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＜内容梗概＞ 

本論文は、高速学習認識処理が可能でハードウェア実装が容易な、量子化ニ

ューロンモデルを用いたニューラルネットワークの研究成果についてまとめた

ものであり、基本構造とアルゴリズムに関する基礎検討、そのハードウェア化

(LSI化)、並びに実用商品への展開までを総括して述べる。 

 

第 1 章 序論 

    本章では、本研究の背景と目的について述べる。    

ユーザーの好みや使用される環境に適応して行く知的機器の開発が望まれて

いる中で、学習性を有し、柔軟な処理を行える可能性を秘めたニューラルネッ

トによる実現が期待されている。筆者は、上記知的機器の実現に向けて、(1) 高

速な学習認識と現場での追加学習が可能で、しかもハードウェア実装が容易な

ネットワークモデルを実現し、 (2)そのハードウェア化を行い、実用機器への

展開を図ることを目的に研究を行った。 

 

第 2 章 量子化ニューロンの基本モデルと処理アルゴリズム 

本章では、量子化ニューロンの基本構造と基本処理アルゴリズム、並びに量

子化ニューロンを用いたネットワーク構造と学習認識アルゴリズムについて説

明する。誤差逆伝播報による学習を用いた従来の階層型ニューラルネットワー

クと比較し、ハードウェア化が容易で、高速な学習と認識処理が可能であるこ

とを明らかにする。 

典型的なアプリケーションである文字認識への適用事例では、従来の階層型

ニューラルネットワークと比較して 10倍以上の高速学習認識が可能で、実用性

の観点で、飛躍的な性能向上が可能なことを検証する。 
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第 3 章 量子化ニューロンモデルを用いたニューラルネットワークのハードウェア化 

本章では、量子化ニューロンモデルを用いたニューラルネットワークのハー

ドウェア化の取り組みについて述べる。 

量子化ニューロンによるネットワークは、ソフトウェアによる実行でも実用

的には充分な高速学習認識性能を有するが、日本語文字認識等の大規模なネッ

トワークを必要とするアプリケーションや、産業分野における超高速な画像認

識においては、専用 LSI化による高速化が望まれる。 

作製した専用 LSI(QNC:Quantizer Neuron Chip)は、量子化ニューロンによるネ

ットワークをハードワイヤードで構成したもので、第 1層 64ニューロン、第 2

層 64×8ニューロン、第 3層 64×8×8ニューロン、第 4層 64×8×8×8出力端子、出

力層 64ニューロンを設けてあり、最大 4,736個のニューロンからなるニューラ

ルネットワークを実行可能にした。20.5G CPS(Connection Per Second)、20M 

CUPS(Connection Update Per Second)の実行速度を実証するとともに、この QNC

を用いた高速手書き数字認識システムを開発実用化した。また、QNC を並列に

結合することにより、日本語認識等に用いる大規模なネットワークをも構成可

能にした。これらの取り組みの詳細について述べる。 

 

第 4 章 適応増殖量子化ニューロン(ASQA)への拡張 

本章では、ネットワークの自己生成が可能な適応増殖量子化ニューロン

(ASQA:Adaptive Segmentation of Quantizer Neuron Architecture)への拡張について

述べる。一般的にニューラルネットワークでは、ネットワーク構成そのものは

最初の設計事項として固定であり、学習によるニューロン同士の結合荷重の変

更のみによって学習課題に対する適応性を確保している。従って、ニューロン

の数やネットワークの規模に関しては、試行錯誤的に決定するしか方法がなか

った。   

この課題に対応すべく、学習状況に応じてニューロンが分裂、増殖、結合し、
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最適なネットワークを形成可能な、適応増殖量子化ニューロンへの拡張を行っ

た。これにより、ネットワーク構成そのものも、学習により自動形成させるこ

とが可能になり、実用面での飛躍的な適応性を実現できた。 

    

第 5 章 適応増殖量子化ニューロン(ASQA)のハードウェア化 

本章では、適応増殖量子化ニューロン(ASQA)のハードウェア化の取り組みに

ついて述べる。自己増殖によるネットワーク自動生成を実現すべく、ニューロ

ン同士の結合荷重を外付けのメモリによって構成、ニューロ演算をシミュレー

トする演算部と、外付けメモリに保管したネットワーク中のニューロン同士の

結合荷重をアドレッシングするネットワークアクセス部とによって構成するこ

とで LSI化を試みた。作製した ASQAチップにより、手書き数字認識において

57,000 文字/秒の認識速度を実現した。この ASQA チップを用い、2,965 文字種

からなる漢字認識システムを開発し、構造化ニューラルネットワークによる外

部演算を含め、毎秒 570文字の認識速度と、認識率 98.8%を実現した。 

 

第 6 章 量子化ニューロンモデルの実用システムへの展開 

本章では、第 5 章で述べた文字認識システムの開発実用化に加え、量子化ニ

ューロンによるニューラルネットワークを用いた他の実用システムの開発の取

り組みと、実現した実用システムの性能について述べる。産業分野での展開で

は形状検査装置を開発実用化、民生分野では、ビデオムービーのガンマ補正に

適用、簡易ネットワークによるハードウェア化により、実用的商品を開発した。

何れのシステムにおいても、世界最高レベルの性能を有していることを示す。 
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第 7 章 総括 

本章では第 2章から第 6章までを総括し、結論とする。 

量子化ニューロンモデルは、、シンプルな構成と高速実行性を有し、ハードウ

ェア実装が容易なモデルであり、実用性の高いニューラルネットワークを実現

可能である。基本的なハードウェアとして、専用 LSI 並びに、民生機器にも実

装可能な小規模回路を開発し、すでに数多くの実用製品で用いられつつある。 

知的な認識処理を必要とする産業分野から、家電製品における知的制御まで、

幅広い商品分野での今後の実用展開が期待される。 
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第 1章 序論 

1.1 背景 

人間のように柔軟で知的な機械を実現したいという欲求や取り組みは古くか

らあり、その初期には「計算機械」の実現に向けた取り組みから始まっている。

最も原始的な「そろばん」は紀元前から存在するが、機械と言う観点では、1623

年にシッカート(Wilhelm Schickard, 1592-1635)が考案した機械式計算機

(Calculating Clock)が最も古いと考えられる。1645年には、パスカル(Blaise Pascal, 

1623-1662)がさらに進化した機械式計算機（Pascaline）を考案した(1)。加減算の

みの Pascalineに対し、1671年にライプニッツ(G.W. Leibniz, 1646-1716）は、四

則演算が行える計算機(Stepped Reckoner)を発明した(2)(3)(4)(5)。 

 時代が進み、1843年には、バベッジ(Charles Babbage, 1791-1871)が、蒸気機関

で動く解析エンジン(Analytical Engine)を構想し、開発に取り組んだ。解析エン

ジンは完成こそしなかったが、パンチカードによるプログラミング入力、記憶

装置、演算装置、カード穿孔機、印刷装置等を備えたものであった。記憶装置

にアドレスが無いため個別に指定できず、プログラム内蔵という概念もなく、

現代のコンピュータとは異なる所があるが、少なくともその一部の原型を備え

ていたと言える(6)。 

1946年には、エッカート(John Presper Eckert, 1919-1995)とモークリー（John 

William Mauchly, 1907-1980）らを中心とするグループが、電子式計算機であるエ

ニアック(ENIAC)を開発、ノイマン型である現在のコンピュータへと発展し、

社会における様々な分野で大きく貢献した。 

しかしながら、以上述べた機械は計算を高度に、あるいは高速に行えるもの

であって、人間の高度な認識や判断、理解を代行できるものではなかった。エ

ニアックの誕生以来、コンピュータの能力を計算以外でも活用しようとする取

り組みが活発化した。シャノン(Claude Elwood Shannon, 1916-2001)は 1937年に
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ブール代数の公理系を電子回路で表現できることを示し、1948 年には情報伝達

の本質を情報理論として体系化した(7)。ウィーナー(Norbert Wiener, 1894-1964)

は生理学、機械工学、システム工学を統一的に扱おうとするサイバネティクス

を創始した (8)。彼らの取り組みにより情報という概念が確立した。マッカーシ

ー(John McCarthy)らは、「人工知能」(AI:Artificial Intelligence)に関する夏期研究

会を 1956 年にダートマスで開催することを提案(ダートマス会議)(9)、以降 AI

に関する研究が盛んになり、日本でも AIを中心とした「第五世代コンピュータ」

等の研究開発が行われた。これらの取り組みにより、プログラム言語や知識表

現法、言語処理や推論機構等の技術が大きく発展したが、人間がいともたやす

く行える文字認識や画像認識、音声認識等の問題で共通に存在する、「あいまい

さ」や「ゆらぎ」への対応の点で課題を残した。 

これらの課題に対し、記号処理的手法、あるいは知識表現的手法ではなく、

人間や生物の知的な機能の根源である、神経細胞の機能までさかのぼって解明

しようとする取り組みも始まった。1943 年、マッカロックとピッツは生体の神

経細胞の動作を数理モデル化した「形式ニューロン」(formal neuron)を考案(10)、

1958 年にはローゼンブラットが、この人工的な形式ニューロンを用いて層状に

ネットワークを形成した「パーセプトロン」を提唱(11)、その学習機能を実証し

た。しかしこのパーセプトロンは線形分離しか行えないという欠点があり、ニ

ューラルネットワークに対する研究は一時下火となったが、基礎的な取り組み

は継続され着実に成果を上げるようになった。1969 年中野馨は、自己想起、連

想記憶が可能な、相互結合型のニューラルネットワークによる「アソシアトロ

ン」(13)を提唱、1975 年には福島邦彦が、文字認識が可能な自己組織的認識シス

テム「コグニトロン」(14)を提唱した。1982年にはホップフィールド（John Joseph 

Hopfield）が、非同期型の相互結合型ネットワーク(Hopfield Network)によって連

想記憶が可能であることを示し、1986年、ラメルハート(David E. Rumelhart)らは、

誤差逆伝播学習法を用いることで階層型ニューラルネットワークの学習が可能
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であることを示した(15)。 

以上のような研究成果により、ニューラルネットワークが再び脚光を浴びる

ようになり、ニューラルネットワークに対する研究は、数理的研究段階から工

学的研究開発、実用化段階に入った。 

ユーザーの好みや使用される環境に適応可能な知的機器を実現するためのニ

ューラルネットワークの要件を、実用化の視点から整理すると、 

(1)学習に基づく識別境界の優れた非線形分離性能 

(2)予め分かっているデータを学習するだけで、未学習のデータであっ 

ても柔軟、正確に認識可能な未学習認識性能 

(3)学習済みデータを用いず、実用現場で得られる追加学習データのみ

による学習で、学習済みデータの認識率を維持しながらも高速に学

習可能となる追加学習性能 

となる。さらには機器への実装を考慮すると、 

(4)処理が軽く高速で、ハードウェア実装が容易な、ニューラルネット

ワークモデル 

(5)上記モデルを用いたハードウェア化による高速処理 

・大規模カテゴリの学習認識へも対応可能なハードウェア構造 

・民生用機器向けのコンパクトなハードウェア 

等を実現する必要がある。以上の要件の実現に向け、様々なニューラルネット

ワークの研究開発が行われてきた。 

誤差逆伝播学習法を用いた階層型ニューラルネットワークは優れた学習性と

非線形分離性能を有する事が実証されており、実用化に向けた多くの研究開発

がなされた。アプリケーションへの適用研究だけでなく、中間層ニューロンの

必要最小限化によるネットワーク規模の削減や効率化の取り組み(19)(27)も行われ

てきた。これらの取り組みにより、前述の要件(1)と(2)に示した、学習に基づ

く非線形分離性能や未学習認識性能に関しては実現されつつある。しかし学習
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に長い時間を要し、前述の要件(4)と(5)に示したハードウェア実装と高速処理

の面で課題を残している。また誤差逆伝播学習法を用いた階層型ニューラルネ

ットワークは、学習済みのネットワークに対し追加学習による微調整を行った

場合、学習済パターンの認識率が低下してしまう課題があり、この課題の解決

に向け、メタ学習による追加学習法(20)も提案されてきているが、これらの方法

はメタ学習を行う新たなネットワークを付加する必要があり、前述の要件(3)に

示した追加学習性能に関しても一部課題を残している。 

比較的良好な追加学習性を有するニューラルネットワークモデルとして、学

習ベクトル量子化(LVQ:Learning Vector Quantization)(16)(17)、並びに RCEネットワ

ーク(Restricted Coulomb Energy Network) (18)を挙げることができる。LVQは、入

力パターンに対する最近傍ニューロン選択とそれに関する局所的な重み変更に

より学習を行うモデルであるため、追加学習による学習済パターンの認識率低

下が比較的少ない。また、RCE ネットワークは、追加パターンと学習済みのパ

ターンとの距離に応じて自動的に中間層ニューロンを生成するモデルで、高い

追加学習性を有している。しかしながら、どちらのモデルもベクトル間の距離

演算を必要とし、階層型ニューラルネットワークと同じく、前述の要件(4)と(5)

に示したハードウェア実装と高速処理の面で課題を残している。 
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1.2 研究の目的と概要 

 以上 1.1節で述べた背景の下、筆者はユーザーの好みや使用される環境に適応

可能な知的機器の実現に向け、 

(1) 高速な学習認識と追加学習が可能で、しかもハードウェア実装が 

容易な、新ニューラルネットワークモデルの創出 

(2) 新ニューラルネットワークモデルのハードウェア化 

(3) 実用機器への展開 

・文字認識装置への展開 

・画像認識装置への展開 

・画像処理装置への展開 

を目的に研究を行った。 

高速な学習認識と追加学習、並びにハードウェア実装を実現するために、階

層間の全ての結合係数を学習により最適化するのではなく、認識対象となる信

号を予め大ぐくりに分別した上で、学習による結合荷重変更を行うことで、ベ

クトル間の距離演算や指数関数演算等を必要としない新たなニューラルネット

ワークモデルである量子化ニュ－ロンモデルを提案、高速学習性と優れた追加

学習性を実証、そのハードウェア化を行い、文字認識装置への実用化展開を図

った。 

さらにはネットワークの自己生成が可能な適応増殖量子化ニューロン

(ASQA:Adaptive Segmentation of Quantizer Neuron Architecture)への拡張を行った。

一般的にニューラルネットワークでは、ネットワーク構成そのものは最初の設

計事項として固定であり、学習によるニューロン同士の結合荷重の変更のみに

よって学習課題に対する適応性を確保している。従ってニューロンの数やネッ

トワークの規模に関しては試行錯誤的に決定するしか方法がなかったが、適応
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増殖量子化ニューロンを用いることで、学習状況に応じてニューロンが分裂、

増殖、結合し、最適なネットワークを形成可能になり、実用面での飛躍的な適

応性を実現できた。適応増殖量子化ニューロンのハードウェア化にも取り組み、、

ニューロン同士の結合荷重を外付けのメモリによって構成、ニューロ演算をシ

ミュレートする演算部と、外付けメモリに保管したネットワーク中のニューロ

ン同士の結合荷重をアドレッシングするネットワークアクセス部とによって構

成することで、自己増殖によるネットワーク自動生成が可能な LSIを実現した。

作製した ASQAチップにより、手書き数字認識において毎秒 57,000文字の認識

速度を実現した。この ASQAチップを用い、2,965文字種からなる漢字認識シス

テムを開発し、構造化ニューラルネットワークによる外部演算を含め、毎秒 570

文字の認識速度と、認識率 98.8%を実現した。 

文字認識システムの開発実用化に加え、量子化ニューロンによるニューラル

ネットワークを用いた他の実用システムへの展開を図った。画像認識装置への

展開においては、機構部品の形状検査装置を開発実用化した。この装置は毎秒

143枚の速度で画像中の物体形状認識が可能である。 

画像処理装置への展開においては、画像のガンマを最適に制御可能なニュー

ロガンマ処理法を構築、民生機器にも適用可能な小規模回路構成を新たに創出

することで、逆光フリービデオムービーの商品化を実現した。 
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第 2章 量子化ニューロンの基本モデルと処理アルゴリズム 

 

2.1 量子化ニューロンの構造と動作 

誤差逆伝播法による学習を用いた階層型ニューラルネットワークは優れた学

習性と非線形分離性能を有し、さらには、メタ情報による追加学習機能等も提

案されてきている。しかしながら、各階層のニューロン間の結合荷重を全て学

習によって形成するため、学習に時間を要し、実行速度、並びにハードウェア

化の点で、実用化に際しての課題が存在する。 

そこで、各階層間のニューロン同士の結合荷重を全て学習によって形成する

のではなく、認識対象となる特徴データを予め大ぐくりに分類し、分類したデ

ータごとに、最終層のニューロンとの結合荷重を学習によって形成することで

上記課題を解決すべく、新たなモデルの創出に取り組んだ。その結果、高速な

学習認識と追加学習が可能で、しかもハードウェア実装に適した「量子化ニュ

ーロンモデル」を新規提案し、その導入を図ることができた。 

図 2.1に量子化ニューロンの基本構造を示す。量子化ニューロンは量子化信号

入力端子 Rから入力された特徴データ x を、出力端子数に応じたレベル数(図 2.1

の場合には 5 レベル)で量子化し、この量子化値 c に応じて、r 番目の出力端子

の結合荷重τr を、式(2.1)に示すように、結合関数 g を用いて設定する。次に、

式(2.2)に示すように選択信号入力端子 S から入力された伝達信号 t に、結合荷

重τr を掛け合わせて出力値 yr を求め、上層に結合した量子化ニューロンの選択

信号入力端子 Sに入力する。 

τr = g (r, c)      (2.1) 

     この時  c = [ x ]  ( [ ] は量子化関数 )   

yr= tτr           (2.2) 

 



  
  

- 8 - 

 

 以上の量子化ニュ－ロンの動作をまとめると、認識対象となる量子化入力信

号を離散値に量子化して出力端子にマッピングし、出力端子ごとの結合荷重を、

量子化入力信号に応じて設定し、多重に閾値処理を行うもので、これにより認

識対象となる信号を予め大ぐくりに分別することができる。またこの処理は距

離演算等を伴なわず、高速に実行が可能である。図 2.2は 3つの出力端子を持つ

量子化ニュ－ロンを例に、この動作の概要をに示したものである。量子化器は、

量子化信号入力端子から入力された特徴デ－タを、レベル 0からレベル 2の、3

レベルに量子化する。また結合荷重τ も、0から 2の 3レベルに設定する。この

時、量子化入力信号の大きさが中程度で、レベル 2に量子化された場合、端子 2

端子 1      2     3 

 大 

信号入力 

出力小 

出力中 

出力大 

τs 

τm τb 
端子 1 

端子 2 

端子 3 

端子 1     2     3 

量子化器 中 

信号入力 

出力小 出力小 

出力大 

τs 

τm 

τb 

端子 1 

端子 2 

端子 3 

端子 1     2     3 

量子化器 小 

信号入力 

出力小 

出力中 

出力大 

τs 

τm 

τb 

端子 1 

端子 2 

端子 3 

図 2.2 量子化ニューロンの動作と結合関数 

2 

1 

0 

結合関数と 

結合荷重の例 

2 

1 

0 

 

量子化 

ニューロンの 

動作 
量子化器 

2 

1 

0 

量子化器 

τ1 
τ2 τ3 τ4 

τ5 
R 

S 

特徴データ入力  x 

選択信号 t 

図 2.1 量子化ニューロンの基本構造 
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の結合荷重τmが大きく設定(例えば 2 に)され、出力端子 1 及び 2 の結合荷重τb

及びτs は小さく(例えば 1 に)設定される。量子化入力信号の大きさが大、小の

場合にも同様にして、各端子の結合荷重 τb、τm、τsが量子化入力信号に応じて

設定される。これらの動作は、式(2.3)として記述することもでき、ファジィ推

論の前提部と同様の手続き記述型の処理となっており、またこれらの動作によ

り、選択信号入力の伝達方向の振り分けを行うことができる。 

   if  quantized data = 0 then   τs= 2; τm= 1; τb= 0 

if  quantized data = 1 then   τs= 1; τm= 2; τb= 1       (2.3) 

if  quantized data = 2 then  τs= 0; τm= 1; τb= 2 

 

2.2 量子化ニューロンを用いた機能別階層ネットワーク(MFLN) 

 

2.2.1 機能別階層ネットワークの基本構成 

 図 2.3 に、量子化ニュ－ロンを用いたニュ－ラルネットワ－ク(機能別階層ネ

ットワ－ク:MFLN)の構成例と、各層のニュ－ロン間の結合荷重が設定される様

子を模擬的に示す。この図は、3 種類の系列からなる I 次元のデ－タを P 種類

のカテゴリ－にクラスタリングする場合の構成例を示したものであり、第１層

t =1 Selection signal 

i=1 to I 

j=1 to J 

k=1 to K 

h=1 to H 

p=1 to P 

第 2 特徴 
データ 

第 1 特徴 
データ 

各層の結合関数と 

結合荷重の例 

第 3 特徴 
データ 

xj 

xk 

xn 

1.0 

0.8 1.0 

1.0 
0.75 0.75 

1.0 

0.5 

0.8 

0.3 

0.225 0.1

0.75 0.75 τij 

τijk 

τijk

τijkhp 

τij ･ τijk ･ τijkh ･

図 2.3 機能別階層ネットワークの構成例 

第 1 層 

第 2 層 

第 3 層 

第 5 層(出力層) 

第 4 層(端子層) 
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から第 3 層までを量子化ニュ－ロンを用いて構成し、第 4 層は端子層のみを設

