

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Katayama, S. and Terasaka, H. Osaka J. Math. 4 (1967), 111-132

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, ll

SHIGERU KATAYAMA AND HIDETAKA TERASAKA

(Received March 31, 1967)

6. Model M(R, C, I)

M(R, C, I): *A model of a geometry in which Axioms* R, C *and* I *alone hold besides Axiom* E. (Notice that I follows automatically from E, R and C.)

The construction of $M(R, C, I)$ is quite different from those of other models, and its exposition here may be too long, but it seems to the authors appropriate to provide it with a full proof. It depends essentially upon Lemma below, and we will begin by introducing some definitions and auxiliarly axioms needed in it.

Let A be a finite number of linearly ordered points, in which congruence relations are supposed to hold among some of the segments, and let *P, Q, P'* etc. denote points of *A.*

DEFINITION. We write

 $PQ \approx Q'P'$ or $Q'P' \approx PQ$, *PQ=Q'P'* and *Q'P'=PQ*

if and only if

at the same time.

 A viom F ·

Axiom E_u: If PQ=Q'P' and PQ=Q'P'', then P'=P''.
\nAxiom C⁺ (=Axiom C)
\n
$$
P < Q < R
$$

\n $R' < Q' < P'$
\n $PQ = Q'P'$
\n $QR = R'Q'$
\nAxiom C⁺
\n $P < Q < R$
\n $R' < Q' < P'$
\n $R' < Q' < P'$
\n $R' < Q' < P'$
\n $PQ \approx Q'P'$
\n $QR = R'Q'$
\n $QR = R'Q'$
\n $QR = R'Q'$
\n L
\n L
\n L
\n R
\n L
\n R
\n Q'
\n R
\n Q'
\n R
\n Q
\n R
\n R
\n Q
\n R
\n Q
\n R
\n Q
\n Q
\n Q
\n R
\n Q
\n Q
\n Q
\n Q
\n Q
\n Q'
\n P'
\n Q'
\n

1) Continuation of Part I, this Journal, vol. 3 (1966), 269-292. Referred to as Part I.

112 S. KATAYAMA AND H. TERASAKA

The following is an important consequence of \tilde{C} , and will sometimes be denoted by \mathfrak{c}^- .

$$
\mathfrak{C}^{\cdot}: PQ=Q'P', Q' < P \Rightarrow PQ \approx Q'P', Q'P \approx P'Q.
$$

Proof.

$$
Q' < P < Q
$$
\n
$$
Q'Q \approx Q'Q
$$
\n
$$
PQ \doteq Q'P'
$$
\n
$$
PQ \doteq Q'P'
$$
\n
$$
PQ \doteq Q'P'
$$
\n
$$
Q'P \approx P'Q
$$
\n
$$
L
$$
\n
$$
Q'Q'
$$
\n
$$
P'
$$
\n
$$
Q'
$$
\n
$$
Q'
$$
\n
$$
P'
$$
\n
$$
Q'
$$

DEFINITION. A segment *PQ* will be called *elementary,* if there is no point X with $P < X < Q$.

Lemma. Let $A_{n-1} = \{A_{\lambda} | \lambda = 1, 2, \cdots, n-1\}$ be a finite number of points in some linear order such that they satisfy Axioms E_u , R, C⁺, C⁺, C⁻ and \tilde{C}^- . Then, *for a given elementary segment* A_iA_j *and a given point* A_k *such that the equality*

 $A_iA_j = A_kA_l$

has no solution in A *_{<i>l*} \in A _{*n*-1}*, a new point* A *_{<i>n*} can be introduced, so that</sub>

 $A_iA_j = A_kA_k$

holds and the linearly ordered points $A_n = \{A_1, A_2, \dots, A_{n-1}, A_n\}$ satisfy the same *Axioms from* E_u to \tilde{C}^- .

Proof. Points as well as notations such as *A,* P, *X, P'* etc. will mean in this proof points of A_{n-1} except for A' which will be introduced below as a new point A_n . If two segments are equal it is convenient to write the corresponding end points counterwise with and without dashes such as $PQ = Q'P'$, since several axioms of the type of C are involved.

For the sake of simplicity, set $A_i = A$, $A_j = B$ and $A_k = B'$.

