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6. Model M(R, C, I)

M(R, C, I): A model of a geometry in which Axioms R, C and 1 alone hold
besides Axiom E. (Notice that I follows automatically from E, R and C.)

The construction of M (R, C, I) is quite different from those of other models,
and its exposition here may be too long, but it seems to the authors appropriate
to provide it with a full proof. It depends essentially upon Lemma below, and
we will begin by introducing some definitions and auxiliarly axioms needed in it.

Let A be a finite number of linearly ordered points, in which congruence
relations are supposed to hold among some of the segments, and let P, O, P’
etc. denote points of A.

DEerFINITION. We write
PO~Q'P" or Q'P'=~PQ,
if and only if
PO=Q'P’ and Q'P'=PQ
at the same time.
Axiom E,: If PQ=Q'P’ and PQ=Q'P", then P'=P".
Axiom C* (=Axiom C)

P<Q<R , L F Q %R
Z;:QQ,;]’P —~ PR=R'P". y | |
QR=R'Q’ R Q P
Axiom C*

P<Q<R LB bd R
R<Q<P', | _ |PR~RP | ' |
PO=Q'P" |OR=R'Q". .l .
QR=R'Q’ R @ P

1) Continuation of Part I, this Journal, vol. 3 (1966), 269292, Referred to as Part I.
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Axiom C~
P R Q
P<R<Q , L f —
PQ=Q'P', } = PR—=R'P'.
RO=Q'R’ L ]
Q/ R/ Pl
Axiom C-:
P R Q
P<R<Q , -

PR~RP', L ' !
PO~Q'P', | =

ey RO~QO'R’.
RO=Q'R O=OR. | =
Q/ RI P'

The following is an important consequence of C~, and will sometimes be
denoted by ¢".

¢: PO=Q'P', Q'<P - PQ~Q'P', Q'P~P'Q.

Proof.

' @ P Q
O'<P<Q ) - (po~0P, | ' ‘;
0o~pp0 S35 T |

Q P’ Q

DrrFINITION. A segment PQ will be called elementary, if there is no point
X with P<X<Q.

Lemma. Let A, ,={A4,| =1,2,---,n—1} be a finite number of points in
some linear order such that they satisfy Axioms E,, R, C*, C*, C~ and C~. Then,
Jor a given elementary segment A;A; and a given point A, such that the equality

AiAj:AkAI
has no solution in A, A,,_,, a new point A, can be introduced, so that
AiAj:AkAn

holds and the linearly ordered points A,={A,, A, ---, A, ., A,} satisfy the same
Axioms from E, to C~.

Proof. Points as well as notations such as 4, P, X, P’ etc. will mean in
this proof points of A, _, except for A’ which will be introduced below as a new
point 4,. If two segments are equal it is convenient to write the corresponding
end points counterwise with and without dashes such as PQ=Q'P’, since
several axioms of the type of C are involved.

For the sake of simplicity, set 4;=A4, A;=B and 4,=B’.
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Thus by assumption there is no point X with
AB=B'X

DEFINITION OF THE NEW POINT A’(=A4,) AND OF ORDERING.

Let A’ be introduced as a new point such that {4,, ---, 4,_,, A'} satisfy
the following linear ordering:

(1) B'<4'.

(ii) If X<B’, then X<A4’ for any point XE A4,,_,.

(iii) If B’<X, then 4’'<X for any point X A4,,_,.

DEFINITION OF THE BAsIC EQUALITY. The following is the basic congruence
relation:
(i) AB~B'A’,
ie. AB=B’A’ and B’A’=AB at the same time, if and only if there exist
some X and X' such that XB~B'X'.
In particular, AB~B’'A’ if B'<<A, since B'B~B'B.

X A B B’ A B
L +— : L — ; |
= |

| |

L ; —t Lt : i
B A X B A B

(if) Otherwise
AB=B'A’ but B'A’'+AB,
that is, B'A’=AB is not defined.

DEFINITION OF OTHER EQUALITIES. Besides the above basic congruence
relation we must define other new congruence relations in order to make the
system of points A,={4,, -, 4,_,, 4,} satisfy all axioms from E, to C".

To insure Axiom R we only need

DrerFINITION 0. For any X€A,_;: A'X=A'X and XA'=XA4'.

In the following are defined all the equalities between old segments and
new ones with one end point A’. They are classified into four types according

to the position of A’.
Some of them are redundant, such as AB=B'A’, AA'=AA’ and A'A=

A’A, but are included for the sake of completeness.