けた。これに通常のニュ－ロンから成る第 5 層(出力層)を連結する。第 1 層は

デ－タの次元数に対応する I 個の量子化ニュ－ロンからなり、それぞれの量子

化ニュ－ロンに、第 1 層目の量子化レベル J に対応する J 個の第 2 層目のニュ

－ロンを連結する。第 2 層の各量子化ニュ－ロンには、第 2 層目の量子化レベ

ル K に対応する K 個の第 3 層目の量子化ニュ－ロンを連結する。第 3 層の各

量子化ニュ－ロンには、第 3 層目の量子化レベル H に対応する H 個の出力端

子を第 4 層として連結する。以上のように、第 1 層の各量子化ニューロンに、

木分岐的に第 2 層目以降の量子化ニューロンを順次連結してネットワークを構

成した。図 2.4は、第 1層中のニューロン Qi上に、J、K、Hをそれぞれ 3とし

て構成した木分岐構造の例を示す。この木分岐構造は、第 1 層のニューロン数

と同数存在する。ここで第 1層目のニューロン番号は i、ニューロン Qi の出力端

子番号は j、従って第 2 層目のニューロン番号は ij となる。ニューロン Qijの出

力端子番号は k で、よって第 3層目のニューロン番号は ijk となる。またニュー

ロン Qijk の出力端子番号は h となり、第 4層目の端子番号(第 4 層目は単なる端

子層)は ijkh となる。端子総数は I×J×K×H個となり、第 4層目の全端子 QTijkh と

P 種類のカテゴリに対応する P 個の出力層のニュ－ロンとを相互連結し、ネッ

トワ－クを構成した。 

Qi 

Qi1 Qi2 Qi3 

Qi11 Qi12 Qi13 Qi21 Qi22 Qi23 Qi31 Qi32 Qi33 

第 1 層 
Qi+1 Qi+2 

第 2 層 

第 3 層 

第 4 層 (端子層) 
 

QTi111 

QTi113 
QTi112 

第 5 層（出力層） 

k=1  

h=1 2  3 

j=1   2    3 

2 
  

3  

図 2.4 木分岐構造によるネットワークの詳細例 
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2.2.2 機能別階層ネットワークの基本認識過程 

まず初めに、第 1 層の量子化ニューロン全ての選択信号入力端子に、スカラ

ー値として“1”を入力する。第 1層から第 3層までの量子化ニューロンは、量子

化入力端子に入力した認識対象となる信号の、大ぐくりな分類結果に基づいて

次層の量子化ニューロンとの結合荷重を設定する。第 1 層の量子化ニューロン

の選択信号入力端子に入力した信号が各層の量子化ニューロンを伝達する中で、

これらの結合荷重によって重み付けされて第 4 層まで到達、第 4 層と出力層で

ある第 5 層との間で学習によって形成された結合荷重を掛け合わせ、第 5 層よ

り最終識別結果を出力する。以上のプロセスについてさらに詳細に説明する。 

第 1層目から第 3層目までの各ニュ－ロンの量子化信号入力端子 Rに、認識

対象となる第 1 番目から第 3 番目までの特徴デ－タをそれぞれ入力する。各層

の量子化ニュ－ロンは、入力された特徴デ－タを各層に対応した量子化レベル

にそれぞれ量子化し、次層のニュ－ロンとの結合荷重τ を、結合関数 g に基づ

いて設定する。第 1層から第 3層の任意の層中の量子化ニューロン番号を{nn}、

出力端子番号を、これに連結した次層の量子化ニューロン番号（第 4 層の場合

は端子番号）を{nn}r、次層のニューロンとの結合荷重をτ{nn}r とした場合、結合

関数 gは、例えば式(2.4)に示すように、入力データ x の量子化値 c と一致する

出力端子番号 r で極大値を持つような 2 次関数によって記述でき、結合加重

τ{nn}r を式(2.5)によって設定する。 

  g ( r, c )=1 – β  ( r – c ) 2      (2.4) 

  τ{nn}r = g ( r, c )       (2.5) 

   但し、g ( r, c ) ≦ 0 の場合:τ{nn} r = 0   

また、 {nn}=i  ：第 1層目のニューロンの場合 

    {nn}=ij ：第 2層目のニューロンの場合 

    {nn}=ijk：第 3層目のニューロンの場合 
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第 3 層の出力端子と最終出力層との結合荷重は学習によって形成されたもの

で、最終出力層の P 個の通常のニュ－ロンは式(2.6) に示すように、下層のセル

から送られた信号と学習によって形成された結合係数τijkhp との積和をとり、閾

値関数 f に基づいて発火出力 yp を出す。最終出力層の最大出力を出しているニ

ューロンの番号、すなわちカテゴリ番号を、ネットワークが出した認識結果と

する。 

  

 
y p = f ( t  τ ij τ ijk τ ijkh τ ijkhp  Σ 

h=1
Σ 
k=1 

Σ 
j=1 

Σ 
i=1  

  ) 
I  J K H 

  
(2.6)

 

i：第 1層ニュ－ロン番号(=1 to I ) 

j：第 1層ニュ－ロン出力端子番号(=1 to J )  

k：第 2層ニュ－ロン出力端子番号番号(=1 to K ) 

h：第 3層ニュ－ロン出力端子番号(=1 to H ) 

p：最終出力層ニュ－ロン番号(=1 to P ) 

            t：選択信号(=1),  τ：結合荷重 ,   g：結合関数  

 f：閾値関数 ,   ｙp：発火出力    

  τ'ijkhp= τijkhp+δ       (2.7)        

 

2.2.3 機能別階層ネットワークの基本学習過程 

基本認識過程において、最大出力を出している最終出力層のニューロンの番

号が正しいカテゴリ番号を示す教師信号と一致しない場合、式(2.7)に示す荷重

変更則に基づき、これらが一致する方向に向けて、第 4 層と最終出力層との結

合荷重τijkhp を変更(δだけ増加)することで学習を行わせる。 

第 3 層に選択入力信号が届いた時点で、量子化ニューロン同士の結合荷重に

よる重み付けにより、認識対象となる特徴データの大ぐくりな分類ができてお

り、比較的容易に、しかも高速に学習を行わせることが可能となる。 
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2.3 量子化ニューロンの文字認識への適用による性能検証 

 以上説明した量子化ニューロンによる機能別階層ネットワークを、典型的、

かつ実用的な課題である 62文字種（0から 9、aから z、Aから Z）からなる英

数字文字認識に適用することで学習認識性能の検証実験を行い、量子化ニュー

ロンモデルの動作とその有効性の実証を行った。検証実験では異なる字体のフ

ォントを複数使用し、フォントの差により文字形状が異なっても、同じ文字種

であれば同じカテゴリとして認識結果を出すように教師付学習を行った。認識

率の測定でも同様に、フォントの差によらず正しカテゴリ（文字種）として出

力した場合に正解として認識率を測定した。なお全ての性能検証は、ワークス

テーション(Spark2)を用いたシミュレーションにより行った。 

 

2.3.1 学習認識検討に用いた文字データ 

 英数 62字種からなる 23フォントの文字中、13フォントを学習に用い、残り

10 フォントを未学習の文字の認識性能評価(未学習認識率)に用いた。図 2.5 に

実験検討に使用した文字データの例を示す。 

図 2.5 学習認識実験に使用した文字データの例 
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2.3.2 特徴データ抽出方法 

 図 2.6は文字認識に用いる特徴デ－タの抽出方法を示したものである。2値イ

メージとして取り込んだ文字を外接する方形の大きさで切り出し、 8×8 のメッ

シュをかけた上で各メッシュの濃度を演算し、(1)8×8のメッシュ濃度、(2)メッ

シュ濃度の横方向微分値、及び (3)メッシュ濃度の縦方向微分値を求め、8ビッ

トで正規化し、機能別階層ネットワークに入力するようにした。 

 

2.3.3 ネットワーク構成 

 図 2.7に、文字認識性能の評価実験に用いたネットワークの構成を示す。文字

認識に用いる特徴データである 8×8=64 個のメッシュ濃度に対応する、N=64 個

の、図 2.4に例示したような木分岐構造を構成した。具体的には、第 1層を 8×8

のメッシュ数に対応する N=64個の量子化ニューロンによって構成、各ニューロ

ンの量子化入力端子に入力したメッシュ濃度を 8 レベルで量子化し、64 個のニ

ューロン各々に、量子化レベル 8 に対応する 8 個の第 2 層目のニュ－ロンを連

結した。第 2 層目のこれら 8 個全てのニューロンに、当該ニューロンが属する

木分岐構造に対応したメッシュ濃度の横方向微分を入力(8 個のニューロンには

全て同じ値を入力）、第 2層目はこれを 8レベルで量子化し、これに対応する 8

AA 
外接方形形状での

文字切り出し 

8X8の 

メッシュ作成 

 

各メッシュの濃度演算 

図 2.6 入力特徴量の抽出方法 

A 
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個の第 3 層目のニュ－ロンを連結した。これら 8 個全てのニューロンに、当該

ニューロンが属する木分岐構造に対応したメッシュ濃度の縦方向微分を入力、

これを 8 レベルで量子化することにし、量子化レベル 8 に対応する 8 個の第 4

層目の端子を連結した。従って、第 4層を 64×8×8×8個の端子によって構成した。

最終出力層には英数字 62 字に対応する 62 個の通常の閾値処理ニューロンを配

置し、第 4層目の全出力端子と相互連結してネットワ－クを構成した。 

 

2.3.4 学習認識実験方法 

2.3.4.1 学習処理 

 学習処理では、各フォントの各文字種の特徴データ(8×8 の各メッシュ濃度、

メッシュ濃度の横方向微分値、メッシュ濃度の縦方向微分値)を順次入力、各フ

ォント、各文字種ごとに 2.2.1項で示した基本認識過程を実行し、最終出力層の

最大出力を出しているニューロンの番号を求めた。この時、式(2.4)におけるβ

を 0.5に、式(2.7)のδ を 1に設定した。この出力結果が英数字のカテゴリ番号（文

字種）を示す教師信号と一致しない場合に、すでに式(2.7)に示した荷重変更則

 選択信号  t =1 

8 

i=1 to 64 

j=1 to 8 

k=1 to 8 

h=1 to 8 

p=1 to 62 

8 横方向微分データ 

メッシュ濃度データ 

8 縦方向微分データ 

図 2.7 文字認識性能評価に用いたネットワーク構成 

第 5 層（出力層） 

第 3 層 

第 2 層 

第 1 層 

（入力層） 

第 4 層 

（端子層） 
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よって、これらが一致する方向に第 4 層の出力端子と出力層のニューロンとの

結合荷重τijkhp を変更した。出力結果が教師信号と一致する場合には何もせず次

の文字種の入力を行い学習を進めた。なお学習に用いた全てのフォントの全て

の文字種の入力による一連の学習処理を 1回の学習回数としてカウントした。 

 

2.3.4.2 認識処理 

 毎回の学習処理が終了するごとに、全フォント(学習フォント 13、未学習フォ

ント 10)全文字種の特徴データをネットワークに入力し、出力層の最大出力を出

しているニューロンの番号を求め、教師信号との一致率を文字認識率として測

定した。 

    

2.3.4.3 初期学習性能評価 

 英数 62字種からなる 23フォントの文字中、13フォントを学習に用い、残り

10 フォントを未学習文字の認識性能評価(未学習認識率)に用い、学習フォント

並びに未学習フォントの認識率と学習回数との関係を調べた。 

    

2.3.4.4 追加学習性能評価 

13 フォントを初期学習済みのネットワークに対して、未学習フォント中の 7

フォントのみを用い、この 7フォントの認識率が 100%になるまで追加的に学習

を行わせ、学習に要する速度を測定するとともに、初期学習に用いた 13フォン

トの認識率がどのような影響を受けるかを調べた。 

    

2.3.5 学習認識実験結果 

2.3.5.1 初期学習特性 

図 2.8にMFLNの初期学習の特性を示す。23回の学習で、13の学習フォント
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の認識率が100%となり、またこの時の未学習フォントの認識率は72%に達した。 

表 2.1 に他のニューラルネットワークモデル((1)Multi layered neural network 

with back propagation(いわゆるバックプロパゲーションモデル)、(2)Learning 

vector quantization、(3)RCE network)との初期学習速度の比較を示す。MFLNは、

バックプロパゲーションモデルの約 10 分の 1 の学習回数、約 40 倍の学習速度

を実現できることがわかる。 

    

 

Learning speed  
model  Iteration  Time [ min ] 

MFLN 23 4.5 

Multi layered neural 
network with BP 

200 192 

never went up to 100% in 250 minutes    

RCE network 17 

LVQ3 20 170 

5 

表 2.1 他のニューラルネットワークモデルとの初期学習速度の比較 
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open test of 10 fonts 

Number of learning iterations    

A
c
c
u
ra
te
 a
n
s
w
e
r 
ra
te
 
 
[ 
%
 ]
 

図2.8 文字認識課題に適用した場合のMFLNの初期学習特性 
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2.3.5.2 追加学習特性 

［追加学習速度］ 

図 2.9に、他のニューラルネットワークモデルとの追加学習特性の比較を示す。

図に示すように、MFLNは 3回の学習で追加学習フォントの認識率が 100%とな

り、他のモデルと比べ、最も高速に追加学習を行うことができた。 

表 2.2に、追加学習速度、並びに 13の初期学習フォント認識率の変化の比較

を示す。MFLNの追加学習速度は 83秒で、バックプロパゲーションモデルの約

600倍の速度で学習できることがわかる。 

 

    

120 60 0 

Learning time [ sec ] 

A
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ra
te
 [
 %
 ]
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95 

100 
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図 2.9 他のニューラルネットワークモデルとの追加学習特性の比較 

              BP: Multi layered neural network with back propagation 

  LVQ: Learning vector quantization 

  RCE: RCE network 

  MFLN: 機能別階層ネットワーク 
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  Supplemental  
learning speed  

Model 

MFLN 83 97.4 

Multi layered neural 
network with BP 

4,800 94.5 

RCE network 96.4 

LVQ3 3874 96.5 

Recognition accuracy of the          

13 initial learning fonts  [%] 
[sec] 

652 

表 2.2 他のニューラルネットワークモデルとの追加学習特性の比較 

    

［初期学習フォントの認識率変化］ 

表 2.2に示すように、7フォント追加学習後の 13初期学習フォントのMFLN

による認識率は 97.4%で、追加学習による初期学習結果の影響が他のネットワー

クモデルに比べ最も少なく、高い初期学習フォントの認識率を実現している。 

    

    
    
2.4 量子化ニューロンの基本性能のまとめ 

量子化ニューロンモデルとこれを用いた機能別階層ネットワークを提案し、

典型的なアプリケーションである文字認識に適用して、その基本性能の検証を

行った。MFLN の学習速度は、他のニューラルネットワークモデルに比べ極め

て高速で、代表的モデルであるバックプロパゲーション学習による階層型ニュ

ーラルネットワークに比べ、約 10 分の 1 の学習回数、約 40 倍の学習速度を実

現できた。 

追加学習も極めて高速に行え、代表的モデルであるバックプロパゲーション

モデルに比べ 600倍以上の高速学習を実現できた。また初期学習フォント(学習

済みのデータ)を用いず、追加学習フォント(実用現場で得られる追加学習デー

タ)のみによる追加的な学習を行っても、過去に学習した初期学習フォント(学

習済みのデータ)の認識率を 97.4%と、非常に高く維持することができ、ユーザ

ーの好みや使用される環境に適応して行く機器に向けた基礎能力を実証できた。 
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第 3 章 量子化ニューロンモデルを用いたニューラルネットワークの 

ハードウェア化 

    

量子化ニューロンによるネットワークは、ソフトウェアによる実行でも実用

的には十分な高速学習認識性能を有するが、日本語文字認識等の大規模なネッ

トワークを必要とするアプリケーションや、産業分野における超高速な画像認

識においては、専用 LSI化による更なる高速化が望まれる。 

文字認識や画像認識等の実用的なアプリケーションへの適用を可能にするた

め、4,736 ニューロンからなるネットワークを高速で実行可能な専用 LSI(QNC:

量子化ニューロンチップ)とこれを用いた量子化ニューロンボードを開発した。 

量子化ニューロンチップは第 1層(入力層)64ニューロン、第 2層 64×8ニュー

ロン、第 3層 64×8×8ニューロン、第 4層 64×8×8×8端子、出力層 64ニューロン

からなり、20.5G CPS、20M CUPSの性能を実現した。また、量子化ニューロン

チップを並列に結合することにより、出力層のニューロン数を自在に拡張可能

であり、日本語認識等に用いる大規模なネットワークの構成も可能にした。 

 

3.1 量子化ニューロンチップ(QNC)の基本構造 

 量子化ニューロンによるネットワークをハードワイヤードで構成し、高速実

行を可能にした。膨大な量のシナプス結合の処理を高速に行わせるために、新

たな２つのスキームを導入した。一つ目は、「量子化ニューロン演算のコンカレ

ント実行」であり、これにより、量子化ニューロンの処理を超並列に行うこと

ができる。二つ目のスキームは「不要演算削除処理」であり、これにより、結果

に意味を成さない 0の乗算を削除し、高速な処理を行わせることができた。    
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図3.1 量子化ニューロンチップのブロック図  

3.1.1 量子化ニューロンチップの基本回路構成 

    MFLN の 3 つの入力レイヤーの演算を行う 3 つの演算回路と、出力ニューロ

ン層の演算を行う演算回路を独立に設け、それぞれを同時並列演算すると同時

に、各入力レイヤー中の各ニューロンの演算をもコンカレントに実行可能な回

路構成を実現することで、超高速なネットワーク演算を可能にした。以下、そ

の構成について詳細に述べる。 

 図 3.1 に量子化ニューロンチップのブロック図を示す。QNC を 3 つの量子化

ニューロンブロック(QN block)、乗算 ROM(MPY-ROM)、出力ニューロンブロ
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ック(output neuron block)、荷重変更器(weight modifier)、カウンタブロック

(counter block)、及びメインコントローラ(main controller)とによって構成するこ

とで、3つの入力層と出力層のニューロンの同時並列演算を可能にした。 

 図 3.2に、量子化ニューロンブロック(QN block)の詳細を示す。各量子化ニュ

ーロンブロックは、結合関数 RAM(CRAM)、量子化テーブル RAM(LRAM)、入

力 RAM(IRAM)、アドレス変換器(Address converter)によって構成することで、

全ての入力層の全量子化ニューロンをシミュレート可能にした。 

3bits × 8words のメモリからなる CRAMは、2.2.3項の式(2.4)で示した結合関

数をテーブルとして保存する。256 words ×3bitsのメモリからなる LRAMは、量

子化テーブルを保存し、入力データを 8 レベルにマッピングして量子化する。

64 words × 3bitsのメモリからなる IRAMは、LRAMによる量子化結果を保存す

る。MPY-ROMは 3つの QN Blockの信号を乗算し、第 3層の量子化ニューロン

の発火値を演算する。 

出力ニューロンブロック(output neuron block)は、64個の出力ニューロンをシ

ミュレートする。外部接続メモリ(external weight memories)に保存したシナプス

荷重とMPY-ROMの発火値の積和をとり、結果を出力RAM(ORAM)に保存する。 
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図3.2  量子化ニューロンブロック(QN Block)の詳細 
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荷重変更器(weight modifier)は、学習モード時のみに働き、MPY-ROMの値と

外部接続荷重のメモリに保存したシナプス荷重の値に応じ、荷重変更則を用い

て、荷重変更後のシナプス荷重を求める。 

以上の構成により 64次元×3 = 192次元のデータ入力と 64次元の出力を行う機

能別階層ネットワークをシミュレート可能な量子化ニューロンチップを実現し

た。 

カウンタブロック(counter block)を 5つのカウンタと 3つのレジスタによって

構成し、これにより入力層と出力層の演算中のニューロン番号を供給する。入

力カウンタ icは、各 QN Blockの IRAM中にある入力データのアドレスを示し、

L1、L2、及び L3カウンタは、それぞれ各 QN Blockの CRAM中に保存した結合

関数の、所定の読み出しアドレスのカウントに用いる。W1、W2、及びW3レジ

スタは、L1、L2、及び L3カウンタによってカウントアップする結合関数の有効

領域を設定するが、このWレジスタの動作と目的については後で詳細に説明す

る。出力カウンタ ocは、ORAM中に保存した出力値のアドレスを指し示す。従

って、これらのカウンタをインクリメントすることで、各 QN Blockは、各入力

層中の全ての量子化ニューロンをシミュレートできる。 

メインコントローラ(main controller)はホスト CPUの I/Oスペースへのレジス

タのマッピングを行い、これによりホスト CPUは、ニューラルネットワーク構

造に関する全てのパラメータのセッティング、実行モード(学習または認識)の

設定、データの入力、演算の実行タイミングを制御できる。 

 

3.1.2 量子化ニューロン演算のコンカレント実行 

前述した 3つの QN Blockは並列に動作するだけでなく、各 QN Blockにおい

て、出力値と出力端子番号の演算とをコンカレントに行う。具体的には、3つの

QN Blockの出力値はMPY-ROMにより、第 3層の量子化ニューロンの発火値と

して変換されると同時に、外部メモリに保存したシナプス結合荷重のアドレス
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を、QN Blockの出力端子番号と、入力カウンタ icと出力カウンタ ocの値によ

って一義的に変換し、また、これらの変換を同時並列で実行する。 

以上のプロセスにより、大規模なシナプス荷重を有するネットワーク構成で

あっても、非常に高速な学習と認識の処理を可能とした。 

 

3.1.3 不要演算削除処理 

演算の高速化を図るためには、0の乗算等の不要演算の削減も重要な要素であ

る。例えば図 3.3 に示す結合関数が CRAM に設定されている場合、量子化ニュ

ーロンの 8つの端子中 5つの端子の結合荷重が 0、従って出力値が 0になり、こ

れら 0の値を持つ端子の乗算を省くことで高速化を図ることができる。 

QNC の学習、認識実行時には、5 つのカウンタ(ic、 L1、 L2、 L3、 oc)を

インクリメントしながら、CRAM、LRAM、IRAMのアドレスを設定して実行を

行うが、結合関数の有効領域を設定するWレジスタを 3にセットしておくこと

で、カウンタ L は最大 3 までしかカウントアップしなくなり、外部接続メモリ

へのアクセスを含め、0値を有する 5つの端子の演算をスキップさせることがで

きる。 

これにより、学習、認識何れのプロセスにおいても、19 (= 8/3×8/3×8/3)倍の高

速化を図ることができた。 

図 3.3 CRAM中の結合関数の事例 

0 
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0.5 
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1      2      3     4      5      6      7     8 