Thus by assumption there is no point *X* with

AB=B'X

Definition of the new point $A'(=A_n)$ and of ordering.

Let A' be introduced as a new point such that $\{A_1, \dots, A_{n-1}, A'\}$ satisfy the following linear ordering:

(i) $B' < A'$.

(ii) If $X \leq B'$, then $X \leq A'$ for any point $X \in A_{n-1}$.

(iii) If $B' < X$, then $A' < X$ for any point $X \in A_{n-1}$.

DEFINITION OF THE BASIC EQUALITY. The following is the basic congruence relation:

(i) $AB \approx B'A'$,

i.e. $AB = B'A'$ and $B'A' = AB$ at the same time, *if and only if there exist some X* and *X*^{*'*} *such that* $XB \approx B'X'$ *.*

In particular, $AB \approx B'A'$ if $B' < A$, since $B'B \approx B'B$.

(ii) Otherwise

 $AB = B'A'$ but $B'A' \neq AB$,

that is, $B'A' = AB$ is not defined.

DEFINITION OF OTHER EQUALITIES. Besides the above basic congruence relation we must define other new congruence relations in order to make the system of points $A_n = \{A_1, \dots, A_{n-1}, A_n\}$ satisfy all axioms from E_u to \tilde{C}^- .

To insure Axiom R we only need

DEFINITION 0. For any $X \in A_{n-1}$: $A'X = A'X$ and $XA' = XA'$.

In the following are defined all the equalities between old segments and new ones with one end point *A* They are classified into four types according to the position of *A'.*

Some of them are redundant, such as $AB=B'A'$, $AA'=AA'$ and $A'A=$ A'A, but are included for the sake of completeness.

DEFINITION 1. $AP = P'A'$, *if and only if* (i) $P=B, P'=B'$, i.e., $AB=B'A'$, *or* (ii) $BP = P'B'$, *or* (iii) *P=A', P'=A,* i.e., *AA'=AA'.* DEFINITION 2. $P'A' = AP$, if and only if (i) $P'=B', P=B, i.e., B'A'=AB,$ *or* (ii) $P' < A$ (*or* $B'A' = AB$ *) and* $P'B' = BP$, *or* (iii) $P'=A$, $P=A'$, i.e., $AA'=AA'$. DEFINITION 3. *PA=A'P\ if and only if* $P B = B' P'$. *or* (ii) $P = A', P' = A$, i.e., $A'A = A'A$. DEFINITION 4. *A'P'=PA, if and only if* (i) $B'P' \approx PB$, *or* (ii) $P'=A$, $P=A'$, i.e., $A'A = A'A$.

Having thus defined all congruence relations between old segments and new ones with one end point A' , we are now going to verify Axioms E_u , C^+ , \tilde{C}^+ , C^- and \tilde{C}^- one by one.

The verification will be done after a pattern: each equality under consid eration is first classified according to its type, and then dealt with by Definitions 1, 2, 3 and 4 accordingly almost mechanically. Verbal explanations in detail will be omitted.

VERIFICATION OF E_u .

Type 1.

$$
AP = P'A', AP = P'X \Rightarrow X = A'.
$$

Proof. According to Definition 1, we divide the proof into three cases.

Case (i). $P=B, P'=B'$: $AB=B'A'$.

Then $AB = B'X$ is impossible for $X \in A_{n-1}$.

Case(ii). *BP=P'B'.*

$$
A < B < P, AP = P'X, BP = P'B' \xrightarrow{(C^-)} AB = B'X,
$$

which is impossible for any old point $X \in A_{n-1}$.

Case (iii). $P = A', P' = A: AA' = AA'.$

Then $AA' = AX$ is impossible for any old point $X \in A_{n-1}$.

Type 2.

$$
P'A' = AP, P'A' = AX \Rightarrow X = P
$$

Proof. Divide into three cases by Definition 2.

Case (i). $P'=B', P=B: B'A'=AB$. Then $B'A' = AX$ is only possible for $X = B$ by Definition 2. Case (ii). $P' < A$ (or $B'A' = AB$) and $P'B' = BP$ and $P'B' = BX$. Then *X=P* by Axiom *Έ^μ* applied to old congruence relations.

