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0. Introduction

We denote the Fourier integral operators on R™ with phase function ¢; and
symbol p; € S, by I(¢;,p;), j = 1,2,...,L + 1. If all the canonical maps w;
associated with phase functions ¢; are sufficiently close to the identity, the composite
canonical map wyjwy - --ws 1s also near the identity. Moreover, we have

(0.1) I(¢,q) = I(¢r+1,pL+1)I(PL,pL) - 1(P1,P1),

L+1 )
for some phase function ¢ and some symbol q € S,,Zj:1 ’ (cf. L. Hérmander [6]).
Here the correspondence of the symbols (pry1,pL,.-.,p1) — ¢ is multi-linear. In

[9], [10] and [12], H. Kumano-go—Taniguchi theorem gives the following estimate
for the symbol g; that is, for any non-negative integers [, I’, there exist a positive
constant C;;» and positive integers 1, [{ such that

(2 ms) )
(0.2) lalyy = < (Cu)® I Il
j=1

where | - l(rl'f) denotes the semi-norm of S7*.

This estimate is useful in the calculus of Fourier integral operators. In [9],
[10] and [12], this estimate was applied to construct a fundamental solution for
hyperbolic systems. Slight modification of this estimate was applied to construct a
fundamental solution for Schrédinger equations (cf. D. Fujiwara [1]-[4], H. Kitada
and H. Kumano-go [8], N. Kumano-go [11]). However, in their proofs, they used the
inverse of the Fourier integral operators whose symbols are equal to 1. Therefore,
the canonical maps associated with phase functions ¢; must be very close to the
identity. Recently, in [5], D. Fujiwara, N. Kumano-go and K. Taniguchi have given
a more direct proof and relaxed the condition for the canonical maps associated
with phase functions ¢; in the case for Schrodinger equations. However they are
not successful in the original case for hyperbolic systems. The aim of this paper is
to give a proof similar to theirs and to relax the condition for the canonical maps
associated with phase functions ¢; in the original case for hyperbolic systems.
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1. Statement of results

In order to state our main theorems, we recall some definitions for Fourier
integral operator in H. Kumano-go and K. Taniguchi [9], [10] and [12].

DEFINITION 1.1. Let m € R and 1/2 < p < 1. We say that a C°-function
p(z,€) on R} x R belongs to the class of symbols S}, if, for any a, B, there exists
a positive constant C, g such that

(1.1 1878 p(z,€)| < Ca,p(€)™+ PRI,
where (€) = /T+ €.

RemARk.  For p € S7*, we define semi-norms |p|§7ﬁ) ,LI=0,1,2,... by

6 g
— |0528g p(x, )|
(1.2) IPliy” = max_, oy (&) =pIBT=plal

Then S7* is a Fréchet space with these semi-norms.

DeriNITION 1.2, Let {x;}72, be an increasing sequence of positive constants
and t > 0. We say that a real-valued C°°-function ¢(z,£) on R} X Ry belongs to
the class of phase functions P,(t, {ki}{2,), if #(x,£) satisfies the following:

(1.3) 050¢(, )| < Kjarpt(©) 1 (la+8] < 1),
(1.4) 1080 )(, €)| < Kjappit ()21 A=RIBI=Pll (1 4 5] > 2).

ReEMARk.  Usually, “phase function” refers to (z — y)¢ + &(z,&) in (1.5).
However, in the present paper, our phase functions will always be of the form
(z — y)€ + ¢(x,&). Thus, in the present paper, we call ¢(z, &) “phase function”.

DerFiNiTION 1.3, Let ¢ € P,(t,{r:}{2,) and p € S}*. We define the Fourier
integral operator I(¢,p) with phase function ¢ and symbol p by

(15 I(¢,p)u(x) = /R | e Op(@, Qu(y)dyd € (@€ = (2m)7"de),
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for u € S, where S denotes the Schwartz class of rapidly decreasing C*°-functions
on R", and 7 denotes v/—1.

The integrals of the right hand side do not necessarily converge absolutely. We
understand integrals of this type as oscillatory integrals (cf. H. Kumano-go [9]).

Let I(¢;,p;), 7 =1,2,...,L + 1 be Fourier integral operators. Then, the com-
posite of these Fourier integral operators is given by

(1.6) I(¢r+1,pL41)I(or,pL) - I(¢1,p1)u(xL41)

= /2 elTLe1=2)8o (z; 1 €0 )u(zo)dzod o,
R n

where
L+1
(1.7) K(IL—H,fO):/RmL zq)HpJ(x],fg 1 dejt'ffp
and
L L+1
(1.8) = (zj41— ;)& — &)+ Y 6@, 65-1)
j=1 j=1

In order to discuss the oscillatory integrals in (1.7) more generally, we will consider
oscillatory integrals in the following form:

(]9) H(q)ap)(xlrf—l,fO)

L
= /2 Lezq)p(-rL—{—laévaLJ"'76171‘1750)de]'&£]'7
R n

j=1

which is defined by the multiple symbol p = p(zp41,éL, 2L, - -,&1,T1,&) in Sy F .