DrerFiNiTION 1. AP=P'A’, if and only if
(i) P=B,P'=B,ie., AB=B'A’,
or (i) BP=P'B’,
or (i) P=A',P'=4,ie., AA'=AA’".
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DerINITION 2. P’'A’'=AP, if and only if
(i) P'=B’,P=B,ie., BA'=AB,
or (i) P'<d (or B’A'=AB) and P'B'=BP,
or (i) P'=A4, P=A4',ie., AA'=A4A4'.
DeriNiTION 3. PA=A'P’, if and only if
(i) PB=B'P,
or (i) P=A',P'=A4,ie, A’ A=A4"A.
DrerINiTION 4. A'P'=PA, if and only if
(i) B'P'~PB,
or (i) P'=A4,P=A4" ie,A'A=4"A.

Having thus defined all congruence relations between old segments and
new ones with one end point 4’, we are now going to verify Axioms E,, C*,
C*, C™ and C~ one by one.

The verification will be done after a pattern: each equality under consid-
eration is first classified according to its type, and then dealt with by Definitions
1, 2, 3 and 4 accordingly almost mechanically. Verbal explanations in detail
will be omitted.

VERIFICATION OF E,.
Type 1.

AP=P'A’', AP=P'X = X=4'.
Proof. According to Definition 1, we divide the proof into three cases.
Case (i). P=B, P'=B’: AB=B’'A’.
Then AB=B'X is impossible for X A4,,_,.
Case (ii). BP=P'B'.

A<B<P, AP=P'X, BP=P'B’ (—i——_; AB=B'X,
which is impossible for any old point X 4,,_,.

Case (iii). P=A4',P'=A: AA'=AA4'.
Then AA’'=AX is impossible for any old point X 4,,_,.
Type 2.

P'A'=AP, PA'=AX = X=P
Proof. Divide into three cases by Definition 2.
Case (i). P'=B’, P=B: B’A'=AB.
Then B’A’=AX is only possible for X=B by Definition 2.
Case (ii). P’'<A (or B'A’=AB) and P'B'=BP and P'B'=BX.
Then X=P by Axiom E, applied to old congruence relations,
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Case (iii). P'=A4, P=A': AA'=AA’,
AA'=AX. Then X=A' by Definition 2.
Type 3.
PA=A'P', PA=A'X = X=P'.
Proof. Divide into two cases by Definition 3.
Case (). PB=B’'P’. Then
PB=B'P', PB=B'X 2% X—p',
Case (ii). P=A’, P’=A. Then
A'A=A'A, A’A=A'X = X=A by Definition 3.
Type 4.
A'P'=PA, A’P'=PX = X=A4.
Proof. Divide into two cases by Definition 4.
Case (i). B'P'~PB. Then
B'P'~PB, A'P'=PX = X=4 by Definition 4.
Case (ii). P'=A4, P=A4'.
A'A=A'4, A’/A=A'X = X=A Dby Definition 4.

VERIFICATION OF C*,
To show that Axiom C* is satisfied for 4,={4,, ---, 4,_,, A’} we consider
six types of equalities.

Type 1.
A<P<Q, Q'<P'<A,
AP=P'4A’" (1) , = AQ0=0Q'4’.
PO=Q'P' (2)

Proof. We divide the proof into three cases, according to (1); cf.
Definition 1.
Case (i). P=B, P'=B’. 'Then from (2),

Bo=0'B" P 450y,

Case (ii). BP=P'B'.

B<P<Q, QO'<P'<B’, . "

(C ) BQ:Q;BI(Def'1(“))AQ=Q1AI.

BP=P'B’, PQ=Q'P’

Case (iii). P=A', P’=A. Then (2) becomes
A'Q=0'A. (2
Divide into two subcases according to (2)’; cf. Definition 4.
Subcase (i). B'Q=~Q’'B,
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c- Def. 1
0'<B', BO~0'BL Bo—0'B" 2 40-0'4".
Q A B A Q
L} } t ; E
| | | i
L} ? S )
@ A B oA Q
Subcase (ii). Q=4, Q’=A’. This is impossible, since 4<<Q.
Type 2.
O'<P'<4’, A<P<OQ,
P'A'=4P (1) , = Q'A'=A40.
QP'=PQ (2

Divide into three cases by (1); cf. Definition 2.
Case (i). P'=B’, P=B: B’A’=AB.

B'A'=4B, 0'B'=BQ =N o440 .

Case (ii). P'<A4 (or B'A’=AB) and P'B'=BP.

C+
P'B'=BP, 0'P'—pP0 <L 0'B'—BQ }(Def.z(ii»

P'</4 (or B'A'=AB)
Case (iii). P'=4, P=A': A<A’. Then (2) becomes
Q'A=A4'Q 2y
We divide into two subcases according to (2)’; cf. Definition 3.
Subcase (i). Q'B=B’Q.
Since 4<A’ and since AB and B’A’ are elementary, either B<B’ or
B=B'".
If B<B’,

Q'A'=A40.

