
Title On congruent axioms in linearly ordered spaces.
II

Author(s) Terasaka, Hidetaka; Katayama, Shigeru

Citation Osaka Journal of Mathematics. 1967, 4(1), p.
111-132

Version Type VoR

URL https://doi.org/10.18910/5749

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Katayama, S. and Terasaka, H.
Osaka J. Math.
4 (1967), 111-132

ON CONGRUENT AXIOMS IN LINEARLY ORDERED
S P A C E S , l l υ

SHIGERU KATAYAMA AND HIDETAKA TERASAKA

(Received March 31, 1967)

6. Model M(R, C, I)

M(R, C, I) : A model of a geometry in which Axioms R, C and I alone hold
besides Axiom E. (Notice that I follows automatically from E, R and C.)

The construction of M (R, C, I) is quite different from those of other models,
and its exposition here may be too long, but it seems to the authors appropriate
to provide it with a full proof. It depends essentially upon Lemma below, and
we will begin by introducing some definitions and auxiliarly axioms needed in it.

Let A be a finite number of linearly ordered points, in which congruence
relations are supposed to hold among some of the segments, and let P, Q, P'
etc. denote points of A.

DEFINITION. We write

if and only if

at the same time.

PQ~Q'P' or Q'P'~PQ,

PQ=Q'P' and Q'P'=PQ

Axiom Ew: // PQ=Q'P' and PQ=Q'P", then P'=P".

Axiom C+ (=Axiom C)

P<Q<R ,) r r 2 ^ R
H

PQ=Q'P' ,

QR=R'Q' >

Axiom C+

P<Q<R ,)

R'<Q'<P',

PQ~Q'P' ,

QR=R'Q' )

PR=RfP'.

R' Q'

Q

I QR~R'Q'

P'

R
H

R' Qf Pr

1) Continuation of Part I, this Journal, vol. 3 (1966), 269-292. Referred to as Part I.
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Axiom C"
P R Q

P<R<Q , \ L I 1 1

RQ=Q'R' )
Q' R' P'

Axiom C":

P<R<Q , ) ( P ^ O Φ , L I R Q
PQ~Q'P',

RQ=Q'R'

Q' R' P'

The following is an important consequence of C", and will sometimes be
denoted by e~.

C": PQ=O'P', Q'<P =Φ PQ^Q'P', Q'P^P'Q.

Proof.

Q'<P<Q ) pn^n'P' L h ^ °

QV~Q'Q ' ( )

(?' P ' Q

DEFINITION. A segment PQ will be called elementary, if there is no point

Lemma. L ^ An_λ= {Aλ\ λ = l , 2, •••, w—1} ie β yimfe number of points in

some linear order such that they satisfy Axioms EM, R, C+, C + , C" and C". Then,

for a given elementary segment A{Aj and a given point Ak such that the equality

AiA~AkAι

has no solution in Ag^An^ly a new point An can be introduced, so that

AiA~AkAn

holds and the linearly ordered points Λn= {Aly A2, •••, An_ly An} satisfy the same

Axioms from ΈM to C~.

Proof. Points as well as notations such as A, P, X, P' etc. will mean in
this proof points of An_1 except for A' which will be introduced below as a new
point An. If two segments are equal it is convenient to write the corresponding
end points counterwise with and without dashes such as PQ=Q'P'y since
several axioms of the type of C are involved.

For the sake of simplicity, set A(=Ay A~B and Ak=B\
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Thus by assumption there is no point X with

AB=B'X

DEFINITION OF THE NEW POINT A'(=An) AND OF ORDERING.

Let A' be introduced as a new point such that {A19 •••, An_ly A'} satisfy

the following linear ordering:

(i) B'<A'.

(ii) If X<B\ then X<A' for any point I E ^ _ ,

(iii) If B'<X, then A'<X for any point I ε 4 Λ _ ,

DEFINITION OF THE BASIC EQUALITY. The following is the basic congruence

relation:

(i) AB^BΆ\

i.e. AB=BrA' and BΆ'=AB at the same time, if and only if there exist

some X and X' such that XB^B'X1.

In particular, AB^BΆ' ifB'<Ay since BrB**B'B.

X A B B' A B
L H 1 1

B' A! X' B' A B

(ii) Otherwise

AB=BΆ' but B'A'^AB,

that is, BΆ'=AB is not defined.

