). Since Cg(7)/{7> is not exactly doubly transitive
and contains a regular normal subgroup, 7 is a power of two by [4, Th. 3].
Thus a(K) is odd.

Since a(K) is odd, I leaves a symbol a of J(K) fixed. Assume a(l)=1.
Since IK’ is conjugate to I, it leaves only the symbol a fixed, where K’ is an
element of (K*>. Let G be an element of @ with cyclic structure (/, (1, a)---.
Then Cw(I) is contained in $¢. Every involution of ¢ which is not conjugate
to 7 is of the from IK’, where K’ is an element of (K*>. Thus there exists no
involution (1) of Cg(I) which is conjugate to I. By [6, Cor. 1] & contains a
solvable normal subgroup.

Thus there exists no group satisfying the conditions of Theorem, (II) in
this case.

2.4. Case n=i(2pi—2p+1). By Lemma 2.4 a Sylow 2-subgroup of
@ is elementart abelian. By [22] and Lemma 3.2 @ contains a normal subgroup
% such that G/F has odd order and F is the direct product of a 2-subgroup
©’ and a finite number of simple group %, where &, is isomorphic to one of
the groups PSL(2, 7) (where =3 or 5( mod 8) or r is equal to a power of two),
the Janko group of odser 175, 560 and the group of Ree type. Since Z(g) is
a normal subgroup of G, Z(F)=1 by Lemma 2.2. By [18, 4.6.3.] &' is a
characteristic subgroup. Again &'=1 by Lemma 2.2. Let 7, and 7, be involu-
tions in &; and § 7, (j=*i’), respectively. Then it is trivial by [18, 4.6.3.] that
7,7, and 7, are not conjugate in ®. Since ®& has just one conjugate class of
involutions, § is simple.

Assume that Cg(7) is a 2-subgroup or isomorphic to (7> x PSL(2, r’),
where 7'=3 or 5 (mod 8). Let 9 be a normal 2-complement of R of order
i|®,1/2. Then P is normal in Cg(r). It is trivial that Cg(r)NP=1.
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Therefore [Cg(7): Cg(7)] and hence [®: F] are divisible by 2. On the other
hand, since ¥ is a normal subgroup of ®, F is transitive and hence [®: ] is
a factor of p(n—1). Thus i=p, R, =8 and Cg(r)=Ng®). Since Ng(R)Cx(RK)
is cyclic and 7 is unique involution in Cg(f), a Sylow 2-subgroup of Ng(R)
is a four group and so is a Sylow 2-subgroup of ®.

Thus by [8, Th. 1] @ is isomorphic to a subgroup of PT'L(2, r) containing
PSL(2, r), where r=3 or 5 (mod 8). By [15, Satz 1] ® has no doubly transitive
permutation of degree n.

Thus there exist no group satisfying the conditions of Theorem, (II) in
this case.

3. The case n is odd and &, does not contain a regular normal subgroup.
Since &, does not contain a regular normal subgroup, ®,=<{7>. By [2, Th.
1] & is isomorphic to one of the simple groups PSL(2, 2™) and the Suzuki
groups Sz(2"), where 2”—1=p. Therefore {I, K>/{t> is dihedral and so is
(K, I>. Since ®, is a Zassenhaus group, «(K)=2. By Lemma 2.1 8=p or
2p. By Lemma 2.3 a(K?)=2.

If B=2p, then every involution is conjugate to 7. Since is unique element
(1) of & which leaves at least three symbols of Q fixed, by [17, Th. 8.7] n
must be even. This is a contradiction.

3.1. Case B=p. By a theorem of Witt Ngy(<K*>)=<I, K>. Therefore
Np(KK?)=Cp(KK*»)=8&. Since {K*> is a Sylow p-subgroup of &, by the
splitting theorem of Burnside  has the normal p-complement & of order 2(n—1).

At first assume &, is isomorphic to Sz(2™). Then /=2*"41. Since n—1
=272 27+ 1)=2""{(2"+ 1y —3-2"}, n—1 is divisible by 3 exactly. Let
L be a Sylow 3-subgroup of €. By the Frattini argument it may be assumed
that (K*> is contained in Ng(Q)). Since Cp(<K*>)=2p, K’ induces a fixed
point free automorphism of ). 'This is a contradiction.

Next assume &, is isomorphic to PSL(2, 2”). Then n=2*41 and ¥
is a Sylow 2-subgroup of G. By [7, Th. 5.3.5.] there exists a normal subgroup
1 of T of order 2°” such that £={7>U. Since every involution in  which
is conjugate to T is conjugate under U, 1 7 contains no involution which is
conjugate to 7. By Thompson’s theorem & has a normal subgroup M of order
p(n—1)n such that 8={m>N. Since & is doubly transitive and 1 is transitive
on Q—{1}, N is a doubly transitive permutation group on Q. By [2, Th. 1]
N is isomorphic to either PSL(2, 2™) or Sz(2™). This is a contradiction.

4. The case n is even and &, contains a regula normal subgroup. Since
niseven,soisz. @, isa doubly transitive permutation group on J(7) containing
a regular normal subgroup. In particular ¢ is a power of two, say 2™.

Let & be a Sylow 2-subgroup of Cg(7) of order 2”** such that &Q,/f, is



288 H. Kimura

a regular normal subgroup of ®,. All elements (+1) of SR,/®, are con-
jugate under B/R,, where B=PN Cg(7). Thus every element (8,) of SR,
can be represented in the from IV K’, where V' and K’ are elements of ¥ and
R®,, respectively, since I is contained in &R,. Therefore every 2-element
(#1) of @R, is of order 2 and hence & is elementary abelian.