Case (iii). *P'=A, P=A': AA'=AA',*

AA '=AX. Then *X=A'* by Definition 2.

Type 3.

$$
PA = A'P', PA = A'X \Rightarrow X = P'.
$$

Proof. Divide into two cases by Definition 3. Case(i). *PB=B'P'.* Then

$$
PB=B'P', PB=B'X \xrightarrow{(E_u)} X=P'.
$$

Case (ii). $P = A', P' = A$. Then

 $A'A = A'A$, $A'A = A'X \Rightarrow X = A$ by Definition 3.

Type 4.

$$
A'P'=PA, A'P'=PX \Rightarrow X=A.
$$

Proof. Divide into two cases by Definition 4. Case (i). $B'P' \approx PB$. Then

 $B'P' \approx PB$, $A'P' = PX \Rightarrow X = A$ by Definition 4. Case (ii). $P'=A, P=A'$. $A'A = A'A$, $A'A = A'X \Rightarrow X = A$ by Definition 4.

Verification of $\mathrm{C}^+.$

To show that Axiom C⁺ is satisfied for $A_n = \{A_1, \dots, A_{n-1}, A'\}$ we consider six types of equalities.

Type 1.

$$
A < P < Q, \quad Q' < P' < A',
$$

\n
$$
AP = P'A' \quad (1) ,
$$

\n
$$
PQ = Q'P' \quad (2)
$$

\n
$$
PQ = Q'P' \quad (3)
$$

Proof. We divide the proof into three cases, according to (1); cf. Definition 1.

Case (i). $P = B, P' = B'$. Then from (2),

$$
BQ=Q'B'\stackrel{\text{(Def.1(ii))}}{\longrightarrow} AQ=Q'A'.
$$

Case(ii). *BP=P'B'.*

$$
B < P < Q, \quad Q' < P' < B', \quad \underset{B \to P' B', \ PQ = Q'P'}{\longrightarrow} BQ = Q' B' \xrightarrow{\text{(Def.1(ii))}} AQ = Q'A'.
$$

Case (iii). $P = A', P' = A$. Then (2) becomes

$$
A'Q = Q'A \tag{2'}
$$

Divide into two subcases according to (2)'; cf. Definition 4.

Subcase (i).
$$
B'Q \approx Q'B
$$

116 S. KATAYAMA AND H. TERASAKA

Subcase (ii). $Q=A$, $Q'=A'$. This is impossible, since $A< Q$.

$$
Type\ 2.
$$

$$
Q' < P' < A', \ A < P < Q, \\
 P'A' = AP \quad (1) \quad , \\
 Q'P' = PQ \quad (2)
$$

Divide into three cases by (1); cf. Definition 2. Case (i). $P'=B', P=B: B'A'=AB$.

$$
B'A' = AB, Q'B' = BQ \stackrel{\text{(Def. 2(ii))}}{\Longrightarrow} Q'A' = AQ.
$$

Case (ii).
$$
P' < A
$$
 (or $B'A' = AB$) and $P'B' = BP$.
\n $P'B' = BP$, $Q'P' = PQ \xrightarrow{(C^+)} Q'B' = BQ$
\n $P' < A$ (or $B'A' = AB$) $\Big\}$ $\Big(\text{Def.2(ii)}\Big)Q'A' = AQ$.

Case (iii). $P'=A, P=A': A < A'.$ Then (2) becomes

$$
Q'A = A'Q \tag{2'}
$$

We divide into two subcases according to $(2)'$; cf. Definition 3.

Subcase (i). *Q'B=B'Q.*

Since $A < A'$ and since \overline{AB} and $\overline{B'A'}$ are elementary, either $B < B'$ or *B=B'.*

If *B<B',*

$$
\left.\begin{array}{c}\nQ'B = B'Q \\
BB' = BB'\n\end{array}\right\} \xrightarrow{(\mathcal{C}^+)}\n\left.\begin{array}{c}\nQ'B' = BQ \\
Q' < A\n\end{array}\right\} \Rightarrow Q'A' = AQ \, .
$$

If *B=B',*

$$
Q' < A, \ Q'B' = BQ \stackrel{\text{(Def. 2(ii))}}{\longrightarrow} Q'A' = AQ.
$$

Subcase (ii). $Q'=A', Q=A$. This case is impossible, since $Q' < A'$.