  
  

- 25 - 

3.2 量子化ニューロンボードの構成 

 図 3.4に量子化ニューロンボードのブロック図を示す。量子化ニューロンボー

ドをメインボードとメモリボードによって構成した。メインボードを QNCとア

ドレスデコーダーとによって構成し、メモリボードは、QNC のシナプス荷重を

保存する外部メモリとして構成した。 

 量子化ニューロンボードを接続したホスト PCから、ネットワーク構造のパラ

メータの設定、学習または認識のモード切替、演算の実行開始を、PC Busを介

して制御可能にした。また、QNC のメインコントローラのコントロールレジス

タにマッピングされた I/Oスペースを介して、学習と認識に用いる入力データを

QNCに入力できる。 

 

    

    

    

    

    

QNC 

Decoder 

Main board 

Memory board 

 External Weight 
Memory (Odd) 

< SRAM : 2 Mbyte > 

 External Weight 
Memory (Even) 
< SRAM : 2 Mbyte > 

Personal 

Conputer 

PC Bus 

図 3.4 量子化ニューロンボードのブロック図 
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3.3 開発した QNC 並びに量子化ニューロンボードの性能検証 

 

3.3.1 QNC の性能と諸元 

開発したQNCは、1.2µm、ダブルメタルCMOSプロセスを用いたもので、27,000

ゲートを有し、ダイサイズは 10.99 mm × 10.93 mm、25nsec(40MHz)のクロック

サイクルで実行可能であり、4,736 ニューロンと 2,000,000 シナプス荷重を用い

た MFLN のネットワーク演算(W レジスタ(結合関数の有効領域)の値が 3 の場

合)を 2.8msで実行できる。 

ニューラルネットワーク演算における結合荷重演算速度(CPS: Connection Per 

Second)を求めると、20.5G CPS(at W=1)、0.76G CPS(at W=3)であった。また、

学習を行わせた場合の結合荷重変更速度(CUPS: Connection Update Per Second)

を求めると、20M CUPSであった。 

QNC は、任意の容量の外部メモリを増設することで、容易に大規模なニュー

ラルネットワークを実現することができ、また、非常に高速な学習認識処理を

実現可能である。開発した QNCのチップ写真を図 3.5に、諸元を表 3.1に示す。 
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図 3.5 量子化ニューロンチップのチップ写真 

 

    

 

10.99 x 10.93 mm 

No. of simulation neurons    

No. of synapses    

Recognition speed at W= 1    

Recognition speed at W= 3    

Learning speed at W= 3    

Precision of synapse weight    

Clock rate    

Power supply    

Power dissipation    

Process technology    

No. of gates    

Chip size    

p ackage   

4,736    

2,101,760    

0.76 GCPS    

20.5 GCPS    

20.0 MCUPS    

16 bits    

40 MHz    

5.0 V    

1.0 W ( at 40 MHz )  

1.2    μ   m CMOS   

27,000    

160pin QFP   

表 3.1 QNCの諸元 
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3.3.2 量子化ニューロンボードの性能検証 

図 3.6に開発した量子化ニューロンボードの写真を示す。 

開 発 し た量 子 化ニュ ー ロ ンボ ー ドを、 20MHz 駆動 のホス ト PC 

(Cx486DLC-20MHz CPU)に接続し、動作検証を行った。クロック 20MHzの駆動

において、毎秒 1,030 パターンの認識が可能であり( 64×3=192 次元の入力デー

タ、62出力ニューロン、W=1 )、ワークステーション Solbourne  series 5 (22 MIPS、 

3 MFLOPS)によるシミュレーションと比較し、約25倍の高速処理を可能にした。 

開発した量子化ニューロンボードを用い、手書き数字認識システム(64×3次元

入力データ、10出力ニューロン、W=3)を開発した結果、各数字 500サンプルの

学習をわずか 32秒で行わせることができた。 

 以上のように、量子化ニューロンモデルを専用ハード化することにより、汎

用 CPUによる演算処理に比べ桁違いの高速化を実現、使用現場での状況に即応

したアダプティブな学習認識処理が可能となった。 

 

図 3.6 開発した量子化ニューロンボード 
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第 4章 適応増殖量子化ニューロン(ASQA)への拡張 

    

一般的にニューラルネットワークでは、ネットワーク構成そのものは、最初

の設計事項として固定であり、学習によるニューロン同士の結合荷重の変更の

みによって学習課題に対する適応性を確保している。従って、ニューロンの数

やネットワークの規模に関しては、試行錯誤的に決定するしか方法がなかった。   

前章までに、その高速学習性能と追加学習性能を実証した、量子化ニューロ

ンモデルによる機能別階層ネットワークにおいても、量子化ニューロン層の各

ニューロン数や量子化レベル数を一義的に決める手法は無く、計算論的に、あ

るいはハードウェアとして実現できる最大数を割り当ててネットワークを構成

するか、ないしは、膨大なチューニング実験に基づいて決定するしかなかった。  

この課題に対応すべく、学習状況に応じて、ニューロンが分裂、増殖、結合

し、最適なネットワークを形成可能な、適応増殖量子化ニューロン

(ASQA:Adaptive Segmentation of Quantizer neuron Architecture)への拡張を行った。

これにより、ネットワーク構成そのものも、学習により自動形成させることが

可能になる。本章では、適応増殖量子化ニューロンモデルの詳細について述べ

るとともに、この拡張により、実用面で飛躍的な適応性を確保できることを検

証する。 

4.1 適応増殖量子化ニューロンによるネットワ－クの自己生成 

4.1.1 適応増殖量子化ニュ－ロンの構造 

 これまで説明してきた量子化ニューロンの基本構造を、ニューロンの分裂増

殖が可能なモデルへ拡張するために、図 4.1に示す量子化ユニットの概念を導入

する。量子化器を上限値 XUi と下限値 XLi を量子化範囲として持つ量子化ユニッ

トによって構成する。各量子化ユニットは入力された量子化入力デ－タの平均 A、
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分散σ、結合荷重変更回数 n 並びに量子化ユニットの内部状態を表わす変数 E

を有している。デ－タ x が各量子化ユニットに入力され、式(4.1) に示すよう

に、x が c番目の量子化ユニット Uc の量子化範囲に入っていれば量子化ユニッ

ト Uc が反応し、量子化ユニット Uc に連結した結合荷重τcを１に設定し、その他

の量子化ユニットに結合した結合荷重τ
 i
を、結合係数βを含めた式(4.2)および式

(4.3)によって求める。ただし、g(i, c)が負であれば、τ
 i
 に 0を代入する。 

 

     τc = 1 （ XLc  ≦  x ＜ XUc の場合） (4.1) 

  g(i, c) = 1 – β ( i – c )
2        (4.2) 

       τi = g(i, c)      (4.3) 

   ただし、g(i, c) ≦ 0 の場合には、τ
i
= 0      

 

    

    

    

    

    

量子化ユニット 

τ 1 τ 2 

量子化範囲 
A1,σ１,E1,n1  

τ c 

量子化範囲 

τ i 

量子化範囲 
A2,σ2,E2,n2  Ac,σc,Ec,nc  Ai,σi,Ei,ni  

XL1 XU1 XL2 XU2 XLc XUc XLi XUi 

量子化範囲 

図 4.1 量子化器の構造 

U2 
 

U1 
 

Uc 
 

Ui 
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4.1.2 量子化ニュ－ロンの増殖 

 量子化ニューロンの増殖は、量子化ユニットの分裂と、連結されている他の

量子化ニューロンの複製によって行う。初期状態の量子化ニューロンの量子化

ユニット数は 1 に設定してあり、また、入力の対象となる量子化入力データの

分布の全域に反応するように量子化の範囲を設定した。量子化ニューロンに何

らかの学習指示信号が与えられると、入力データ x に反応した量子化ユニット

は、過去の平均 Aio、分散σio、学習回数 nio 及び入力データ x を用い、量子化入力

端子から入力された全データの平均 Ai、分散σi 、学習回数 ni 及び内部状態 Ei を

近似式(4.4)～(4.7)に基づいて演算する。 

量子化ユニットの量子化範囲が広すぎて結合荷重の変更だけではデータの学

習が進まない場合に、量子化ユニットを自動的に分裂させる。そのためには学

習の困難さを表す指標が必要となる。そこで、内部状態 Ei を式(4.7)に示すよう

に、学習回数と分散との積で表現することで、学習の困難さを表す指標として

用いた。 

内部状態 Ei は、学習が難しく学習回数が増加するほど、また量子化ユニット

が反応したデータ群の分散が大きいほど増大する。内部状態 Ei が式(4.8)で示す

分裂条件を満たした場合に、量子化ユニットの分裂並びに量子化ニューロンの

複製を行い、量子化ニューロンを増殖させる。 

 

 A i   ≅   
n io A + x 

n io +1 
io 

 

 (4.4),   
 

   (4.5) 

ni = nio + 1 (4.6),     Ei = ni σi    (4.7) 

 分裂条件 : Ei > α (α : 定数 )              (4.8) 

 

 

σ 
i  

≅ 
 
 
n io σ io  x- A i + 

n io +1 
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4.1.3 量子化ユニットの分裂 

 量子化ユニット Uiの内部状態 Ei が閾値αを越えた場合、図 4.2に示すように量

子化ユニット Ui を、Ui と Ui+1の 2つに分裂させる。この時、平均 Ai を分裂境界

Thi として量子化範囲を 2つに分割し、分裂後の量子化ユニット Ui 及び Ui+1の量

子化範囲を式(4.9)～(4.12)を用いて求める。さらに、それぞれの量子化ユニッ

トの平均 Ai 及び Ai+1、分散σi 及びσi+1、学習回数 ni 及び ni+1を式(4.13)～(4.16)

を用い、また、内部状態 Ei 及び Ei+1を式(4.8)を用いて演算する。量子化ユニッ

ト Ui+1の結合荷重τi+1は、式(4.17)に示すように、量子化ユニット Ui の結合荷重

τi をそのまま複製して用いる。 

 量子化ユニットの分裂を行わせた後、図 4.3 に示すように、当該ニューロン

QN1に連結したニューロン QN2の複製 QN2’を作成し、量子化ユニット Ui+1の結

合荷重τi+1 と QN2’の入力端子とを連結する。以上の処理により、入力データに

応じて適応的に量子化ニューロンを増殖させ、ネットワークの自己生成を行わ

せることができる。 

 

 XLi’ = XLi       (4.9),   XUi’ = Thi = Ai   (4.10) 

 XLi+1 = Thi = Ai (4.11),   XUi+1 = XUi    (4.12) 

    
2

’’ ii
i

XUXL
A

+
=  (4.13)  

2

11
1

++
+

+
= ii

i

XUXL
A  (4.14) 

σi’ = σi+1 = 1 (4.15),   ni’ = ni+1 = 1     (4.16) 

τi+1 = τi  (4.17) 
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U i 

QN 1 QN 1 

QN 2 QN 2 QN ’ 2 

U i+1 U i 

τ i τ i+1 τ i  

図 4.3 量子化ニューロンの複製と増殖 

(a)                    (b) 

X Li’ X Ui’ 

量子化範囲 

τ 
i 

X Ui+1 

量子化範囲 

τ 
i+1 

X Li+1 XLi 

 

X Ui 

量子化範囲 

τ 
i 

A 
  
i  , σ i  , E 

  
i , n 

  
i  A 

  
i’ ,  σ   i’ ,  E i’ , n 

  

i’ A 
  i+1 , σ   i+1 , E 

  i+1 ,   n 
  i+1 

量子化ユニット Ui              Ui             Ui+1 

図 4.2 量子化ユニットの分裂  
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4.2 適応増殖ベクトル量子化ニューロン(ASQA-Ⅱ)への拡張  

4.2.1 基本構造と動作 

 以上説明した適応増殖量子化ニューロンを、ベクトルの量子化入力が可能な

適応増殖ベクトル量子化ニューロン(ASQA-II)へ拡張する。基本的構造はこれま

で説明してきたスカラーの量子化ニューロンと全く同じで、量子化器の各量子

化ユニットの量子化範囲 XU と XL、入力データの平均 A、分散σ、学習回数 n 並

びに内部状態を表わす変数 E をベクトル化し、それぞれ、 iXU 、 iXL 、 iA
r

、 iσ
r
、

in
r

、 iE
r

とする。 

 ベクトルデ－タ x
r
が各量子化ユニットに入力され、式(4.18)に示すように、x

r

が量子化ユニット Uc の量子化範囲に入っていれば量子化ユニット Uc が反応し、

量子化ユニット Uc に連結した結合荷重τc を 1に設定する。量子化範囲が量子化

ユニット Uc に隣りあう全てのユニット Uiに連結した結合荷重τi を、Uc と隣りあ

っている次元 s における入力データ x
r
とユニット Ui との距離 | xs-Ais |  に応じ

て、式(4.19)に示すように結合係数βを用いて設定する。式(4.19)は式(4.2)をベ

クトル拡張したものであるが、ベクトル拡張に当り、二乗演算簡略化のため、

入力データ x
r
とユニット Ui との距離 | xs-Ais | と、隣り合う量子化ユニット同士

との距離 | As-Ais | との比に基づき、入力データ x
r
とユニット Ui との距離が近い

程、結合荷重τi が大きく設定できるようにした。図 4.4に 2次元ベクトル量子化

ニューロンの結合荷重設定の様子を示す。ユニットU8がデ－タ x
r
に反応すると、

結合荷重τ8が 1に設定され、また隣あうユニット U2、U7、U9、U12の結合荷重τ2、

τ7、τ9、τ12 が式(4.19)に基づいて設定される。 

 

τc = 1   ( cXL ≦ x
r
 ＜ cXU  の場合 )  (4.18)    
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c
iss

iss
i

AA

xx
β ττ 











−

−
−= 1          (4.19) 

( iXL ∩ cXU = 1 または iXU ∩ cXL = 1の場合) 

x
r

 
= { x1, x2, x3・・, xs,・・, x m } 

    
iA
r
= { Ai1, Ai2, Ai3,・・, Ais,・・, Aim } 

 
 
4.2.2 ベクトル量子化ニューロンの分裂増殖 

ベクトル量子化ニューロンの増殖は、すでに説明したスカラータイプの量子

化ニューロンの分裂増殖プロセスをベクトルに拡張することで、全く同じよう

に行わせることができる。初期状態の量子化ニューロンの量子化ユニット数は 1

に設定してあり、また入力の対象となる特徴データの分布の全域に反応するよ

うに量子化の範囲を設定する。学習データ x
r
を入力すると、x

r
に反応した量子化

ユニット Ui は、各次元 m ごとに、過去の平均 Aimo、分散σimo、結合荷重変更回

数 nimo 及び入力データ xmを用い、量子化入力端子から入力された全データの平

均 Aim、分散σim、結合荷重変更回数 nim及び内部状態 Eimを近似式(4.20)～(4.23)

に基づいて演算する。 

U 2 

U 1 

U 3 
U 5 

U 6 

U 7 

U 9 

U 10 

U 11 

U 12 

U 13 

τ 2 

U 4 

τ 9 

U 8 

data x 

(c=8) 
τ 8  = 1 τ 

12 

τ 
7 

図 4.4 ベクトル量子化ニューロンの結合荷重の設定 
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1+
+

≅
imo

mimoimo
im

n

xAn
A

 
(4.20)  

1+

−+
≅

imo

imimoimo

im
n

Axn σ
σ   

(4.21) 

nim = nimo + 1     (4.22),  Eim = nim σim       (4.23) 

分裂条件 : Eim > α (α : 定数 )     (4.24) 

 

 近似式(4.20)～(4.23)に基づく各次元 m における内部状態 Eimの演算結果が最

大となる次元maxを求める。さらには次元maxにおける内部状態Eimaxが式(4.24)

で示す分裂条件を満たした場合に、すでに模式図 4.2で示したように、次元 max

において量子化ユニット Ui を、Ui'と Ui+1の 2つに分裂させてニューロンの複製、

増殖を行う。この時、次元 max における平均 Aimax を分裂境界 Thimax として量子

化範囲を 2つに分割し、分裂後の量子化ユニット Ui'及び Ui+1の分裂した次元で

の量子化範囲を式(4.25)～(4.28)を用いて求める。さらに平均 A、分散σ、結合

荷重変更回数 n を式(4.29)～(4.33)を用いて求め、内部状態 E を式(4.23)を用い

て演算する。量子化ユニット Ui+1の結合荷重τi+1は、式(4.33)に示すように、量

子化ユニット Ui の結合荷重τi をそのまま複製して用い、また、ユニット Ui+1の

分裂していない次元での量子化範囲も、式(4.34)、式(4.35)に示すように、量子

化ユニット Ui の量子化範囲をそのまま複製して用いる。 

 

XLi’max = XLimax     (4.25),   XUi’max = Thimax = Aimax (4.26) 

XL(i+1)max = Thimax = Aimax  (4.27),   XU(i+1)max = XUimax (4.28) 

 
A i’max  = 

XL i’ max +  XU i’ max 
2  

(4.29),   
 
A (i+1)max  = 

XL (i+1)max +  XU (i+1)max 

2  
(4.30) 

σi’max = σ(i+1)max = 1 (4.31),   ni’max = n(i+1)max = 1     (4.32) 

τi+1 = τi’ = τi (4.33)     

XL i’(m≠max) = XLi(m≠max)  (4.34),   XUi’(m≠max) = XUi(m≠max)  (4.35) 
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4.2.3 ニューロンの複製による増殖 

量子化ユニットの分裂を行わせた後、図 4.3 で示したと同様に、当該ニュー

ロン QN1に連結した中間層ニューロン QN2の複製 QN’2を作成し、量子化ユニッ

ト Ui+1の結合荷重τi+1に連結することで、中間層ニューロンを増殖させる。 

 

4.2.4 適応増殖ベクトル量子化ニューロンによる機能別階層ネットワーク 

 図 4.5は、適応増殖ベクトル量子化ニューロンを用い、2次元の入力を 2つの

領域(A, B)に分離する機能別階層ネットワークの構成例とネットワークの自己

生成の様子を示したものである。 

 入力層に N=1 個の 2 次元ベクトル量子化ニューロンを配置し、出力層に P=2

個の通常のニューロンを配置してネットワークを構成した。出力層の各ニュー

ロン p は式(4.36)に示すように、下層のニュ－ロンから送られた信号 tτij と学習

によって形成された結合荷重τijp との積和をとり、閾値関数 f に基づいて発火出

力 yp を出力する。 

 
p = f ( t τ 

ij 
τ 

ijp Σ
j = 1 

Σ 
i = 1 

N 
  ) 

M 
y 

      (4.36)  

 出力層の出力結果が誤っている場合に、教師信号に応じて中間層と出力層の

結合荷重τijp を変更するとともに、すでに説明したように、過去の平均、分散、

学習回数 n 及び入力データ x
r
を用い、認識誤りをしたデータの平均 A

r
、分散σ

r
、

学習回数 n
r
、及び内部状態E

r
を近似式(4.20)～(4.23)に基づいて演算させる。内

部状態 E
r
が式(4.24)に示す分裂条件を満たせば適応増殖ベクトル量子化ニュー

ロンの量子化器の量子化ユニットを分裂させ、中間層のユニットを増殖させる。 

 図 4.5(a)に示すように初期状態では中間層のユニット数は 1 であるが、図

4.5(b)、(c)に示すように、データの入力に適応して中間層のユニットが増殖し、

ネットワークの自己生成が行われる。図 4.6は、2次元領域の二次曲線による分
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離を実際にネットワークに学習させた場合の、量子化ユニットの分裂の様子を

量子化範囲の分割として表したものである。図に示すように、非線形領域程細

かく量子化範囲が分割されて、量子化ユニットが分裂して行く。 

 

 

(a)        (b)             (c) 

 

図 4.5 ベクトル量子化ニューロンによる機能別階層ネットワークの 

構成例とネットワークの自己生成 
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1 2 
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1 2 3 

1 2 
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図 4.6 量子化ユニットの分裂 
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4.3 適応増殖ベクトル量子化ニューロンの文字認識への適用検証 

 これまで説明してきた適応増殖ベクトル量子化ニューロンを用いたネットワ

ークを、実用的な課題であるマルチフォント英数字認識に適用し、学習認識実

験検討を行った。なおシミュレーション実験は、SEQUENT S81(4MIPS、 

0.4MFLOPS)を用いて行った。 

 

4.3.1 学習認識実験に用いた文字データ 

 英数 62 字種からなる 23 フォントの文字中、13 フォントを学習に用い、残り

10フォントを未学習認識率の評価データとして用いた｡ 

 

4.3.2 入力特徴量 

 文字認識に用いる特徴デ－タとして、第 2章 図 2.6で示したと同様に、2値

イメ－ジとして取り込んだ文字の (1)8×8 のメッシュ濃度値、(2)メッシュ濃度

の横方向微分値、及び (3)メッシュ濃度の縦方向微分値を 8ビットで正規化し、

3次元ベクトル量子化ニューロンに入力した。 

 

4.3.3 ネットワーク構成 

 図 4.7 にネットワークの構成を示す。入力層を 8×8 のメッシュ数に対応する

N=64個の 3次元ベクトル量子化ニューロンによって構成し、出力層に英数字 62

文字に対応する 62個の通常の閾値ニューロンを配置した。中間層のニューロン

数は初期状態では 64個であるが、学習によってベクトル量子化ニューロンの量

子化ユニットが分裂し、中間層のニューロンが増殖することにより、設定した

最大個数 Jmax まで増加して行く。 
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4.3.4 認識処理 

