<table>
<thead>
<tr>
<th>Title</th>
<th>On congruent axioms in linearly ordered spaces. II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Terasaka, Hidetaka; Katayama, Shigeru</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 4(1) P.111-P.132</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5749</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5749</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA
https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
6. Model $M(R, C, I)$

$M(R, C, I)$: A model of a geometry in which Axioms R, C and I alone hold besides Axiom E. (Notice that I follows automatically from E, R and C.)

The construction of $M(R, C, I)$ is quite different from those of other models, and its exposition here may be too long, but it seems to the authors appropriate to provide it with a full proof. It depends essentially upon Lemma below, and we will begin by introducing some definitions and auxiliary axioms needed in it.

Let A be a finite number of linearly ordered points, in which congruence relations are supposed to hold among some of the segments, and let P, Q, P' etc. denote points of A.

Definition. We write

$$PQ \approx Q'P' \quad \text{or} \quad Q'P' \approx PQ,$$

if and only if

$$PQ = Q'P' \quad \text{and} \quad Q'P' = PQ$$

at the same time.

Axiom E_u: If $PQ = Q'P'$ and $PQ = Q'P''$, then $P' = P''$.

Axiom C^+ ($=\text{Axiom C}$)

$$
\begin{align*}
&P < Q < R, \\
&R' < Q' < P', \\
&PQ = Q'P', \\
&QR = R'Q'
\end{align*}
\implies

PR = R'P'.

Axiom C^+

$$
\begin{align*}
&P < Q < R, \\
&R' < Q' < P', \\
&PQ \approx Q'P', \\
&QR \approx R'Q'
\end{align*}
\implies

\begin{align*}
&PR \approx R'P' \\
&QR \approx R'Q'.
\end{align*}

Axiom C" :
\[P < R < Q, \]
\[PQ = Q' P', \]
\[RQ = Q' R' \]
\[\Rightarrow PR = R' P'. \]

Axiom \(C' \) :
\[P < R < Q, \]
\[PQ \approx Q' P', \]
\[RQ \approx Q' R' \]
\[\Rightarrow PR \approx R' P', \]
\[RQ \approx Q' R'. \]

The following is an important consequence of \(C' \), and will sometimes be denoted by \(e' \).

\[e' : PQ = Q' P', \]
\[Q' < P \Rightarrow PQ \approx Q' P', \]
\[Q' P \approx P' Q. \]

Proof.

\[Q' < P < Q, \]
\[Q' Q \approx Q' Q, \]
\[PQ \approx Q' P' \]
\[\Rightarrow \quad \begin{cases} PQ \approx Q' P' , & \\
Q' P \approx P' Q. & \end{cases} \]

Definition. A segment \(PQ \) will be called elementary, if there is no point \(X \) with \(P < X < Q \).

Lemma. Let \(A_{n-1} = \{ A_1, A_2, \ldots, A_{n-1} \} \) be a finite number of points in some linear order such that they satisfy Axioms \(E_n, R, C^+, C^- \) and \(C^- \). Then, for a given elementary segment \(A_j A_j \) and a given point \(A_k \) such that the equality

\[A_j A_j = A_k A_k \]

has no solution in \(A_i \subseteq A_{n-1} \), a new point \(A_n \) can be introduced, so that

\[A_j A_j = A_k A_n \]

holds and the linearly ordered points \(A_n = \{ A_1, A_2, \ldots, A_{n-1}, A_n \} \) satisfy the same Axioms from \(E_n \) to \(C^- \).

Proof. Points as well as notations such as \(A, P, X, P' \) etc. will mean in this proof points of \(A_{n-1} \), except for \(A' \) which will be introduced below as a new point \(A_n \). If two segments are equal it is convenient to write the corresponding end points counterwise with and without dashes such as \(PQ = Q' P' \), since several axioms of the type of \(C \) are involved.

For the sake of simplicity, set \(A_i = A, A_j = B \) and \(A_k = B' \).
ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II

Thus by assumption there is no point X with $AB = B'X$

DEFINITION OF THE NEW POINT $A'(=A_n)$ AND OF ORDERING.

Let A' be introduced as a new point such that $\{A_1, \ldots, A_{n-1}, A'\}$ satisfy the following linear ordering:

(i) $B' < A'$.
(ii) If $X < B'$, then $X < A'$ for any point $X \in \mathbb{A}_{n-1}$.
(iii) If $B' < X$, then $A' < X$ for any point $X \in \mathbb{A}_{n-1}$.

DEFINITION OF THE BASIC EQUALITY. The following is the basic congruence relation:

(i) $AB \approx B'A'$, i.e., $AB = B'A'$ and $B'A' = AB$ at the same time, if and only if there exist some X and X' such that $XB \approx B'X'$.

In particular, $AB \approx B'A'$ if $B' < A$, since $B'B \approx B'B$.

(ii) Otherwise $AB = B'A'$ but $B'A' \not\approx AB$, that is, $B'A' = AB$ is not defined.

DEFINITION OF OTHER EQUALITIES. Besides the above basic congruence relation we must define other new congruence relations in order to make the system of points $\mathbb{A}_n = \{A_1, \ldots, A_{n-1}, A_n\}$ satisfy all axioms from E_1 to C^{-}.

To insure Axiom R we only need

DEFINITION 0. For any $X \in \mathbb{A}_{n-1}$: $A'X = A'X$ and $XA' =XA'$.

In the following are defined all the equalities between old segments and new ones with one end point A'. They are classified into four types according to the position of A'.

Some of them are redundant, such as $AB = B'A'$, $AA' = AA'$ and $A'A = A'A'$, but are included for the sake of completeness.

DEFINITION 1. $AP = P'A'$, if and only if

(i) $P = B$, $P' = B'$, i.e., $AB = B'A'$,

or (ii) $BP = P'B'$,

or (iii) $P = A'$, $P = A$, i.e., $AA' = AA'$.
DEFINITION 2. \(P'A' = AP, \text{ if and only if} \)

(i) \(P' = B', P = B, \text{ i.e., } B'A' = AB, \)

or (ii) \(P' < A \) (or \(B'A' = AB \)) and \(P'B' = BP, \)

or (iii) \(P' = A, P = A', \text{ i.e., } AA' = AA'. \)

DEFINITION 3. \(PA = A'P', \text{ if and only if} \)

(i) \(PB = B'P', \)

or (ii) \(P = A', P' = A, \text{ i.e., } A'A = A'A. \)

DEFINITION 4. \(A'P' = PA, \text{ if and only if} \)

(i) \(B'P' \approx PB, \)

or (ii) \(P' = A, P = A', \text{ i.e., } A'A = A'A. \)

Having thus defined all congruence relations between old segments and new ones with one end point \(A' \), we are now going to verify Axioms \(E_u, C^+, C^- \) and \(C^0 \) one by one.