Here, S,'“*" is as follows.

DerNiTION 1.4, Let py; = (mpy1,mp,...,m;) € REf and 1/2 < p < 1.
We say that a C*°-function p = p(zr+1,€1, 2L, .-, &1,21,&) on R2(L+1) pelongs

to the class of multiple symbols S,"**, if, for any & = (ar,ar_1,...,a0) and

ﬂ (BL+1,PL,--.,P1), there exists a positive constant CZE such that

L+1
(110) (H 6/3]8 - ) xL+1?£L)$L""1£17$17£0)

+
;EH mj+(1_P)|ﬁjl—P|aj—1|'
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REMARK.
(1) Forpe€ S,"", we define semi-norms Ipll(l,'““) 1,I!=0,1,2,... by

B ai—1
‘ HL+18 ]a G- p’
(L1 [pl{e+?) = _max ( - )

LSt gy I (g ) mat(=e)iBsl=plas -l
w <t, -
j=12,- Ll

Then S,"**" is a Fréchet space with these semi-norms.
(2) Forp,€8,7,5=1,2,...,L+1,if we set

L+1

(1.12) p=[]pi(=;.6-1),

j=1

then we have p € Sp L+1. Furthermore we have

L+1
(1.13) Ipl(m“‘) < I Iesli%?.

j=1

Now, our first main theorem is the following:

Theorem 1.5. Let {k;}2, be an increasing sequence of positive constants and
M > 0. Set T = min{1/(7\/nk1),1/(4nkz)}. Then there exists a positive constant C
such that

~ L+1
(1.14) (@, ) (241, €0)| < CHpl{TE ) (o) 20mr ™

for ZL+1t <T, ZL+1 Im;] < M, p € SmL+1 and ¢; € P,(t;,{rki}52,), where
lo=n+11 = [2M] + 2n + 1, and the positive constant C depends only on M,
{k1}2, and n, not L.

In order to state our second main theorem, we state the following proposition.

Proposition 1.6. Let {m}[‘io be an increasing sequence of positive constants.
(1) Assume that Y71 t; < 1/(4nks) and ¢; € Py(t;, {ki}{20), = 1,2,..., L+1.
Then, for (z, 5) € R2", the equations

—(xj — zjt1) + O, B541(541, &),
(1.15) O=—(§j_§j—1)+81j¢j(wj7£j_1)’
j=1727"->L7 TL41 =X, §0=£7
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have a unique solution {x;,&;}1_, = {z}, &}, (x,€).
(2) Let ®* be the function defined by

&~

L+1

(1.16) ®*(z,6) = > (@541~ 27)(E — &) + 3 45(25,65),

j=1 Jj=1

with x7 | = = and §5 = &.
Then there exists an increasing sequence of positive constants {k}}2, such that

L+1
(1.17) d* e P,,(Z tj,{n;};g(,),

j=1

for Ef:ll t; < 1/(4nky) and ¢; € Py(t;,{ki}2,), where the increasing se-

quence of positive constants {k;}{°, depends only on {k,}2, and n, not L.
Our second main theorem is the following:

Theorem 1.7. Let {x;}2, be an increasing sequence of positive constants and
M > 0. Set T = min{1/(7y/nk1),1/(4nks)}.

(1) For Y71t <T,pe 8P and ¢; € P,(t;, {r1}i2,), set

(1.18) g(@r41,6) = e L@, p) (241, &o)-
L+1
Then we have q € sz’:l "
(1) For any non-negative integers 1, I, there exists a positive constant C: such
that

O my) -
(1.19) a5 < (Cu) M bl

for Aty < T S0 my| < M, p € S and ; € Pty {mi}72),
where ly = n+1+20+2U', 1] = [2M] + 2n + 1+ 2l + 3l', and the positive

constant Cy ;. depends only on M, {k;};2, and n, not L.

From the theorem above, we can relax the condition for the canonical maps
associated with phase functions ¢; of H. Kumano-go—Taniguchi theorem in the
following form.

Theorem 1.8. Let {k;}{°, be an increasing sequence of positive constants and
M > 0. Set T =min{1/(7\/nk1),1/(4nk2)}.

(1) For Z]L:ll t; <T,pj €8S,7 and ¢; € P,(tj,{ri}$2,), there exists a symbol
o

ge S, ™ such that
P
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(1.20) I(®*,9) = I(¢r+1,pr+1)(#L,pL) - - - (1, 1)
(1)  For any non-negative integers l, I, there exists a positive constant Cy such
that
(ZL:I mj) L+1 .
(1.21) gl < @)t ] IPj|z(:Ll]’l),
Jj=1

Sfor E;‘:ll t; <T, Ef:ll Im;| < M, p; € Sp% and ¢; € P,(t;, {xi}{2,), where
Lh=n+1+4+20+20', 11 =[2M]+ 2n+ 1+ 2l + 3l', and the positive constant

Cy,v depends only on M, {k,}{2, and n, not L.