 8×8の各メッシュの濃度値、メッシュ濃度の横方向微分値、メッシュ濃度の縦

方向微分値を、量子化信号入力として、入力層の N=64個のベクトル量子化ニュ

ーロンに入力する。すでに 4.2.1 項で説明したように、各量子化ニューロンは、

中間層との結合荷重τij を量子化信号入力値に応じて設定し、信号を出力層に伝

える。出力層の各ニューロン p は、式(4.36)に基づいて発火出力 ypを出力する。

出力が最大のニューロンの番号を検出し、認識結果とする。 

 

4.3.5 学習処理 

 すでに 4.3.4項で説明したと同様にしてネットワークの認識結果を求め、認識

結果が誤っている場合、教師信号と認識結果が一致するように中間層と出力層

の結合荷重τijp を変更すると同時に、認識誤りをしたデータの平均 A
r
、分散σ

r
、

学習回数n
r
、及び内部状態 E

r
を近似式(4.20)～(4.23)に基づいて演算させる。ま

た内部状態E
r
は、認識誤りをしたデータの学習回数 n

r
で代表させ、内部状態 E

r

が式(4.24)に示す分裂条件を満たせば、適応増殖ベクトル量子化ニューロンの量

子化器の量子化ユニットを分裂させ、中間層のユニットを増殖させる。また、

t = 1 t = 1 t = 1 

p = 1 to 62 

i =1 to 64  

j = 64 to max 

図 4.7 英数字文字認識ネットワークの構成 

 



  
  

- 41 - 

メッシュに対応する量子化ニューロンごとに増殖可能な中間層ニューロン数の

最大値を、一定値 Jmaxで制限する。 

 

4.3.6 学習認識実験結果 

4.3.6.1 学習特性 

図 4.8に、結合係数βを 0に設定し、中間層ニューロン数の最大値 Jmaxを各メ

ッシュごとに 100 に制限した場合の学習特性を示す。図に示すように、学習が

進むにつれて中間層のニューロン総数が増加し、認識率が向上した。 

    

4.3.6.2 分裂条件と中間層ニューロン数 

 図 4.9は、学習フォントの認識率が 100％に達した時点での中間層総ニューロ

ン数と、分裂条件αとの関係を示したもので、結合係数βを 0 に設定し、各メッ

シュごとの中間層ニューロン数の最大値 Jmaxを変化させて上記関係を求めた。α

を大きくし、分裂条件を厳しくすると、中間層総ニューロン数が減少し、ネッ

トワーク規模を縮小できる。いずれの Jmax 値においてもαを 100程度に設定すれ

ば、ネットワーク規模の充分な縮小が可能である。 
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図 4.8 学習特性 
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4.3.6.3 分裂条件と学習速度 

 図 4.10 に学習フォントの認識率が 100％に達するまでに要する時間と分裂条

件αとの関係を示す。4.3.6.2 と同様に、結合係数βを 0 に設定し、各メッシュご

との中間層ニューロン数の最大値 Jmaxを変化させて上記関係を求めた。分裂条件

α が 100を越えると、学習に要する時間が急激に増加する。 
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図 4.9 分裂条件と中間層ニューロン数 
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図 4.10 分裂条件と学習に要する時間 
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4.3.6.4 分裂条件と未学習フォント認識率 

 図 4.11 は、学習フォントの認識率が 100％に達した時点での未学習フォント

認識率と分裂条件αとの関係を示したもので、これまでと同様に結合係数βを 0

に設定し、各メッシュごとの中間層ニューロン数の最大値 Jmaxを変化させて上記 

関係を求めた。未学習フォント認識率はαに対してピークを持ち、概ね 10～100

程度に設定すると良好な未学習フォント認識率が得られた。 

    

4.3.6.5 結合系数βと未学習フォント認識率 

 以上 4.3.6.1～4.3.6.4 の結果に基づき、各メッシュごとの中間層ニューロン数

の最大値 Jmax を 100に設定し、分裂条件αが 20と 100の場合について、結合係

数βと未学習フォント認識率との関係を求めた結果を図 4.12に示す。 

図に示すように、結合係数βを適切に設定することにより未学習フォント認識率

を向上させることができ、概ねβ=1 に設定すれば、比較的良好な未学習認識率を

得ることができる。 
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図 4.11 分裂条件 α と未学習フォント認識率 

o
p
e
n
 t
e
s
t 
 
 
[ 
%
 ]
 

A
c
c
u
ra
te
 a
n
s
w
e
r 
ra
te
 o
f 



  
  

- 44 - 

4.3.6.6 他のネットワークモデルとの学習速度比較 

 中間層ニューロン数の最大値 Jmax を 100、分裂条件αを 20、結合系数βを 0.16

に設定した場合の ASQA-II(MFLN-II)の文字学習速度を、他のネットワークモデ

ル(誤差逆伝搬法による階層ニューラルネットワーク及び RCE ネットワーク)と

比較した結果を、表 4.1に示す。ASQA-II(MFLN-II)の学習速度は圧倒的に速く､

階層型 NNの約 25倍以上の高速学習が可能になった。 

 

表 4.1 他のネットワークモデルとの学習速度比較 

Multi layered 

neural network with BP 
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図 4.12 結合係数 β と未学習フォント認識率 
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4.4 適応増殖量子化ニューロン検討のまとめ 

 入力デ－タに応じて適応的に増殖し、ネットワ－クの自己生成が可能な、適

応増殖量子化ニュ－ロン(ASQA: Adaptive Segmentation of Quantizer neuron 

Architecture)を提案した。さらには適応増殖量子化ニュ－ロンをベクトル入力が

可能なモデルに拡張、マルチフォント文字認識に適用し、試行錯誤によること

なく、入力データに応じて適応的にネットワークを構築でき、良好な学習と認

識性能が得られることを実証した。 

 認識システム等の環境への適応を考えた場合、追加的に新たなデータを学習

させ、ネットワークの結合荷重を微調整することは非常に有効な手段である。

本方式を用いることにより、状況に応じてネットワーク構造自身も変化させ、

より柔軟に環境の変化に適応させることも可能であり、将来の発展、応用展開

を期待できる。 
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第 5章 適応増殖量子化ニューロン(ASQA)のハードウェア化 

 

適応増殖量子化ニューロンモデルは、通常の量子化ニューロンモデルに比べ、

メモリの使用効率が非常に高く、ベクトル量子化に拡張することで、その学習

認識性能を格段に向上させることができる。またそのハードウェア化は、実用

化を進める上で重要な取り組みである。適応増殖量子化ニューロンのハードウ

ェア化に際し、キーポイントとなる自己増殖によるネットワーク自動生成を実

現すべく、ネットワーク構造やニューロン同士の結合荷重を外付けのメモリに

よって構成、ニューロ演算をシミュレートする演算部と、外付けメモリに保管

したネットワーク中のニューロン同士の結合荷重をアドレッシングするネット

ワークアクセス部とによって構成し、LSI化を行った。作製したASQAチップに

より、2,965文字種からなる漢字の認識において、わずか6MBのメモリを使用す

るだけで、認識率97.4%の漢字認識システムを実現した。 

 

5.1 適応増殖量子化ニューロン(ASQA)チップの構成 

 実用的なアプリケーションへの適用を考えた場合、例えば漢字認識等、数千

文字のカテゴリを認識させる必要があるものも多い。また、アプリケーション

ごとに必要となるカテゴリ数も異なり、これらの大規模カテゴリ認識でありな

がら、しかも、カテゴリ数を柔軟に変更可能な構造がハードウェアとして望ま

れる。そこで、単純に出力層のニューロン数を増加させるのではなく、構造化

した複数のサブネットワークの出力をファジィ推論によって統合化することに

より大規模カテゴリの学習認識を行わせる、NARA(Neural network Approximate 

Reasoning Architecture)(46)に適用可能なチップ構造を実現した。 
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5.1.1 構造化ニューラルネットワークNARAの概要 

 図5.1に、構造化ニューラルネットワークNARAの基本構造を示す。NARAは、

入力したデータを、予め決められた数の、複数グループに分類する大分類部と、

分類したグループの中で、さらに詳細なカテゴリへの分別(認識)を行う複数の

サブネットワークとからなる。大分類部は、ファジィベクトル量子化(FVQ)によ

って構成し、サブネットワーク郡をASQAによって構成する。 

 認識すべきデータを大分類部及び全てのサブネットワークに入力すると、大

分類部は、入力データのそれぞれのグループへの帰属度mを出力し、また、各サ

ブネットワークは、それぞれが担当するカテゴリへの帰属度(一致度)を出力す

る。統合認識部で、入力データの各グループへの帰属度mと各サブネットワーク

の出力との積和を取り、各カテゴリへの帰属度(一致度)を最終結果として出力

する。以上のような構造により、比較的容易に大規模カテゴリの学習認識に対

応できる。 

NN1 NN２ NNx 

ASQA1 ASQA２ ASQAx 

FVQ 

データ入力 

X X X 

＋ 

統合結果出力(認識結果） 

m1 

m2 
mx 

図 5.1 構造化ニューラルネットワーク NARAの基本構造 

大分類部 サブネットワーク郡 

統合認識部 
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5.1.2 ASQAチップの基本構造 

 図5.2に、ASQAチップのブロック図を示す。ASQAチップは、ベクトル量子化

器(VQU:Vector Quantization Unit)、汎用演算器(GPU:General Processing Unit)、シ

ステムインタフェースユニット(SIU:System Interface Unit)、入力RAM(IRAM)、

出力RAM(ORAM)、パイプラインソートユニット(PSU:Pipeline Sorting Unit)、マ

ルチネットワーク・アドレスジェネレータ(MAG)から成る。これらに加え、外

付けの256K wordのテーブルRAM(TRAM)及び、外付けの8M wordの結合加重

RAM(WRAM)を取り扱えるようにした。TRAMはネットワーク構造を格納する

ために用い、またWRAMは、ニューロン同士の結合荷重を格納するために用い

るものである。 

 

5.1.2.1 ニューロン分裂増殖を実現するアーキテクチャ 

 前述したようにASQAチップには、VQUとGPUの２つの異なるタイプのDSP

を実装した。VQUはネットワーク構造を制御し、GPUは、出力層ニューロンの

出力の演算と、量子化入力端子から入力された全データの平均Aim、分散σim、結
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図 5.2 ASQAチップの基本構成図 
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合荷重変更回数nim及び内部状態Eimの演算を行う。 

 TRAM及びWRAMを外付けのメモリで構成した。TRAMは、分裂増殖の全て

の履歴を含めたネットワーク構造を格納し、またWRAMは出力ニューロンの結

合荷重と、平均Aim、分散σim、結合荷重変更回数nim及び内部状態Eimを格納する。 

 VQUは入力されるデータごとにTRAMを読むだけで、量子化ユニット番号を

算出することができ、高速なデータの量子化を行える。量子化ユニット番号は

WRAM中のアドレスを指し示し、WRAMから、量子化ニューロンの結合荷重τi、

平均Aim、分散σim、結合荷重変更回数nim及び内部状態Eimを読み出すことができ

る。GPUは認識モードにおいては、VQUから量子化ユニット番号を受け取り、

WRAMから結合荷重を読み取る。また学習モーﾄﾞでは、これらに加え平均Aim、

分散σim、結合荷重変更回数nim及び内部状態Eimを演算する。 

 学習モードにおいて内部状態Eimが閾値αを超えた場合、VQUはニューロンの

分裂増殖を行わせる。以下にその詳細について説明する。 

 

5.1.2.2 ASQAチップにおけるニューロンの分裂増殖プロセス 

 図5.3に、ネットワーク構造とTRAMに保存されたデータとの関係を示す。

TRAMに、量子化ユニットの量子化範囲を示す閾値(XU)及び、分裂の順序をバ

イナリーツリーとして記録することで、全ての分裂増殖履歴を保持するように

した。TRAMのアドレスは、量子化ユニット分裂増殖のバイナリーツリーのノー

ドを指し示す。図5.3(a)分裂増殖前のTRAMを例に説明すると、TRAM中に量子

化範囲の閾値XU、分裂増殖した量子化ユニットの番号Un、分裂後の子ノードの

若い方の番号を示すNx、終端ノード(すなわち量子化ユニット)であることを示

すフラグFlgの4種類のデータをテーブルとして保存する。このテーブル中で、例

えばノード1及び2はノード0の子ノードであり、ノード0のNxは、ノード1を指し

示しており、フラグFlgに“1”が立っているノード1、3、4は終端ノード、すなわ
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ち量子化ユニットであることを示す。 

 図5.3(a)において、ネットワークにデータが入力されると、VQUは、入力デー

タが量子化範囲に入る量子化ユニットを、ノード0から検索し始める。例えば、

入力データが“5”である場合、ノード0のXU=4よりも大きく、ノード0のNxが示

すノード番号+1、すなわちノード2を参照すると、ノード2のXU=7よりも小さい

ことがわかり、さらには、XU=7であるノード2のNxを参照すると“3”が示されて

いる。従ってノード3を参照すると、フラグFlgに“1”が立っていることが確認で

き、データが量子化範囲に入る量子化ユニット番号Unとして“1”を得ることがで

きる。VQUはこの量子化ユニット番号をGPUに送る。 

 図5.3(b)に1回の分裂増殖後のTRAMの状態を示す。学習モードにおいて分裂

増殖が起き、分裂境界Th=2で新たな閾値XUが追加された時、VQUはノード1の

フラグFlg をクリアし、新たなXU=2、及び、Nx=5(最大ノード番号+1 = 5)を書

き込む。これに加え、VQUはノード1の量子化ユニット番号Unをノード5に移動

する。ノード5及び6は、ノード1の子ノードであり、バイナリーツリー上では、

ノード1に連結して記述できる。ノード6の量子化ユニット番号Unを、最大ユニ

ット数+1 = 3に設定、さらには、ノード5及び6のフラグFlgに“1”を立てる。以上

のプロセスで、1つのネットワークの全ての分裂増殖履歴をTRAMに保存するこ

とができる。また1つのネットワークごとに、最大8,192個まで量子化ニューロン

を分裂増殖可能にした。 
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図 5.3  量子化ニューロンの分裂増殖履歴の TRAMへの保存方法 
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5.1.3 構造化ニューラルネットワークNARAへの対応方法 

各種サイズの複数サブネットワークをASQAによって構成することで、大規模

カテゴリの学習認識が可能な構造化ニューラルネットワークNARAを実現した。 

ASQAチップは、個々のサブネットワークの全ての情報を外付けメモリに保存

する。サブネットワークごとに、1、2、4、8、または16個のTRAM及びWRAM

を外付けメモリ上で取り扱うことができるため、サブネットワークごとのネッ

トワークサイズに応じて最適にメモリをアサインすることにより、最小限のメ

モリ構成でNARAを実現可能にした。 

ホストCPUによって、メモリ中のサブネットワークの領域をMAGにセットす

ると、TRAM及びWRAMへのアドレス信号はMAGによって、所定のサブネット

ワークのアドレスへ変換される。TRAM及びWRAMを、それぞれ最大8個のメモ

リチップによって構成し、最大128個のサブネットワークと、最大16,384個の出

力ニューロンによるネットワークを実現可能にした。 

 

5.1.4 メモリ削減モード 

ASQAチップには、「デュアル・メモリ・モード」及び「シングル・メモリ・

モード」という2つのメモリモードを持たせた。「デュアル・メモリ・モード」

は、TRAM及びWRAMの両方を使用するモードで、「シングル・メモリ・モード」

は、WRAMのみを使用するモードである。「シングル・メモリ・モード」では、

ネットワークの情報をWRAM中のサブネットワークごとに保存し、サブネット

ワークの構造は、WRAMの空領域に保存される。MAGはどちらのメモリモード

においても、アドレスを変換可能である。 

 「シングル・メモリ・モード」を用いると、認識システムを構築した場合に、

メモリ容量を大幅に削減でき、ワンチップ、ワンメモリで、PC接続可能な漢字

認識システムを実現できる。 
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5.2 ASQAチップの性能 

 ASQAチップの性能評価と実用システムの構築に向けて、ASQAチップを用い

たニューロボードを開発した。 

手書きの数字認識に適用した場合、実行速度は、17.5µsec/文字、(毎秒57,000

文字)であった。この速度は、ワークステーション(SPECint92 = 104、 SPECfp92 

= 172)と比べ、約11倍の速度であった。 

図5.4に、ASQAチップとすでに開発している量子化ニューロンチップ(QNC:

第3章で説明)を手書き数字認識に適用した場合の、認識精度とメモリサイズの

観点からの性能比較を示す。図に示すように、ASQAチップはQNCに比べ、約1/11

のメモリサイズで同等の認識性能を得ことができ、メモリサイズを約9%まで大

幅に削減できた。また、13個のサブネットワークと、351KBのメモリを用いた構

造化ニューラルネットワークにより、最高認識率97.1%を得ることができた。 
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以上の結果に基づき、2,965文字からなる漢字認識システムを開発実用化した

結果、16フォント学習後の3フォントの未学習認識率97.4%、1フォントの未学習

認識率98.8%、毎秒570文字の認識速度を、わずか6MBのメモリサイズで実現す

ることができた。 

表5.1に、ASQAチップの諸元を、図5.5に写真を示す。 

 

    

    

    

    

    

No. of simulation neurons 

    Quantizer neurons 

     Input dimensions 

     Output neurons 

No. of proliferations  

No. of subnetworks 

No. of categoriesw 

Clock rate 

Power supply  

Power dissipation  

Process technology  

No. of gates  

Chip size  

External memories 

64 

512 ( =64X8 ) 

128 ( X32b ) 
8,192  

1M ( X16b ) 

128  

16,384 

40 MHz  

3.3 V 

6.92mm X 7.08 mm 

250,000 

0.5μm CMOS 1PS2AL  

32k X 8 bit 

1M X 8 bit 

No. of synapses  

280mW @3.3V, 40MHz 

表 5.1 ASQAチップの諸元 
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図 5.5 ASQAチップの写真 
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5.3 適応増殖量子化ニューロンハードウェア化のまとめ 

適応増殖量子化ニューロンモデルは、通常の量子化ニューロンモデルに比べ、

メモリの使用効率が非常に高く、また、ベクトル量子化に拡張することで、そ

の学習認識性能を格段に向上させることができた。また、そのハードウェア化

は、実用化を進める上で重要な取り組みであった。適応増殖量子化ニューロン

のハードウェア化に際し最大の課題は、分裂増殖によるネットワーク自動生成

を、いかにしてチップレベルでハードウェア的に行うかであった。この課題に

対し、 

(1)分裂増殖の履歴を含めたネットワーク構造とニューロン同士の結合荷

重を、外付けのメモリ中に記憶させる構造にするとともに、 

(2)ネットワーク構造をバイナリーツリーとしてTRAM中のテーブルに展開

し、ニューロンのアドレッシングと結合荷重へのアクセスを効率的に行

わせる構造を実現する 

ことにより、TRAM中のテーブル操作だけで、分裂増殖によるネットワーク生成

を、非常に簡単に管理可能なLSIを実現できた。 

手書きの数字認識に適用した場合、実行速度は、17.5µsec/文字、(毎秒57,000

文字)で、ワークステーション(SPECint92=04、SPECfp92=172)の約11倍の高速処

理が可能となった。またすでに開発している量子化ニューロンチップと比較し

た場合、同等の認識性能を得るのに必要なメモリサイズを約9%まで大幅に削減

できた。 

以上の結果に基づき、2,965文字からなる漢字認識システムを実用化した結果、

わずか6MBのメモリサイズで認識率98.8%、毎秒570文字の認識速度を実現する

ことができた。 
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第 6章 量子化ニューロンモデルの実用システムへの展開 

    

本章では、量子化ニューロンによるニューラルネットワークを用いた実用シ

ステムの開発と、実現したシステムの性能について述べる。産業分野での展開

では形状検査装置を開発実用化、民生分野ではビデオムービーのガンマ補正に

適用、簡易ネットワークによるハードウェア化により、実用的商品を開発した。

また、事務機器分野では、すでに述べたように、英数字、さらには漢字の認識

が可能な、各種文字認識装置の開発実用化を行った。何れのシステムにおいて

も、世界最高レベルの性能を実現できた。 

以下、産業分野での形状検査装置、並びに民生分野でのビデオムービーへの

展開を中心に述べる。 

 

6.1 形状検査装置への適用と実用化 

    

形状検査装置等では極めて正確な物体の認識精度が要求されるが、カメラに

よる可視光自然画像の入力により認識を行わせる場合、自然画像中から物体画

像を切り出したうえで、その形状の認識を行う必要がある。この時、画像自身

に含まれるノイズや切り出しに伴うノイズの影響で切り出された物体形状は大

きく変化する。また、同じ物体であっても回転や移動により、2次元座標上での

パターンは異なることが多い。このような自然画像中の物体形状の認識には、

形状の変化に対して柔軟な認識処理が必要となる。 

そこで、2次元物体の形状を時系列データに変換するφ-s 特徴変換を新たに提

案するとともに、適応増殖量子化ニューロンによるネットワークを時系列パタ

ーンの認識が可能なモデル(TASQA:Temporal Pattern Recognition Network with 

ASQA)に発展させ、これを用いることにより高い物体形状認識性能を実現、す
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でに説明した ASQA チップを用いて実装を行うことにより形状検査装置を実用

化した。 

 本節では、TASQAの構造と動作、その性能について詳しく述べる。 

 

6.1.1 TASQA の構造と動作 

図 6.1 に TASQAの基本構造を示す。TASQAは ASQA層と時系列統合ニュー

ロン層から成る。ASQA 層は、各時刻の入力に基づいた認識結果を出力し、時

系列統合ニューロン層は ASQA 層の出力及び自己フィードバックによって、一

定時間内の ASQA 層の出力値に基づいた認識結果を出力する。学習時は時系列

統合ニューロン層の出力が教師信号と一致するように ASQA 層内の結合荷重を

変更する。 

 