The verification will be done after a pattern: each equality under consideration is first classified according to its type, and then dealt with by Definitions 1, 2, 3 and 4 accordingly almost mechanically. Verbal explanations in detail will be omitted.

VERIFICATION OF \(E_u. \)

Type 1.

\[AP = P'A', AP = P'X \Rightarrow X = A'. \]

Proof. According to Definition 1, we divide the proof into three cases.

Case (i). \(P = B, P' = B': AB = B'A'. \)

Then \(AB = B'X \) is impossible for \(X \in A_{n-1}. \)

Case (ii). \(BP = B'B'. \)

\[A < B < P, AP = P'X, BP = P'B' \rightarrow AB = B'X, \]

which is impossible for any old point \(X \in A_{n-1}. \)

Case (iii). \(P = A', P' = A: AA' = AA'. \)

Then \(AA' = AX \) is impossible for any old point \(X \in A_{n-1}. \)

Type 2.

\[P'A' = AP, P'A' = AX \Rightarrow X = P \]

Proof. Divide into three cases by Definition 2.

Case (i). \(P' = B', P = B: B'A' = AB. \)

Then \(B'A' = AX \) is only possible for \(X = B \) by Definition 2.

Case (ii). \(P' < A \) (or \(B'A' = AB \)) and \(P'B' = BP \) and \(P'B' = BX. \)

Then \(X = P \) by Axiom \(E_u \) applied to old congruence relations.

Type 3.

$PA=A'P', PA=A'X \Rightarrow X = P'$.

Proof. Divide into two cases by Definition 3.

Case (i). $PB=B'P'$. Then

$PB = B'P', PB = B'X \xrightarrow{(E_q)} X = P'$.

Case (ii). $P = A', P' = A$. Then

$A'A = A'A', A'A = A'X \Rightarrow X = A$ by Definition 3.

Type 4.

$A'P' = PA, A'P' = PX \Rightarrow X = A$.

Proof. Divide into two cases by Definition 4.

Case (i). $B'P' \approx PB$. Then

$B'P' \approx PB, A'P' = PX \Rightarrow X = A$ by Definition 4.

$A'A = A'A, A'A = A'X \Rightarrow X = A$ by Definition 4.

Verification of C^+.

To show that Axiom C^+ is satisfied for $A_n = \{A_1, \ldots, A_n, A'\}$ we consider six types of equalities.

Type 1.

$A < P < Q, \quad Q' < P' < A'$,

$AP = P'A'$ \ (1) ,

$PQ = Q'P'$ \ (2)

$\Rightarrow AQ = Q'A'$.

Proof. We divide the proof into three cases, according to (1); cf. Definition 1.

Case (i). $P = B, P' = B'$. Then from (2),

$BQ = Q'B' \xrightarrow{(\text{Def.1(ii)})} AQ = Q'A'$.

Case (ii). $BP = P'B'$.

$B < P < Q, \quad Q' < P' < B'$,

$BP = P'B', PQ = Q'P' \xrightarrow{(C^-)} BQ = Q'B' \xrightarrow{(\text{Def.1(ii)})} AQ = Q'A'$.

Case (iii). $P = A', P' = A$. Then (2) becomes

$A'Q = Q'A$.

$\Rightarrow (2)'$

Divide into two subcases according to $(2)'$; cf. Definition 4.

Subcase (i). $B'Q \approx Q'B$.

\[Q' < B', \ B'Q \approx Q'B \quad \xrightarrow{(\varepsilon)} \quad BQ = Q'B' \quad \xrightarrow{\text{(Def. 1)}} \quad AQ = Q'A'. \]

Subcase (ii). \(Q = A, \ Q' = A' \). This is impossible, since \(A < Q \).

Type 2.
\[
\begin{align*}
Q' < P' < A', \ A < P < Q, \\
P'A' &= AP \quad \text{(1)}, \\
Q'P' &= PQ \quad \text{(2)}
\end{align*}
\]

Divide into three cases by (1); cf. Definition 2.

Case (i). \(P' = B', \ P = B; \ B'A' = AB \).
\[
B'A' = AB, \ Q'B' = BQ \quad \xrightarrow{\text{(Def. 2(ii))}} \quad Q'A' = AQ.
\]

Case (ii). \(P' < A \) (or \(B'A' = AB \)) and \(P'B' = BP \).
\[
P'B' = BP, \ Q'P' = PQ \quad \xrightarrow{\text{(C')}} \quad Q'B' = BQ \quad \xrightarrow{\text{(Def. 2(ii))}} \quad Q'A' = AQ.
\]

Case (iii). \(P' = A, \ P = A' \): \(A < A' \). Then (2) becomes
\[
Q'A = A'Q \quad \text{(2)'}
\]

We divide into two subcases according to (2)'; cf. Definition 3.

Subcase (i). \(Q'B = B'Q \).
Since \(A < A' \) and since \(AB \) and \(B'A' \) are elementary, either \(B < B' \) or \(B = B' \).

If \(B < B' \),
\[
\begin{align*}
Q'B &= B'Q, \\
BB &= BB' \quad \xrightarrow{(\varepsilon)} \quad Q'B = BQ \quad \xrightarrow{Q' < A} \quad Q'A = AQ.
\end{align*}
\]

If \(B = B' \),
\[
Q' < A, \ Q'B = BQ \quad \xrightarrow{\text{(Def. 2(ii))}} \quad Q'A = AQ.
\]

Subcase (ii). \(Q' = A', \ Q = A \).
This case is impossible, since \(Q' < A' \).

Type 3.
\[
\begin{align*}
P < Q < A, \ A' < Q' < P', \\
QA &= A'Q' \quad \text{(1)}, \\
PQ &= Q'P' \quad \text{(2)}
\end{align*}
\]
\[\Rightarrow PA = A'P'. \]
We divide into two cases by (1); cf. Definition 3.

Case (i). \(QB = B'Q' \).

\[QB = B'Q', \ PQ = Q'P' \quad \text{(C+)} \quad PB = B'P' \quad \text{(Def. 3)} \quad PA = A'P'. \]

Case (ii). \(Q = A', \ Q' = A : A' < A \). Then (2) becomes

\[PA' = AP' \quad \text{(2')} \]

Divide into three subcases by (2)'; cf. Definition 2.