ReMARK.  The condition Zf:ll t; < T implies how close to the identity the
canonical maps associated with phase functions ¢; need to be. In our proof, the
right hand side T of this inequality depends only on k;, k2 and n. However, in the
original proof, T' depends on k1, Ko, ..., kx and n, with some large integer k > 2
depending on n. Moreover, T' must be chosen very small. Therefore, the canonical
maps with phase functions ¢; must be very close to the identity.

2. Some Lemmas

In this section, we state two important lemmas needed later. First lemma is
found in H. Kumano-go and K. Taniguchi [9], [10].

Lemma 2.1. Let A = (ajx) be an L x L real matrix. If there exists a positive
constant 0 < ¢ < 1 such that

L
2.1 > lajil <
k=1

forany j =1,2,...,L, then we have
(2.2) (1—c)f <det(I, — A) < (1+¢)F,
where I, denotes the L x L unit matrix.

Proof. By induction. See Proposition 5.3 in Chapter 10 §5 of H. Kumano-go
[9]. U

Second lemma is slight modification of Proposition 3.3 in D. Fujiwara, N.
Kumano-go and K. Taniguchi [5]. :
Let N and L be positive integers and z € RY. For j = 1,2,...,L+1, let P; be
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the first-order partial differential operator with smooth coefficients given by

(2.3) Pi= ) 4507,

B3 <5181

where v; € {0,1}Y C N§ and a; ,(z) € C>°(R"). Furthermore, we assume the
following properties:

1°  There exists a positive integer I' independent of N and of L such that
(2.4) Iyl <T,

forj=1,2,...,L+1.
2°  There exists a positive integer K independent of N and of L such that

(2.5) ﬁ{j =1,2,...,k 0%+ia;p (z) 2 o} <K

for k = 1?27""L7 /8] < Yi» I/B]! <1, .7 = 1,27"'ak and 0 #ﬁk+1 < Ye+1-
Then we get the following lemma:

Lemma 2.2,
(1)  The product of operators Py, Py --- Py is of the form

(2.6) Pr PPy

L+1
= 33 et et (L orans @)or,

8175 {es}i

where ZE By} is the summation with respect to {(3;} 14:11 such that 3; < ~;
and 18| < 1 forj = 1,2,...,L + 1, Z{ SR is the summation with
respect to {o;}i2) such that ZJL+01 o = ZLH,B] and ap+1 = 0, and
C({ﬂj}f:f, {aJ}L“) is a non-negative integer.

(2)  Furthermore, there exists a positive integer C independent of N and of L such
that

2.7) Z/ Z” Cc({B; JL__-_kll,{ J}L+1) < oL+,

{ﬂJ}L+1 {a; };-H

We can choose C < (1+T(K + 1)).

Proof. By induction. Proposition 3.3 in D. Fujiwara, N. Kumano-go and K.
Taniguchi [5]. O
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3. Proof of Theorem 1.5

In this section, we prove Theorem 1.5.

Proof of Theorem 1.5.
1°.  From (1.8), for j =1,2,...,L, we have
(3.1 0, ® = —(zj — zj41) + Og; bj+1(xj+1,&5),

0z, @ = —(&§ — &5-1) + Or, 05 (x5,€5-1)-
Set
o) 1 L6, B) )20,
’ L+ [(§5)1/2(0,@)12 7
No= 1 i{€j=1) 1?80, ®)(€j-1) 71/?0s,
! 1+ [(€5-1)71/2(0x,; @)/ ’

We denote the adjoint operators of M; and of N; respectively by M} and by N;.
Then we can write

(3.3) M} = aj(z;11,&5,25)0; + a3 (€41, €5, 25),
N; = b}(ﬁj)xjagj—l)azj + b?(€j7mj7€j—1)a

where
(3.4) aj (@41, €5, 25) = jﬁig;ﬁg?;fq),)lﬁ 2
4@ 65:3) = 73 |(fj)lir“’(f?&jq’)l2
v (i)
and
(3.5) bj(&5, %5, €5-1) = 7 :f(é:i)_‘l/ljg((%;iﬂz( -1

1
14 [(§-1)71/2(0, @) 2

i(€j-1)"/?(8, ) -1
+ 81]’ (1 I |<£j_1>—1/2(3z]_¢,)|2 <§j—1> /2>.

2°.  We note the formula ({+n) < |n|+(£). Then, when |§; —&;_1| < (1/2)(§;-1),
we have

(3.6) 271¢ 1) < (&) < 2(¢-1).

b)(&5,25,8-1) =
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And when [§; — &;_1| > (1/2)(§;-1), we have

(3.7) 102, @] > |€ — &j-1] — Vnrat; (1)
> (1= 2vnkt))|E — &1
> (1—2vnkiT)37 ;).