6.1.2 時系列統合ニユーロン層の構造と動作 

時系列統合ニューロンは ASQA 層の出力ニューロンと１対１対応し、図 6.1 

に示すように ASQA 層の出力と、自己出力のフィードバックが入力される。時

刻 T における p 番目の時系列統合ニューロンの出力 Up(T) を式で表現すると

式(6.1)となる。 

時系列パターン(φ - s データ）認識ネットワーク(TASQA) 
  

 

時系列統合範囲の推移 
  

忘却 記憶範囲 

忘却 記憶範囲 

忘却 記憶範囲 

記憶範囲 

s s-2∆s 

λ 

 

A     B C       D 

φ - s データ 
 

図 6.1 TASQAの基本構造 

時系列統合  

ニューロン層 

ASQA層 

φ(s) 

φ( s-∆s) 
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s-∆s 

λ λ λ λ 
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        ∫ −=
T

pp dttTytrhTU
0

))()(()( 　　　     (6.1) 

ここで、 )( tTy p − は時刻 T- t における ASQA層の p番目のニューロンの出

力、r(t) は自己フィードバック強度の時間依存性を表す関数、h()はしきい値関

数である。今回の実験で用いた r (t) は図 6.2 に示すような時間幅λで利得 1、他

の部位で利得 0 の矩形関数である。すなわち、時系列統合ニューロンの出力は

ASQA層の出力を過去λにわたって積分したものになっている。積分を行うこと

で、時間的に広い範囲の系列情報を反映した認識が可能となる。また、自己フ

ィードバックは時間方向の出力の平滑化も合わせて行っており、これにより、

入力系列に含まれるノイズが出力に与える影響を軽減することができる。 

 

6.1.3 TASQA の学習 

 図 6.3 は、2次元の入力を 2つのカテゴリ(A、B)に分離する課題に TASQAを

適応した例と、ネットワークの自己生成の様子を示した模式図である。ASQA

層の入力層を 1 個の 2 次元ベクトル量子化ニューロンによって構成し、ASQA

層の出力層及び時系列統合ニューロン層には、カテゴリーA、Bに対応した 2個

のニューロンを配置した。 

 ASQA層の p 番目の出力ニューロンの出力 yp は式(6.2)に示すように、下層の

ニュ－ロンから送られた信号 tτij と学習によって形成される結合荷重τijp との積

和をとり、閾値関数 f に基づいて発火出力 ypを出力する。 

0 λ 

図 6.2 自己フィードバック強度の時間依存性 

t 

r (t) 
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∑ ∑
= =

=
N

i j

ijpijp tfy
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max

1

)( ττ     (6.2) 

τijp’ = τijp + δ        (6.3) 

 

ASQA 層の出力を受けて、時系列統合ニューロン層は式(6.1)に基づいた認識結

果を出力し、A に対応するニューロンの出力値が最大であれば、認識結果は A

とし、B に対応するニューロンの出力値が最大であれば、認識結果は B と判断

する。 

学習過程において、時系列統合ニュ－ロン層の出力が学習データのカテゴリ

と異なる場合、教師信号で示される最大値を出力すべき ASQA 出力層のニュー

ロンと中間層ニューロンとの間の結合荷重τijp を、式(6.3)に示すように、δ だけ

強化する。結合荷重の変更とともに、すでに 2.1.3.1及び 2.1.3.2で述べたように、

過去の平均 Aimo、分散σimo、結合荷重変更回数 nimo 及び入力データ x
r
を用い、新

たな平均 Aim、分散σim、結合荷重変更回数 nim 及び内部状態 Eim を近似式(4.19)

～(4.22)に基づいて演算させる。内部状態 Eim が式(4.23)に示す分裂条件を満た

せば ASQA 層の量子化ニューロンの量子化ユニットを分裂させ、量子化ユニッ

トに連結した中間層のニューロンを複製する。図 6.3(a)に示すように、初期状

態では ASQA層のニューロンの量子化ユニット数は 1であるが、図 6.3(b)、(c)

に示すように、学習の進行に伴い、中間層のユニットが増殖し、ネットワーク

の自己生成が行われる。 
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6.1.4  形状のφ−s特徴変換 

 本項で提案するφ−s 特徴変換は、2次元線図形から 1次元の系列データへの変

換を行うものである。概要を図 6.4に示す。図 6.4(a)の太線図形をφ−s 変換して

得られた系列データが図 6.4(b) である。図 6.4(a) のように対象となる図形の輪

郭線上の任意の点を起点 p として定め、反時計回りに輪郭線をトレースし、各

点での接線の傾きφ を系列データとして発生する。図 6.4 (b) の横軸 s は起点か

らの輪郭線の長さ(系列の順番)を表わし、縦軸は接線の角度φ 表す。このように

φ−s 特徴変換で得られる系列データは、輪郭線上の各点における接線の傾きを基

点からの輪郭線長の関数として表したものである。図のような多角形の場合に

は、φ−s 変換後、階段状の系列に変換される。ここで、図形が回転した場合の回

転角δφ は、変換後の系列データのφ 軸上での平行移動となり、また、輪郭線上

の起点の位置の変化は s 軸上での平行移動に対応するため、図形の回転や移動に

よる形状データの変動の影響を容易に吸収することができ、また、輪郭線の起

点からの距離 s を時間 t とみなせば、時系列データとして、取り扱うことができ

る。本節における検討では認識図形の輪郭形状を多角形近似し、φ−s 特徴変換を

            (a)       (b)       (c) 

図 6.3 TASQAにおけるネットワークの自己生成 
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行った。得られた階段の i 番目の立ち上がり(または立ち下がり)の点のφ、s 値

をそれぞれφi、si としてベクトル系列 ),( iii sX φ=
r

[ i = 1,2,,, M ; Mは多角形の辺の

数] を生成し、差分 1−− ii XX
rr

及び 2−− ii XX
rr

を求めることで、図形の回転成分と

して現われるφ のシフトδφ を吸収し、実際の入力データとした。 

  

6.1.5 ＴＡＳＱＡによる形状認識 

6.1.5.1 実験に用いたデータ 

 図 6.5 に示す、複数の機械部品が配置されたグレースケール画像から、図 6.6

を例として示す、輪郭線の多角形近似による機械部品の形状データを取得し、

図 6.6中の A～Eに示す部品形状を実験対象とし、認識対象(識別のターゲット)

を、B 及び C とした。機械部品の輪郭は、撮影条件や各部品の回転などによっ

て大きく変化する。そこで、撮像条件の異なる 5枚のグレースケール画像(図 6.7 

No.1～No.5)のそれぞれから部品形状データを取得、A～E のそれぞれの部品に

ついて各 5 形状データ、合計 25 形状データを実験に用いた。これら 25 個の部

ｓｓｓｓ

(a) φ−s 変換前の図形      (b)変換後の系列データ 

 

図 6.4 φ−s 特徴変換 

φst＋2π 

φst 

p 

φi 
φst 

φφφφ    

si s 

δφ 

δφ 

p 
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品形状データをφ−s 特徴変換し、ベクトル系列 fiX = (φfi，sfi) を得た。(サフィッ

クス f はグレースケール画像 No.：1～5、図 6.5中の画像 No.4は、図 6.7の画像

No.4と同じもの) 

図 6.5 実験に用いた画像例 

(画像 No.4） 

A 

B 

C 

D E 

図 6.6 輪郭を多角形近似した図形 

(画像 No.4） 

図 6.7 撮像条件の異なる 5枚のグレースケール画像 

(画像 No.4） 
 

(画像 No.5） 
 

(画像 No.1） 
 

(画像 No.2） 
 

(画像 No.3） 
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6.1.5.2 ネットワークの構成 

 図 6.8にネットワークの構成を示す。ASQA層の入力層は 2個の量子化ニュー

ロンで構成され、それぞれ 2次元のベクトル特徴入力端子を持つ。前述したよ 

うに、各形状のφ−s データ中で、輪郭線の起点からの距離 s を時間軸とみなし、

各ニューロンに対し、時刻 s における差分 1−− ii XX
rr

を一方のニューロンに、他方

に 2−− ii XX
rr

を入力する。時系列統合ニューロン層は3つのニューロンで構成し、

それぞれ 2 種類の認識対象及びリジェクトに対応している。各時系列統合ニュ

ーロンは、λの時定数で出力結果を積分して出力する。 

    

6.1.5.3 学習認識実験方法 

図形の学習を行う前に、多数の乱数ベクトルを量子化ニューロンに入力し、

これらの入力に対してリジェクトニューロンが最大出力を出すようにネットワ

ークを学習させ、また、中間層ニューロンを、最大 40個を上限として分裂増殖

させた。 

図 6.8 実験に用いたネットワーク構造 

時系列統合 

ニューロン層 

ASQA層 

λ λ λ 

Xi-Xi-2 

Bニューロン Cニューロン リジェクトニューロン 

(部品 B）  (部品 C）  (リジェクト） 

Xi-Xi-1 
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5枚の画像より得られた 25形状データのうち、図 6.9(a)、(b)に示す 2つの形

状データを認識対象 B及び Cの学習用データとして用い、残り 23形状データを

認識実験に用いた。また、学習に用いた 2つの形状データの全てのφ−s 特徴の入

力による学習を 1回の学習としてカウントした。分裂条件αは、学習の高速化を

狙いとし、学習による結合荷重変更回数を 15 回以内に留めることを目的に 15

とした。 

    

6.1.5.4 学習結果 

前述の 2つの形状データの学習は、6回の繰り返し学習(SPARC Station 2で 5

秒、1.3GHz Pentium4換算で 1.5秒程度)で認識率が全て 100%となり、実用的に

充分な速度での学習処理を行うことができた。初期段階での中間層ニューロン

数は 40 であったが、学習が進むにつれて分裂増殖を繰り返し、1 回目の学習終

了時点で 185 個に、2 回目の学習終了時点には中間層ニューロンの上限である

210個まで増殖を繰り返した。従って、2回目までの学習でネットワーク構造が

でき上がり、3回目以降の学習過程では、結合荷重の変更のみで学習が行われた

ことがわかる。 

 

6.1.6 認識実験結果と考察 

6.1.6.1 TASQA の応答と認識結果 

図 6.10 (a)～(c) は TASQAに形状データを入力したときの出力の変化を表す

グラフである。グラフの横軸は、輪郭線上の起点からの距離 s を時間とみなした

 (a) 画像 No.2 部品 B    (b)画像 No.1 部品 C 

図 6.9 学習した形状データ 
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ものであり、縦軸はニューロンの出力値を表わす。横軸の表示範囲は、形状デ

ータの入力開始から終了までを表示している。グラフの 3 本の線は、それぞれ

時系列統合ニューロン層の 3 つのニューロンの出力を表しており、実線は B ニ

ューロン、破線は C ニューロン、長い破線はリジェクトニューロンの出力であ

る。なお自己フィードバック定数は、λ=3 として実験を行った。図 6.10(a)は、

図 6.6に示す画像 No.4、部品 Cの形状データを入力したときの TASQAの応答を

示す。φ−s 特徴変換された系列データを入力するに伴い各出力ニューロンの出力

は変化するが、入力形状が学習形状(画像 No.1、部品 C )に酷似しているため、

Cを担当するニューロンが常に最大出力、つまり正解を出している。図 6.10(b)

は図 6.6に示す画像 No.4、部品 Aの形状データを入力したときの TAQSAの応

答を示す。学習図形と形状が完全に異なるために、リジェクト担当のニューロ

ンが常に最大出力を出していることがわかる。  

図 6.10(c)は図 6.11及び図 6.6に示す画像 No.4、Bの形状データを入力したと

きの TASQAの応答を示す。図 6.11に示すように、画像 No.4、Bの形状データ

の左部分は、元の部品形状を反映しているため、入力系列の前半では部品 B を

担当するニューロンが最大出力を出している。しかしながら、右部分はノイズ

の影響で形状が大きく変形しているため、後半の入力ではリジェクトを担当す

るニューロンが最大出力を出している。以上のことから TASQAは、部分的な形

状一致度の出力が可能であることがわかる。 
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図 6.10 TASQAの応答 

(c) 画像 No.4、部品 Bの形状データ入力時 

(b) 画像 No.4、部品 Aの形状データ入力時 

(a) 画像 No.4、部品 Cの形状データ入力時 
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6.1.6.2.認識率のλ依存性 

時系列統合ニューロンの自己フィードバックの時定数λの値を有限の値で変化

させ、認識率のλ依存性を調べた結果を図 6.12 に示す。図に示すように、認識

率は特定のλで最大値となる山型の特性を持つ(λ =7 で 100％)。6.1.2 項で述べ

たように、TASQA はλによって規定される自己フィードバック定数により、あ

る時間範囲での出力の統合を行う。有限のλを用いることは時間的に特定の範囲

を注視することに相当し、適切な注視範囲を選択することで、形状全体のマク

ロな一致度を出力させることで、高い認識性能を得ることができた。λが小さい

ときには系列信号に含まれるノイズの影響で誤認識すると考えられ、逆にλが大

きいときには、系列信号固有の特徴が平滑化によって失われるために誤認識す

ると考えられる。λの値を 6から 8の間に設定することで、5つの画像より得ら

れた 23個の未学習の部品形状に対して 100％の認識率が得られた。 

図 6.12 TASQAの応答のλ依存性 
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図 6.11 画像 No.4、Bの形状データ 
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6.1.7 形状検査装置への適用と実用化のまとめ 

 自然画像中の物体の認識を行う場合、画像自身に含まれるノイズや切り出し

に伴うノイズ、あるいは物体の回転や移動等の影響で、切り出された形状は大

きく変化し、このような切り出し図形の認識には形状の変化に対して柔軟な認

識処理が必要となる。我々は時系列パターン認識ネットワーク TASQA 及びφ−s

特徴変換を提案、形状検査装置に必要となる物体形状認識に適用した。 

 ニューラルネットワークを構成する上で最大の課題の一つは、認識課題に対

して最適なネットワーク構造をいかにして決定するかである。TASQAはすでに

説明した ASQA を応用することで、学習過程において、入力した学習データに

応じて適応的に中間層ニューロンが増殖し、ネットワークを自己生成可能であ

ることを示した。また学習に要する時間も、学習回数 6回、標準的な PC(1.3GHz 

Pentium4換算)で 1.5秒程度であり、実用的には充分な速度での学習が可能とな

った。 

提案するφ−s 特徴変換により図形形状を時系列データとして取り扱うことが

でき、図形が回転した場合の回転角δφ は変換後の系列データのφ 軸上での平行

移動、輪郭線上の起点の位置の変化は s 軸上(等価的に時間軸上)での平行移動に

対応する。従って変換により得られた ),( iii sX φ=
r

の差分 1−− ii XX
rr

及び 2−− ii XX
rr

を入力データとすることで、φ 軸上での平行移動は打ち消され、完全に回転フリ

ーの特徴データとして扱うことが可能となった。 

TASQAは時系列統合ニューロン層により時系列データの学習認識が可能であ

り、上記φ−s 特徴変換による形状データを適用することで、形状の輪郭線上に沿

った、部分的な一致度が出力可能である。従ってノイズによる形状の大きな歪

がある場合でも、部分的形状の一致度に基く認識判断が可能で、認識精度の高

い形状検査装置を構築できた。すでに説明した ASQAチップを ASQA層に用い

ることにより、毎秒 143画像の形状認識が可能な形状検査装置を実用化した。 
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6.2 逆光フリービデオムービーへの展開 

 民生用ビデオカメラの開発は、誰でもどこでもきれいに撮れることの実現を

目的とし、様々な制御技術を用いている。中でも露出制御は、さまざまな照明

条件のもとでレンズの絞り開度を最適に制御するもので、ファジィルール(57)(58)

やニューラルネットワークの学習(59)を用いた技術が発表されている。しかしな

がらこれらの絞り補正技術を用いても、コントラストが極端に大きな被写体に

対しては、暗部と明部の両方の階調を再現することは困難である。被写体の輝

度に対して、撮像画像上で階調を再現できる範囲を制限している要因には、撮

像素子と表示デバイスのダイナミックレンジがある。撮像素子のダイナミック

レンジが広い場合には、撮像素子の出力信号から表示デバイスの入力信号への

階調変換特性を工夫することにより、表示デバイス上で階調を再現できる被写

体の輝度の範囲を広げることができる。 

 このような階調再現を改善する技術として用いられるヒストグラムイコライ

ゼーションでは、輝度の累積ヒストグラムを格納して輝度の変換テーブルとす

るためのメモリが必要である。また、輝度分布が極端に集中している領域にお

いて、入力輝度レベルの少しの差が強調されるために発生する偽輪郭などを抑

制するためには、さらに追加回路を要する(60)。被写体の照明条件に応じて絞り

制御と信号処理特性を変化させる技術(61)もあるが、一般的にすべての被写体に

対して、照明条件の判定を正確に行うことは、これらの関係があまりにも非線

形であり、算術的に記述することは非常に困難である。 

一方人間は、複数のガンマ特性を適用した画像を比較することにより、画像

全体の明暗のバランスやトーン等に基き、明示的、論理的説明はできなくとも、

最適なガンマ特性をマクロな視点で選択することは可能であり、またこの人間

の判断や選択ルールを、ニューラルネットワークに学習させることも可能であ

る(62)(63)。 

 我々は、逆光条件などでダイナミックレンジの広い被写体の階調を暗部から
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明部まで再現することを目的として、画像の状況に応じてガンマ特性を変化さ

せることが可能な、量子化ニューロンを用いたニューロガンマ処理方式の確立

と実用化に取り組んだ。この方式では、順光の被写体には従来と同じ 0.45 乗の

ガンマ特性を適用、逆光の被写体には 0.45 乗の特性よりも暗部を明るく補正す

ることで、明部のコントラストも保てるようなガンマ特性を適用し、画像ごと

に適用すべきガンマ特性の選択を、人間の選択ルールを学習させた量子化ニュ

ーロンによるネットワークに行わせた。本方式により、非常にダイナミックレ

ンジの広い、高画質な撮像を、全自動で行える民生用ビデオムービーを実用化

できた。 

本節では、ニューロガンマ処理の階調変換特性、量子化ニューロンによるガ

ンマ特性の選択ルールの学習、ニューロガンマ処理を小規模回路で実現するた

めの構成、および絞り制御やノイズリダクションとの連動について述べる。 

 

6.2.1 ニューロガンマ処理の入出力特性 

 ガンマ処理部は図 6.13に示す構成を持ち、従来の 0.45乗の固定のガンマ処理

後の信号(R，G，B)を入力として、階調変換を行った信号(R’，G’，B’)を出力す

る。入力信号の輝度 Y の分布に基づく特微量を抽出し、予め学習した結果に基

B B’ 

Y-MTX 

特徴抽出

量子化ニューロン

によるγ 特性判断 
γ の LPF 

ゲイン算出 

乗算による

階調変換 

特徴量 

Y 

γ ’ 

γ  

Y’/Y 

R 

G 

R’ 

G’ 

図 6.13 ニューロガンマ処理のブロック図 
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き、各フィールドに対して適用すべきガンマ特性を判断し、パラメータγ 'を出力

する。階調変換に用いる特性パラメータγ は、過去のフィールドに対して徐々に

ガンマ特性を変化させるよう設定する。輝度 Y と特性パラメークγ によってゲイ

ン Y’/Y を画素毎に算出し、乗算によって階調変換を行い、出力信号(R’, G’, B’)

を得る。 

 

6.2.1.1 輝度信号の入出力特性 

 階調変換の出力(R’, G’, B’)から生成される輝度 Y’の特性および階調変換のゲ

イン特性を、図 6.14および図 6.15に示す。これらの特性は入力輝度 Y と特性パ

ラメータγ に関する式(6.4)の多項式で設定し、階調変換を乗算器と加算器のみで

実現した。この構成によって、γ を細かい精度で制御することができる。 









+









+






 −−= aa xB
Y

A
Y

x
Y

Y
512512

)512(
1024

’      (6.4) 

        ここで xa=Yave+128(C-γ ) 

A、B、C：近傍画素の平均輝度 

 

また、ルックアップテーブルを用いない構成にできるため、回路規模も小さ

くできる。図 6.14の入出力特性は、傾きの積分値が一定 







=∫

512

0
255dY

dY

dY ’
の

関係を満たす必要があるため、Y=0 におけるゲイン 








=0YdY

dY’
を大きくしすぎると

他の Y の値において特性の傾きが小さくなり、コントラストが低下する。 

以上の考察と実画像を用いた階調変換の特性検討に基づき、γ =4 の特性とし

て、Y=0 における階調を 3 倍に強調し、かつ、明るい部分の階調も再現できる

ように設定した。これによって、テレビ画面上で視覚的に階調を再現できる被

写体の輝度の下限と上限との比を 3倍に広げた。 
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図 6.14 ニューロガンマ処理における輝度の入出力特性 
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図 6.15 ニューロガンマ処理における輝度のゲイン特性 
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図 6.16に、従来の処理によるカメラの出力特性(a)と、ニューロガンマ処理を