Subcase (i). \(P = B' \), \(P' = B \). Since \(B' < A' < A < B \),

\[B'B = B'B \quad \text{(Def. 3)} \quad B'P = A'P, \ i.e., \ PA = A'P'. \]

Subcase (ii). \(P < A \) (or \(B'A = AB \)) and \(PB = B'P' \).

\[PB = B'P', \ B'B = B'B \quad \text{(C+)} \quad PB = B'P' \quad \text{(Def. 3)} \quad PA = A'P'. \]

Subcase (iii). \(P = A \), \(P' = A' \). This case is impossible, since \(A' < P' \).

Type 4.

\[A' < Q' < P', \ P < Q < A, \]
\[A'Q' = QA \quad \text{(1)}, \quad A'P' = PA. \]
\[Q'P' = PQ \quad \text{(2)} \]

Proof. Divide into two cases by (1); cf. Definition 4.

Case (i). \(B'Q' \approx QB \).

\[B'Q' \approx QB, \ Q'P' = PQ \quad \text{(C+)} \quad B'P' \approx PB \quad \text{(Def. 4)} \quad A'P' = PA. \]

Case (ii). \(Q = A, \ Q' = A' : A' < A \). Then (2) becomes

\[AP' = PA' \quad \text{(2')} \]

Divide into three subcases by (2)'; cf. Definition 1.

Subcase (i). \(P' = B, \ P = B' : AB = B'A' \). Then \(B' < B, \) since \(B' < A' = A < B \). Then

\[B'B \approx B'B \quad \text{(Def. 4)} \quad A'B = B'A, \ i.e., \ A'P' = PA. \]

Subcase (ii).

\[BP = PB', \ B'B \approx B'B \quad \text{(C+)} \quad B'P' \approx PB \quad \text{(Def. 4)} \quad A'P' = PA. \]

Subcase (iii). \(P = A, \ P' = A' \). Impossible, since \(A' < P' \).

Type 5.

\[P < A' < Q, \ Q' < A' < P', \]
\[PA = A'P' \quad \text{(1)}, \quad \Rightarrow P = Q'P'. \]
\[AQ = Q'A' \quad \text{(2)} \]

Proof. Divide into two cases by (1); cf. Definition 3.
Case (i). $PB = B'P'$.

Divide into three subcases by (2); cf. Definition 1.

Subcase (i). $Q = B, Q' = B'$. Then

$$PB = B'P' \quad \text{gives} \quad PQ = Q'P'.$$

Subcase (ii). $BQ = Q'B'$.

$$PB = B'P', \quad BQ = Q'B' \quad (\text{C}^+) \quad PQ = Q'P'.$$

Subcase (iii). $Q = A', Q' = A$.

This case has been treated in Type 2.

Proved in Type 4.

Type 6.

$$Q' < A' < P', \quad P < A < Q,$$

$$Q'A' = AQ \quad (1), \quad A'P' = PA \quad (2) \quad \Rightarrow \quad Q'P' = PQ.$$

Proof. Divide into two cases by (2); cf. Definition 4.

Case (i). $B'P' \approx PB$.

Divide into three subcases by (1); cf. Definition 2.

Subcase (i). $Q' = B', Q = B$. Then

$$B'P' = PB \quad \text{gives} \quad Q'P' = PQ.$$

Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.

$$Q'B' = BQ, \quad B'P' = PB \quad (\text{C}^+) \quad Q'P' = PQ.$$

Subcase (iii). $Q' = A, Q = A'$.

This case has been proved in Type 1.

Has been proved in Type 3.

Verification of C^+.

Type 1.

$$A < P < Q, \quad Q' < P' < A', \quad AP \approx P'A' \quad (1), \quad PQ = Q'P' \quad (2) \quad \Rightarrow \quad PQ \approx Q'P', \quad AQ \approx Q'A'.$$

Proof. Divide into three cases by (1); cf. Definition 1.

Case (i). $P = B, P' = B'$. $AB \approx B'A'$.

$$AB \approx B'A' \quad (\text{Def}) \quad \exists \ X, X': XB \approx B'X'. \quad XB \approx B'X', \quad BQ = Q'B' \quad (C^+) \quad BQ \approx Q'B', \quad \text{i.e.,} \quad PQ \approx Q'P'.$$
ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II

\[PQ \cong Q'P', \ AB \cong B'A' \quad (\text{Def. 1.2}) \]

\[AX \quad B=P \quad Q \]

\[L \quad A \quad B=P \quad Q \quad L \quad Q' \quad P'=B' \quad A' \quad X' \]

Case (ii). \(P'<A \) (or \(B'A'=AB \)) and \(P'B' \cong BP \)

\[\begin{aligned}
BP \cong P'B', \ PQ=Q'P' \quad (\text{Def. 3, 4}) \quad & \\
BQ \cong Q'B', \ \quad & Q' \prec A \quad (\text{or} \ B'A'=AB) \quad \rightarrow \quad \text{Def. 1.2} \quad AQ \cong Q'A'.
\end{aligned} \]

Case (iii). \(P=A', \ P'=A \).

\[A'Q = Q'A \quad (2)' \]

Divide into two subcases by (2)'; cf. Definition 4.

Subcase (i). \(B'Q \cong Q'B \).

\[B'Q \cong Q'B \quad (\text{Def. 3, 4}) \quad Q'A \cong Q'A', \ \text{i.e.,} \ Q'P' \cong PQ. \]

Since \(A<A' \), \(Q'<P'=A<B' \).

\[Q'<B', \ B'Q \cong Q'B \quad (\text{Def. 3, 4}) \quad BQ \cong Q'B' \quad (\text{Def. 1, 2}) \quad AQ \cong Q'A'. \]

Subcase (ii). \(Q=A, \ Q'=A' \). Impossible, since \(A<Q \).

Type 2.

\[Q'<P'<A', \ A<P<Q, \quad Q'P' \cong PQ \quad (1), \quad P'A' = AP \quad (2) \]

Divide into three cases by (2); cf. Definition 2.