Using (3.6) and (3.7), we get the following estimates for derivatives of b} and b;’:
For any aj, B;, 1, there exists a positive constant Co;,g; o, , independent of j
such that
1
B0t — Z
ag Q-1 (1 + <§j—1) 1|3~'£j¢!2)1/2

x <§j>—la,-|/2(£j_1)—1/2+|ﬂ,-|/2—|aj-1|/2,

(3.8)  18g705297 7 1bj(&5,25,&5-1)| <

é]l]

1
(1+ (&-1)"110,,@2)1/2

x <€j>~laj|/2<§j_1>|ﬂjl/2—|aj—1|/2.

|6°"8ﬁ1 87~ lbo(ﬁj,xj,fj—lﬂ < Coy.85,05-1

Furthermore, we get the following estimates for derivatives of a} and a?:

For any a;, there exists a positive constant C,; independent of j such that

. 1
.9 377 ak (zj41,&5,24)| < Ca,
(3.9) | €; a; (11,85, 75)| < Ca, (1+ <§j>|3§j¢|2)1/2

1 N —lojl/
T(1+ (§j>|3£j¢.|2)1/2 &) 2

3°.  We take x € C§°(R™) such that

<§j>1/2—lajl/2,

|8?j’a?(:cj+1,£j,l‘j)| < Ca

1 (Jlz[ <1/3)

3.10 0<x<1 and = ,
(3.10) <x<1 and x(z) {0 (o] > 1/2)

For simplicity, when k& > k', we set Hf/:k =1.
ForR=0,1,2,...,Land 0=jp < j1 < ... < jr < jry1 =L +1, let

R+1  jr—1

(3.11) Xioiin = 11 11 X((fj—ﬁjr_l)/(ﬁjr-ﬂ)

r=1 j=jr-1+1

~ H (1 ~x((€ ~6.-/€5.)) )

We divide I(®, p) into 2L terms as follows:

L
(3.12) 1(®, p) Z > I(®, Xjojr,inP)-

=00=jp<j1<...<jr<jr+1=L+1
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4°.  We consider I(®, xj;.j1,....inP)- Set J = [2M] + 2n + 1. Integrating by parts,
we have

(3.13) I(2, XjosjrsinP) = ]I(q)’p;o,jl,m,jR)’
where
(3.14) Piouyenin = (M) (Mp_)" o (M)

o (NE) (NE_1)" -+ (NT)? Xio i
Therefore, by Lemma 2.2, there exists a positive constant C; such that

(mi41)

|p§°»jlv~--»jR| S (CI)L|pln+1,J (€)™
R+1  jr—1 1 .
RAYUTES!
X H H {(1 + (&5) |35 ®|2)(n+1)/2 (1 + (gj_1>-1|31j‘1)|2)J/2 (&) }

r=1j=7,-1+1

1 1 M +1
S 13{ T+ (&.)105, S T+ )0, S e )

5°. Forr=1,2,...,R+1land j=j,_1+1,5,—1+2,. — 1, we note that

(3.16) 1€ = &nal < 2<£Jr )
on the support of p2 . . . Using the formula (£ +7) < |n| + (£), we have

(3.17) 27Mg ) < (&) < 28,

forr =1,2,...,R+1and j = jo_1 +1,jr—1 + 2,...,j- — 1 on the support of

Pjo.jr....jn- Lherefore, there exists a positive constant Cy such that

~ L+1
192, 51 il < (C2)Flp] T4 (g) 2smn ™

y ﬁ{ 1 _ 1 }
il (1 + (&) |06, @[2)(H1)/2 (14 (€5,) 1|0, ®[2)7/2

R Jr—1
1 1
X .
TH” 11 {(1+<§j,_1>l35j<1>|2)("+”/2 (1+(§j,_,>‘1|3zj<1>l2)“‘2M)/4}

=1j=jr_1+1

R R

1
’ H (1+ (&,)10g,, ®[2)(n+1)/2 : H(gm (J-2M)/4

r=1

(3.18) x H im0/ ()
]T—JT 1+1(1 + (53;_1)‘1|8zj<1>|2)M+(J—2M)/4’
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- L+1 ms
where A1 (&) = (&) DI and A.(§) =1 forr # 1.
6°. Forr=1,2,...,R, we note that

(3.19) 6, = Gl 2 5465,12),

on the support of p§ ;. . . Using the formula (¢ +7) < |n| + (£), we have

(320 16— Gl 2 3165,

for r = 1,2,..., R on the support of p? . . . Furthermore, noting (3.17) and
(3.19), we have

Jr
G2 I+ e. e
J=jr—1+1
. . jv*
> 9= (r=ir-1)/2 H 1+ (Ej,_l)_1/2|8zj‘b|)
J=jr-1+1
. . j"'
> 2—(.7r—1r—1)/2<§jr—1>—1/2 Z Ia’tjq)l
j=jr—1+1
Jr
> 2 UrID g )72 N (I = €l = ViRt (€1))
Jj=Jr—1+1
Jr
> 9 Ui )TN (|§j — &1l - 2\/ﬁﬁ1tj<€jr_1>)
J=jr—1+1