DEFINITION OF OTHER EQUALITIES. Besides the above basic congruence

relation we must define other new congruence relations in order to make the

system of points An={Ali •••, An_ly An} satisfy all axioms from Eu to C~.

To insure Axiom R we only need

DEFINITION 0. For any XtΞA^: A'X=A'X and XA'=XA'.

In the following are defined all the equalities between old segments and

new ones with one end point A\ They are classified into four types according

to the position of A'.

Some of them are redundant, such as AB=BΆ\ AA'=AAr and AΆ=

AΆ> but are included for the sake of completeness.

DEFINITION 1. AP=PΆ'y if and only if

(i) P=B, P'=B\ i.e., AB=:BΆ',

or (ii) BP=P'B\

or (iii) P=A', P'=A, i.e., AA'=AA'.
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DEFINITION 2. PΆ'=AP, if and only if

(i) P'=B\ P=B, i.e., BΆ'=AB,
or (ii) P'<A (or BfA'=AB) and P'B'^BP,
or (iii) P'=AyP=A',ίe.,AA'=AA'.

DEFINITION 3. PA=A'P\ if and only if

(i) PB=B'P\
or (ii) P=A\ P'=A, i.e., AΆ=AΆ.

DEFINITION 4. A'P'=PA, if and only if

(i) B'P'^PB,
or (ϋ) P'=A, P=A\ i.e., AΆ=AΆ.

Having thus defined all congruence relations between old segments and
new ones with one end point A\ we are now going to verify Axioms EM, C+,
C+, C" and C~ one by one.

The verification will be done after a pattern: each equality under consid-
eration is first classified according to its type, and then dealt with by Definitions
1, 2, 3 and 4 accordingly almost mechanically. Verbal explanations in detail
will be omitted.

VERIFICATION OF EU.

Type 1.

AP=PΆ\ AP=P'X ==> X=A'.

Proof. According to Definition 1, we divide the proof into three cases.

Case(i). P=B,P'=B': AB=BΆ'.

Then AB=B'X is impossible for X<=An__v

Case(ii). BP=P'B'.

A<B<P, AP=P'X, BP=P'B' Q AB=BfX,

which is impossible for any old point X^An_v

Case (iii). P=A\ P'=A: AA'=AA'.

Then AA'=AX is impossible for any old point

Type 2.

PΆ'=APy PΆ'=

Proof. Divide into three cases by Definition 2.

Case (i). P'=B\ P=B: BΆ'=AB.

Then BfA'=AX is only possible for X=B by Definition 2.

Case (ii). P'<A (or BΆ'=AB) and P'B'=BP and P'B'=BX.

Then X=P by Axiom Έμ applied to old congruence relations.
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Case (iii). P'=A, P=A': AA'=AA',
AA '=AX. Then X=A' by Definition 2.

Type 3.
PA=A'P', PA=A'X=ΦX=P'.

Proof. Divide into two cases by Definition 3.
Case(i). PB=B'P'. Then

PB=B'P', PB=B'xΆx=P'.
Case (ii). P=A', P'=A. Then

AΆ=AΆ, AΆ=A'X^X=A by Definition 3.

Type 4.
A'P'=PA, A'P'=PX => X=A .

Proof. Divide into two cases by Definition 4.
Case(i). B'P'^PB. Then

B'P'^PB, A'P'=PX =* X=A by Definition 4.

Case(ii). P'=A, P=A'.
AΆ=AΆ, AΆ=A'X-* X=A by Definition 4.

VERIFICATION OF C + .

To show that Axiom C + is satisfied for An= {Alt •••, An_ly A'} we consider

six types of equalities.

Type 1.
A<P<O,

AQ=QΆ'.AP=PΆ' (1) ,

PQ=Q'P' (2)

Proof. We divide the proof into three cases, according to (1); cf.
Definition 1.

Case(i). P=B,P'=B'. Then from (2),

Case(ii). BP=P'B'.

B<P<Q,

BP=P'B', PQ=Q'P )

Case (iii). P=A', P'=A. Then (2) becomes

A'Q=QΆ. (2) '

Divide into two subcases according to (2)'; cf. Definition 4.
Subcase (i). B'Q^Q'B,
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Q'

)=Q'B'yZ2£'AQ=Q'A'.

A B A Q

Q' A B' A Q

Subcase (ii). Q=Ar Q'=A'. This is impossible, since A<Q.