Type 3.

$$
P < Q < A, A' < Q' < P',
$$

\n
$$
QA = A'Q'
$$

\n
$$
PQ = Q'P'
$$

\n
$$
(2)
$$
\n
$$
PA = A'P'.
$$

We divide into two cases by (1); cf. Definition 3. Case (i). *QB=B'Q^f .*

$$
QB=B'Q', PQ=Q'P'\xrightarrow{(C^+)}PB=B'P'\xrightarrow{(Det.3)}PA=A'P'.
$$

Case (ii). $Q = A', Q' = A: A' < A$. Then (2) becomes

$$
PA'=AP'
$$
 (2)

Divide into three subcases by (2)'; cf. Definition 2.

Subcase (i).
$$
P=B'
$$
, $P'=B$. Since $B' < A' < A < B$,
\n $B'B=B'B \xrightarrow{(Def.3)} B'A=A'B$, i.e., $PA=A'P'$.
\nSubcase (ii). $P < A$ (or $B'A' = AB$) and $PB' = BP'$.
\n $PB' = BP'$, $B'B=B'B \xrightarrow{(C^+)} PB=B'P' \xrightarrow{(Def.3)} PA = A'P'$.

Subcase (iii). $P = A$, $P' = A'$. This case is impossible, since $A' < P'$.

Type 4.

$$
A' < Q' < P', P < Q < A,
$$

\n $A'Q' = QA$ (1),
\n $Q'P' = PQ$ (2)

Proof. Divide into two cases by (1); cf. Definition 4. Case (i). $B'Q' \approx QB$.

$$
B'Q' \approx QB, \ Q'P' = PQ \xrightarrow{(C^+)} B'P' \approx PB \xrightarrow{(Det.4)} A'P' = PA.
$$

Case (ii). $Q'=A$, $Q=A': A'. Then (2) becomes$

$$
AP' = PA'
$$
 (2)

Divide into three subcases by (2)'; cf. Definition 1. Subcase (i). $P'=B$, $P=B'$: $AB=B'A'$. Then $B' < B$, since $B' < A' < A < B$. Then

$$
B'B \approx B'B \stackrel{\text{(Def. 4)}}{\Longrightarrow} A'B = B'A, \text{ i.e., } A'P' = PA.
$$

Subcase (ii).

$$
BP' = PB', B'B \approx B'B \xrightarrow{\text{(C+)}} B'P' \approx PB \xrightarrow{\text{(Def. 4)}} A'P' = PA.
$$

Subcase (iii). $P'=A'$, $P=A$. Impossible, since $A' < P'$.

Type 5.

$$
P < A < Q, Q' < A' < P',
$$

\n
$$
PA = A'P' \qquad (1),
$$

\n
$$
AQ = Q'A' \qquad (2)
$$

\n
$$
PQ = Q'P'.
$$

Proof. Divide into two cases by (1); cf. Definition 3.

Case(i). *PB=B'P'.*

Divide into three subcases by (2); cf. Definition 1. Subcase (i). $Q=B, Q'=B'$. Then

PB=B'P' gives *PQ=Q'P'.*

Subcase (ii). *BQ=Q'B'.*

$$
PB=B'P', BQ=Q'B' \xrightarrow{(C^+)} PQ=Q'P'.
$$

Subcase (iii). $Q = A', Q' = A$. This case has been treated in Type 2. Case(ii). *P=A',P'=A.* Proved in Type 4.

Type 6.

$$
Q' < A' < P', \, P < A < Q, \, Q'A' = AQ \quad (1), \, A'P' = PA \quad (2)
$$

Proof. Divide into two cases by (2); cf. Definition 4. Case (i). $B'P'\approx PB$. Divide into three subcases by (1); cf. Definition 2.

Subcase (i). $Q'=B'$, $Q=B$. Then

$$
B'P' = PB \quad gives \quad Q'P' = PQ
$$

Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.

$$
Q'B' = BQ
$$
, $B'P' = PB \xrightarrow{(C^+)} Q'P' = PQ$.