> 9= Ur=3r-0)/2371/2(1 — 6/nk T)IE), — &j,_, Y%,

forr=1,2,...,Ron tbe support ofp‘J?O,jl’ij.
Therefore, there exists a positive constant C3 such that

~ L+1 )
18 51, il < (Co)H | (gg) 2o ™

L 1 1
8 H {(1+(€ja>|35j¢’|2)("+1)/2 ' (1+<€jR>—1|6zj(I)|2)J/2}

Jj=jr+1
R

iy 1 1
. H H {(1+<Ejr_1>|35]‘1>|2)("+1)/2 ' (1+(Ejr_l>‘llazj‘1>|2)(""2M)/“}

r=1j=jr—1+1

R 1 R
. = (J—2M)/4
62 1 g 7, sy 116 '

r=1
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7°. Forr=1,2,...,R+1land j=3,_1+1,5r1+2,...,5-— 1, let

(3.23) 2z = 05, ® = —(z; — 7j11) + O, 0541 (541, &),
G =05,® = —(&§ — &§-1) + 0s,95(x;,&-1)-

For simplicity, we set k = j,._1 + 1, ¥’ = 5, — 1 and

(3.24) Tip = (Thy, Tty -+ Thr), gk,k’ = (&, Ekt1s- -5 &k )s

Zek = (Zky Zkt1r-- > 2k )y Chokr = (Chy Ch1y - -5 Chr)-

Then we have

Ok, Chr) _ (Ak’—k+1 0 ) + (A}c,k' A%,k/)

(325) 22
8(xk,k/,5k’k,) 0 tAk’-—k:-}-l Az,k’ Aik’

Where Ak/_k+1, A}C,k” Ai.k” Az,k’ and Ai’kl are (n(k/ - k + 1)) X (n(k/ - k + 1))
matrices defined by

I, —-I, 0 0
o I, -I,
(3.26) Aw-ks1=]10 0 I, = 0 [
. . o
0 0 0 I,
0 a0 Skin 0 . 0
0 0 Ori 4208111 Pt :
327 Abp = | 0 0 0 :
: . - Oz, O, _, Pi
0 .. 0 0 0
3gk¢,k+1 0 0 0
0 3., Pr+2 0
(328) Afp= 0 0 %, ,Prts 0 ’
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&2, bx 0 0 0
0 &, fkr 0
3 _ .
(3.29) Ak,k’ = 0 0 8£k+2¢k+2 .. 0 y
: . . 0
0 0 0 2, ow
and
0 0 0 0
Ot Oy, Pht1 0 0 : :
(3.30) Ay = 0 Otri1 Oz bhrz O 0
: - - - 0
0 O agk,__lazk/¢kl O
Furthermore, we can write
Oty Cupr , .
(331)  det 2ERAL k) jyan k) g (Ak b1 0 )
B(wk,k,,gk,k/) 0 Ak’—-k+1

AS ., A8,
et { oo = (1% 00 ) 1

where

(3.32) Afpr = (Br—gr) " AL gy
o) - (Brr—kg1) TAR o,

(
(

Al,kf = (&, _,) " (A1) T AL s
(

Hence, by Lemma 2.1 and (3.17), we have

(3.33) (1 — 3nk,T)2nUr=ir-1-1)

< det 3(5jr_1+1,a+—1,gjr—ﬁl,jr—l)

0T, 141,50 —1,&jror 1,5, —1)

< (1+ 3nK2T)2n(jr_jr—l_l),

forr=1,2,...,R+1 on the support of p5 . . .
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Therefore, there exists a positive constant Cy such that

R+1 ~ =
o Hdet a(xjr—l+1yjr_1’Ejr—1+11jr_1)
Pjo,jr,.erdr

L+1

< (Ca)FIp| Tt (o) =2 ™

r=1 8(zjr—l+1yjr—17er—1+lvj1‘-1

L
<£jR> (5 'R> n/2
< 11 Luﬁmmmwwfuﬂér%mm}

Jj=Jjr+1

.71*_1 _
<£jr—1 >n/2 <§j,_1) n/2
<1 I {UH%JMWWWfOHgJ*WWFWW

r=1j=jr-1+1

H (&,)™/?
L (L4 (&) e), — )40 — O, #j,+1(xj,41,&5,)|2) (n+1)/2

(3.34) x H (Ejr>-—n/2—(J—2M)/4‘

8°.  We change the variables:

(e 41,r—15 o1 41,5—1) = (Zjr 141,50 -1 Giror 41,5, —1),
forr=1,2,...,R+1.
Now, for r = 1,2,...,R, x; 41 is a function depending only on z; _,,

Zjet1jre1—1s Gipt1,5rya—1 a0A &, DOL T5,.

Keeping this in mind, we integrate in the following order. First we inte-
grate by z;,, Tj,, ..., Tj,. Secondly we integrate by Zj,_,41j.—15 Cjr_r41.jo—1s
r = 1,2,...,R + 1. Thirdly we integrate by ., &n_,.....§j,- Then there exists
a positive constant Cs such that

L+1 .
(339 K@, 85, 1,30 < (Co) MBI 60) 2= ™.