Type 2.
Q'<P'<A\ A<P<QΛ

PΆ'=AP (1) ,

Q'P'=PQ (2)

Divide into three cases by (1); cf. Definition 2.
Case (i). P'=B', P=B: BΆ'=AB.

QΆ'=AQ.

BΆ'=AB, Q ' B ' = Q

Case (ii). P'<A (or BΆ'=AB) and P'B'=BP.

P'B'=BP, Q'P'=PQ Ά Q'B'=BQ \

P'<A (or BΆ'=AB) J

Case (iii). P'=A, P=A': A<A'. Then (2) becomes

QΆ=A'Q (2) '

We divide into two subcases according to (2)'; cf. Definition 3.
Subcase (i). Q'B=B'Q.

Since A<A' and since AB and BΆ' are elementary, either B<B' or

Q'B=B'Q

BB'=BB'
Q'B'=BQ)

ί

B=B'.
If B<B',

If B=B',

Subcase (ii). £>'=;4', ρ=^4.
This case is impossible, since Q'<A'

Type 3.
P<Q<A, A'

pρ=ρτ' (2)
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We divide into two cases by (1); cf. Definition 3.
Case (i). QB=B'Qf.

QB=B'Q\ PQ=QrPf^lpB=BfPf(^Φ)PA=AfP\

Case (ii). Q=A', Q'=A: A'<A. Then (2) becomes

PAf=APf ( 2 ) '

Divide into three subcases by (2)'; cf. Definition 2.
Subcase (i). P=B\ P'=B. Since B'<A'<A<B,

B'B=B'B{^ΦBΆ=A'By i.e., PA=A'P'.

Subcase (ii). P<A (or BΆ'=AB) and PB'=BP'.

PB'=BP\ B'B=B'B =Φ PB=B'Pf{^ΦPA=AfP''.

Subcase (iii). P=Ay P'=A\ This case is impossible, since A'<P'.

Type 4.
A'<Q'<P\ P<O<A ,

A'P'=PA .

A'<Q'<P', P<O<A,)

A'Q'=QA (1),

Q'P'=PQ (2)

Proof. Divide into two cases by (1); cf. Definition 4.
Case (i). B'Q'^QB.

B'Q'^QB, Q'P'=PQ ^ l B'P'^PBl^Φ A'P'=PA .

Case (ii). Q'=A, Q=A': A'<A. Then (2) becomes

AP'=PA' ( 2 ) '

Divide into three subcases by (2)'; cf. Definition 1.
Subcase (i). P'=B, P=B': AB=BΆ'. Then
B'<B, since B'<A'<A<B. Then

B'B~B'B{^4] A'B-^BΆ, i.e., A'P'=PA .

Subcase (ii).

BP'=PB', B'B^B'B ϊ=% B'P'^PB(^4)A'P'=PA .

Subcase (iii). P'=A', P=A. Impossible, since A'<P'.

Type 5.

P<A<Q, Q'<A'<P

PA=A'P' (1),

AQ=QΆ' (2)

Proof. Divide into two cases by (1); cf. Definition 3.



118 S. KATAYAMA AND H. TERASAKA

Case(i). PB=B'P'.
Divide into three subcases by (2); cf. Definition 1.

Subcase (i). Q=B, Q'=B'. Then

PB=B'P' gives PQ=Q'P'.

Subcase (ii). BQ=Q'B'.

PB=B'P', BQ=Q'B'

Subcase (iii). Q=A', Q'=A.
This case has been treated in Type 2.
Case(ii). P=A',P'=A.
Proved in Type 4.

Type 6.

Q'<A'<P', P<A<Q

QΆ'=AQ ( l),

A'P'=PA (2)
Proof. Divide into two cases by (2) cf. Definition 4.
Case(i). B'P'^PB.
Divide into three subcases by (1); cf. Definition 2.

Subcase (i). Q'=B', Q=B. Then

B'P'=PB gives Q'P'=PQ

Subcase (ii). Q'<A (or BΆ'=AB) and Q'B'=BQ.

Q'B'=BQ, B'P'=PB Ά Q'P'=PQ .

Subcase (iii). Q'=A, Q=A'.
This case has been proved in Type 1.
Case (ii). P'=A, P=A'.
Has been proved in Type 3.

VERIFICATION OF C+.

Type 1.

A<P<Q, Q'<P'<A',\

AP^PΆ' (1)

PQ=Q'P' (2)

Proof. Divide into three cases by (1); cf. Definition 1.
Case (i). P=B, P'=B': AB^BΆ'.