Subcase (iii). *Q'=A, Q=A'.* This case has been proved in Type 1. Case (ii). *P'=A, P=A'.*

Has been proved in Type 3.

VERIFICATION OF \tilde{C}^+ .

Type 1.

$$
A < P < Q, Q' < P' < A',
$$

\n
$$
AP \approx P'A' \qquad (1) ,
$$

\n
$$
PQ = Q'P' \qquad (2) ,
$$

\n
$$
AQ \approx Q'A'.
$$

Proof. Divide into three cases by (1); cf. Definition 1. Case (i). $P=B, P'=B': AB \approx B'A'.$

$$
AB \approx B'A' \xrightarrow{\text{(Def.)}} \exists X, X': XB \approx B'X'.
$$

$$
XB \approx B'X', BQ = Q'B' \xrightarrow{\text{(C+)}} BQ \approx Q'B', \text{ i.e., } PQ \approx Q'P'.
$$

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II 119

$$
PQ \approx Q'P', AB \approx B'A' \xrightarrow{\text{Def.1.2}} AQ \approx Q'A'
$$
\n
$$
L + \qquad B = P \qquad Q
$$
\n
$$
L + \qquad Q'
$$
\n
$$
P' = B' \qquad A' \qquad X'
$$

Case (ii). $P' < A$ (or $B'A' = AB$) and $P'B' \approx BP$

$$
BP \approx P'B', PQ = Q'P' \xrightarrow{(C^+)} BQ \approx Q'B',
$$

$$
Q' < A \text{ (or } B'A' = AB)
$$

$$
\xrightarrow{(Def.1,2)} AQ \approx Q'A'.
$$

Case(iii). *P=A',P'=A.*

$$
A'Q = Q'A \tag{2'}
$$

Divide into two subcases by (2)'; cf. Definition 4. Subcase (i). $R'O \approx O'R$.

$$
B'Q \approx Q'B \overset{\text{(Def.3,4)}}{\Longrightarrow} Q'A \approx A'Q, \text{ i.e., } Q'P' \approx PQ.
$$

Since $A \leq A'$, $Q' \leq P' = A \leq B'$.

', B'Q^Q'B Ά BQ~Q'B> Q'<A j ^~ ^ "

Subcase (ii). $Q = A$, $Q' = A'$. Impossible, since $A < Q$. *Type 2.*

$$
Q' < P' < A', \ A < P < Q \ , \ Q'P' \approx PQ \qquad (1), \ \ \Rightarrow \ \begin{cases} Q'A' < AQ \ , \\ P'A' < AP \end{cases} \ .
$$

Proof. Divide into three cases by (2); cf. Definition 2. Case(i). *P'=B',P=B:BΆ'=AB.*

$$
Q'B' \approx BQ
$$
, $AB \approx B'A' \stackrel{\text{(Det, 1,2)}}{\iff} AQ \approx Q'A'$.
 $B'A' \approx AB$ gives $P'A' \approx AP$.

Case (ii). $P' < A$ (or $B'A' = AB$) and $P'B' = BP$. $Q'P'\approx PQ$, $P'B' = BP \stackrel{(\tilde{C}^+)}{\Longrightarrow} \begin{cases} Q'B'\approx BQ \\ P'B'\approx BP \Rightarrow P'A'\approx AP \,. \end{cases}$ *(Όeί* **1** *2)* $Q \sim A$ (or *B* $A = AD$), $Q B \sim BQ$ \overrightarrow{a} '

Case (iii). $P = A$, $P = A$ \therefore $A \leq A$. Then (1) becomes

 Q' *A* \approx *A* Q' ⁽¹⁾

Divide into two subcases by (1)'; cf. Definition 3,4.

Subcase (i). *Q'B^B'Q.* Since $A < A'$, $O' < P' = A < B < B'$

$$
Q' < B', \ Q'B \approx B'Q \xrightarrow{\left(\tilde{c}^{-}\right)} Q'B' \approx BQ \quad \text{(Def.1,2)}\ Q'A' \approx AQ.
$$
\n
$$
Q' < A
$$

 $AP \approx P'A'$ is evident.