Therefore, we have

L
(3.36) (®,p) <> > (D, D, .5

R=00=j30<j1<...<jrR<jr+1=L+1

L+1 .
< (205)E|p|TEH) (o) 2= ™. 0

Now, for R=10,1,2,...,Land 0 =jy < j;1 < ... < jr < Jjr+1 = L+ 1, set
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(L4180, 20, €p—15- -+, %1, 60);

& — &l < %(5;‘“1)

(337 Ejoj..ir =4 1<r< R+ 1 Jre1+1<75<jr—1)
€5, = &Gra| > (Eh 0

| (1<r<R)

/

Looking over the proof of Theorem 1.5 once again, we can get the following
corollary.

Corollary 3.1. Let {x;}2, be an increasing sequence of positive constants and
M > 0. Set T = min{1/(7\/nk1),1/(4nks)}. Then there exist positive constants C’
and C" independent of L satisfying the following:_

() Let Yty < T, it my| < M, pe S and ¢; € Py(t;, {m1}{2)- If
Eq contains the support of p, we have

NI, ((mrt1) ZLHm'
(3‘38) IH((I)?p)(xL+17§O)| S (C) |p|n+1fn+1<€0> j=1 7,
() Let YAt <T, 3% mj| <M, pe ST and ¢, € Po(t;, {ki)i2,). Let

R = 1 2,. L andO = _]0 < _]1 < ... < ]R < jR+1 =L+1. IijOJL-n,jR
contains the support of p, we have

m —(M - L_'+1 max{0,m;
(339) L@, p) (L1, E0)] < (C")EIp|(TE) (o) "M Esms melOmsD,
where lg =n+1 and I = [2M] + 2n + 1.

4. Proof of Proposition 1.6

In this section, we prove Proposition 1.6.
Proof of Proposition 1.6.
1°.  First we assume that the solution {x},£;}J; of (1.15) exists. Then we have

(4.1 & = &1l < Vnkit(€ )

L
< vamt,{ Y16 - 61+ ()
k=1

for j =1,2,...,L. Hence we get
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L
1—y/nk Zfﬂ t

Therefore, the solution {x;,g;}le of (1.15) satisfies

L
42) S Je -yl < (€0) < 5 o)
j=1

(43) & - &l < 5(60),

forj=1,2,...,L.~ _
2°.  For (Z1r1,&.1) € R?™E, we introduce the norms ||*(Z1,1,&1,1)]|5,

|*(Z 1,2, &1,0)I$° given by

b £ §o . -1 .
(4.4) 1@, &o)lis = _max zjl+(6)™"  max &1,

=1,2,...,

L
1@, &)1 =D {las] + (Go) &1}

j=1

Let Q& be the normed space (R?"L,|| - ||2) and let Q5° be the normed space
(R2"L || - ]1%°). Let ©% be the closed set of 249 given by

45 g = {(51,L,21,L) 0% 16— ol < 5l60), = 1,2,...,L}.

Let Ay be the matrix obtained by putting k =1 and k¥’ = L in (3.26).

For (51,L75~1,L) € ©%, we consider the mapping F : (Z1.1,&1.1) — (%1,0,7,1)
given by

(4.6) YL, L) = AT (2 p11, 81,1, €11, 0),
where
(AL 0O
(4.7) A—(O tAL>’
and
0 O¢, p2(x2,&1)
: O, p3(x3,&2)
0 :
- > Tr41 O¢, dr+1(TL+1,€L)
4.8 0 2, T1,L,€1,L, = +
(4.8) (@L41, 21,2, €12, £0) & Oz, $1(x1,&0)

0 Oz, P2(x2,&1)

0 Oz, b1 (xL,EL-1)
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From (4.5), we have

(4.9) 27 (&) < (&) < 2(&),

for j =1,2,..., L. Furthermore, from (4.6), we have

J L
(4.10) nj = &ol <Y 18z, bk (ks k1) Z nk1t;(€1)
k=1 =1

< 2v/nky Zt (€o) < 50)

for j = 1,2,..., L. Therefore, the map F : ©% — 0% is well-defined.
3°.  Let A}, A, A}, and Aj ; be the matrices obtained by putting k = 1 and
k¥ = L in (3.27)=(3.30). Set

5 7 A Al
(4.11) A@r, o, i) = | 37 a0 )
1,L 1,L
For (El,L,gl,L)v (55I1,ngi,L) € 0%, let

(4.12) YGrr, L) = AT (2L, %1, 0,1 €0),

"W hn) = AT (Tr 41, T 1,67 1 €0)-
Then we have

1@, T,0) = @ NS < Ao gt

1 ~ ~
X / Azpy1,T1,0 +0(T) L — F1,1),61,0 +0(E1 L — &1,L),&0)d0
0

%o
4.13) x|[*@,2, &) — @, &)l

Clearly we have

(4.14) 1A lgso _gge < 1.