用いたカメラの出力特性(b)を示す。グラフの横幅は、従来のカメラにおいて 100 

IRE の出力輝度が得られる被写体照度を基準(100％)として、相対的に表わした

被写体照度である。従来のダイナミックレンジ 200％のカメラは、100％の被写

体照度までは 0.45乗の特性を持ち、(被写体照度, 出力)＝(200％, 110 IRE)まで

ニー特性を持つ。図 6.16(b)は、ダイナミックレンジ 200％の従来のカメラの絞

り開度を(a)の状態の約 1/3 にし、(被写体照度, 出力)＝(300％, 100 IRE)まで

0.45乗の特性で、(被写体照度, 出力)＝(600％, 110 IRE)までニー特性を持つ信

号(図 6.16(b)のγ =0 の特性)にニューロガンマ処理を施した信号の特性である。

γ =4の特性によって、暗い画素については従来のカメラ(a)と同じ階調再現を得

ることができ、明るい画素についても 600％の被写体照度まで階調を再現できる。 

 入力信号(R，G，B)の量子化精度を 9 ビットとし、最大 3 倍のゲインアップ

によって偽輪郭が発生しないようにした。一般的に、アナログで 0.45 乗のガン

マ処理を行っている民生用ビデオカメラでは 8 ビット精度で量子化を行ってい

る。アナログで 0.45 乗のガンマ処理を行った後に、ＡＤ変換を行い、ニューロ

ガンマ処理においてディジタルで最大 3 倍のゲインを掛ける構成では、計算上

は 10ビット精度で量子化する必要がある。しかしながら、イメージセンサ出力

信号に 0.45乗のガンマ特性を掛けた後の暗部の信号の S/Nを考慮すると、量子

化精度として 10ビットは不必要と考えられ、また、実際の撮像画像においても、

9 ビット精度で量子化を行っても偽輪郭の発生がなく、10 ビットで量子化した

場合と比べても S/N の劣化はないことを確認した。輝度のゲインアップによっ

てノイズも増幅される問題については、6.2.2 項で述べるノイズリダクションと

の連動によって解決した。また、図 6.14 の特性で、傾きが小さい領域の輝度に

おいてもコントラストを保つために、階調変換の多項式は、近傍画素の平均輝

度 Yave の項を持たせるようにし、入力輝度 Y と特性パラメータγ が等しい画素で

も、Yave に応じて近傍画素との差を 1.2倍に強調するように、異なるゲインを掛
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けて階調変換を行った。 
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(a) ダイナミックレンジ 200%の従来カメラの出力特性 

(b) ニューロガンマ処理を用いたカメラの出力特性 

図 6.16 従来カメラとニューロガンマ処理を用いたカメラの 

出力特性の比較 
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6.2.1.2 色信号処理方式 

 式(6.5)に示す輝度信号 Y に対してガンマ補正を行う訳であるが、この時に、

色相、彩度の変化を如何にして少なくし、色信号(R, G, B)を決定できるかが、自

然な再現を行う上で大きなポイントになる。そこで、式(6.6)に示す「色差一定

変換」、式(6.7)に示す「色比一定変換」、式(6.8)に示す、新たに提案した「色差

色比混合型変換」の 3つの方式について以下に検討を加え、最終的に、「色差色

比混合変換」を用いることにした。以下、その詳細検討について述べる。 

 

Y=0.299R+0.587G+0.114B      (6.5) 
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［色差一定変換の特徴］ 

色差一定変換では、補正前後の色差を一定に保って、色信号を求めるもので

ある。図 6.14 に示したように、ガンマ補正は中間調領域でのゲインアップを主

体として行う訳であるが、式(6.6)に示す「色差一定変換」を用いると、ゲイン

アップによって輝度信号のレベルは大きくなるが、色差信号のレベルが一定に
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保たれるため、補正により色光の 3 原色の比が小さくなり、各色とも彩度が低

下することになる。一方、色相に関しては式(6.11)で示すように、補正の前後で

変化しない。 

 

R’ − Y’=R − Y (6.9),   B’− Y’=B − Y  (6.10) 

        ∴ 
YB

YR

YB

YR

−
−

=
−
−
’’

’’
   (6.11) 

 

［色比一定変換の特徴］ 

色比一定変換は、補正前後の色比を一定に保って色信号を求めるものである。

色(6.7)に示す「色比一定変換」を用いると、色光の 3原色の比が保たれるため、

ゲインアップによって輝度信号のレベルが大きくなると同時に彩度が増加する

ことになる。一方色相に関しても、色差一定変換と同様に変換の前後で変化し

ない。以下にその詳細について説明する。 

均等知覚色空間での 2 色の座標値(補正前と補正後)を［L1
★, u1

★, v1
★］、及び

［L2
★, u 2

★, v 2
★］とすると、補正による各色の彩度の変化∆Suv は式(6.12)となり、

色相の変化を同じ単位で評価するために、各色に対する色相の変化∆Huv を式

(6.13)とする。 

 

∆Suv = S1 − S2          (6.12) 
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色相の変化という観点で考えた場合、「色比一定変換」は補正前後における 3

刺激値［X, Y, Z］の比もー定に保たれる。一方 3刺激値から L★ 
u★ v★ 均等知覚

色空間への変換は式(6.14)～(6.16)で表わされる。 

補正前後の 3 刺激値の比が一定に保たれる場合、式(6.14)～(6.16)における

u★、v★は補正によらず同一の値を保ち、補正後の u★、v★の変化は L★の変化に比

例する。この関係と式(6.12)より彩度の変化は明度 L★の変化に比例し、さらに

式(6.13)から色相は変化しないことがわかる。 

 

L★= 16 (Y/Y0)
1/2 －116      (6.14) 

    u★= 13L★(u★－u0)     (6.15) 

             v★= 13L★(v★－v0)      (6.16) 

     但し ，
 

 

［色差色比混合型変換の提案と採用］ 

上記の検討に基き、彩度変化、色相変化を含めた色度変化を抑えるよう、両

補正法の内分値を用いる「色差色比混合型変換」を提案し採用することにした。 

この「色差色比混合型変換」は、式(6.8)に示すように、R、G、B 信号の「色

比一定型」による補正値 R’r、G’r、B’r と「色差一定型」による補正値 R’d、G’d、

B’d との内分比を m とし、補正後の信号 R’c、G’c、B’c を求めるものであり、色差

一定変換のゲインアップによる彩度低下と、色比一定変換の彩度増加を相殺す

ることができるとともに彩度変化も無い。具体的な内分費 m は 0.5 として開発

を行った。 

    

    

9 
v = ★ 

X＋15Y+3 

4X 
u = ★ 

X＋15Y+3 
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6.2.2 量子化ニューロンによるガンマ特性選択 

 民生用ビデオムービーへの実装を考えた場合、すでに述べた量子化ニューロ

ンチップや ASQA チップを用いるのは得策ではない。民生用としてリーズナブ

ルな、さらに簡便な実装が必要となる。そこで、量子化ニューロンチップを用

いてガンマ特性選択ルールの学習を行わせ、学習結果を簡便なハードウェアと

して実装することを基本に開発を行った。 

 

6.2.2.1 ガンマ特性選択ルールの学習に用いる画像 

 様々な撮像条件による画像 300 枚を用意し、6.2.1.1 条で説明した 5 種類のガ

ンマ特性を用いて補正した画像を被験者に提示、最も良好な再現が行われてい

る画像の番号(ガンマ特性)を選ばせて、その画像の教師信号γsとした。   

このプロセスを 2 回繰り返し、同じ画像に対し異なる階調補正曲線が選ばれた

場合には、どちらか一方を再度選択させた。 

 

6.2.2.2 ガンマ特性選択に用いる画像特徴量 

画像の状態を代表する特徴量として、画像のブロック毎の輝度等さまざまな

特微量を入力、ネットワークに学習させて比較した結果、画像中の低輝度画素

数、中輝度画素数、高輝度画素数の 3種類の特徴量(L, M, H)を用いた場合に、

学習に用いた画像に対しても、未学習(学習に用いなかった)画像に対しても、

人間が選択したガンマ特性と最もよく一致し、この特徴量を採用した。 

具体的特徴量の事例を図 6.17に示す。この事例では輝度レベルを 4レベルに

均等分類し、レベル 1を低輝度、レベル 2、3を中期度、レベル 4を高輝度と定

義、それぞれのレベルに属する画素数をカウントし、特徴量(L, M, H)とした。 
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6.2.2.3 学習に用いるネットワーク構造 

画像特徴量に基くガンマ特性選択を行わせるネットワーク構造として、2.2節

で説明した、量子化ニューロンを用いた 5層のMFLNを用いることにし、図 2.3

で示す、入力層の量子化ニューロン数 I を 1に設定、画像特徴量各(L, M, H)を、

それぞれ入力層から第 3 層目の量子化ニューロンに入力し、学習を行った。各

層の量子化レベルは 8とし、線形で量子化した。 

最終出力層のニューロン数 p は、γ =0 からγ =4 に対応する 5 に設定した。学

習には、すでに説明した量子化ニューロンチップを搭載した量子化ニューロン

ボードを用いて行った。 

    

6.2.2.4 ガンマ選択ルールの学習結果 

 ガンマ選択ルールを小規模回路で実現するために、学習終了後の MFLN の、

入力特微量に対する出力γ の分布を分析するとともに、このγ の出力分布を学習

結果としてハードウェア実装した。 

各フィールド画像に対して特徴抽出に用いる画素の数(L+M+H)は一定なので、

入力特微量(L, M, H)は(L, M)平面の上で表わすことができる。入力特徴量 

(L, M, H)の値を変化させて、MFLNの出力γ の値を(L, M)平面上にプロットし

L 
M H 

Input intensity    

N
u
m
b
e
r 
o
f 
p
ix
e
ls

    

L M H 

(a) 逆光画像 (b) 順光画像 

図 6.17 ガンマ特性選択に用いる画像特徴量 
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たものを図 6.18 に示す。なお図において、未学習の画像に対する出力に関して

は、近傍にある学習画像のγsから補間した値と極端に異なる場合には、誤動作を

避ける意味から、γsの補間値と置換することで、安定した出力分布を得た。 

 

    

6.2.2.5 ガンマ選択ルール学習結果の分析 

図 6.18の(L, M)平面上において、Lが最大値となる特微量は暗い画像に相当

し、Ｍが最大値となる画像は順光の画像に相当し、L=M=0 となる特微量は明る

い画像に相当する。これらの画像に対しては、MFLNの出力はγ =0、すなわち、

階調補正を行わないとしている。逆光の画像は、図 6.17 の特微量の分布におけ

る輝度あたりの画素数が、低輝度部や高輝度部において中輝度部よりも極端に

多い場合と考えられる。M に相当する輝度のレベル幅を Lに相当する輝度のレ

図 6.18 ガンマ選択ルールの学習結果 
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ベル幅の 2 倍に設定しているので、 (M−2L)が少ないほどγ =4 に近い特性パラ

メータとなり、Lが極端に多い領域では再びγ =O となっている。 

 

6.2.2.6 ガンマ判定部の小規模回路での実現 

図 6.18のガンマ選択を実現する回路を図 6.19に示す。ガンマ選択部に、量子

化ニューロンの簡易構造を用い、2つの特微量の差(M−2L)および特微量 Hを量

子化する量子化 RAM (QRAM)を設けてある。これらの RAMを信号処理 LSIに

内蔵してあり、LSIのパワーオン時に EPROMからデータをロードした後は、ル

ックアップテーブル ROMとして機能する。 M−2Lを量子化する QRAMは、図

6.18の(L, M)平面上の M=2Lに垂直な方向の軸上で、入力特微量を量子化する

機能を持つ。同様に、Hを量子化する QRAMは、M=Lの方向の軸上で入力特微

量を量子化する機能を持つ。出力 RAM(ORAM)は、それぞれの量子化値に対し

て特性パラメータγn を割り当てる機能を持つ。このように、特微量を量子化した

値を入力とするルックアップテーブル上で、ガンマ特性選択を実現した。以上

の構成によって、ガンマ選択部を 1個のルックアップテーブル(64k word×5b)で

実現する場合と比べ、メモリ容量を 1/100以下(2.4 kb)で実現することができた。 

 

6.2.2.7 ガンマ特性の過渡応答 

 照明条件が変化する動画像入力において、ガンマ特性の急激な変化による違

和感をなくすため、ガンマ選択部が出力する特性パラメータγ に対し、図 6.20

に示す時間軸方向のローパスフィルタ(LPF)を掛けて、画像に適用する特性パラ

M − 2L QRAM 
Output 

RAM 

QRAM 

M 
 

 
L 
 
 
H 

図 6.19 2段のRAMによって構成したガンマ選択部のブロック図 
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メータγ を得るようにした。これにより、照明条件の変化によってγ が 4 から 0

に急激に変化した場合時でも、γ の値は図 6.21に示すように、徐々に変化させる

ことができた。また図 6.20 のシフトレジスタにおけるシフト量を調整すること

により、レンズの絞り開度の変化の速度と同程度の速さで、自然に階調変換特

性を変化させることを可能にした。また、γ をは8ビット精度で表現することで、

図 6.18や図 6.19のγよりも細かく滑らかな特性の制御を可能にした。 

 

 

    

    

Latch 

Shift register γn － 

＋ γ 

図 6.20 γ を徐々に変化させるための LPFの構成 

図 6.21 ガンマ特性切り替わり時の経時変化 
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6.2.3 カメラの他のブロックとの協調動作 

6.2.3.1 過順光被写体の階調再現  

 逆光でも過順光でも適正な露出を得るために、イメージセンサ出力の平均輝

度と最高輝度がともに目標値に近づくように、マイコンはレンズの絞り開度を

制御する。この絞り制御によって、逆光の被写体に対しては明るい部分が適正

な露出になるように絞り開度を調整し、暗い部分の階調も再現されるようにニ

ューロガンマ処理によって非線形な階調変換を行う。過順光の被写体でも明る

い部分が適正な露出になるように絞り開度を調整する。過順光と逆光では画面

全体の輝度の分布は似ており、ともに明るい画素と暗い画素が多く、中間輝度

の画素が少ない分布を持っている。マイコンは画像の周辺部と中央部の輝度の

平均を比較し、周辺部に比べて中央部が明るい場合には過順光と判断、ガンマ

判定部が出力するγ の値を減じて LPFに供給する。これによって、過順光の画像

の暗部のゲインアップを抑制し、黒浮きを抑えることができた。 

 

6.2.3.2 S/N の保持方法 

 暗部の輝度のゲインアップによるノイズレベルの増加を抑えるために、ニュ

ーロガンマ処理は AGC、ノイズ抑圧、および輪郭強調回路と連動している。被

写体の輝度が低いために AGCでゲインアップしている画像に対しては、ニュー

ロガンマ処理においてはゲインアップを行わない。ノイズ抑圧回路はフィール

ドおよびフレーム巡回型で、1フィールドおよび 1フレーム前の信号と現フィー

ルドの信号との差信号に対して、ガンマ特性パラメータγ 応じた非線形特性の変

換を掛けて、現フィールドの信号から引く。γ 値が大きいときには、フィードバ

ックループにおける非線形特性の振幅を大きくすることにより、ノイズを強く

抑圧した。輪郭強調回路はレベルディペンデント型で、輝度信号の高周波成分

に対し、各画素の輝度およびガンマ特性パラメータγ の値に応じた非線形特性を

掛けた上で、もとの輝度信号に加えた。γ の値が大きいときには、高周波成分に
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掛ける非線形特性の振幅を小さくすることにより、輪郭強調を抑えるようにし

た。これらの動作によって、ニューロガンマ処理によるゲインアップに伴うノ

イズの増幅を抑え、S/Nを保持した。 

 

6.2.4 ニューロガンマ処理による撮像画像 

最終的に得られた、ニューロガンマ処理による撮像画像を図 6.22 に、従来の

絞り補正によって得られる画像と比較して示す。図 6.22 に示すような、暗部と

明部との輝度の差が大きく、絞り補正では暗部と明部との両方の階調を再現す

ることができない場合でも、本方式によれば暗部の階調が適度に強調され、暗

部と明部の両方を最適な階調性を持たせて再現することができた。 

図 6.22中のニューロガンマ処理による画像(a)は、従来の絞り処理による画像

(b-1)に比べ、Dレンジが約 12dB向上している。 
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図 6.22 ニューロガンマ処理による撮像画像(従来法との比較） 

((((a))))ニューロガンマニューロガンマニューロガンマニューロガンマ    

    処理処理処理処理によるによるによるによる撮像撮像撮像撮像    

 

室内の人形 

屋外の景色ともに 

良好な階調性で 

撮像可能 

 

((((b-1))))    従来従来従来従来のののの絞絞絞絞りりりり    

        補正補正補正補正によるによるによるによる撮像撮像撮像撮像    

 

屋外に合わせると、

室内の人形が黒つ

ぶれになる 

 

((((b-2))))    従来従来従来従来のののの絞絞絞絞りりりり    

        補正補正補正補正によるによるによるによる撮像撮像撮像撮像    

 

屋内の人形に合わ

せると、屋外が白飛

びする 
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6.2.5 逆光フリービデオムービーへの展開のまとめ 

 どのような照明条件においても望ましい階調再現特性を持つビデオカメラの

実現に向けて、量子化ニューロンを用いたニューロガンマ処理方式を開発し、

逆光フリービデオムービーを実用化した。本節で述べたような画像の評価にお

いて、人間は定性的なレベルでの評価を非常に得意としているが、この評価ル

ールは非常に非線形で、定量的、算術的に記述することには困難を伴う。本節

では、この人間の判断ルールを量子化ニューロンを用いた手法により機械学習

させることで、民生レベルの機器の知的な処理として実装、実用化することが

できた。  

本方式の基本的コンセプトは、被写体の照明条件に応じて自動的にガンマ特

性を変化させる点にある。この基本コンセプトを以下の 3 つの技術によって具

現化し、ビデオカメラのダイナミックレンジを等価的に 3 倍に拡大することが

できた。 

 

(1)逆光でも暗部、明部ともに階調を再現できるように、入力輝度 Y と 

ガンマ特性パラメータに関する多項式で階調変換特性を表現 

(2)ニューラルネットワークの学習機能によって、人間の視覚特性に 

合ったガンマ選択ルールを構築 

(3)ガンマ判定部を 2段の RAMの縦続接続で構成することにより、 

従来のルックアップテーブル方式に比べ 1/100の小規模回路で実現 
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第 7章 総括 

 

7.1 本研究の成果 

 ユーザーの好みや使用される環境に適応して行く知的機器の開発が望まれて

いる中で、学習性を有し、柔軟な処理を行える可能性を秘めたニューラルネッ

トによる実現が期待されている。筆者は、上記知的機器の実現に向けて、(1) 高

速な学習認識と現場での追加学習が可能で、しかもハードウェア実装が容易な

「量子化ニュ－ロン」モデル、さらにはネットワークの自動生成が可能な「適

応増殖量子化ニューロン」モデルを提案し、(2)そのハードウェア化を行い、文

字認識装置、画像認識装置、画像処理装置等への実用化展開を図ることができ

た。 

 本研究の成果を以下に総括する。 

 

7.1.1 量子化ニューロンの基本モデルと処理アルゴリズム 

第 2 章では、新たなニューラルネットワークモデルである量子化ニューロン

を提案し、その基本構造と基本処理アルゴリズム、並びに量子化ニューロンを

用いたネットワーク構造と学習認識アルゴリズムについて明らかにし、従来の

閾値処理ニューロンによるニューラルネットワークと比較して、ハードウェア

化が容易で、高速な学習と認識処理が可能であることを示した。 

典型的なアプリケーションである文字認識への適用事例では、従来の階層型

ニューラルネットワークと比較して、10 倍以上の高速学習認識が可能で、実用

性の観点で、飛躍的な性能向上が可能なことを実証できた。 
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7.1.2  量子化ニューロンモデルを用いたニューラルネットワークの 

ハードウェア化 

    
第 3 章では、量子化ニューロンによるネットワークを高速実行可能な量子化

ニューロンチップの実現に取り組んだ。 

量子化ニューロンによるネットワークは、ソフトウェアによる実行でも実用

的には充分な高速学習認識性能を有するが、日本語文字認識等の大規模なネッ

トワークを必要とするアプリケーションや、産業分野における超高速な画像認

識においては、専用 LSI 化による更なる高速化が望まれる。そこで、これらを

実現すべく、量子化ニューロンチップの開発と実用化を行った。 

作製した専用 LSI(QNC)は、量子化ニューロンによるネットワークをハードワ

イヤードで構成したものである。4,736ニューロンからなるネットワークを実行

可能で、第 1層(入力層)64ニューロン、第 2層 64×8ニューロン、第 3層 64×8×8

ニューロン、第 4層 64×8×8×8端子、出力層 64ニューロンを有する。量子化ニ

ューロンによるネットワーク演算を高速に実行可能で、20.5G CPS、20M CUPS

の性能を実証した。 

QNC を用いたニューロボードと、これを用いた手書き数字認識システムを開

発実用化し、毎秒 1,030文字の認識速度を実現した。また QNCを並列に結合す

ることにより、日本語認識等に用いる大規模なネットワークを構成することも

可能にした。 

 

7.1.3  適応増殖量子化ニューロン(ASQA)への拡張 

第 4章では、ニューロンの分裂増殖によるネットワークの自動生成が可能な、

適応増殖量子化ニューロンモデルへの拡張に取り組んだ。 

一般的にニューラルネットワークでは、ネットワーク構成そのものは最初の

設計事項として固定であり、試行錯誤的に決定するしか方法がなかった。   
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この課題に対応すべく、学習状況に応じて、ニューロンが分裂、増殖、結合

し、最適なネットワークを形成可能な、適応増殖量子化ニューロンへの拡張を

行った。これにより、ネットワーク構成そのものも、学習により自動形成させ

ることが可能になり、実用面で、飛躍的な適応性を確保できた。 

 

7.1.4 適応増殖量子化ニューロン(ASQA)のハードウェア化 

第 5章では、適応増殖量子化ニューロンのハードウェア化に取り組んだ。 

自己増殖によるネットワーク自動生成を実現すべく、ニューロン同士の結合

荷重を外付けのメモリによって構成、ニューロ演算をシミュレートする演算部

と、外付けメモリに保管したネットワーク中のニューロン同士の結合荷重をア

ドレッシングするネットワークアクセス部とによって構成し、ASQA チップと

して LSI 化を図った。また、大規模カテゴリの学習認識に対応させるため、複

数ネットワークを構造的に結合した、構造化ニューラルネットワークを実行可

能な構成を実現した。 

作製した ASQAチップを用いて、2,965文字種からなる漢字の認識システムを

開発実用化し、毎秒 570文字の認識速度と、認識率 98.8%を実現した。 

 