AB^B'A' U 3X, X': XB^B'X'.

XB^B'X', BQ=Q'B' Ά BQ^Q'B', i.e., PQ^Q'P'.
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(Ώei 1 2\

X A B=P Q
L H 1 1 • 1

Q' P'=B' A' X'

Case (ii). P'<A (or BΆ'=AB) and P'B'^BP

BP~P'B', PQ=Q'P' ^ BQ~Q'B', ) (DefJ.2)

Q'<A (or BΆ'=AB)) * U •

Case(iii). P=A',P'=A.

A'Q=QΆ. ( 2 ) '

Divide into two subcases by (2)'; cf. Definition 4.
Subcase (i). B'Q^Q'B.

B'Q™Q'B(O^>4)Q'A~A'Q, i.e., Q'P'^PQ.

Since A<A', Q'<P'=A<B'.

', B'Q^Q'B Ά BQ~Q'B>
Q'<A j ^ ~ ^ "

Subcase (ii). Q=A, Q'—A'. Impossible, since A<Q.

Type 2.

Q'<P'<A',A<P<QΛ

Q'P'^PQ (1),

PΆ'=AP (2)
Proof. Divide into three cases by (2) cf. Definition 2.
Case(i). P'=B',P=B:BΆ'=AB.

Q'B'^BQ, AB^BΆ'^^PAQ^QΆ'.

BΆ'^AB gives PΆ'^AP.

Case (ii). P'<A (or BΆ'=AB) and P'B'=BP.

Q'P'~PQ, P'B'=

(Όeί 1 2)

Q'<A (or BΆ'=AB), Q'B'~BQK =^4 '

Case(ίii). P'=A, P=AΊ A<A'. Then (1) becomes

Q'A^A'Q ( 1 ) '
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Divide into two subcases by (1)'; cf. Definition 3,4.
Subcase (i). Q'B^B'Q.

Since A<A', Q'<P'=

AP^P'A' is evident.

Subcase (ii). 0 ' = ^ ' , £?=A Impossible, since j9 '<^ ' .

7>/>e 3.

P<Q<A, A' PA^A'P',

pρ«ρτ ' (i),
QA=A'Q' (2) J

Proof. Divide into two cases by (2); cf. Definition 3.

Case (i). QB=B'Q'

PQ^Q'P'

Case (ii). Q-=A', Q'=A\ A'<A. (1) becomes

PA'^AP' ( 1 ) '

Divide into two subcases by (1)'; cf. Definition 1,2.
Subcase (i). P=B', P'=B: B'A'^AB.

A'A^A'A gives QA^A'Q'

Since B'<A'<A<B9

B'B^B'B ^=Φ BΆ^A'B, i.e., PA^A'P'.

Subcase (ii). BP'**PBf. Since P<A<B,

Subcase (iii). P=A, P'=A'. Impossible, since P<A.

Type 4.

', P<Q<A ,) A'P'^PA,
A'Q'^QA (1),

Q'P'=PQ (2) j

Proof. Divide into two cases by (1); cf. Definition 4.
Case(i). B'Q'^QB.

(C+) (PB^B'P'^A'P'^PA.
B'Q'^QB, Q'P'=PQ i=4 \
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Case(ii). Q'=A, Q=A': A'<A. (2) becomes

AP'=PA' ( 2 ) '

Divide into three subcases by (2)'; cf. Definition 1.
Subcase (i). P'=B, P=B'. Since B'<A'<A<B,

Φ1)A'B~BΆ, i.e., A'P'^PA.

AB=BΆ', B'B**B'B(^l AB^BΆ', Le., Q'P'*

Subcase (iί). BP'=PB'. Since P<B'<A'<A<B,

Subcase (iii). P'=A', P=A. Impossible, since A'<P'.

Type 5.

P<A<Q, Q'<A'<P',

PA^A'P' ( 1 ) , •-.

AQ=QΆ' (2) ,

Proof. Divide into two cases by (1); cf. Definition 3.
Case(i). B'P'^PB.
Divide into three subcases by (2); cf. Definition 1.

Subcase (i). Q=B, Q'=B'.

B'P'^PB gives Q'P'^PQ.

B'P'~PB{^ AB^BΆ', i.e., AQ=QΆ'.

Subcase (ii). BQ=Q'B'.

BQ=Q'B', PB^B'P'ΆPQ^Q'P' .