'‘B=B'Q) (c*
Q Q} € op—BQ
BB'=BB' | % = Q'A'=AQ.
0'<4

If B=B’,

Q'<A, Q,B,:BQ(Def.Z(u))

Subcase (ii). Q'=A’, O—A.

This case is impossible, since Q'<<A4".

Q'A'=A40.

Type 3.
P<Q<A4, A'<Q'<P,

QA=A4'Q’ (1) = PA=A'P".
PQ=Q'P’ (2)
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We divide into two cases by (1); cf. Definition 3.
Case (i). OB=B'Q’.
OB=B'Q’, PO= Q'P' PB B'P''—="PA=A'P’,
Case (ii). O=4', O'=A: A’<A. Then (2) becomes
PA'=AP’ (2)

Divide into three subcases by (2)’; cf. Definition 2.
Subcase (i). P=B’, P'=B. Since B'<A'<A<B,
(Def. 3)

(Def. 3)

B'B=B’'B'=— B'A=A’'B, ie., PA=A'P'.
Subcase (ii). P<A (or B’A’=AB) and PB’=BP’.
pB'—BP', B'B=B'BEL pp_p'p Pt pa_4p.

Subcase (iii). P=A, P'=A’. 'This case is impossible, since A’<<P’.

Type 4.
A'<Q'<P, P<O<4,
A'Q'=04 1, A’'P'=PA.
Q'P'=PQ (2)

Proof. Divide into two cases by (1); cf. Definition 4.
Case (i). B'Q'~0OB.
’ ’ ’ ’ ’ (Def 4)
B'Q'~QB, Q'P'= Q Llpp ~PB'=—"A'P'=PA4.
Case (i)). Q'=4, 0=A": A’<A. Then (2) becomes
AP'=PA'’ (2)

Divide into three subcases by (2)’; cf. Definition 1.
Subcase (i). P'=B, P=B’': AB=B'A’. Then
B’'<B, since B'<A'<A<B. Then

(Def. 4) ,

B'B~B'B'—>»
Subcase (ii).
BP'=PB’, B'B~B'B (6=+—; B'P'~ PB(D;“)A’P' PA4.
Subcase (iii). P'=A’, P=A. Impossible, since 4'<<P'.
Type 5.

A'B=B'A, ie., A'P'=PA.

P<A4<Q, O'<A'<P,
PA=A'P’ (1), =PQ=Q'P'.
AQ=0'4’ ()

Proof. Divide into two cases by (1); cf. Definition 3.
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Case (i). PB=B’'P'.

Divide into three subcases by (2); cf. Definition 1.
Subcase (i). O=B, Q’=B’. Then

PB=B'P’' gives PQ=Q'P'.
Subcase (ii). BQ=Q’'B’.
PB=B'P', BO=0'B' L po—0'P".

Subcase (iii). Q=4', Q'=A.

This case has been treated in Type 2.

Case (ii). P=A', P'=A.

Proved in Type 4.

Type 6.
O'<A'<P', P<A<Q,
0'A'=A40 (1), =0P=PQ.
A'P'=PA4 (2)
Proof. Divide into two cases by (2); cf. Definition 4.
Case (i). B'P'~PB.
Divide into three subcases by (1); cf. Definition 2.
Subcase (i). OQ'=B’, O=B. Then
B'P'=PB gives Q'P'=PQ
Subcase (ii). Q'<4 (or B’A’'=AB) and Q'B'=BQ.

0'B'=B0, B'P'—PBL 0'P—PO.
Subcase (iii). Q'=A4, O=A4".
This case has been proved in Type 1.
Case (ii). P'=4d, P=A4".
Has been proved in Type 3.
VERIFICATION OF C*.
Type 1.
A<P<Q, O'<P'<A’, PO~Q'P’,
AP~P'A4’ 1 ,t=
PO=Q'P () A0~Q'4'".

Proof. Divide into three cases by (1); cf. Definition 1.
Case (i). P=B, P'=B’: AB~B'A’.
AB~B'A’ (l)—;f')' 3X,X': XB=~B'X'.

C+
XB~B'X', BO=0'B' < BO~Q'B’, i, PQ~Q'P".
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PO~Q'P', AB~B'A""E5 40~ 04"
X A B=P
L + 1 t ?
L— ; +—
Q PiB 4 x

Case (i). P'<A (or B'’A’=AB) and P'B'~BP

BP~P'B', PO=0'P &)

BO~Q’'B’, | (Det. 1, ef. 12)
Q'<A (or B'A’:AB)f
Case (iii). P=4', P'=A.
A'Q0=0'4.