7.1.5 量子化ニューロンモデルの実用システムへの展開 

第 6 章では、第 5 章で述べた文字認識システムの開発実用化に加え、量子化

ニューロンによるニューラルネットワークを用いた、他の実用システムの開発

に取り組んだ。 

産業分野での展開では、形状検査装置を開発実用化、民生分野では、ビデオ

ムービーのガンマ補正に適用、簡易ネットワークによるハードウェア化により、

実用的な商品展開を可能とした。何れのシステムにおいても、世界最高レベル

の学習認識性能を実現できた。 
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7.2 今後の展開 

情報通信システムや情報機器、さらには情報サービスの分野においても、知

能化に対する要望は益々大きくなりつつある。量子化ニューロンは、シンプル

な構成と高速実行性を有し、ハードウェア実装が容易なモデルであり、実用性

の高いニューラルネットワークを実現可能である。 

基本的なハードウェアとして、QNCや ASQAチップを実現したと同時に、数

多くの実用製品ですでに用いられつつある。知的な認識処理を必要とする産業

分野から、家電製品における知的制御まで、幅広い商品分野での今後の実用展

開が期待される。 



  
  

- 92 - 



  
  

- 93 - 

謝辞謝辞謝辞謝辞    

    

本研究は、筆者がパナソニック株式会社にて行ったニューラルネットワーク

に関する研究成果をまとめたものであり、多くの皆様のご支援とご協力により

完遂することができました。 

本研究をまとめるにあたり、包括的なご指導とご鞭撻を賜りました大阪大学

大学院工学研究科電気電子情報工学専攻の杉野隆教授に謹んで感謝の意を表し

ます。 

また、本論文をまとめるにあたり、ご親切なご指導、ご検討、ご助言を賜り

ました、大阪大学大学院工学研究科電気電子情報工学専攻の八木哲也教授、谷

野哲三教授、並びに大阪大学大学院情報科学研究科マルチメディア工学専攻の

岸野文郎教授に心より深く感謝申し上げます。 

また、本論文をまとめるにあたり、数々のご検討、ご助言を賜りました、大

阪大学大学院工学研究科電気電子情報工学専攻の伊藤利道教授、森勇介教授、

片山光浩教授、尾崎雅則教授、栖原敏明教授、近藤正彦教授、谷口研二教授、

森田清三教授に心より深く感謝申し上げます。 

本論文の発表の機会を与えて頂き、また数多くのご指導とご助言を賜りまし

た、パナソニック株式会社本社 R&D部門先端技術研究所の上田大助所長に、謹

んで感謝の意を表します。 

また、本研究を進めるにあたり、数多くのご支援、ご助言、ご協力を賜りま

した、パナソニック株式会社本社 R&D部門戦略半導体開発センターの丸山征克

様、崎山史朗様、中平博幸様に深く感謝申し上げます。 

本研究を完遂するに当たり、多大なご支援とご協力を頂いた、パナソニック

株式会社 AVCネットワークス社の阪上茂生様、パナソニックシステムネットワ

ークス株式会社の香田敏行様、パナソニック株式会社本社 R&D部門先端技術研



  
  

- 94 - 

究所知能情報技術研究所の今川太郎様、パナソニック株式会社本社 R&D部門コ

ーポレート R&D戦略室の近藤堅司様に、心より深く感謝いたします。 

本研究は以上に記載し切れませんでした多くの皆様のご協力、ご助言、ご支

援の下に完遂したものであり、ここに深く感謝申し上げます。 

そして最後に、日常生活面で苦労をかけながらも、全面的にサポートしてく

れた、妻の純子と長女の聖未、長男の兼治に感謝いたします。 



  
  

- 95 - 

＜＜＜＜参考文献参考文献参考文献参考文献＞＞＞＞    

 

1. Herman H. Goldstine著, 末包良太, 米口肇, 犬伏茂之 共訳, “パスカルからノ

イマンまで” , 共立出版, 1979. 

 

2. 佐々木能章, “ライプニッツ術” , 工作舎, 2002. 

 

3. G. W. Leibniz著, 沢口昭聿訳, “ライプニッツ著作集(1)論理学”, 工作舎, 1988.  

 

4. G. W. Leibniz著, 原亨吉, 三浦伸夫, 斎藤憲, 倉田隆, 佐々木力, 馬場郁, 安

藤正人, 下村寅太郎, 中村幸四郎, 山本信 共訳, “ライプニッツ著作集(2)数

学論・数学”, 工作舎, 1997. 

 

5. G. W. Leibniz 著, 原亨吉, 三浦伸夫, 倉田隆, 長島秀男, 横山雅彦, 馬場郁, 

西敬尚, 下村寅太郎, 中村幸四郎, 山本信 共訳, “ライプニッツ著作集(3)数

学・自然学”, 工作舎, 1999. 

 

6. B. Randell, “From Analytical Engine to Electronic Digital Computer:The 

Contributions of Ludgate, Torres, and Bush”, Annals of the History of Computing, 

Vol.4, No.4, 1982. 

 

7. C. Shannon, “A Mathematical Theory of Communication”, Bell System Technical 

Journal, Vol. 27, pp. 379–423 and 623–656, 1948. 

 

8. N. Wiener著, 池原止戈夫, 彌永昌吉, 室賀三郎, 戸田巌 共訳, “サイバネティ

ックス 第 2版”, 岩波書店, 1962. 

 

9. J. McCarthy, M.Minsky, N.Rochester and C. Shannon, “A proposal for the 

Dartmouth summer research project on artificial intelligence”, 1955. 

 

 

 

 



  
  

- 96 - 

10. W.S. McCulloch and W. H. Pitts, “A logical calculus of the ideas immanent in 

nervous activity”, Bulletin of Mathematical Biophysics, Vol.5, pp.115-133, 1943. 

 

11. F. Rosenblatt, “The Perceptron: A Probabilistic Model for Information Storage and 

Organization in the Brain”. Psychological Review, Vol.65, No.6, pp.386-408, 1956. 

 

12. J. J. Hopfield, “Neural network and physical systems with emergent collective 

computational abilities” Proc. NAS. U.S.A., Vol.79, No.8 , pp.2554-2558, 1982. 

 

13. 中野馨, “アソシアトロン-連想記憶のモデルと知的情報処理”, 昭晃堂, 1979.  

 

14. 福島邦彦, “コグニトロンのパターン分離能力の向上”, 電子通信学会論文誌

A,  Vol.J62-A, No.10 , pp. 650-657, 1979.  

 

15. D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning Internal 

Representations by Error Propagation”, Parallel Distributed Processing, Vol.1, 

pp.318-362, M.I.T. Press, 1986. 

 

16. T. Kohonen, “Learning Vector Quantization”, Self-Organization and Associative 

Memory, pp.199-202, Springer-Verlag, 1984. 

 

17. E. McDermott, “LVQ3 for Phoneme recognition”, Proc. 1990 .Conf. ASJ, 2-16, 

pp.151-152, 1990. 

 

18. D. Reilly, L. Cooper and C. Elbaum, “A Neural Model for Category Learning”, Biol. 

Cybern., Vol.45, pp.35-41, 1982.   

 

19. 安井湘三, “多出力ニューラルネット:刈り込み,構造整合,機能モジュール”, 

電子情報通信学会技術研究報告, NC95-172, Vol.95, No.599, pp.137-142, 1996. 

 

20. 大平岳将, 山内康一朗, 大森隆司, “メタ学習による追加学習の高速化”, 電子

情報通信学会技術研究報告, NC2002-193, Vol.102, No.730, pp.119-124, 2003. 

 



  
  

- 97 - 

21. W. J. Freeman, “Lessons from Neurobiology for Feedback Architectures and 

Oscillatory Dynamics in Pattern Recognition with Artificial Neural Networks”, 

Proc. Int. Conf. on Fuzzy Logic & Neural Networks. IIZUKA'90, Vol.1, pp.27-30,  

1990. 

 

22. W. Fakhr and M. I. Elmasry, “A Fast Learning Technique for the Multi Layer 

Perceptron”, Proc. IJCNN'90, Vol.3, pp.257-262, 1990. 

 

23. S. Maruno and A. Schoenberg, “Voice command recognition system for 

handicapped persons using multi-layered networks”, Proc. Annual Int. Conf.of 

IEEE Eng. in Medicine & Biology Society Vol.10, Part 4/4, pp.1590-1591, 1988. 

 

24. S. Maruno, “Multi Functional Layered Network using Quantizer Neurons”, 

Computer World '90, pp.202-209, 1990. 

  

25. T. J. Guillerm and N. E. Cotter, “Neural Networks in Noisy Environment: A Simple 

Temporal Higher Order Learning for Feed-Forward Networks”, Proc. IJCNN'90, 

Vol.3, pp.105-112, 1990. 

 

26.  M. Stinchcombe and H. White, “Approximating and Learning Unknown Mapping 

Using Multilayer Feedforward Networks with Bounded Weights”, Proc. IJCNN'90, 

Vol.3, pp.7-16, 1990. 

 

27.  H. Yang and C. C. Guest, “High Order Neural Networks with Reduced Numbers 

of Interconnections Weights”, Proc. IJCNN'90, Vol.3, pp.281-286, 1990. 

 

28.  Y. H. Kong and A. S. Noetzel, “The Piecewise Linear Neural Network: Training 

and Recognition”, Proc. IJCNN'90, Vol.3, pp.245-250, 1990. 

 

29. T. Matsumoto and M. Koga, “A High-Speed Learning Method for Analog Neural 

Networks”, Proc. IJCNN'90, Vol.2, pp.71-76, 1990. 

 

 



  
  

- 98 - 

30. T. K. P.guyen, R. P. Lippmann, B. Gold and D. B. Paul, “A Physiologically 

Motivated Front-End for Speech Recognition”, Proc. IJCNN'90, Vol.2, pp.503-508, 

1990. 

 

31. W. Pedrycz, “Relational Structure in Fuzzy Sets and Neurocomputation”, Proc. Int. 

Conf. on Fuzzy Logic & Neural Networks IIZUKA'90, Vol.1, pp.235-242, 1990. 

 

32. A. Iwata, K. Hotta, H. Matsuo, N. Suzumura, S. Matsuda and M. Yoshida, “A Large 

Scale Neural Network 'CombNet' on a Neural Network Accelerator(Neuro-Turbo)”, 

Proc. Int. Conf. on Fuzzy Logic & Neural Networks IIZUKA'90, Vol.1, pp.329-333, 

1990. 

 

33. K. Fukushima and N. Wake, “Neocognitron: A Hierarchical Neural Network Model 

for Pattern Recognition”, Proc. Int. Conf. on Fuzzy Logic & Neural Networks 

IIZUKA'90, Vol.1, pp.387-390, 1990. 

 

34. M. Okada and K. Fukushima, “Neocognitron Learned by Backpropagation”, Proc. 

Int. Conf. on Fuzzy Logic & Neural Networks IIZUKA'90, Vol.2, pp.667-670, 

1990. 

 

35. H. Takagi, T. Kouda and Y. Kojima, “Neural Network Designed on Approximate 

Reasoning Architecture and Its Application to the Pattern Recognition”, Proc. Int. 

Conf. on Fuzzy Logic & Neural Networks IIZUKA'90, Vol.2, pp.671-674, 1990. 

 

36. 岩田彰, 當麻孝志, 松尾啓志, 鈴村宣夫, “大規模４層ニューラルネット

"CombNET"”, 電子情報通信学会論文誌 D2, Vol.J73-D2, No.8, pp.1261-1267, 

1990. 

 

37. 堀田健一, 岩田彰, 諏訪喜久, 鈴村宣夫, “CombNET IIによる多数カテゴリの

分類”, 1991年電子情報通信学会春季全国大会講演論文集, D-64, 1991. 

 

 



  
  

- 99 - 

38. 高木英行, 香田敏行, 小島良宏, “ファジィ推論アーキテクチャに基づくニュ

ーラルネット”, ファジィ学会誌, Vol.3, No.1, pp.133-141, 1991. 

 

39. 小島良宏, 香田敏行, 高木英行, 〆木泰治, “ニューラルネットワークの汎化

性に関する一検討”, 1990年電子情報通信学会春季全国大会講演論文集, D-5, 

1990. 

 

40. 高木英行, 鈴木規之, “ファジィ推論アーキテクチャに基づくニューラルネ

ットの VTR テープ走行調整行程への適用”, ファジィ学会誌, Vol.3, No.4, 

pp.186-194, 1991. 

 

41. Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer design”, 

IEEE Trans.Commun., COM-28, 1, pp.84-95, 1980. 

 

42. 寺野寿郎, 浅居喜代治, 菅野道夫, “ファジィシステム入門”, オーム社, 1987. 

 

43. D. E. Rumelhart, G. E. Hinton and R. J. Williams, “Learning representations by 

backpropagating errors”, Nature, Vol.323, No.9, pp.533-536, 1986. 

 

44. 香田敏行, 阪上茂生, 山本浩司, 〆木泰治, “パターン認識に適したニューラ

ルネットワークの高速学習法”, 1990 年電子情報通信学会秋季全国大会講演

論文集, D-18, 1990 

 

45. 蔵富靖規, 瀧本昭雄, 筒井博司, 小川久仁, “相対特徴抽出光ニューラルネッ

トワークによる手書き文字認識”, 電子情報通信学会技術研究報告, CPSY,  

Vol.94, No.15, pp.47-54, 1994. 

 

46. 小島良宏, 香田敏行, 丸野進, 阪上茂生, 山本浩司, 〆木泰治, “構造化ニュ

ーラルネットワーク(NARA)によるマルチフォント漢字認識”, 電子情報通

信学会技術研究報告, NC91-31, Vol.91 No.231, pp.9-16, 1991. 

 



  
  

- 100 - 

47. 山本浩司, 阪上茂生, 丸野進, 〆木泰治, “神経回路網を用いた文字切り出し

手法の検討”, 1992年電子情報通信学会春季全国大会講演論文集, D-71, 1992.  

 

48. 丹羽寿男, 萱嶋一弘, 〆木泰治, “文字認識後処理法と後処理による効果の分

析”, 電子情報通信学会技術研究報告, PRU91-135, Vol.91, No.478, pp.71-78, 

1992.  

 

49. 丸野進, 〆木泰治, “機能別階層ネットワークを用いた文字認識システム”, 

平成２年度画像電子学会全国大会予稿, No.18, pp.77-80, 1990. 

 

50. H. Nakahira, S. Sakiyama, M. Maruyama, K. Hasegawa, T. Kouda,  S. Maruno,  

Y. Shimeki, T. Satonaka and Y. Nagano, “A Digital Neuropurocessor using 

Quantizer Neurons”, Digest of technical papers of 1993 Symposium on VLSI 

Circuits, pp.35-36, 1993. 

 

51. T. Kohda, S. Maruno, Y. Shimeki, S. Sakiyama, H. Nakahira, M. Maruyama, T. 

Satonaka and Y. Nagano, “Quantizer Neuron Chip(QNC) and Neuroboard with 

QNC for personal Computer”, World Congress on Neural Networks Vol.IV, 

pp.779-782, 1993. 

 

52. B.E. Boser, E. Sackinger, J. Bromley, Y. Le Cun and L.D. Jackel, “An Analog 

Neural Network Processor with Programmable Topology”, IEEE J. Solid-State 

Circuits, Vol.26, No.12, pp.2017-2025, 1991. 

 

53. Y. Arima, M. Murasaki, T. Yamada, A. Maeda and H. Shinohara, “A Refreshable 

Analog VLSI Neural Network Chip with 400 Neurons and 40K synapses”, IEEE J. 

Solid-State Circuits, Vol.27, No.12, pp.1854-1861, 1992. 

 

54. K. Uchimura, O. Saito and Y. Amemiya, “A High-Speed Digital Neural Network 

Chip with Low-Power Chain-reaction Architecture”, IEEE J. Solid-State Circuits, 

Vol.27, No.12, pp.1862-1867, 1992.  

 



  
  

- 101 - 

55. 池田光男, “色彩工学の基礎”, 朝倉書店, 1980. 

 

56. 社団法人 日本印刷学会編, “印刷工学便覧”, p.468, 1993年 1版 4刷 

 

57. 春木俊宣, “ファジィ理論を用いたオートアイリスシステム”, テレビジョン

学会誌, Vol.44, No.8 , pp.1053-1059, 1990. 

 

58. 江草洋, 森勉, 五島雪絵, 藤本眞, “逆光・過順光度合の導出にファジィ理論

を用いた露出制御方式の検討”, テレビジョン学会技術報告, Vol.16, No.30, 

pp.19-24, CE'92-98, BCS'92-21, 1992.  

 

59. 山中篤, 大西一幸, 高浜健吾, 山根康邦, 賀好宣捷, “ニューラルネットを応

用したムービーのオートアイリス”, テレビジョン学会技術報告, Vol.16, 

No.6, pp.25-30, 1992.  

 

60. S.M. Pizer, E.P. Amburn, J.D. Austin, R. Cromartie, A. Geselowitz, T. Greer, B.T.H. 

Romeny and J.B. Zimmerman, “Adaptive Histogram Equalization and It's 

Variations”, Computer Vision, Graphics & Image Processing, 39, 3, pp.355-368, 

1987. 

 

61. A. Morimura,  K. Uomori,  Y. Kitamura, A. Fujioka,  J. Harada,  S. Iwamura and 

M. Hirota, “Digital Video Camera System”, IEEE Trans. Consum. Electronics, 36, 

4, pp.866-876, 1990.  

 

62. 石原秀志, 山下春生, 阪上茂生, 丸野進, “適応的階調補正法(I)階調補正法の

検討”, 画像電子学会第 125回研究会予稿, pp.37-42, 1991. 

 

63. 丸野進, 阪上茂生, 山本浩司, 山下春生, 〆木泰治, “適応的ガンマ補正法(II)

量子化ニューロンによる学習型ガンマ補正法の検討”, 画像電子学会第 125

回研究会予稿, pp.43-48, 1991. 

 

 



  
  

- 102 - 

64. 田村彰浩, 阪上茂生, 中山正明, 丸野進, “ニューロガンマ処理によるカメラ

の Dレンジ拡大”,テレビジョン学会技術報告, Vol.18, No.72, pp.13-18, 1994. 

 

65. 丸野進, 香田敏行, 小島良宏, 阪上茂生, 山本浩司, 〆木泰治, “量子化ニュ

ーロンを用いた能別階層ネットワークによる文字認識”, 1991 年電子情報通

信学会春季全国大会講演論文集, D-66, p.6-66, 1991. 

 

66. 香田敏行, 丸野進, 小島良宏, 阪上茂生, 山本浩司, 〆木泰治, “量子化ニュ

ーロンを用いた機能別階層ネットワークの追加学習”, 1991 年電子情報通信

学会春季全国大会講演論文集, D-65, p.6-66, 1991. 

 

67. 丸野進, 香田敏行, 小島良宏, 阪上茂生, 山本浩司, 〆木泰治, “適応増殖量

子化ニューロン(ASQA)による文字認識”, 電子情報通信学会技術研究報告, 

NC91-51, Vol.91, No.302, pp.23-28, 1991.  

 

68. S. Maruno, T. Imagawa, T. Kohda, Y. Kojima, H. Yamamoto and Y. Shimeki, 

“Adaptive segmentation of quantizer neuron architecture (ASQA)”, IJCNN 

'93-Nagoya. Proceedings of 1993 International Joint Conference on Neural 

Networks, Vol.1, pp.367-370, 1993. 

 

69. 丸野進, チャウ・イェッティ, 阪上茂生, 〆木泰治, “ASQAによる時系列認識

ネットワーク(TASQA)を用いた形状認識”, 1992年電子情報通信学会創立 75

周年記念秋季大会講演論文集, Vol.6, p.6-38, 1992. 

 

70. 丸野進, 今川太郎, 阪上茂生, 〆木泰治, “ASQA による時系列認識ネットワ

ーク (TASQA)を用いた形状認識 ”, 1992 年画像電子学会研究会予稿 ,  

pp.25-30, 1992. 

 

 

 



  
  

- 103 - 

71. S. Maruno, T. Kohda, H. Nakahira, S. Sakiyama and M. Maruyama, “Quantizer 

neuron model and neuroprocessor-named quantizer neuron chip” IEEE Journal on 

Selected Areas in Communications, Vol.12, Issue 9, pp.1503-1509, 1994. 

 

72. M. Fukuda, H. Nakahira, S. Sakiyama, M. Maruyama, T. Kouda, T. Imagawa and     

S. Maruno, “A digital neuro chip with adaptive segmentation quantizer neuron 

architecture (ASQA)”, Neural Networks for Signal Processing [1996] VI. 

Proceedings of the 1996 IEEE Signal Processing Society Workshop, pp.559-568,  

1996. 

 

73. 川島毅, 石黒章夫, 大熊繁, “小規模回路で実現可能なニューラルネットワー

クのハードウェア化手法”, 電子情報通信学会技術研究報告, NC99-90, Vol.99, 

No.612, 613, pp.23-28, 2000. 

 

74. 中條直也, 黒柳奨, 道木慎二, 橋山智訓, 大熊繁, “FPGA実装用の反復計算型

ニューロン”, 電子情報通信学会技術研究報告, NC99-88, Vol.99, No.612, 613, 

pp.7-13, 2000. 

 

75. 梅崎智，高橋貞夫, “雑誌表紙からの文字切り出し”, 電子情報通信学会技術研

究報告,NC2002-154, Vol.102, No.729, pp.125-130, 2003. 

 

76. 西村晃一, 岸田悟, 渡部徹, “ニューラルネットワークを用いた指紋照合シス

テムの構築”, 電子情報通信学会技術研究報告, NC2003-146, Vol.103, No.732, 

pp.65-70, 2004. 

 

77. 井上恵介, 下ノ村和弘, 八木哲也, “シリコン網膜と FPGAによる並列画像処

理”, 電子情報通信学会技術研究報告, NC2005-68, Vol.105, No.419, pp.31-34, 

2005. 