Case (i). \(P'=B', \ P=B; \ B'A'=AB \).

\[Q'B' \cong BQ, \ AB \cong B'A' \quad (\text{Def. 1, 2}) \quad AQ \cong Q'A'. \]

\[B'A' \cong AB \quad \text{gives} \quad P'A' \cong AP. \]

Case (ii). \(P'<A \) (or \(B'A'=AB \)) and \(P'B'=BP \).

\[\begin{aligned}
Q'P' \cong PQ, \ P'B'=BP \quad (\text{Def. 1, 2}) \quad & \\
Q' \cong BQ \quad & Q' \prec A \quad (\text{or} \ B'A'=AB), \ Q'B' \cong BQ \quad (\text{Def. 1, 2}) \quad AQ \cong Q'A'.
\end{aligned} \]

Case (iii). \(P'=A, \ P=A': \ A<A' \). Then (1) becomes

\[Q'A \cong A'Q \quad (1)' \]
Divide into two subcases by (1)'; cf. Definition 3,4.

Subcase (i). \(Q'B \approx B'Q \).

Since \(A < A' \), \(Q' < P' = A < B \leq B' \).

\[
\begin{align*}
Q' < B', \ & Q'B \approx B'Q \ (\text{Def. 1, 2}) \\
& \quad \quad \rightarrow Q'B' \approx BQ' \ \ (\text{Def. 1, 2}) \\
& \quad \quad \rightarrow Q' < A \\
\end{align*}
\]

\[AP \approx P'A' \] is evident.

Subcase (ii). \(Q' = A' \), \(Q = A \). Impossible, since \(Q' < A' \).

Type 3.

\[
\begin{align*}
& P < Q < A, \ A' < Q' < P', \\
& PQ \approx Q'P' \ (1), \\
& QA = A'Q' \ (2) \\
\Rightarrow & \quad \quad \{ PA \approx A'P', \\
& \qquad \quad QA \approx A'Q' \}.
\end{align*}
\]

Proof. Divide into two cases by (2); cf. Definition 3.

Case (i). \(Q'B = B'Q' \) \((\text{Def. 3, 4}) \) \(PB \approx B'P' \) \((\text{Def. 3, 4}) \) \(PA \approx A'P' \).

\[
\begin{align*}
PQ \approx Q'P' \\
\Rightarrow & \quad \quad \{ QB \approx B'Q' \} \ (\text{Def. 3, 4}) \\
& \quad \quad QA \approx A'Q'.
\end{align*}
\]

Case (ii). \(Q = A' \), \(Q' = A \): \(A' < A \). (1) becomes

\[PA \approx A'P' \] \((1)' \)

Divide into two subcases by (1)'; cf. Definition 1,2.

Subcase (i). \(P = B' \), \(P' = B \): \(B'A' \approx AB \).

\[A'A \approx A'A \quad \text{gives} \quad QA \approx A'Q' \]

Since \(B' < A' < A < B, \)

\[B'B \approx B'B \ (\text{Def. 3, 4}) \quad B'A \approx A'B, \quad \text{i.e.,} \quad PA \approx A'P'. \]

Subcase (ii). \(BP' \approx PB' \). Since \(P < A < B, \)

\[BP' \approx PB', \ P < B \ (\text{Def. 3, 4}) \quad PB \approx B'P' \Rightarrow PA \approx A'P'. \]

Subcase (iii). \(P = A, \ P' = A' \). Impossible, since \(P < A \).

Type 4.

\[
\begin{align*}
& A' < Q' < P', \ P < Q < A, \\
& A'Q' \approx QA \quad (1), \\
& Q'P' = PQ \quad (2) \\
\Rightarrow & \quad \quad \{ A'P' \approx PA, \\
& \qquad \quad Q'P' \approx PQ \}.
\end{align*}
\]

Proof. Divide into two cases by (1); cf. Definition 4.

Case (i). \(B'Q' \approx QB \).

\[
\begin{align*}
B'Q' \approx QB', \ & Q'P' = PQ \ (\text{Def. 3, 4}) \\
& \quad \quad \rightarrow \{ PB \approx B'P' \Rightarrow A'P' \approx PA \}.
\end{align*}
\]

\[
\begin{align*}
B'Q' \approx QB, \ Q'P' = PQ \quad (\text{Def. 3, 4}) \\
& \quad \quad \rightarrow \{ Q'P' \approx PQ \}.
\end{align*}
\]
Case (ii). $Q'=A$, $Q=A'$: $A'<A$. (2) becomes

$$AP'=PA'$$

Divide into three subcases by (2)'; cf. Definition 1.

Subcase (i). $P'=B$, $P=B'$. Since $B'<A'<A<B$,

$$B'B\cong B'B \quad \Rightarrow \quad A'B\cong B'A', \text{ i.e., } A'P'\cong PA.$$ $$AB=B'A', \quad B'B\cong B'B \quad \Rightarrow \quad AB\cong B'A', \text{ i.e., } Q'P'\cong PQ.$$

Subcase (ii). $BP'=PB'$. Since $P<B'<A'<A<B$,

$$P<B, \quad BP'=PB' \quad \Rightarrow \quad \left\{ \begin{array}{l} PB\cong B'P' \quad \text{(Def. 3.4)} \\ BP'\cong PB' \\ P<A \end{array} \right\} \quad \Rightarrow \quad AP'\cong PA', \text{ i.e., } Q'P'\cong PQ.$$

Subcase (iii). $P'=A'$, $P=A$. Impossible, since $A'<P'$.

Type 5.

$$P<A<Q, \quad Q'<A'<P', \quad PA\cong A'P' \quad (1), \quad \Rightarrow \quad \left\{ \begin{array}{l} PQ\cong Q'P', \\ AQ\cong Q'A'. \end{array} \right\}$$

Proof. Divide into two cases by (1); cf. Definition 3.

Case (i). $B'P'\cong PB$.

Divide into three subcases by (2); cf. Definition 1.

Subcase (i). $Q=B$, $Q'=B'$.

$$B'P'\cong PB \quad \text{gives} \quad Q'P'\cong PQ.$$ $$B'P'\cong PB \quad \text{(Def.)} \quad \Rightarrow \quad AB\cong B'A', \text{ i.e., } AQ\cong Q'A'.$$

Subcase (ii). $BQ=Q'B'$.

$$BQ=Q'B', \quad PB\cong B'P' \quad \Rightarrow \quad P Q\cong Q'P'.$$ $$PB\cong B'P' \quad \text{(Def.)} \quad \Rightarrow \quad B' A'\cong AB \quad \Rightarrow \quad AQ\cong Q'A'.$$

Subcase (iii). $Q=A'$, $Q'=A$. Proved in Type 2.