Divide into two subcases by (2)’; cf. Definition 4.

Subcase (i). B'O~Q’B.

B Q Q,B(Def 3,4)

Since A<A’, Q'<P'=A<B".

0'<B', BO~Q'B5 BO~O'B et 0,
o—d | A0~0'4".

Subcase (ii). Q=4, Q'=A4’'. Impossible, since A<Q.
Type 2.

Q'A~A'Q, ie., Q'P'~PQ.

Q'<P'<d’, A<P<Q, 0" 4"~ 40
Q'P'~PQ 1), r=

Proof. Divide into three cases by (2); cf. Definition 2.
Case (i). P'=B’, P=B: B'A’=AB

O'B'’~BQ, AB~B'A" "= "AQ~=~Q'A’.
B'A'~AB gives P'A'~AP.
Case (ii). P'<A (or B’A'=AB) and P'B’=BP.

(Def 1,2)

€+) {Q'B'~BQ
'P'~PQ, P'B'—BP -}
QOP~FQ, {P'B'~BP — P'A'~AP.
O'<A (or B'/A'=A4B), 0'B'~BQ"E5P 40~0' 4.

Case (iii). P'=A, P=A': A<A’. Then (1) becomes
Q'A~A'Q

119

AO=~Q'A’.

(2)

(1y
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Divide into two subcases by (1); cf. Definition 3,4.
Subcase (i). Q'B~B’'Q.
Since A<A’, Q'<P'=A<B=<B'.

0'<B’, 0'B~B'0 % 0'B'~BQ } (Det 1.2
Q'<4
AP~P'A’ is evident.
Subcase (ii). Q'=A’, 0=A. Impossible, since Q'<<A4’.

Type 3.
P<Q<A4, A'<Q'<P’,

PA~A'P',
PO~Q'P’ M, t= {
Proof. Divide into two cases by (2); cf. Definition 3.
Case (i). QB=B'Q’} &y (PB~BP L3 paap .
PO~Q'P’ 0B~B'0" 304~ 170",
Case (ii). Q=A4',Q'=A: A'<A. (1) becomes

PA'~AP'
Divide into two subcases by (1)’; cf. Definition 1,2.
Subcase (i). P=B', P’=B: B’'A’'~AB.
A'A=~A'A gives QA~A'Q’
Since B'<A'<A<B,

B'B~B' B3R 4~ A'B, ic., PA~A'P'.

Subcase (ii). BP'~PB’'. Since P<A<AB,

BP'~PB’, P<B PB~B'P' > PA~A'P".

Subcase (iii). P=A, P'’=A’. Impossible, since P<<A.

Type 4.

A'<QI<P” P<Q<A, A,P’RPA,

A'Q'~04 1), ff';

0'P'=PQ @) ‘er=re.
Proof. Divide into two cases by (1); cf. Definition 4.
Case (i). B'Q’'~QOB.

. pr_pp &) [PB=B'P' = A'P'~PA.
B'Q'~0B, Q'P'=PQ — {

Q'P'~PQ.

Q'A'~AQ.

(1)
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Case (ii). QO'=A4, 0=A4": A'<A. (2) becomes

121

AP'=PA’ (2)

Divide into three subcases by (2)’; cf. Definition 1.
Subcase (i). P'=B, P=B’. Since B'<A'<A<B,

Det39) 4'B~B'A, i, A'P'~PA.

B'B~B’'B
(Def.) , . '
AB=B’'A', BB~B'B—> AB~B'A’, ie., Q'P'~PQ.

Subcase (ii). BP'=PB’. Since P<B'<A'<A<B,
(Def. 3, 4)

. () (PB=B'P A'P'~PA.
P<B, BP’=—PB’' =% ,
BP'~PB’ (Def12) , , .
AP'~PA4’', ie., Q'P'~PQ .
pP<4

Subcase (iii). P'=A’, P=A. Impossible, since A'<<P’.
Type 5.
P<A4<Q, O'<A'<P, PO~Q'P',
PA~A'P' @D, t= {
Proof. Divide into two cases by (1); cf. Definition 3.
Case (i). B'P'~PB.
Divide into three subcases by (2); cf. Definition 1.
Subcase (i). O=B, O'=DB'.
B'P’~PB gives Q'P'~PQ.
B'P'~PBR AB~B'A', e, AQ=Q'A".
Subcase (ii). BO=Q’'B’.
BO=0'B", PB~B'P' £ po~0'P" .
(Def.)
B'A’~AB ,
}(Def.l Z)AQzQ'A’.
BO~Q'B’
Subcase (iii). O=A4', O’=A4. Proved in Type 2.
Case (ii). P=A', P’=A. Proved in Type 4.
Type 6.