 

 



  
  

- 104 - 

78. ト楠, 濱本泰治, 福田修, 辻敏夫, “FPGA による確率ニューラルネットワー

クのハードウェア実現”, 電子情報通信学会論文誌 D, Vol.J88-D2, No.2, 

pp.390-397, 2005. 

 

79. 志賀勇太, 横井博一, “仮想学習システムの二足歩行ロボットへの応用”, 電

子情報通信学会技術研究報告, NC2008-64, Vol.108, No.281, pp.31-35, 2008.  

 

80. 渡辺優介, 松本直樹, “声道情報を用いたニューラルネット話者照合システ

ム”, 電子情報通信学会技術研究報告 , NLC2008-52, SP2008-107, Vol.108,  

No.337, 338, pp.167-172, 2008.  

 

81. 須藤明人, 平山学, 張シンリ, 佐藤彰洋, 長谷川修, “自己増殖型ニューラル

ネットワークを用いたパターン情報ベースの推論機”, 電子情報通信学会論

文誌 D, Vol.J91-D, No.6, pp.1634-1647, 2008. 

 

82. 齊藤健，関根好文, “パルス形ハードウェアカオスニューロンモデルを用いた

NN の局所情報処理(アナログ信号処理)”, 電子情報通信学会論文誌 A, 

Vol.J-92-A, No.9, pp.588-595, 2009. 

 

83. 佐藤大輔, 岩井俊哉, “カオスニューラルネットワークダイナミクスへの記

憶パターン間相関の影響”, 電子情報通信学会技術研究報告, NLP2008-148, 

Vol.108, No.442, pp.95-100, 2009. 



  
  

- 105 - 

主要業績主要業績主要業績主要業績 

 

＜論文＞ 

 

1. S. Sakaue, T. Kohda, H. Yamamoto, S. Maruno and Y. Shimeki, “Reduction of 

required precision bits for back-propagation applied to pattern recognition”, IEEE 

Transactions on Neural Networks, Vol.4, Issue 2, pp.270-275, 1993. 

 

2. 阪上茂生, 香田敏行, 山本浩司, 丸野進, 〆木泰治, “パターン認識を学習す

る誤差逆伝搬法に必要な演算精度の削減”, 電子情報通信学会論文誌 D, Vol. 

J76-D2, No.3, pp.672-679, 1993. 

 

3. S. Maruno, T. Kohda, H. Nakahira, S. Sakiyama and M. Maruyama, “Quantizer 

neuron model and neuroprocessor-named quantizer neuron chip”, IEEE Journal on 

Selected Areas in Communications, Vol.12, Issue 9, pp.1503-1509, 1994.  

 

4. M. Maruyama, H. Nakahira, S. Sakiyama, T. Kohda, S. Maruno and Y. Shimeki, 

“Quantizer Neuron Chip (QNC) with Multichip Extendable Architecture” (Special 

Issue on Super Chip for Intelligent Integrated Systems), IEICE transaction on 

electronics, Vol.E77-C, No.7, pp.1057-1064, 1994. 

 

5. 山本浩司, 阪上茂生, 丸野進, 〆木泰治, “ホップフィールド型神経回路網を

用いた文字切出し手法”, 電子情報通信学会論文誌 D, Vol.J78-D2, No.2, 

pp.374-377, 1995. 

 

6. 丹羽寿夫, 山本浩司, 小島良宏, 〆木泰治, 丸野進, 萱嶋一弘, “パターンと

記号の統合化処理による文字認識”, 電子情報通信学会論文誌 D, Vol.J78-D2, 

No.2, pp.263-271, 1995. 

 

 

 



  
  

- 106 - 

7. S. Sakaue, M. Nakayama, A. Tamura and S. Maruno, “Adaptive gamma processing 

of the video cameras for the expansion of the dynamic range”, IEEE Transactions 

on Consumer Electronics, Vol.41, Issue3, pp.555-562, 1995. 

 

8. 阪上茂生, 田村彰浩, 中山正明, 丸野進, “ニューロガンマ処理によるビデオ

カメラのダイナミックレンジ拡大”, テレビジョン学会誌 Vol.50, No.2, 

pp.288-294, 1996. 

 

9. M. Maruyama, H. Nakahira, H. Fukuda, S. Sakiyama, T. Kouda, T. Imagawa and  

S. Maruno, “A selfconfigurable digital neuro chip addressing to multi-network 

architecture”, Digest of Technical Papers, 1996 Symposium on VLSI Circuits, 

pp.38-39, 1996.  

 

10. 丸野進, 今川太郎, “量子化ニューロンを用いた学習適応型階調補正法によ

るフルカラープリント画像の高画質化”, 画像電子学会誌 , Vol.38, No.5,  

pp.762-771, 2009. 

 

11. 丸野進, 今川太郎, “量子化ニューロンによる時系列パターン認識ネットワ

ーク(TASQA)とφ−s 特徴変換を用いた形状認識”, 画像電子学会誌, Vol.38, 

No.5, pp.772-780, 2009. 

 

12. 丸野進, 今川太郎, “適応増殖量子化ニューロン(ASQA)チップを用いた高速

形状認識システム-TASQA のハード化による実用システム構築”, 画像電子

学会誌, Vol.39, No.2, 2010(採録決定，掲載予定) 

 

 

 

 

 

 



  
  

- 107 - 

＜査読付国際学会論文(Proceedings)＞ 

 

1. S. Maruno and A. Schoenberg, “Voice command recognition system for 

handicapped persons using simple multi-layered networks”, Engineering in 

Medicine and Biology Society, 1988. Proceedings of the Annual International 

Conference of the IEEE, Vol.4, pp.1590-1591, 1988. 

 

2. S. Maruno, T. Kohda, Y. Kojima, S. Sakaue, H. Yamamoto and Y. Shimeki, “Multi 

Functional Layered Network using Quantizer Neurons”, IJCNN'91 Singapore, 

Proceedings of 1991 IEEE International Joint Conference on Neural Networks, 

pp.541-546, 1991. 

 

3. S. Maruno, T. Kohda, Y. Kojima, S. Sakaue, H. Yamamoto and Y. Shimeki,  

“Multifunctional layered network with quantizer neurons”, 1991 IEEE International 

Joint Conference on Neural Networks, Vol.1, pp.541-546, 1991. 

 

4. S. Sakaue, T. Kohda, H. Yamamoto, S. Maruno and Y. Shimeki, “Reduction of 

necessary precision for the learning of pattern recognition”, 1991 IEEE 

International Joint Conference on Neural Networks, Vol.2, pp.1795-1800, 1991.  

 

5. S. Maruno, Chow Yuet~ih, Y. Shimeki, T. Anezaki and Y. Okahashi, “Object 

Recognition using Temporal Pattern Recognition Networks with Adaptive 

Segmentation of Quantizer Neuron Architecture (TASQA)”, MVA '92 IAPR 

Workshop on Machine Vision Applications, pp.145-148, 1992. 

 

6. S. Maruno, T. Imagawa, T. Kohda, Y. Kojima, H. Yamamoto and Y. Shimeki, 

“Adaptive segmentation of quantizer neuron architecture (ASQA)”, IJCNN 

'93-Nagoya, Proceedings of 1993 International Joint Conference on Neural 

Networks, Vol.1, pp.367-370, 1993. 

 

 

 



  
  

- 108 - 

7. Y. Kojima,  H. Yamamoto, T. Kohda, S. Sakaue, S. Maruno, Y. Shimeki, K. 

Kawakami and M. Mizutani, “Recognition of handwritten numeric characters using 

neural networks designed on approximate reasoning architecture”, IJCNN 

'93-Nagoya. Proceedings of 1993 International Joint Conference on Neural 

Networks, Vol.3, pp.2161-2164, 1993. 

 

8. S. Maruno, T. Imagawa, T. Kohda and Y. Shimeki, “Object recognition system 

using temporal pattern recognition networks with quantizer neuron chip”, IJCNN 

'93-Nagoya. Proceedings of 1993 International Joint Conference on Neural 

Networks, Vol.2, pp.1285-1288, 1993. 

 

9. H. Yamamoto, S. Sakaue, S. Maruno and Y. Shimeki, “Segmentation of handwritten 

Japanese character strings with Hopfield type neural networks”, IJCNN '93-Nagoya. 

Proceedings of 1993 International Joint Conference on Neural Networks, Vol.3, 

pp.2073-2076, 1993. 

 

10. H. Nakahira, S. Sakiyama, M. Maruyama, K. Hasegawa, T. Kouda,  S. Maruno,  

Y. Shimeki, T. Satonaka and Y. Nagano, “A digital neuroprocessor using quantizer 

neurons”, Digest of Technical Papers. 1993 Symposium on VLSI Circuits, pp.35-36, 

1993.  

 

11. T. Imagawa, T. Kohda, M. Moriya and S. Maruno, “Jigsaw puzzle solving using 

temporal pattern recognition networks with quantizer neuron chip”, International 

Joint Conference of the Fourth IEEE International Conference on Fuzzy Systems 

and The Second International Fuzzy Engineering Symposium, Proceedings of 1995 

IEEE International Conference on Fuzzy Systems, Vol.5, pp.59-60, 1995. 

 

12. S. Sakaue, A. Tamura, M. Nakayama and S. Maruno, “Dynamic range expansion of 

video cameras by adaptive gamma processing”, Proceedings of IEEE International 

Conference on Consumer Electronics, pp.118-119, 1995. 

 



  
  

- 109 - 

13. M. Fukuda, H. Nakahira, S. Sakiyama, M. Maruyama,  T. Kouda,  T. Imagawa 

and S. Maruno, “A digital neuro chip with adaptive segmentation quantizer neuron 

architecture (ASQA)”, Neural Networks for Signal Processing [1996] VI, 

Proceedings of the 1996 IEEE Signal Processing Society Workshop, pp.559-568, 

1996.  

 

14. K. Kondo, T. Imagawa and S. Maruno, “Structured neural networks for multi-font 

Chinese character recognition using a newly developed digital neural network chip 

with adaptive segmentation of quantizer neuron architecture (ASQA)”, Neural 

Networks for Signal Processing[1996]VI, Proceedings of the 1996 IEEE Signal 

Processing Society Workshop, pp.330-339, 1996. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  
  

- 110 - 

＜招待講演＞ 

 

1. S. Maruno, “Multi Functional Layered Network using Quantizer Neurons” 

Proceedings of International Symposium Computer World '90, pp.202-209, 1990. 

 

2. S. Maruno, “Smart consumer products using neural networks in Japan” Invited 

talk, Neural Networks for Computing, Snowbird, Utah, U.S.A., 1993. 

 

3. 丸野進, “ユビキタス時代のインタフェースに向けた情報処理技術”, 平成 16

年度日本人間工学会, アーゴデザイン部会シンポジウム, 2004. 

 

4. S. Maruno, “Technical Trends of Information Processing on Five Senses”, 

IMFEDK2006 Tutorial, 2006. 

 

＜学会発表＞ 

 

1. 丸野進, “機能別階層ネットワ－クを用いた文字認識システム”, 平成 2 年度

第 18回画像電子学会全国大会予稿, No.18, pp.77-80, 1990.  

 

2. 丸野進, 香田敏行, 小島良宏, 阪上茂生, 山本浩司, 〆木泰治, “量子化ニュ

ーロンを用いた機能別階層ネットワークによる文字認識”, 1991 年電子情報

通信学会春季全国大会講演論文集, Vol.6, D-66, p.6-66, 1991. 

 

3. 香田敏行, 丸野進, 小島良宏, 阪上茂生, 山本浩司, 〆木泰治, “量子化ニュ

ーロンを用いた機能別階層ネットワークの追加学習”, 1991 年電子情報通信

学会春季全国大会講演論文集, Vol.6, D-65, p.6-65, 1991.  

 

4. 山本浩司, 丸野進, 阪上茂生, 香田敏行, 〆木泰治, “適応的バイアス入力法

による自然画像の復元-バイアス制御関数の検討”, 1991 年電子情報通信学

会春季全国大会講演論文集, Vol.6, D-54, p.6-54, 1991. 



  
  

- 111 - 

5. 山本浩司, 阪上茂生, 丸野進, 〆木泰治, “神経回路網を用いた文字切り出し

手法の検討”, 1992 年電子情報通信学会春季大会講演論文集, Vol.6, D-71, 

p.6-71, 1992. 

 

6. 丸野進, チャウ・イェッティ, 阪上茂生, 〆木泰治, “ASQAによる時系列認識

ネットワーク(TASQA)を用いた形状認識”, 1992年電子情報通信学会創立 75

周年記念秋季大会講演論文集, Vol.6, D-38, p.6-38, 1992. 

 

7. 小島良宏, 山本浩司, 香田敏行, 阪上茂生, 丸野進, 〆木泰治, 川上和隆,  

水谷幹男, “構造化ニューラルネットワーク(NARA)による手書き数字認識”, 

1992年電子情報通信学会創立 75周年記念秋季大会講演論文集, Vol.6, D-40, 

p.6-40, 1992. 

 

8. 丸野進, 小島良宏, 山本浩司, 丹羽寿男, 萱嶋一弘, 〆木泰治, “パターンと

記号の統合化処理 CoPS による文書認識(1)”, 1992 年電子情報通信学会創立

75周年記念秋季大会講演論文集, Vol.6, D-313, p.6-315, 1992. 

 

9. 山本浩司, 小島良宏, 丹羽寿男, 丸野進, 〆木泰治, “CoPSによる文書認識(2)

神経回路網による文字切り出し処理-フィードバック情報に基くパラメータ

制御”, 1992年電子情報通信学会創立 75周年記念秋季大会講演論文集, Vol.6, 

D-314, p.6-316, 1992. 

 

10. 山本浩司, 小島良宏, 丹羽寿男, 丸野進, 〆木泰治, “CoPSによる文書認識

(3)-複数特徴量を統合した構造化ニューラルネットワークによる漢字認識”, 

1992年電子情報通信学会創立 75周年記念秋季大会講演論文集, Vol.6, D-315, 

p.6-317, 1992. 

 

 

 

 

 

 



  
  

- 112 - 

11. 今川太郎, 香田敏行, 丸野進, 〆木泰治, “適応増殖量子化ニューロンを用い

た構造化ニューラルネットワーク”, 1993 年電子情報通信学会春季大会講演

論文集, Vol.6, D-17, p.6-17, 1993. 

 

12. 丸山征克, 中平博幸, 崎山史朗, 香田敏行, 丸野進, 〆木泰治, “量子化ニュ

ーロンを用いたデジタルニューロ LSI”, 1993 年電子情報通信学会秋季大会

講演論文集, Vol.6, D-32, p.6-34, 1993. 

 

13. 小島良宏, 山本浩司, 丹羽寿男, 萱嶋一弘, 丸野進, “ニューラルネットワー

クと記号処理の統合による手書き宛名認識(1):システムとその概要”, 1994年

電子情報通信学会秋季大会ソサエティ先行大会講演論文集, 情報・システム, 

D-318, p.326, 1994. 

 

14. 小島良宏, 丹羽寿男, 萱嶋一弘, 丸野進, “ニューラルネットワークと記号処

理の統合化による手書き宛名認識(2):文字切出しと認識、後処理の統合化”, 

1994年電子情報通信学会秋季大会ソサエティ先行大会講演論文集, 情報・シ

ステム, D-319, p.327, 1994. 

 

15. 丹羽寿男, 山本浩司, 小島良宏, 萱嶋一弘, 丸野進, “ニューラルネットワー

クと記号処理の統合による手書き宛名認識(3):住所要素の範囲推論を用いた

後処理”, 1994年電子情報通信学会秋季大会ソサエティ先行大会講演論文集, 

情報・システム, D-320, p.328, 1994. 

 

16. 森家みち代, 今川太郎, 小原和昭, 丸野進, “領域分割ニューロガンマ補正

法を用いた輪郭抽出法の提案”, 1995 年電子情報通信学会総合大会講演論文

集, 情報・システム Vol.1, D-51, p.56, 1995. 

 

 

 



  
  

- 113 - 

＜研究会＞ 

 

1. 小島良宏, 香田敏行, 丸野進, 阪上茂生, 山本浩司, 〆木泰治, “構造化ニュ

ーラルネットワーク(NARA)によるマルチフォント漢字認識”, 電子情報通

信学会技術研究報告, NC91-31, Vol.91, No.231, pp.9-16, 1991. 

 

2. 阪上茂生, 香田敏行, 山本浩司, 丸野進, 〆木泰治, “バックプロパゲーショ

ン学習に必要な演算精度の削減”, 電子情報通信学会技術研究報告, NC91-32, 

Vol.91, No.231, pp.17-24, 1991. 

 

3. 丸野進, 香田敏行, 小島良宏, 阪上茂生, 山本浩司, 〆木泰治, “適応増殖量

子化ニューロン(ASQA)による文字認識”, 電子情報通信学会技術研究報告, 

NC91-51, Vol.91, No.302, pp.23-28, 1991.  

 

4. 香田敏行, 丸野進, 小島良宏, 阪上茂生, 山本浩司, 〆木泰治, “適応増殖量

子化ニューロンによるニューラルネットの追加学習性”, 電子情報通信学会

技術研究報告, NC91-52, Vol.91, No.302, pp.29-35, 1991.  

 

5. 石原秀志, 山下春生, 阪上茂生, 丸野進, “適応的階調補正法(I)階調補正法の

検討”, 画像電子学会第 125回研究会予稿, pp.37-42, 1991. 

 

6. 丸野進, 阪上茂生, 山本浩司, 山下春生, 〆木泰治, “適応的ガンマ補正法(II)

量子化ニューロンによる学習型ガンマ補正法の検討”, 画像電子学会第 125

回研究会予稿, pp.43-38, 1991. 

 

7. 丸野進, 今川太郎, 阪上茂生, 〆木泰治, “ASQA による時系列認識ネットワ

ーク(TASQA)を用いた形状認識”, 1992年画像電子学会研究会予稿, pp.25-30, 

1992. 

 

 



  
  

- 114 - 

8. 丸野進, 今川太郎, 香田敏行, 〆木泰治, 中平博幸, 崎山史朗, 丸山征克, “量

子化ニューロンチップ(QNC)を用いた時系列パターン認識ネットワーク:物

体形状の時系列データ変換(φ-s 変換)による形状認識への適用”, テレビジョ

ン学会技術報告, Vol.17, No.58, pp.13-18, 1993. 

 

9. 伊藤哲, 丹羽寿男, 萱嶋一弘, 丸野進, 〆木泰治, “利用目的に応じて最適化

可能なキーワード抽出手法”, 電子情報通信学会技術研究報告, NLC93-53, 

Vol.93, No.366,367, pp.41-46, 1993. 

 

10. 中平博幸, 崎山史朗, 丸山征克, 香田敏行, 丸野進, 〆木泰治, “量子化ニュ

ーロンを用いたディジタルニューロプロセッサ”, 電子情報通信学会技術研

究報告, ICD93-99, Vol.93, No.231, pp.39-46, 1993. 

 

11. 田村彰浩, 阪上茂生, 中山正明, 丸野進, “ニューロガンマ処理によるカメ

ラの D レンジ拡大”, コンシューマエレクトロニクス研究会, テレビジョン

学会技術報告, Vol.18, No.72, pp.13-18, 1994. 

 

12. 今川太郎, 森家みち代, 近藤堅司, 丸野進, “量子化ニューロチップによる手

振り入力インタフェース”, テレビジョン学会技術報告 , Vol.19, No.57, 

pp.19-24, 1995.                   



  
  

- 115 - 

本学位本学位本学位本学位論文論文論文論文にににに密接密接密接密接にににに関係関係関係関係しないしないしないしない発表論文等発表論文等発表論文等発表論文等のののの業績業績業績業績 

 

＜論文＞ 

 

1. S. Maruno, “Plain Paper Recording Process using Magnetic Fluids, 

Magneto-Fluid-Graphy”, Journal of Magnetism and Magnetic Materials, Vol.39, 

pp.187-191, 1983. 

 

＜査読付国際学会論文(Proceedings)＞ 

 

1. S. Maruno, S. Nakata and H. Irie, “Thermo-Convergent Ink-Transfer Printing 

(TCIP)”, Proceedings of SPSE's 3rd. International Congress on Advances in 

Non-Impact Printing Technologies, pp.285-288, 1986. 

 

＜招待公演＞ 

 

1. 丸野進, “磁性流体のラインプリンタへの応用,” 機会学会, 磁性流体工学に

関する分科会, 1978. 

 

＜学会発表＞ 

 

1. 丸野進, 中田忍, 入江宏之, “集中化熱転写法によるフルカラー画像の再現”, 

画像電子学会昭和 60年度全国大会予稿, Vol.15, pp.1-4, 1985. 

 

2. 丸野進, 中田忍, 入江宏之, “集中化熱転写法(TCIP)によるフルカラー画像の

再現”, 第 2 回ノンインパクトプリンティング技術シンポジウム論文集, 

pp.105-108, 1985. 

 



  
  

- 116 - 

3. 鶴海馨, 前田陽一郎, 水本雅晴, 小澤順, 松浦聰, 野口栄治, 丸野進, “仮想モ

ールにおける戦略付きエージェントによるオークション方式の提案”, ヒュ

ーマンインタフェースシンポジウム’99, No.1213, 1999. 

 

4. 伊藤智祥 , 佐藤潤一 , 山口孝雄 , 丸野進, “ユーザカスタマイズが可能な

レート制御方式”, 情報処理学会第 59 回平成 11 年後期全国大会(3)講演論文

集, pp.539-540, 1999. 

 

＜研究会＞ 

 

1. 丸野進, 中川昌巳, 牛原正晴, 園田信雄, 入江宏之, 大東千秋, “マグネト・フ

ルイドグラフィー(2)マルチスタイラス化”, 画像電子学会第 64 回研究会予稿,  

pp.1-6, 1982. 

 

2. 丸野進, 中田忍, 入江宏之, “集中化熱転写法(TCIP)”, 画像電子学会第88回

研究会予稿, pp.13-18, 1986. 

 

 

 

 

 

 

 