Subcase (ii). $Q'=A'$, $Q=A$. Impossible, since $Q' < A'$. $Type 3.$

$$
P < Q < A, A' < Q' < P',
$$

\n
$$
PQ \approx Q'P'
$$

\n
$$
QA = A'Q'
$$

\n
$$
(1), \} \Rightarrow \begin{cases} PA \approx A'P', \\ QA \approx A'Q'. \end{cases}
$$

Proof. Divide into two cases by (2); cf. Definition 3.

Case (i).
$$
QB=B'Q'
$$

\n $PQ \approx Q'P'$
\n $QB \approx B'Q'$
\n $QB \approx B'Q'$
\n $QB \approx B'Q'$
\n $QB \approx B'Q'$
\n $QA \approx A'Q'$.

Case (ii). $Q=A', Q'=A: A'. (1) becomes$

$$
PA' \approx AP'
$$
 (1)

Divide into two subcases by (1)'; cf. Definition 1,2. Subcase (i). $P=B', P'=B: B'A'\approx AB$.

 $A'A \approx A'A$ gives $QA \approx A'Q'$

Since $B' < A' < A < B$,

$$
B'B \approx B'B \stackrel{\text{(Def.3,4)}}{\Longrightarrow} B'A \approx A'B, \text{ i.e., } PA \approx A'P'.
$$

Subcase (ii). $BP' \approx PB'$. Since $P \lt A \lt B$,

$$
BP' \approx PB', P \lt B \stackrel{(c^-)}{\Longrightarrow} PB \approx B'P' \Rightarrow PA \approx A'P'.
$$

Subcase (iii). $P = A$, $P' = A'$. Impossible, since $P < A$. *Type* 4.

$$
A' < Q' < P', P < Q < A,
$$

\n
$$
A'Q' \approx QA
$$

\n
$$
Q'P' = PQ
$$

\n
$$
(1), \Rightarrow \begin{cases} A'P' \approx PA, \\ Q'P' \approx PQ. \end{cases}
$$

Proof. Divide into two cases by (1); cf. Definition 4. Case (i). $B'Q' \approx QB$.

$$
B'Q' \approx QB, \ Q'P' = PQ \xrightarrow{\tilde{C}^+} \begin{cases} PB \approx B'P' \Rightarrow A'P' \approx PA \, . \\ Q'P' \approx PQ \, . \end{cases}
$$

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II 121

Case (ii).
$$
Q' = A
$$
, $Q = A'$: $A' < A$. (2) becomes

$$
AP' = PA'
$$
 (2)

Divide into three subcases by (2)'; cf. Definition 1. Subcase (i). $P'=B$, $P=B'$. Since $B' < A' < A < B$,

$$
B'B \approx B'B \stackrel{\text{(Def.3,4)}}{\longrightarrow} A'B \approx B'A, \text{ i.e., } A'P' \approx PA.
$$

AB=B'A', B'B \approx B'B \stackrel{\text{(Def.)}}{\longrightarrow} AB \approx B'A', \text{ i.e., } Q'P' \approx PQ.
Subcase (ii). $BP' = PB'$. Since $P < B' < A' < A < B$,

$$
P < B, BP' = PB' \xrightarrow{\left(\tilde{c}^{-}\right)} \begin{cases} PB \approx B'P' & \text{if } P' \approx PA \\ BP' \approx PB' & \text{if } P \ll PA \\ P < A \end{cases}
$$
\n
$$
P < A \xrightarrow{\left(\begin{array}{c} \text{Def.1,2} \\ \text{Def.1,2} \end{array}\right)} AP' \approx PA', \text{ i.e., } Q'P' \approx PQ.
$$

Subcase (iii). $P'=A'$, $P=A$. Impossible, since $A' < P'$.

Type 5.

$$
P < A < Q, Q' < A' < P',
$$
\n
$$
PA \approx A'P' \qquad (1), \qquad \Rightarrow \begin{cases} PQ \approx Q'P', \\ AQ \approx Q'A'. \end{cases}
$$
\n
$$
AQ = Q'A' \qquad (2)
$$

Proof. Divide into two cases by (1); cf. Definition 3. Case (i). $B'P' \approx PB$.