BQ~Q'B'j ^ V

Subcase (iii). Q=A', Q'=A. Proved in Type 2.
Case(ii). P=A',P'=A. Proved in Type 4.

Type 6.
', P<A<Q,\

QΆ'~AQ (1),

A'P'=PA (2) j

Proof. Divide into two cases by (2) cf. Definition 4.

Q'P'^PQ,
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Case(i). B'P'^PB.

Divide into three subcases by (1); cf. Definition 2.
Subcase (i). Q'=B', Q=B:

B'P'^PB gives Q'P'^PQ.

Subcase (ii). Q'<A (or BΆ'=AB) and Q'B'^BQ.

B'P'^PB, Q'B'^BQ Ά Q'P'^PQ .

Subcase (iii). Q=A', Q'=A. Proved in Type 1.
Case (ii). P'=A, P=A'. Proved in Type 3.

VERIFICATION OF C~.

Type 1.

A<P<Q,

AQ=QΆ' (1), AP=PΆ'.

PQ=Q'P' (2)

Proof. Divide into three cases by (1); cf. Definition 1.
Case (i). Q=B, Q'=B'. Impossible, since AB is elementary.
Case(ii). BQ=Q'B'.

. BP=P'Bt=ϊAP=P'Ar.
= Q'B', PQ=Q'Pf

A B P Q
L H j 1 1—

Q' P' Bf A

Case (iii). Q=A\ Q'=A\ A<A'. (2) becomes

PA'=AP' ( 2 ) '

Divide into three subcases by (2)'; cf. Definition 2.
Subcase (i). P=B', P'=B. Since AB is elementary,

UB<B\

'=BA\ i.e., AP=PΆ'.

If B=B\ AB=BfAf gives AP=PΆ'.
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Subcase (ii). P<A (or BΆ'=AB) and PB'=BP'.
Since A<P<A' and since AB is elementary,

If B<P,

PB'=BP' ^X BP=P'B' ^ AP=PΆ'.

If B=P, then B'=P', so AP=PΆ'.
Subcase (iii). P=A, P'=A'. Impossible, since A<P.

Type 2.
Q'<P'<A',

QΆ'=AQ (1), Q'P'=PQ.

PΆ'=AP (2) )

Proof. Divide into three cases by (2) cf. Definition 2.
Case (i). P'=B', P=B: BΆ'=AB.
Divide into three subcases by (1); cf. Definition 2.

Subcase (i). Q'=B', Q=B. Impossible, since Q'<P'.
Subcase (ii). Q'<A (or BΆ'=AB) and Q'B'=BQ.

Q'B'=BQ gives Q'P'=PQ

Subcase (iii). Q=A', Q'=A; A<A'.
If B<B',

BB'=BBl{^^ AB'=BA', i.e., Q'P'=PQ.

If B=B', AB=BΆ' gives Q'P'=PQ.
Case (ii). P'<A (or BΆ'=AB) and P'B'=BP.
Divide into three subcases by (1); cf. Definition 2.

Subcase (i). Q'=B', Q=B. Impossible, since Q'<P'<B'.
Subcase (ii). Q'<A (or BΆ'=AB) and Q'B'=BQ.

', Q'B'=BQ, P'B'

Subcase (iii). Q'=A, Q=A'. Then A<P'<A', since Q'<P'<A'.
If B<P',

B<P', P'B'=BP =Ώ> BP'=PB' =» AP'=PA', i.e., Q'P'=PQ .

If B=P', then B'=P and AB^BΆ' gives Q'P'=PQ.
Case (iii). P'=A,P=A':AA'=AA'.
Divide into three cases by (1); cf. Definition 2.

Subcase (i). Q'=B\ Q=B.
Impossible, since Q'<P'<A' and since BΆ' is elementary.

Subcase (ii). Q'<A (or BΆ'=AB) and Q'B'=BQ.
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If B<B',

B<B', Q'B'=BQΆQ'B=B'Q(^)QΆ=A'Q, i.e., Q'P'=PQ .

If B=B',

Q'B'=BQ =Φ QΆ=A'Q, i.e., Q'P'=PQ .

Subcase (iii). Q'=A, Q=A'. Impossible, since Q'<P'.

Type 3.

P<Q<A, \

PA=A'P' (1), I =#> PQ=Q'P'.

QA=A'Q' (2) J
Proof. Divide into two cases by (1); cf. Definition 3.
Case(i). PB=B'P'.
Divide into two subcases by (2); cf. Definition 3.