Type 6.

$$Q'<A'<P', \quad P<A<Q,$$ $$Q'A'\cong AQ \quad (1), \quad \Rightarrow \quad \left\{ \begin{array}{l} Q'P'\cong PQ, \\ A'P'\cong PA. \end{array} \right\}$$

Proof. Divide into two cases by (2); cf. Definition 4.
Case (i). $B'P' \approx PB$.
Divide into three subcases by (1); cf. Definition 2.

Subcase (i). $Q' = B'$, $Q = B$:

$B'P' \approx PB$ gives $Q'P' \approx PQ$.

$B'P' \approx PB \xrightarrow{(\text{Def. } 3, \text{4})} PA \approx A'P'$.

Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' \approx BQ$.

$B'P' \approx PB$, $Q'B' \approx BQ \xrightarrow{(C^-)} Q'P' \approx PQ$.

$B'P' \approx PB \xrightarrow{(\text{Def. } 3, \text{4})} PA \approx A'P'$.

Subcase (iii). $Q = A'$, $Q' = A$. Proved in Type 1.

Verification of C^-.

Type 1.

\[
\begin{align*}
A &< P < Q, \\
AQ &\approx Q'A' \quad (1), \\
PQ &\approx Q'P' \quad (2)
\end{align*}
\]

Proof. Divide into three cases by (1); cf. Definition 1.

Case (i). $Q = B$, $Q' = B'$. Impossible, since AB is elementary.

Case (ii). $BQ = Q'B'$.

\[
\begin{align*}
B &< P < Q, \\
BQ &\approx Q'B', \ PQ \approx Q'P' \quad (C^-)
\end{align*}
\]

\[
\begin{array}{c}
L \\
A & B & P & Q \\
\hline
L \\
Q' & P' & B' & A'
\end{array}
\]

Case (iii). $Q = A'$, $Q' = A$: $A < A'$. (2) becomes

$PA' \approx AP'$

$\quad \text{(2)'}$

Divide into three subcases by (2)'; cf. Definition 2.

Subcase (i). $P = B'$, $P' = B$. Since AB is elementary,

$A < B \leq B' < A'$.

If $B < B'$,

$BB' \approx BB' \xrightarrow{(\text{Def. } 1\text{(ii)})} AB' = BA'$, i.e., $AP = P'A'$.

If $B = B'$, $AB = B'A'$ gives $AP = P'A'$.

Subcase (ii). $P < A$ (or $B'A' = AB$) and $PB' = BP'$.
Since $A < P < A'$ and since AB is elementary,
$$B \leq P,$$
If $B < P$,
$$PB' = BP' \xrightarrow{(c^-)} BP = P'B \Rightarrow AP = P'A'.$$
If $B = P$, then $B' = P'$, so $AP = P'A'$.

Type 2.
$$Q' < P' < A', \quad Q'A' = AQ \quad (1), \quad \Rightarrow Q'P' = PQ.$$
$$P'A' = AP \quad (2)$$
Proof. Divide into three cases by (2); cf. Definition 2.
Case (i). $P' = B'$, $P = B$: $B'A' = AB$.
Divide into three subcases by (1); cf. Definition 2.
Subcase (i). $Q' = B'$, $Q = B$. Impossible, since $Q' < P'$.
Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.
$$Q'B' = BQ \quad \text{ gives } \quad Q'P' = PQ.$$
Subcase (iii). $Q = A'$, $Q' = A'$; $A < A'$.
If $B < B'$,
$$BB' = BB' \xrightarrow{\text{Def.}1} AB' = BA'$, \ i.e., \ Q'P' = PQ.$$
If $B = B'$, $AB = B'A'$ gives $Q'P' = PQ$.
Case (ii). $P' < A$ (or $B'A' = AB$) and $P'B' = BP$.
Divide into three subcases by (1); cf. Definition 2.
Subcase (i). $Q' = B'$, $Q = B$. Impossible, since $Q' < P' < B'$.
Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.
$$Q' < P' < B', \quad Q'B' = BQ, \quad P'B' = BP \xrightarrow{(c^-)} Q'P' = PQ.$$
Subcase (iii). $Q' = A$, $Q = A'$. Then $A < P' < A'$, since $Q' < P' < A'$.
If $B < P$,
$$B < P', \quad P'B' = BP \xrightarrow{(c^-)} BP' = PB \Rightarrow AP' = PA', \ i.e., \ Q'P' = PQ.$$
If $B = P'$, then $B' = P$ and $AB = B'A'$ gives $Q'P' = PQ$.
Divide into three cases by (1); cf. Definition 2.
Subcase (i). $Q' = B'$, $Q = B$.
Impossible, since $Q' < P' < A'$ and since $B'A'$ is elementary.
Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.

If \(B<B' \),

\[
B<B', \quad Q'B'=BQ \quad \xrightarrow{(C^-)} \quad Q'B=B'Q \quad \xrightarrow{(\text{Def.3})} \quad Q'A=A'Q, \quad \text{i.e.,} \quad Q'P'=PQ .
\]

If \(B=B' \),

\[
Q'B'=BQ \Rightarrow Q'A=A'Q, \quad \text{i.e.,} \quad Q'P'=PQ .
\]

Subcase (iii). \(Q'=A, \quad Q=A' \). Impossible, since \(Q'<P' \).

Type 3.

\[
\begin{align*}
P&<Q<A, \\
PA&=A'P' \quad (1), \\
QA&=A'Q' \quad (2)
\end{align*}
\]

Proof. Divide into two cases by (1); cf. Definition 3.

Case (i). \(PB=B'P' \).

Divide into two subcases by (2); cf. Definition 3.

Subcase (i). \(QB=B'Q' \).

\[
P<Q<B, \quad QB=B'Q', \quad PB=B'P' \quad \xrightarrow{(C^-)} \quad PQ=Q'P' .
\]

Subcase (ii). \(Q=A', \quad Q'=A: \quad A'<A \). Then \(P\leq B' \), since \(P<Q \) and since \(B'A' \) is elementary.

If \(P<B' \),

\[
P<B'<B \quad \xrightarrow{(C^-)} \quad PB'=BP' \quad \xrightarrow{(\text{Def.2(ii)})} \quad PA'=AP' , \quad \text{i.e.,} \quad PQ=Q'P' .
\]

If \(P=B' \), then \(B=P' \) and

\[
B'B=BB \quad \xrightarrow{(\text{Def.})} \quad B'A'=AB , \quad \text{i.e.,} \quad PQ=Q'P' .
\]

Case (ii). \(P=A', \quad P'=A: \quad A'<A \).