Divide into three subcases by (2); cf. Definition 1. Subcase (i). *Q=B, Q'=B'.*

$$
B'P' \approx PB \quad \text{gives} \quad Q'P' \approx PQ.
$$

$$
B'P' \approx PB \stackrel{\text{(Def.)}}{\Longrightarrow} AB \approx B'A', \text{ i.e., } AQ = Q'A'.
$$

Subcase (ii). $BQ = Q'B'$.

$$
BQ = Q'B', PB \approx B'P' \xrightarrow{(C^+)} PQ \approx Q'P'.
$$

\n
$$
PB \approx B'P' \xrightarrow{(Def.)} B'A' \approx AB \text{ (Def.1,2)} AQ \approx Q'A'.
$$

\n
$$
BQ \approx Q'B' \text{)}
$$

Subcase (iii). $Q = A', Q' = A$. Proved in Type 2. Case (ii). $P = A'$, $P' = A$. Proved in Type 4.

Type 6.

$$
Q' < A' < P', \ P < A < Q, \ Q'A' \approx AQ \qquad (1), \ \Rightarrow \begin{cases} Q'P' \approx PQ, \\ A'P' \approx PA. \end{cases}
$$
\n
$$
A'P' = PA \qquad (2)
$$

Proof. Divide into two cases by (2); cf. Definition 4.

Case (i). $B'P' \approx PB$.

Divide into three subcases by (1); cf. Definition 2. Subcase (i). *Q'=B', Q=B:*

$$
B'P' \approx PB
$$
 gives $Q'P' \approx PQ$.
 $B'P' \approx PB \stackrel{\text{(Def.3,4)}}{\Longrightarrow} PA \approx A'P'$.

Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' \approx BQ$.

$$
B'P' \approx PB, \ Q'B' \approx BQ \xrightarrow{(C^+)} Q'P' \approx PQ.
$$

$$
B'P' \approx PB \xrightarrow{(Det.3,4)} PA \approx A'P'.
$$

Subcase (iii). $Q = A', Q' = A$. Proved in Type 1. Case (ii). $P'=A$, $P=A'$. Proved in Type 3.

VERIFICATION OF C⁻.

Type 1.

$$
\left.\begin{aligned}\nA &< P < Q, \\
A & Q &= Q'A' \\
PQ &= Q'P' \\
\end{aligned}\right.\n\left.\begin{aligned}\n\text{(1)}, \quad A P &= P'A'. \\
A P &= P'A'.\n\end{aligned}\right.
$$

Proof. Divide into three cases by (1); cf. Definition 1. Case (i). $Q=B, Q'=B'$. Impossible, since *AB* is elementary. Case(ii). *BQ=Q'B'.*

$$
B < P < Q
$$
,
\n
$$
BQ = Q'B', PQ = Q'P'\}
$$
\n
$$
\xrightarrow{R} P = P'B' \Rightarrow AP = P'A'.
$$
\n
$$
L \xrightarrow{\begin{array}{c}\nA & B & P & Q \\
\hline\nQ' & P' & B' & A'\n\end{array}}
$$

Case (iii). $Q=A', Q'=A: A < A'$. (2) becomes

$$
PA' = AP'
$$
 (2)

Divide into three subcases by (2)'; cf. Definition 2.

Subcase (i). $P=B', P'=B$. Since *AB* is elementary,

$$
A \!\!<\!\! B \!\leq\! B' \!\!<\! A' \,.
$$

If $B < B'$,

$$
BB' = BB' \stackrel{\text{(Def.1(ii))}}{\longrightarrow} AB' = BA', \text{ i.e., } AP = P'A'.
$$

If $B = B'$, $AB = B'A'$ gives $AP = P'A'$.

Subcase (ii). $P \leq A$ (or $B'A' = AB$) and $PB' = BP'$. Since $A < P < A'$ and since AB is elementary,

$$
B\leq P\,,
$$

If B<P,

$$
PB'=BP'\stackrel{(\tilde{c}^-)}{\Longrightarrow}BP=P'B'\Rightarrow AP=P'A'.
$$

If $B=P$, then $B'=P'$, so $AP=P'A'$.

Subcase (iii). $P=A, P'=A'$. Impossible, since $A < P$.