Subcase (i). QB=B'Q'.

P<Q<B, QB=B'Q', PB=B'P' Ά PQ=Q'P'.

Subcase (ii). Q=A', Q'=A: A'<A. Then
P^B', since P<Q and since BΆ' is elementary.
If P<B',

P<B'<B )EIPB>=BP'<P2&Ϊ>PA'=AP', i.e., PQ=Q'P'.
PB=B'P',B'B=B'B\ ' * *
If P=B', then B=P' and

B'B^B'B*^ BΆ'=AB, i.e., PQ=Q'P'.

Case(ii). P=A\ P'=A: A'<A.
Divide into two subcases by (2); cf. Definition 3.

Subcase (i). QB=B'Q'.

B'<A'=

QB

Subcase (ii). Q=A', Q'=A. Impossible, since P<Q.

Type 4.

'<A'=P<Q,) ^ B,Q^Q>B^A,Q^Q>Aί . p ρ =

B=B'Q' ) * * x x > > x

A'P'=PA (1),

Q'P'=PQ (2) )

Proof. Divide into two cases by (1); cf. Definition 4.
Case (i). B'P'
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B><A'<Q'<P> I ̂  B Q ~QB^A'Q'=QA .
B'P'^PB, Q'P'=PQJ V ^ ^ ^

Case(ii). P'=A, P=A': A'<A. Then (2) becomes

QΆ=A'Q. (2) '

Divide into two subcases by (2)'; cf. Definition 3.
Subcase (i). Q'B=B'Q.

', Q'B=B'Q i = l B'Q'^QB(^έ]Ά'Q'=QA .

Subcase (ii). Q'=A', Q=A. Impossible, since A'<Q'.

Type 5.
P<A<Q, \
PQ=Q'P' (1), I -»• PA=A'P'.

AQ=QΆ' (2) )

Proof. Divide into three cases by (2); cf. Definition 1.
Case(i). BQ=Q'B'.

BQ=Q'B', PQ=Q'P'

Case (ii). Q=B, Q'=B'. Then

PB=B'P' =#• PA=A'P'.

Case (Hi). Q=A', Q'=A. Proved in Type 2.

Type 6.

Q'P'=PQ (1),

A'P'=PA (2) )

QΆ'=AQ.

Proof. Divide into two cases by (2) cf. Definition 4.
Case (i). B'P'^PB.
If Q'<B"

B'P'~PB, Q'P'=PQ El Q'B'=BQ, | ( D e , 2 ( i i ) )

B'P'^PB=4-BΆ'=AB )

If Q'=B', then Q=B and

B'P'^PB =Φ BΆ'=AB, i.e., QΆ'=AQ .

Case(ii). P'=A, P=A'. Proved in Type 3,
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VERIFICATION OF C".

Type 1.
A<P<Q,

AQ~QΆ' (1),
PQ=Q>P> (2) J \AP**PΆ'.

Proof. Divide into three cases by (1); cf. Definition 1.
Case (i). Q=B, Q'=B'.
Impossible, since A<P<Q and since AB is elementary.
Case (ii). Q'<A (or BΆ'=AB) and BQ^Q'B'.
Note that if Q'<A then Q'<B and

BQ^Q'B' =̂ =4 Q'B^B'Q =#> BΆ'=AB.

Now B^P, since A<.P.

~D D /^^ D ' D ' \

BQ**Q'B\ PQ=Q'Pf =̂ =4 J {BΆ'=AB) )

Evident, if £ = P .

Λ B P Q
L : 1 1 1 1

L I 1 1 1
Q' P' B' A'

Case (iii). Q=A', Q'=A: A<A'. Then (2) becomes

PA'=AP ( 2 ) '

Divide into three subcases by (2)'; cf. Definition 2.
Subcase (i). P=B', P'=B: BΆ'=AB.

If B<B',

BB'^BB', BΆ'=AB(J^ά?)AB'~BΆ, i.e., AP^PΆ'.

BΆ'^AB gives PQ^Q'P'.

If B=B', evident.
Subcase (ii). BΆ'=AB and PB'=BP'.

lίB<P,

> BΆ'=AB -* AP~PΆ'.PB'=BP' Ά I PB

~ * ( PB'ezBP', BΆ'=AB -» AP'^PA', i.e. Q'P'^PQ .
If β = P , evident.

Subcase (iii). P = J , P'=v4'. Impossible, since A<P,
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Type 2.