Divide into two subcases by (2); cf. Definition 3.

Subcase (i). \(QB=B'Q' \).

\[
B'<A'=P<Q \quad , \quad \xrightarrow{(\varepsilon^-)} \quad B'Q=Q'B \quad \xrightarrow{(\text{Def.4})} \quad A'Q=Q'A, \quad \text{i.e.,} \quad PQ=Q'P' .
\]

Subcase (ii). \(Q=A', \quad Q'=A \). Impossible, since \(P<Q \).

Type 4.

\[
\begin{align*}
A'&<Q'<P', \\
A'P'=PA \quad (1), \\
Q'P'=PQ \quad (2)
\end{align*}
\]

Proof. Divide into two cases by (1); cf. Definition 4.

Case (i). \(B'P'=PB \).
ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II

\[B'<A'<Q'<P' \quad B'P \approx PB, \quad Q'P' \approx PQ \quad \overset{(\text{Def. 4})}{\Rightarrow} B'Q' \approx QB \overset{(\text{Def. 4})}{\Rightarrow} A'Q' = QA. \]

Case (ii). \(P' = A, P = A' \); \(A' < A \). Then (2) becomes

\[Q'A = A'Q. \] (2')

Divide into two subcases by (2)'; cf. Definition 3.

Subcase (i). \(Q'B = B'Q \).

\[B' < A' < Q', \quad Q'B = B'Q \overset{(\text{Def. 4})}{\Rightarrow} B'Q' \approx QB \overset{(\text{Def. 4})}{\Rightarrow} A'Q' = QA. \]

Subcase (ii). \(Q' = A', \quad Q = A \). Impossible, since \(A' < Q' \).

Type 5.

\[
\begin{align*}
P < A < Q, \\
PQ = Q'P' \quad (1), \\
AQ = Q'A' \quad (2)
\end{align*}
\]

Proof. Divide into three cases by (2); cf. Definition 1.

Case (i). \(BQ = Q'B' \).

\[P < B < Q \]

\[BQ = Q'B', \quad PQ = Q'P' \overset{(\text{Def. 3})}{\Rightarrow} PB = B'P' \overset{(\text{Def. 3})}{\Rightarrow} PA = A'P'. \]

Case (ii). \(Q = B, Q' = B' \). Then

\[PB = B'P' \Rightarrow PA = A'P'. \]

Case (iii). \(Q = A', Q' = A \). Proved in Type 2.

Type 6.

\[
\begin{align*}
Q' < A' < P', \\
Q'P' = PQ \quad (1), \\
A'P' = PA \quad (2)
\end{align*}
\]

Proof. Divide into two cases by (2); cf. Definition 4.

Case (i). \(B'P' \approx PB \).

If \(Q' < B' \)

\[B'P' \approx PB, \quad Q'P' = PQ \overset{(\text{Def. 1})}{\Rightarrow} Q'B' = BQ, \]

\[B'P' \approx PB \overset{(\text{Def. 2(ii)})}{\Rightarrow} B'A' = AB \]

If \(Q' = B' \), then \(Q = B \) and

\[B'P' \approx PB \Rightarrow B'A' = AB, \quad \text{i.e.,} \quad Q'A' = AQ. \]

Case (ii). \(P' = A, P = A' \). Proved in Type 3.
Verification of \tilde{C}^-.

Type 1.

$A < P < Q$,

$A Q \approx Q' A'$ \hspace{1cm} (1) \Rightarrow \{ P Q \approx Q' P' , \newline P Q = Q' P' \}$ \hspace{1cm} (2)

$A P \approx P' A'$.

Proof. Divide into three cases by (1); cf. Definition 1.

Case (i). $Q = B$, $Q' = B'$.

Impossible, since $A < P < Q$ and since $A B$ is elementary.

Case (ii). $Q' < A$ (or $B' A' = A B$) and $B Q \approx Q' B'$.

Note that if $Q' < A$ then $Q' < B$ and

$B Q \approx Q' B' \quad (\varepsilon^{-1}) \Rightarrow Q' B \approx B' Q \Rightarrow B' A' = A B$.

Now $B \leq P$, since $A < P$.

If $B < P$,

$B Q \approx Q' B'$, $P Q = Q' P'$ \hspace{1cm} (\varepsilon^{-1}) \Rightarrow \{ B P \approx P' B' , \newline (B' A' = A B) \} \Rightarrow A P \approx P' A'$

$Q' P' \approx P Q$.

Evident, if $B = P$.

Case (iii). $Q = A'$, $Q' = A$: $A < A'$. Then (2) becomes

$P A' = A P'$ \hspace{1cm} (2)'$

Divide into three subcases by (2)'; cf. Definition 2.

Subcase (i). $P = B'$, $P' = B$: $B' A' = A B$.

If $B < B'$,

$B B' \approx B B'$, $B' A' = A B$ \hspace{1cm} (Def. 1, 2) \Rightarrow A B' \approx B' A$, i.e., $A P \approx P' A'$.

$B' A' \approx A B$ gives $P Q \approx Q' P'$.

If $B = B'$, evident.

If $B < P$,

$P B' = B P'$ \hspace{1cm} (\varepsilon^{-1}) \Rightarrow \{ P' B' \approx B P', B' A' = A B \Rightarrow A P \approx P' A' , \newline P B' \approx B P', B' A' = A B \Rightarrow A P \approx P' A'$, i.e. $Q' P' \approx P Q$.

If $B = P$, evident.

Type 2.

\[Q' < P' < A' \]
\[Q'A' \approx AQ \] (1)
\[P'A' = AP \] (2)
\[\Rightarrow \]
\[P'A' \approx AP \]
\[Q'P' \approx PQ \]

Proof. Divide into three cases by (2); cf. Definition 2.

Case (i). \(P' = B', P = B; B'A' = AB \).

Divide into three subcases by (1); cf. Definition 2.

Subcase (i). \(Q' = B', Q = B \). Impossible, since \(Q' < P' \).

Subcase (ii). \(Q'B' \approx BQ \).

\[Q'B' \approx BQ \]
\[\text{gives} \]
\[Q'P' \approx PQ \]
\[AB \approx B'A' \]
\[\text{gives} \]
\[AP \approx P'A' \]

Subcase (iii). \(Q' = A, Q = A' \). Evident.

Case (iii). \(P' < A \) (or \(B'A' = AB \)) and \(P'B' = BP \).