PB~B'P —>

Q'A'~AQ 1,
A'P'=PA (2)
Proof. Divide into two cases by (2); cf. Definition 4.

QI<A’<P” P<A<Q, Q’PIQPQ
-1

A'P'~PA.
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Case (i). B'P'~PB.

Divide into three subcases by (1); cf. Definition 2.
Subcase (i). O'=B’, Q=B:
B'P'~PB gives Q'P'~PQ.
B,P'%PB(Dg‘i)PA%A,P' .

Subcase (ii). Q'<A4 (or B’A’=AB) and Q'B’~BQ.

B'P'~PB, Q'B'~BQ g O'P'~PQ.
B'P~PB LY pa~ap .
Subcase (iif). QO=A', O'=A. Proved in Type 1.
Case (ii). P'=4, P=A’. Proved in Type 3.
VERIFICATION OF C™.

Type 1.
A<P<Q,
AQ=0'4" (1),t= AP=P'4’.
PO=0Q'P' (2)

Proof. Divide into three cases by (1); cf. Definition 1.
Case (i). QO=B, Q'=B’. Impossible, since 4B is elementary
Case (ii). BQ=Q'B’.

B<P<OQ,

}(O.BPZPBugAP=P%h
Bo-0'8, PO-0'P'

]
T

B P Q
L ! .

él Pi i

B
0=4', Q'=A4: A<A’. (2) becomes

PA'=AP'

Case (iii).

Divide into three subcases by (2)’; cf. Definition 2.
Subcase (i). P=B’, P'=B. Since AB is elementary,

A<B<B'<A’.
It B<B',

BB'—BB' "X 4p_Ba' e, AP=P'A’.
If B=B', AB=B'A’ gives AP—P'A".

(2)
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Subcase (ii). P<A4 (or B’A’=AB) and PB’=BP’.
Since A<P<A' and since AB is elementary,
B<P,
If B<P,
PB'=BP' &L BP—P'B' > AP=P 4’
If B=P, then B'=P’, so AP=P'A’.
Subcase (iii). P=A, P'=A’. Impossible, since A<P.

Type 2.
O'<P'<A4’,
Q'A'=4A0 (1), =Q'P'=PQ.
P'A'=A4AP (2)

Proof. Divide into three cases by (2); cf. Definition 2.

Case (i). P'=B’, P=B: B'A'=AB.

Divide into three subcases by (1); cf. Definition 2.
Subcase (i). Q’'=B’, O=B. Impossible, since Q'<<P’.
Subcase (ii). OQ’'<4 (or B’A’=AB) and Q'B’=B0.

O'B'=BQ gives Q'P'=PQ

Subcase (iii). Q=A4', Q'=4; A<A’.
If B<B’',
BB'=BB" %) 4p'—BA’, e, O'P'=PQ.
If B=B', AB=B'A’ gives Q'P'=PQ.
Case (ii). P'<A (or B'A'=AB) and P'B'=BP.
Divide into three subcases by (1); cf. Definition 2.
Subcase (i). O'=B’, Q=B. Impossible, since Q'<P'<B’.
Subcase (ii). Q’'<A4 (or B’A’=AB) and Q'B’=BQ.
Q'<P'<B’, Q'B'=B0Q, P’B’=BP-Q> O'P'=PQ.
Subcase (iii). Q'=A4, 0=A'. Then A<P'<A’, since Q'<P'<A’.
If B<P,
B<P', P'B'=BP E——;,L BP'=PB’' = AP'=PA’',i.e., Q'P'=PQ.
If B=P’, then B'=P and AB=B’'A’ gives Q'P'=PQ.
Case (iii). P'=A,P=A": AA'=A4A4'.
Divide into three cases by (1); cf. Definition 2.
Subcase (i). Q'=B’, O=B.

Impossible, since Q'<<P'<A’ and since B'A4’ is elementary.
Subcase (ii). Q'<A4 (or B'A’=AB) and Q'B’=BQ.
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If B<B,
c..

B<B’, Q/B/=BQ¥ Q;B B’ Q(Def 3)QIA=A,99 i.e., Q/PI=PQ .

If B=B',

O'B'=BQ = Q'A=A4'0Q, ie., Q'P'=PQ.
Subcase (iii). Q'=A4, Q=A’. Impossible, since Q'<<P’.

Type 3.
P<0<4,
PA=4'P" (1), = PO=0Q'P'.
Q4=4'Q" (2)

Proof. Divide into two cases by (1); cf. Definition 3.
Case (i). PB=B'P'.
Divide into two subcases by (2); cf. Definition 3.
Subcase (i). OB=B'Q’.
P<Q<B, OB=B'Q’, PB= B'P’ PQ Q'P'.