PΆ'e*AP.
QΆ'~AQ (1),

PΆ'=AP (2) )

Proof. Divide into three cases by (2) cf. Definition 2.
Case(i). P'=B\P=B:BΆ'=AB.
Divide into three subcases by (1); cf. Definition 2.

Subcase (i). Q'=B', Q=B. Impossible, since Q'<P'.
Subcase (ii). Q'B'^BQ.

Q'B'^BQ gives Q'P'~PQ.

AB^BΆ' gives AP^P'A'.

Subcase (iii). Q'=Ay Q=A'. Evident.
Case (iii). P'<A (or BΆ'=AB) and P'B' = BP.
Divide into three subcases by (1); cf. Definition 2.

Subcase (i). Q'=B\ Q=B. Impossible, since Q'<P'
Subcase (ii). Q'B'^BQ.

Cl'^P* Λ i~-\ Cfl'P'>—PO

P'<A (or β'^'=^B) ί

Subcase (iii). Q'=A, Q=A': A<A'.
If B<P'.

w , ,BP^P'B', BΆ'=AB=>AP~PΆ'.
P'B'=BP 'f BP

1 PB'~BP', BΆ'=AB=?PA'~AP', i.e., PQ^Q'P'.

If β = P ' , evident.

Case (iii). P'=^4, P=^4' : ^4<^ί'.

Divide into three subcases by (1); cf. Definition 2.
Subcase (i). Q'=B', Q=B. Impossible, since BΆ' is elementary.
Subcase (ii). Q'<A (or BΆ'=AB) and Q'B'^BQ.

Since Q'<P'=A<B,

Q'B'^BQ ̂ X Q'B^B'Q => ρ'^^^'ρ, i.e., Q'P'^PQ .
AA'^AA' gives AP^PΆ'.

Subcase (iii). Q'=A, Q=A'. Impossible, since Q'<P'

Type 3.

P<Q<A,

PA^A'P' (1),

ρ^^^'ρ' (2) )
PQ^Q'P' ,
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Proof. Divide into two cases by (1); cf. Definition 3.
Case(i). B'P'^PB.
Divide into two subcases by (2); cf. Definition 3.

Subcase (i). QB=B'Q'.

P<Q<B 1 (5) ί PQ^Q'P'.

PB^B'P', QB=B'Q' J " " "* 1 QB^B'Q' =* QA^A'Q'.

Subcase (ii). Q=A', Q'=A.
Since

B'P'^PB ϋ PB'^BP'

QA^A'Q' is evident.

Case(ii). P=A', P'=A: AΆ^AΆ.
Divide into two subcases by (1); cf. Definition 3.

Subcase (i). QB=B'Q'.
Since B'<A=P<Q,

QB=B'Q' Ά B'Q^Q'B -»• A'Q^QΆ, i.e.,

QB^B Q'

Subcase (ii). Q=A', Q'=A. Impossible, since P<Q.

Type 4.

A'<Q'<P', PQ~Q'P>.
A'P'^PA (1),

Q'P'=PQ (2) )

Proof. Divide into two cases by (1); cf. Definition 4.
Case(i). B'P'^PB.

B'<Q'<P', I j c ^ ί PQ~Q'P'

B'P'^PB, Q'P'=PQ J = = ^ I B'Q'^QB =Φ A'Q'^QA .

Case(ii). P'=A, P=A'\ A'<A. (2) becomes

QΆ^A'Q (2)'

Divide into two subcases by (2)'; cf. Definition 3.
Subcase (i). Q'B=B'Q.

Q'B=B'Q J I B'Q^Q'B =Φ A>Q~QΆ, i.e., PQ~Q'P>.
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(c-) PB^B'P'

Subcase (ii). Q'=A', Q=A. Impossible, since Q'<P' and A'<A.

Type 5.
P<Λ<Q,

AQ=QΆ' (2) )

Proof. Divide into three cases by (2); cf. Definition 1.
Case (i). Q=B, Q'=B'. Then

(1): PB^B'P'^l **
K ' 1 AB^BΆ', i.e., AQ~QΆ'.

Case (ii). BQ=Q'B'.

P<B,

PQ^Q'P',

BQ^Q'B'

PB^B'P' = » AB^B'A'
Case (iii). Q=A', Q'=A. Proved in Type 2.

Type 6.

Q'<A'<P',

Q'P'^PQ, (1),

A'P'=PA (2) J

Proof. Divide into two cases by (2) cf. Definition 4.
Case (i). B'P'^PB. Then

Q'SB', since Q'<A'.