Divide into three subcases by (1); cf. Definition 2.

Subcase (i). \(Q' = B', Q = B \). Impossible, since \(Q' < P' \).

Subcase (ii). \(Q'B' \approx BQ \).

\[Q'B' \approx BQ, P'B' = BP \]
\[\xrightarrow{\text{(1)}} \]
\[Q'P' \approx PQ \]
\[P'B' \approx BP \]
\[\Rightarrow \]
\[AP \approx P'A' \]

Subcase (iii). \(Q' = A, Q = A' \). \(A < A' \).

If \(B < P' \).

\[P'B' = BP \xrightarrow{\text{(1)}} \]
\[BP \approx P'B', B'A' = AB \Rightarrow AP \approx P'A' \]
\[PB' \approx BP', B'A' = AB \Rightarrow PA' \approx AP', \text{ i.e.,} \]
\[P \approx Q'P' \]

If \(B = P' \), evident.

Case (iii). \(P' = A, P = A' \). \(A < A' \).

Divide into three subcases by (1); cf. Definition 2.

Subcase (i). \(Q' = B', Q = B \). Impossible, since \(B'A' \) is elementary.

Subcase (ii). \(Q' < A \) (or \(B'A' = AB \)) and \(Q'B' \approx BQ \).

Since \(Q' < P' = A < B \),

\[Q'B' \approx BQ \]
\[\Rightarrow \]
\[Q'B' \approx Q'Q \Rightarrow Q'A \approx A'Q, \text{ i.e.,} \]
\[Q'P' \approx PQ \]
\[AA' \approx AA' \]
\[\text{gives} \]
\[AP \approx P'A' \]

Subcase (iii). \(Q' = A, Q = A' \). Impossible, since \(Q' < P' \).

Type 3.

\[P < Q < A \]
\[PA \approx A'P' \] (1)
\[QA = A'Q' \] (2)
\[\Rightarrow \]
\[A'Q' \approx QA \]
\[P \approx Q'P' \]
Proof. Divide into two cases by (1); cf. Definition 3.

Case (i). \(B'P' \approx PB \).

Divide into two subcases by (2); cf. Definition 3.

Subcase (i). \(QB = B'Q' \).

\[
\begin{align*}
P < Q &< B \\
PB \approx B'P', \; QB = B'Q' \end{align*}
\]

\[
\begin{align*}
\{(\; - \rangle \} & \quad \{ PQ \approx Q'P'. \\
QB \approx B'Q' \Rightarrow QA \approx A'Q'. \\
P < A \end{align*}
\]

Subcase (ii). \(Q = A', \; Q' = A \).

Since \(P \leq B' < A' \),

\[
\begin{align*}
B'P' \approx PB \quad \quad \rightarrow \quad \quad PB' \approx BP' \\
P < A \end{align*}
\]

\[
\begin{align*}
QB = B'Q' \rightarrow B'Q \approx Q'B \Rightarrow A'Q \approx Q'A, \; i.e., \; PQ \approx Q'P'. \\
(B' < Q) \\
QB \approx B'Q' \Rightarrow QA \approx A'Q'. \\
B' < A = P < Q,
\end{align*}
\]

Subcase (ii). \(Q = A', \; Q' = A \). Impossible, since \(P < Q \).

Case (ii). \(P = A', \; P' = A; \; A' A \approx A' A \).

Divide into two subcases by (1); cf. Definition 3.

Subcase (i). \(QB = B'Q' \).

Since \(B' < A = P < Q \),

\[
\begin{align*}
QB = B'Q' \rightarrow B'Q \approx Q'B \Rightarrow A'Q \approx Q'A, \; i.e., \; PQ \approx Q'P'. \\
QB \approx B'Q' \quad (B' < Q) \\
\Rightarrow QA \approx A'Q'. \\
\end{align*}
\]

Subcase (ii). \(Q = A', \; Q' = A \). Impossible, since \(P < Q \).

Type 4.

\[
\begin{align*}
A' < Q' < P', \\
A'P' \approx PA \quad (1), \\
Q'P' = PQ \quad (2) \end{align*}
\]

\[
\begin{align*}
\rightarrow \{ PQ \approx Q'P'. \\
\Rightarrow A'Q' \approx QA. \\
\end{align*}
\]

Proof. Divide into two cases by (1); cf. Definition 4.

Case (i). \(B'P' \approx PB \).

\[
\begin{align*}
B' < Q' < P', \\
B'P' \approx PB, \; Q'P' = PQ \end{align*}
\]

\[
\begin{align*}
\rightarrow \{ PQ \approx Q'P'. \\
B'Q' \approx QB \Rightarrow A'Q' \approx QA. \\
\end{align*}
\]

Case (ii). \(P' = A, \; P = A'; \; A' < A \). (2) becomes

\[
Q' = A'Q
\]

Divide into two subcases by (2)'; cf. Definition 3.

Subcase (i). \(Q'B = B'Q \).

\[
\begin{align*}
B' < Q', \\
Q' = B'Q' \end{align*}
\]

\[
\begin{align*}
\rightarrow \{ B'Q' \approx QB \Rightarrow A'Q' \approx QA. \\
B'Q \approx Q'B \Rightarrow A'Q \approx Q'A, \; i.e., \; PQ \approx Q'P'. \\
\end{align*}
\]
ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II

Subcase (ii). $Q' = A'$, $Q = A$. Impossible, since $Q' < P'$ and $A' < A$.

Type 5.

\[
\begin{align*}
P &< A < Q, \\
PQ &\approx Q'P' \quad \text{(1)} \implies \begin{cases} AQ \approx Q'A', \\
PA \approx A'P'. \end{cases} \\
AQ &\approx Q'A' \quad \text{(2)}
\end{align*}
\]

Proof. Divide into three cases by (2); cf. Definition 1.

Case (i). $Q = B$, $Q' = B'$. Then

\[
(1): \quad PB \approx B'P' \Rightarrow \begin{cases} PA \approx A'P', \\
AB \approx B'A', \text{ i.e., } AQ \approx Q'A'. \end{cases}
\]

Case (ii). $BQ = Q'B'$.

\[
P < B, \\
PQ \approx Q'P', \\
BQ \approx Q'B' \\
PB \approx B'P' \implies AB \approx B'A'
\]

Case (iii). $Q = A'$, $Q' = A$. Proved in Type 2.