Subcase (ii). Q=A', Q'=A4: A'<A. Then
P<B’, since P<Q and since B'4’ is elementary.
If P<B’,

P<B'<B
PB=B'P', B'B=B’'B
If P=B’, then B=P’ and
B'B~B'BE B'4'— 4B, i, PO=0'P".
Case (ii). P=A',P'=A: A'<A.
Divide into two subcases by (2); cf. Definition 3.
Subcase (i). OB=B'Q’.
B'<A'=P<
< 9, } B'O~Q'B' —
QB—B'Q’

Subcase (ii). O=A4', Q’=A. Impossible, since P<Q.

Type 4.

}(—i_—;PB’:BP’(Di—i—gi»PA’:AP', ie., PO=Q'P".

(Def. 4)

A'Q=0'4, ie., PO=0'P’ .

A'<Q'<P,
A'P'=PA (1),}=>A'Q'=04.
QP'=PQ (2

Proof. Divide into two cases by (1); cf. Definition 4.
Case (i). B'P'~PB.
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(Def. 4)

B'<A’ ‘<P’
o< e 2o—oa.

B'P'~PB, Q'P'=PQ BQ'~08—
Case (ii). P'=A, P=A': A'<A. Then (2) becomes
Q'4=A4'0.
Divide into two subcases by (2)’; cf. Definition 3.
Subcase (i). Q'B=B’Q.

B'<A'<Q’, 0'B=B'0 L po'~0B Y 4'0'—04 .

Subcase (ii). Q’'=A’, O0=A. Impossible, since A'<Q’".

Type 5.
P<A<Q,
PO=Q'P' (1), = PA=A'P’.
A0=0'4" (2)

Proof. Divide into three cases by (2); cf. Definition 1.
Case (i). BO=Q'B’.

P<B<Q
BO=—Q'B', PQ=Q'P'
Case (ii). QO=B, Q’=B’. Then
PB=B'P' = PA=A'P’.
Case (iii). Q=A4', OQ'=A. Proved in Type 2.
Type 6.

(Def. 3)

}‘C L p—p' P pg_ap .

O'<A'<P,
O'P=PQ (1),t=0'4A'=40.
A'P'=PA (2)
Proof. Divide into two cases by (2); cf. Definition 4.
Case (i). B'P'~PB.
If O'<B’

B'P'~PB, Q'P'= PQ—;;Q'B’ BQ, (Def. 2(11))

(Det.) = "Q'4A'=A40.

B'P'~PB— B'A'=A4B
If Q'=B’, then Q=B and
B'P'~PB->B'A'=AB, ie., 0'A'=4Q.
Case (ii). P'=A4, P=A4'. Proved in Type 3,

125
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VERIFICATION OF C~.

Type 1.
A<P<Q, PO~Q'P',
AQ~Q'A’ (1), } =
' pr AP~P'A4’.
PO=0'P" (2)

Proof. Divide into three cases by (1); cf. Definition 1.
Case (). O=B, Q'=B'.

Impossible, since A<<P<<Q and since 4B is elementary.
Case (ii)). Q'<A4 (or B’A'=A4B) and BQ~Q'B’.

Note that if Q’<<4 then Q’<<B and

BQ~Q'B’ £ O'B~B'Q= B'A'=A4B.
Now B<P, since A<P.

If B<P,
BP~P'B’,
) } = AP=~P'A’
BO~Q'B’, PQ=0Q'P' == { (B’A'=AB)
\Q'P'~PQ .
' A B p Q
L : + + 1
Evident, if B=P.
Q P B A
Case (iii). Q=4', OQ'=A: A<A’. Then (2) becomes
PA'=AP' (2)

Divide into three subcases by (2)’; cf. Definition 2.
Subcase (i). P=B’, P'=B: B'A'=AB.
If B<B’,

BB'~BB', B'A'—AB L) 4B ~B' A, ic., AP~P'A’ .

B'A’~AB gives PQO~Q'P'.

If B=B’, evident.

Subcase (ii). B'A’=AB and PB'=BP’.
If B<P,

&) (P'B'~BP, B'A'=AB = AP~P'A’.

PB'=BP' =
If B=P, evident.

Subcase (iii). P=A, P’=A’. Impossible, since A<P,

PB'~BP', B'A'=AB = AP'~PA’, i.e. Q'P'~PQ.
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Type 2.
Q'<p<d’, P'A'~AP.
O'A'~AQ (1), =
PA'—AP (2) Q'P'~PQ.