If Q'<B\ then

B'P'^PB) '" " \-*QΆ'**AQ.

B'P'^PB =Φ| ~

If ρ ' = β ' , evident.
Case (ii). P'=A, P=A'. Proved in Type 3.
Thus the proof of Lemma is complete.

We are now in a position to construct a model M(R, C, I) on the basis of
Lemma.

First take all the triples of natural numbers (ί, j , k), make a numbering N
on them such that different triples (i,j, k) and (i',j\ k') have different numbers
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Suppose a system Ani of rij different points Aly A2, •••, Ani has been already
defined such that points are linearly ordered and that it satisfies Axioms Euy R,
C + , C + , C" and C". Call a triple of points (Ai9 AJy Ak) (l^z',7, Λ^n, ) with
Aj<Aj saturated if the equality

AiA~AkAι

has a solution in At^Anii and ίnsaturated if not, and let (Ap, Aqy Ar) be the
insaturated triple with the smallest N(p, q, r).

For the sake of simplicity, set

A p A P A P '

and choose points Pm.ly Pm-2, •••, P2 of Ani such that

Ap=Pm<Pm_ί<-<P2<Pι=Ag

and that the consecutive segments

P P P P ••• P P

are all elementary.
If there is any saturated triple {Pw P19 P/), let (Pβ_w Ply P/) be such a one

with the largest s. Then there must be a point P/^^A^ with

P^P^P/PsU (1)

If there is no saturated triple, set s=2. Introduce then m—s+ί new points

P ' P ' ... P '
x 5 > x s + iJ > x m

and define the linear ordering

where either P/^P" (P"^Ani) is an elementary segment or P" is to be regarded
as the point at infinity, if there is no point l G i n . with Ps

f_λ<X.
Repeated applications of Lemma beginning with the successive introduction

of basic congruence relations

PP —P' P'
X S X 5 - 1 X 5 — 1 X S >

p.+1p.=p;pA1, (2)

P P =P ' P '
x m x m-i x tn—ix m

lead us to a system of points A 1 9 •••, ^4M/, P 5 ' , •••, P O T ' in a linear order, satisfying
Axioms EM, R, C + , C + , C~ and C " . T h e n we have from (1) and (2) on account
of C +

P P—P 'P ' Π ^

If we set
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p ' A p / Λ p / Λ
L s Ή-ni+iy * s + i — Ή-ni+Σi " * J r m — j f ± n i + 1 >

we have by (3)

ApAg=ArAni+l,

and (Apf Agy Ar) becomes a saturated triple in the system of points

Now let /Zj be equal to 4 and let ^4Wi be defined as a system of four points

Av A2y A3, A4 in a linear order

A,<AA<A2<A3

with the following congruence relations:

i) AiA~AiAj for all ί , j = l , ••-, 4,

provided A£<Aj,

ii) A1A2=A2A3 but A2A3^AXA2,

iϋ)

and

iv)

In i4Ml all Axioms EM, R, C + ( = C ) , C + , C" and C" are seen to be fulfilled.

Thus we see by induction that in each Ani ( ί = l , 2, 3, •••) all Axioms from Έu to

C~ are fulfilled, so that in particular Axioms EM, R and C are satisfied in the

system of points

A=\jAni.
ί = l

If Apy Aq, Ar is any triple of points with Ap<Aq in A, then there is by the

way of introducing new points of Ani+1 into each Ani ( ι = l , 2, •••) a natural

number tij such that the equality

ApAq=ArAs

is satisfied by an As^An.. Thus Axiom E is satisfied in A.

Recalling the fact seen in the proof of Lemma that when the point An is added

to the set An_1 as a new point to obtain An, the new congruence relations in-

troduced with it are confined to those between some old segments and new ones

having An as an end point, so we see that the relation A2A^AλA2 in Anχ

remains true throughout all Ani. Thus in A:

—r S: Axiom S fails to be satisfied, for A1A2^A2A3 but

T : Axiom T fails to be satisfied, for A1A2=A2A3,

A2A3—AλA4 but AλA2^AγA, by Axiom EM.

A: Axiom A fails to be satisfied, for if A holds, then by Theorem 11

(see Part I) Axiom S would hold good too.
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Thus A is the desired model M(R,C,I) in which Axioms R,C, and I alone
hold besides Axiom E.
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