4.1. Case<K, I>isdihedral. If & =<7, then [¥=IK? is contained in &.
Since & is elementary abelian, (I)(I K?)=K?* must be of order 2, which is a
contradiction. Thus we assume ®=R. Then NgR)=Cg(r). Since &, is
a Frobenius group and Cg(®) does not contain &R, Cg(R) is contained in SR.
Since 7 is unique involution in Cg(R), S®/Cg(®) is isomorphic to &/<{T> of
order 2™ which is elementary abelian. Since Ng(8)/Cs(R) is cyclic, m must be
equal to one. Set a(K?=i'. Assume ¢'>2. Then by a theorem of Witt
Ng(<K*)[<{K*> is doubly transitive on J(K?) and the stabilizer of 1 and 2
is of order 2. As in §2 we have i'=i(8'i—B'+1), where 8'=1 or 2. Hence
t’=4 or 6. On the other hand n—i'=Ri(i—1)—(i’—i) is divisible by p and
so is ¢'—1 since B=p or 2p, which is a contradiction. Thusi{'=2. Thus &
is a Zassenhaus group. Therefore & is isomorphic to either PGL(2, 2p+1)
or PSL(2, 4p+1), where 2p+1 and 4p+1 are power of prime numbers for
PGL(2, 2p+1) and PSL(2, 4p+1), respectively ([4], [11] and [25]).

4.2. Casen=1". Since 8=1, by Lemma 2.1 (K, I is abelian and hence &
is normal in Cg(7). It can be seen that Lemma 4.5, 4.6, Corollary 4.8,
Lemma 4.8, 4.10 and 4.11 in [14] are also true in this case (see Lemma 2.8).
Therefore we can constract a regular normal subgroup of .

Thus there exists no group satisfying the conditions of theorem in this
case.

4.3. Case n=i(2/—1). Since g*(2)=o, all involutions are conjugate.
Since <K, I> is abelian by Lemma 2.1, & is normal in Cg(7). & is also a
Sylow 2-subgroup of ®. Let 7' be an incolution of &N&C, where G is an
element of . Cg(7’) be contains & and &¢. Therefore ©=&¢ and Sylow
2-subgroups are independent. Since all involutions are conjugate under
Ng(©), | Ng(©)| =2pi(i—1)(2:—1). By [3], [21, Th. 2] and Lemma 3.2 & con-
tains a normal subgroup & which is isomorphic to PSL(2, 2”*) since Sylow
2-subgroups of the Suzuki groups and the projective unitary groups are not
elementary abelian.

Assume that 2”*'—1 is not equal to a power of p. Since Ng(&) is solvable
and |Ng(@)NG®'| =27+ (27+'—1), there exists a Hall subgroup A of Ng(&)
N®’ of order 2”*'—1. Let B be a subgroup of HN Cg(7) of order p(2”—1).
By the Frattini argument we may assume that 8 is contained in Ng(). Let
A be an element of A of a prime order p’ (Fp). Since Cp(A4) leaves the symbol
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1 fixed and a(A4)=0, a(Cs(A))=2 and hence C(A) is conjugate to a subgroup
of (K*». 2" —22p(2"—1)/|Cs(A4)|. If |Cs(A)|=1, then this relation
is impossible. Thus Cg(A4) is conjugate to <K?>, |Cgx(K?)| is divisible by
|A| and all elements (3=1) of A are conjugate to either 4 or A™' under U.
This implies that 9 is elementary abelian of order, say p’/. Since p'/=2"1
—1, /=1 and A is cyclic of order p’. Therefore it is trivial that Cs() is normal
in B. Set "=a(K?). Since <K, I) is abelian, the number of p-cyclic in the
cyclic decomposition of K? contained in J(7) is even. Therefore " is even.
Since | Ng(KK?*>)|=2pi"(i"—1) is divisible by [A| and i"—1 is a factor of
n—1, " is divisible by p’ and it is not equal to a power of a prime number. If
J(7) contains J(K?), then F(K)=J(K?) and Ng(®)=Ng(<CK?>). Therefore
Cg(7) must be divisible by p’=2/—1, which is a contradiction. Thus the
kernel of the permutation representation of Ng(<(K?>) in J(K?) is equal to
(K*>. Therefore Ng(<K*>)/[<K*> does not contain a regular normal sub-
group. By [12] ¢"=6 and /=2 or "=28 and i=4. Thus 7" must be equal to
n, which is a contradiction.

Next assume that 2”*'—1 is a power of p, i.e.,, 2""'—1=p. Let P be
a Sylow p-subgroup of Ng(®) of order p* containing (K?>. Then P is abelian.
Since i<p, £,=8. Since |Cg(T)|=|Ng®)| is not divisible by p* and
Ng(<{K?) is divisible by p*, a(K)<a(K?). By [12] the degree a(K?) of a per-
mutation group Ng(<K?)<K?> on J(K?) is equal to 7%, 6 or 28. Since n—1 is
not divisible by p, a(K*) =+ If a(K*)=6 and 28, then /=2 and 4, respec-
tively. Then # must be equal to a(K?), which is a contradiction.

Thus there exist no group satisfying the consitions of Theorem in this

case.

5. The case  is even and &, does not contain a regular normal subgroup.

We may assume {,=<{7>. By [1] @, is isomorphic to PSL(2, ), where r
is power of an odd prime number and r—1=2p. Hence <K, I> is dihedral
and a(K)=2. By Lemma 3.3 the cyclic decomposition of K has no 2-cyclic
and hence 7 is unique element of & which leaves at least three symbols of Q
fixed. Therefore by [9] and [17] @ is isomorphic to one of the groups of Ree
type. (Remark that the order of the stabilizer of two symbols of Q is equal
to eight in the case @ is isomorphic to U,(5).)

This completes the proof of Theorem.
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