Proof. Divide into three cases by (2); cf. Definition 2.
Case (). P'=B’, P=B: B’A’=AB.
Divide into three subcases by (1); cf. Definition 2.
Subcase (i). Q’'=B’, O=B. Impossible, since Q'<<P’.
Subcase (ii). O'B'~BQ.
O'B'~BQ gives Q'P'~PQ.
AB~B'A’' gives AP~P'A’.
Subcase (iii). Q'=A4, O=A4’. Evident.
Case (iii). P'<A4 (or B'A'=AB) and P'B’'=BP.
Divide into three subcases by (1); cf. Definition 2.
Subcase (i). Q'=B’, Q=B. Impossible, since Q'<<P'.
Subcase (ii). O'B’'~BQ.
Q'<P' } @) {Q'P'zPQ
—
O'B’~BQ, P'B'=BP P'B'~BP )
P'<A (or BPA'=AB) |
Subcase (iii). Q'=4, 0=A4": A<A4’.
If B<P'.

= AP~P'A4’.

@) (BP~P'B’, B'A'=AB - AP~P'A’ .
P'B'=BP =% { ,
PB'~BP’, B'A'’=AB = PA'~AP', i.., PQ~Q'P’.

If B=P’, evident.
Case (iii). P'=A4, P=A4": A<A'.
Divide into three subcases by (1); cf. Definition 2.
Subcase (i). Q'=B’, Q=B. Impossible, since B’4’ is elementary.
Subcase (ii). Q'<<A4 (or B’A’=AB) and Q'B’'~B0Q.
Since Q'<P'=A<B,
O'B'~BQ 2 O'B~B'Q=Q'A=~A'Q, i.e., Q'P'~PQ.
AA'~AA" gives AP~P'A’.
Subcase (iii). Q'=4, O=A’. Impossible, since Q’'<<P’.
Type 3.
P<0<4,
PA=A'P" (1),;=
PaYs PO~ ‘P’ .
0d=a'9" () PO~

A’Q’%QA s
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Proof. Divide into two cases by (1); cf. Definition 3.
Case (i). B'P'~PB.
Divide into two subcases by (2); cf. Definition 3.
Subcase (i). QB=B'Q’.
P<0O<B } &) {PQ%Q’P’ .
PB~B'P’', QB=B'Q’ OB~B'Q' = QA~A'Q'".
Subcase (ii). Q=A4', O'=A4.
Since P<B'<4’,

B'P'~PB L pp'~BpP’

pP<4
QA~A'Q’ is evident.
Case (ii). P=A',P'=A: A’A=A’'A.
Divide into two subcases by (1); cf. Definition 3.
Subcase (i). QB=B’'Q’.
Since B'<A=P<0Q,

QB—’:B’Q’ (E%) BIQ;\V,Q’B = A'Q%Q'A, i.e., PQEQ’P’ .

B%B' ’
Q , Q }—%QA%A’Q'.
(B'<Q)
Subcase (ii). Q=A4’', Q'=A. Impossible, since P<<Q.
Type 4.
A'<Q'<P’, PO~Q'P' .
A'PP=~PA (1),t=
rpr \ A'O'=0A4.
O'P=PQ (2 0'~0
Proof. Divide into two cases by (1); cf. Definition 4.
Case (i). B'P'~PB.

BI<Q/<P’ , } (E—) {PQ@Q’P/
BIPIzPB’ QIP’:PQ BIQI~QB @ A’leQA .
Case (ii). P'=A4, P=A4": A'<A. (2)becomes

Q'4=4Q
Divide into two subcases by (2)’; cf. Definition 3.
Subcase (i). Q'B=B'Q.
B'<Q’, } @) { B'O'~0B= A'Q'~0A4.
0B=BQJ

} = AP'~PA’, i.e.,, Q'P'~PQ.

B'Q~Q'B=> A'Q~Q'4, i.., PQ~Q'P".

(2)
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Subcase (ii). Q'=A4’, 0=A. Impossible, since Q’<<P’ and 4'<<A.
Type 5.

P<A<Q ) AQR’QIA' ,
PO~Q'P' (1).}= { -

Proof. Divide into three cases by (2); cf. Definition 1.
Case (i). O=B, Q'=B’. Then
PA~A'P'.
(1): PB~B'P' = { .
AB~B'A’, i.e., AQ=~Q'A’.

Case (ii). BQ=Q'B'.

P<B, ) (PB~B'P'=PA~A'P'.
Po~0P, t EL {

[»=>AQ~Q’A’.
PB~B'P’ —> AB~B'A’

Case (iil). Q=A4', Q'=A. Proved in Type 2.

Type 6.
Q'<A'<P’, A'P'~PA ,
O'P'=~PQ, (1),;= {
ApP=p4 () ) QA=AQ.