Noting that

(4.15) (& +0(& — &) < (1=0)I€; — &ol + 61€5 — Eol + (o),
(o) < (1= 0)|&; — &ol + 615 — &ol + (&5 +0(€; — &),
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we have

(4.16) 271(&) < (& +0(& — &) < 2(éo),

for j=1,2,...,L and 0 < 6 < 1. Hence we get

1 ~ o~
(4.17) ‘ / A@p1, %10 +0() L — T1,0), &0 +0(61,L — €1,L),€0)d0
0

% —ale
L+1
< 3nko Z t; < 1.

Jj=1

By (4. 13) (4.14) and (4.17), F is a contraction. Hence there exists a unique solution
{z5,€; 1=, € ©F such that

(4.18) N@ 0 En) = AT (@04, B L, 6 s o)-
Therefore, there exists a unique solution {z},£;}J_, € ©% such that
0= —(.’IZ; - x;+1) + 8{; ¢j+1(w;+1a 6]*)7

(4.19) 0= —(& — &) + 0,05 (x5, 1),

j=172y-"7La £2+1:$L+1, 66250
4°.  Clearly, from (4.19), we have

(420) ]Z‘; — $;+1' S ﬁf‘&ltj.JrI,
|65 — & 1] < Vnkit;(§5_1) < 2v/nkat (o),

for j =1,2,..., L. Furthermore, for any oo, 8r+1 With |ag + Br+1| > 1, there exists
a positive constant Cy, g, ,, such that

4.21) laﬂ“‘aa"(az _ 3:;+1)| < Cao‘ﬁLHth<£0>—(1—p)+(1—p)lﬂ1,+1|—p!ao|,

TL+1
Iagll‘,i-llaao (Ej _ 5;—1)| < Cao,ﬂL+1tj <£O>P+(1—P)|ﬁL+1|_P|°‘0|’
for j =1,2,..., L. Therefore we get (1.17). ]

5. Proof of Theorem 1.7

In this section, we prove Theorem 1.7.
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Proof of Theorem 1.7.
1°. ForR=0,1,2,...,Land 0=jp < j1 < ... < jr<jrt1 =L +1, let

(5.1 Biojrrin = €2 UP, Xjo,jr,ninP)-

Then we have
L
(5.2) q= Z Z 9jo,jry-JR"
R=00=j50<j1<...<jr<jr+1=L+1

2°.  First we consider the case where R # 0. We can write

(5.3) BeoGjo,ji,nin = ~1(06®*)e ¥ I(®, Xjo.51,....inP)
+ e_M:‘ ]I((I)7i(aﬁoq")xjo,jlw-»jRp)
+ emi® H(q)’aﬁo (on,]'xy-n,jnp))'

Note that
(5.4) 0ge® = — (41 — 1) + Og, 1 (1, o),

and

L
(5.5) i($L+1 _ .’L‘l)ei zle(iﬂj+l—$j)(€j_fo) _ (Z 35.)ei Zj;l(zjﬂ—zj)(gj—go).
j=1

Integrating by parts, we can write
(5.6) aEOquyjly--ij = —i(a&)@*)e_iq’ H(¢7on,j1,...,jgp)

L
+ 7N U@, 4(0e, B511) Xjouir,inP)
7=0

L
+e7 N N(®, B, (X s, inP)):
j=0

Here we note that

(5.7) (0¢; D5 +1)XijosjrrrinPs O, (Xjorjr,ernrinP) € Syttt

If we apply Corollary 3.1 (2) to the right hand side of (5.6) with M in Corollary
3.1 (2) replaced by M + p, then we have the estimate of O¢,qj, ji,...,jr- Estimates
for higher derivatives will be proved in a similar manner. It is enough to take
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L>n+1+landl} > [2M+2pl+2l'] +on4+ 140
3°.  Next we consider the case where R = 0. We change the variables:

(5.8) Yi =T; — :L‘;f,
n = gj - 5;7

for j =1,2,...,L. Then we have

L
(59) do = / ezna‘(xL-i-hnLayL""an17y1’£0)dejdnjv
RZnL ]:l
where
(510) a(xL+1anL’yL7"'7n1ay1a60)

= (XOp)(mL+l7§Z +7]L5$2 +yL7' .. ’g; +7’l7$>{ + ylaEO),
and

(5.11) I =®-9o*

L
==Yy —mi1)
i=1

~

1
+Zy (1_9)(82 ¢J)($ + 0yj, '—1+97Ij—1)d9'yj
Jj=1

\

0

™

+ / (1- 9)(35 ®j+1)(5 41 + 0yj+1, &5 + 6n;)db - n;
Jj=1

™~

1
/0 (1= 0)(B%, 00, 6,) (& + 003, € + Ony—1)dB - mys
2

+
J

-1

L 1
+ Z /0 (1 = 60)(e;410¢;0j41) (€541 + Oyjs1, & +6n;)dO - yj41,

=1
with 7 |, = zp41, §§ = €0, Yyo+1 =0 and no = 0.