Type 6.

\[
\begin{align*}
Q' &< A'< P', \\
Q'P' &\approx PQ, \quad \text{(1)} \implies \begin{cases} A'P' \approx PA, \\
Q'A' \approx AQ. \end{cases} \\
A'P' &\approx PA \quad \text{(2)}
\end{align*}
\]

Proof. Divide into two cases by (2); cf. Definition 4.

Case (i). $B'P' \approx PB$. Then

$Q' \leq B'$, since $Q' < A'$.

If $Q' < B'$, then

\[
\begin{align*}
Q'P' &\approx PQ \quad \text{(6)} \implies Q'B' \approx BQ \\
B'P' &\approx PB \implies AB \approx B'A' \\
PA &\approx A'P'
\end{align*}
\]

If $Q' = B'$, evident.

Thus the proof of Lemma is complete.

We are now in a position to construct a model $M(R, C, I)$ on the basis of Lemma.

First take all the triples of natural numbers (i, j, k), make a numbering N on them such that different triples (i, j, k) and (i', j', k') have different numbers $N(i, j, k) \neq N(i', j', k')$.

Suppose a system A_{n_i} of n_i different points $A_1, A_2, \ldots, A_{n_i}$ has been already defined such that points are linearly ordered and that it satisfies Axioms E_u, R, C^+, C^+, C^- and C^-. Call a triple of points $(A_i, A_j, A_k) \ (1 \leq i, j, k \leq n_i)$ with $A_i < A_j$ saturated if the equality

$$A_i A_j = A_k A_l$$

has a solution in $A_i \in A_{n_i}$, and insaturated if not, and let (A_p, A_q, A_r) be the insaturated triple with the smallest $N(p, q, r)$.

For the sake of simplicity, set $A_p = A_m$, $A_q = A_{m+1}$, $A_r = A_{m+2}$, and choose points $P_{m-1}, P_{m-2}, \ldots, P_1$ of A_{n_i} such that $A_p = P_m < P_{m-1} < \cdots < P_2 < P_1 = A_q$ and that the consecutive segments $P_1 P_2 P_3 P_4 \ldots P_1 P_2$ are all elementary.

If there is any saturated triple (P_m, P_{m+1}, P_{m+2}), let (P_{s-1}, P_s, P_s') be such a one with the largest s. Then there must be a point $P_s' < P_{s-1}$ with

$$P_{s-1} P_s = P_s' P_{s-1}. \quad (1)$$

If there is no saturated triple, set $s=2$. Introduce then $m-s+1$ new points $P_x', P_{x+1}', \ldots, P_m'$ and define the linear ordering

$$P_{x-1}' < P_x' < \cdots < P_m' < P_1',$$

where either $P_{x-1}' P_1' (P_1' \in A_{n_i})$ is an elementary segment or P_1' is to be regarded as the point at infinity, if there is no point $X \in A_{n_i}$ with $P_{x-1}' < X$.

Repeated applications of Lemma beginning with the successive introduction of basic congruence relations

$$P_s P_{s-1} = P_{s-1}' P_s', \quad P_{s-1} P_s = P_s' P_{s-1}', \quad (2)$$

lead us to a system of points $A_1, \ldots, A_{n_i}, P_s', \ldots, P_m'$ in a linear order, satisfying Axioms E_u, R, C^+, C^+, C^- and C^-. Then we have from (1) and (2) on account of C^+

$$P_m P_1 = P_1' P_m'. \quad (3)$$

If we set
we have by (3)
\[A_p A_q = A_r A_{n_i+1}, \]
and \((A_p, A_q, A_r)\) becomes a saturated triple in the system of points
\[A_{n_i+1} = \{A_1, A_2, \ldots, A_{n_i}, \ldots, A_{n_i+1}\}. \]

Now let \(n\) be equal to 4 and let \(A_{n_1}\) be defined as a system of four points
\(A_1, A_2, A_3, A_4\) in a linear order
\[A_1 < A_2 < A_3 < A_4 \]
with the following congruence relations:

i) \(A_i A_j = A_i A_j\) for all \(i, j = 1, \ldots, 4,\)
 provided \(A_i < A_j,\)

ii) \(A_1 A_2 = A_2 A_3\) but \(A_2 A_3 \neq A_1 A_4,\)

iii) \(A_2 A_4 = A_1 A_3,\)

and

iv) \(A_1 A_4 = A_2 A_3, A_1 A_2 = A_4 A_3, A_4 A_3 = A_1 A_2.\)

In \(A_{n_1}\) all Axioms \(E_u, R, C^+ (= C), C^+, C^-\) and \(C^-\) are seen to be fulfilled. Thus we see by induction that in each \(A_{n_i} (i = 1, 2, 3, \ldots)\) all Axioms from \(E_u\) to \(C^-\) are fulfilled, so that in particular Axioms \(E_u, R\) and \(C\) are satisfied in the system of points
\[A = \bigcup_{i=1}^{\infty} A_{n_i}. \]

If \(A_p, A_q, A_r\) is any triple of points with \(A_p < A_q\) in \(A\), then there is by the way of introducing new points of \(A_{n_i+1}\) into each \(A_{n_i} (i = 1, 2, 3, \ldots)\) a natural number \(n_j\) such that the equality
\[A_p A_q = A_r A_s \]
is satisfied by an \(A_s \in A_{n_j}.\) Thus Axiom E is satisfied in \(A.\)

Recalling the fact seen in the proof of Lemma that when the point \(A_n\) is added to the set \(A_{n-1}\) as a new point to obtain \(A_n\) the new congruence relations introduced with it are confined to those between some old segments and new ones having \(A_n\) as an end point, so we see that the relation \(A_2 A_3 = A_1 A_2\) in \(A_{n_1}\) remains true throughout all \(A_{n_i}.\) Thus in \(A:\)

→ S: Axiom S fails to be satisfied, for \(A_1 A_2 = A_3 A_2\) but
\(A_2 A_3 = A_1 A_2.\)

→ T: Axiom T fails to be satisfied, for \(A_1 A_2 = A_2 A_3,\)
\(A_2 A_3 = A_1 A_4\) but \(A_1 A_3 = A_1 A_4\) by Axiom \(E_u.\)

→ A: Axiom A fails to be satisfied, for if \(A\) holds, then by Theorem 11 (see Part I) Axiom S would hold good too.
Thus A is the desired model $M(R, C, I)$ in which Axioms $R, C,$ and I alone hold besides Axiom E.

*Niihama Technical College, Niihama
Sophia University, Tokyo*