Proof. Divide into two cases by (2); cf. Definition 4.
Case (i). B'P'~PB. Then
Q'<B’, since Q'<A4’.
If Q'<B’, then
Q/P’,Q_,/PQ } (E‘) Q,B’QBQ
B'P'~PB +=0'4A'=A40.
AB~B’'A’
B'P’~PB = {
PA~A'P’
If O'=DB’, evident.
Case (ii). P'=A4, P=A’'. Proved in Type 3.
Thus the proof of Lemma is complete.

We are now in a position to construct a model M(R, C, I) on the basis of

Lemma.

First take all the triples of natural numbers (z, j, k), make a numbering N

on them such that different triples (7, j, k) and (', j', k") have different numbers
NG, j, )N, ', k).
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Suppose a system A,; of »; different points 4,, A,, ---, 4,, has been already
defined such that points are linearly ordered and that it satisfies Axioms E,, R,
C*, C*, C and C~. Call a triple of points (4;, 4, 4;) (1=i, j, k<n,) with
A;<A; saturated if the equality

A;A;=4,4,

has a solution in 4, A,,, and insaturated if not, and let (4,, A, A,) be the
insaturated triple with the smallest N(p, ¢, 7).
For the sake of simplicity, set

A,=P,, A;=P, 4,=P/,
and choose points P,,_,, P,,_,, -+, P, of A, such that
A4,=P, <P, <-<P,<P=A,
and that the consecutive segments
P,P, _,P, P, _, - P,P,
are all elementary.

If there is any saturated triple (P, P, P,’), let (P,_,, P,, P,") be such a one
with the largest s. Then there must be a point P,/ & 4, with

P,_ P=P'P/,. (1)
If there is no saturated triple, set s=2. Introduce then m—s+1 new points
pP P/, -, P,
and define the linear ordering
P/ <P/<.--<P,'<P",
where either P,/ P" (P"€ A,,) is an elementary segment or P” is to be regarded
as the point at infinity, if there is no point X 4,,; with P, < X.

Repeated applications of Lemma beginning with the successive introduction
of basic congruence relations

PsPs—l':Psl—lps’ ’
Ps+1Ps=Ps,Ps{H ’ (2)

Pum—1=Pm/—1Pml

lead us to a system of points 4,, -+, 4, P,’, ---, P,," in a linear order, satisfying
Axioms E,, R, C*, C*, C” and C~. Then we have from (1) and (2) on account
of C*

P, P.=P/'P, . (3)

If we set



ON CONGRUENT AxIOMS IN LINEARLY ORDERED Spacks, 11 131

r__ ’r __ r__
Ps _Ani+v Ps+1—-Au,-+za ERE) Pm =A

ni+q Y

we have by (3)
A,A,=4,4

niiq

and (4,, A, A,) becomes a saturated triple in the system of points

An,:,.l: {Av Aza *tt Ani) ey A

n;‘+1} N

Now let n, be equal to 4 and let A, be defined as a system of four points
A, A4, A, A, in a linear order

A,<A<A,<A,

with the following congruence relations:

i) A;A;=A;4; forall i, j=1, -4,

provided 4;<4;,

i) A4,4,=A4,A, but A,A,+AA,,

i) 4,4,=A4,4,,
and

iv) AA=A4,4, AA=A4A, AA=A4A4,.

In A, all Axioms E,, R, C* (=C), C*, C” and C~ are seen to be fulfillled.
Thus we see by induction that in each 4,; (=1, 2, 3, --+) all Axioms from E, to

C~ are fulfilled, so that in particular Axioms E,, R and C are satisfied in the
system of points

A=) 4,,.

If 4,, A, A, is any triple of points with 4,<A4, in A, then there is by the
way of introducing new points of A into each A4, (=1, 2, :++) a natural
number #; such that the equality

A,A,=A,A,

is satisfied by an A4,€ 4,,. Thus Axiom E is satisfied in A.

Recalling the fact seen in the proof of Lemma that when the point 4, is added
to the set 4,_, as a new point to obtain A4,, the new congruence relations in-
troduced with it are confined to those between some old segments and new ones
having A4, as an end point, so we see that the relation 4,4,%+4,4, in A,
remains true throughout all 4,,. Thus in A4:

— S: Axiom S fails to be satisfied, for 4,4,=A4,A4, but
A,A4,+A.4,.

— T: Axiom T fails to be satisfied, for 4,4,=4,4,,
A,A=AA, but A A,+A4,4, by Axiom E,.

— A: Axiom A fails to be satisfied, for if A holds, then by Theorem 11
(see Part 1) Axiom S would hold good too.

nity
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Thus A is the desired model M (R, C, ) in which Axioms R,C, and I alone
hold besides Axiom E.
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