For any a, 8, we define aq g(xr+1,7L,YL,---,71,¥1,&0) such that

L
(512) 8£L+, §OQO=/RZ L€maa,ﬁ($L+1,TIL,yL»~~-,771»y1»fo)dejdﬂj-
" j=1
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Note that

(5.13) 27H&) < (& +0m;) < 2(o),

for j=1,2,...,L and 0 <0 <1 on the support of a, g.
For any ag, Br+1 and non-negative integers K, K’, there exists a positive con-
stant C; such that

(5.14)

855:110(!00 (H aﬁ] )a’a’ﬂ TL+1,ML>YLy- -5, yla£0)

(mrs1)
S (C)71Pliat Bt aot Brsal+ Ko lat B+aotBr 1|+ K-

X (o) 2mims M3 A=PIBHBL 1 [=pleckeolt 3T, (1851/2= /)

ly,]l + (€0)™ 1/2 |771|

12, WL 12, WL ’

X (1 + <fo)1/2 )2|a+ﬁ|

for any |oj| < K and |3;| < K', j=1,2,...,L.
4°.  We restore the variables:

(5.15) z; = y; + xj,
&=mni+&,

for 7 =1,2,..., L. Then we have

(516) Leinaa,ﬁ(mL+17 NL,YL,---,M, y17€0) H dyjdn] = e_iq)*]l((b?paﬂ)v
R2n "
Jj=1
where
(517) pa,ﬁ(xL-l-l,é-Lal‘L)"'7517:1:1,60)
= aa,ﬁ(l‘L+17€L - {zAwL - il?}:, .. 751 - 6;71:1 - xLﬁO)'

For any non-negative integers K, K’, there exists a positive constant Cz such that

(5.18)

(Haﬂ, )Paﬁ TL41,8L,7L; - -5 €1, %1, €0)

B mi+(1-p)1Bl=plal+ 325 (1851/2—|ay1/2
< (Co 1Pl e o (o) rms TP AT 2y (12l

let+B
X (14 (602 _max |z — 25|+ (60) /2 _max |£j—£;|)2 "

§=1,2,.,L j=1,2,...,.L ’
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for any |a;| < K and |G| < K', j=1,2,...,L.

5°. Forj=1,2,...,L, let

(5.19) 2 = 0, ®
¢ = 0z,®.

Let ¥(zr+1,21,L, §~1,La &o) be the vector in (4.8) and A(z 41, Z1,L, ELL, o) the matrix
n (4.11). Since

(5.20) t(gl,LaZI,L) = —At(51,L,§~1,L) + \I/(a:L+1,51,L,gl,L,§o)»
“(0,0) = —A'(3] 1,47, ) + U(@L41, 7] 1, & 1 Eo),

we can write
1
(521) Yz, GL)=-A (Ian - A_l/ A0d9> "FL—-Z 6L — &),
0
where

(522) Mg =A(wp41, 75, + 0@ — 75 1), &0 + 0L — &0, &)

Furthermore, note that

(5.23) HA‘IHQ?#Q@ <1,
and
1 L+1 3

24 A < t: < —.
(5.24) /O odf o _3nn2]_§=} iS 3
Hence, we have
(5.25) 4 @rL — 35 0, €1 — & D)1 < 4ll*(Brr, G I
Therefore,

1/2 R -1/2 o

(526 (L) max oy - 3]+ ()Y _max g - €51)

L L
_4(1+ <so>1/2z|z,-|+<so>—1/2z:|<j|)
=1 =1

L L
<a L+ &)1z - I+ (626D
i a

L

L
H (14 (€o)lz M2 - TT + €y MG 1)

=1

l/\
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6°. Integrating by parts, we have

(527) H(q)’pa,ﬁ) = ]I(@)pg,ﬂ)7

where

(5.28)  plg = (Mp)HerPnti(ay ) etflanst.. (py)letBlintt

o (NPt Pt (N _ )2letBlntl (g 2letPlntip, 6.

Hence, there exists a positive constant C3 such that

(5.29)

7°.

107, ,,98,0] = [(®, P2, )|
L+1

Ly, ((mri1) i m+(1-p) 18] plal
< (03) Ipl330113-+L;|+n+1,3[a+fl|+n+1<§0>Zj_l ’ :

Now, we separate a, g in (5.11) depending on the degree of the term:

—1/2

(1+<fo>1/2. max | [yj| + (o)™ /" _max Llnjl),

to get a better estimate. Similarly, we can make better estimates for (5.12)—(5.29).

In particular, the new estimates for (5.29) is the following:

~ L+1
B oo Ly, (me+1) Yot mi+(-p)|Bl=plal
(5.30) |8IL+18€oq0| < (Cy) |p|2|a+ﬁ|+n+1,2|a+ﬁ|+n+1<€0> =t :
Therefore, in the case where R = 0, it is enough to take l; > n+ 1+ 2(l +1’) and
L>n+14+2(0+10). O
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