Type 2.

$$
Q' < P' < A', Q'A' = AQ \quad (1), P'A' = AP \quad (2)
$$

Proof. Divide into three cases by (2); cf. Definition 2. Case (i). $P'=B', P=B: B'A'=AB$.

Divide into three subcases by (1); cf. Definition 2.

Subcase (i). $Q'=B'$, $Q=B$. Impossible, since $Q' < P'$. Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.

$$
Q'B' = BQ
$$
 gives $Q'P' = PQ$

Subcase (iii). *Q=A', Q'=A; A<A'. If B<B',* $\sqrt{2}$

$$
BB' = BB' \stackrel{\text{(Def.1)}}{\Longrightarrow} AB' = BA', \text{ i.e., } Q'P' = PQ.
$$

If B=B', AB=BΆ' **gives** *Q'P'=PQ.*

Case (ii). $P' < A$ (or $B'A' = AB$) and $P'B' = BP$.

Divide into three subcases by (1); cf. Definition 2.

Subcase (i). $Q' = B'$, $Q = B$. Impossible, since $Q' < P' < B'$. Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.

$$
Q'\langle P'\langle B', Q'B'\rangle = BQ, P'B'\rangle = BP \stackrel{(C^-)}{\longrightarrow} Q'P'\rangle = PQ.
$$

Subcase (iii). $Q'=A$, $Q=A'$. Then $A < P' < A'$, since $Q' < P' < A'$. **If** *B<P',*

$$
B\lt P',\ P'B' = BP \xrightarrow{(c^-)} BP' = PB' \Rightarrow AP' = PA', \text{i.e., } Q'P' = PQ.
$$

If $B = P'$, then $B' = P$ and $AB = B'A'$ gives $Q'P' = PQ$.

Case (iii). $P' = A$, $P = A'$: $AA' = AA'$.

Divide into three cases by (1); cf. Definition 2.

Subcase (i). $Q'=B'$, $Q=B$.

Impossible, since $O' < P' < A'$ and since $B'A'$ is elementary. Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' = BQ$.

If
$$
B < B'
$$
,
\n $B < B'$, $Q'B' = BQ \xrightarrow{(C^-)} Q'B = B'Q \xrightarrow{(Det.3)} Q'A = A'Q$, i.e., $Q'P' = PQ$.
\nIf $B=B'$,

$$
Q'B'=BQ \Rightarrow Q'A=A'Q
$$
, i.e., $Q'P'=PQ$.

Subcase (iii). $Q' = A$, $Q = A'$. Impossible, since $Q' < P'$.

Type **3.**

$$
\begin{aligned}\nP < Q < A, \\
PA &= A'P' & (1), \\
QA &= A'Q' & (2)\n\end{aligned}
$$
\n
$$
\Rightarrow PQ = Q'P'.
$$

Proof. Divide into two cases by (1); cf. Definition 3. Case(i). *PB=B'P'.*

Divide into two subcases by (2); cf. Definition 3. Subcase (i). *QB=B'Q'.*

$$
P < Q < B, QB = B'Q', PB = B'P' \xrightarrow{\text{(C-)}} PQ = Q'P'.
$$

Subcase (ii). *Q=A', Q'=A: A'<A.* Then $P \leq B'$, since $P < Q$ and since $B'A'$ is elementary. **If** *P<B',*

$$
P < B' < B
$$
\n
$$
PB = B'P', B'B = B'B
$$
\n
$$
PB' = BP'
$$
\n
$$
PB' = BP'
$$
\n
$$
PA' = AP', \text{i.e., } PQ = Q'P'.
$$

If *P=B',* then *B=P'* and

$$
B'B \approx B'B \stackrel{\text{(Def.)}}{\Longrightarrow} B'A' = AB, \text{ i.e., } PQ = Q'P'.
$$

Case(ii). *P=A\ P'=A: A'<A.* Divide into two subcases by (2); cf. Definition 3. Subcase (i). *QB=B'Q'.*

$$
B' < A' = P < Q, \quad \underbrace{(\tilde{c}^{-1})} B' Q \approx Q' B \Longrightarrow^{(Def. 4)} A' Q = Q' A, \quad \text{i.e., } PQ = Q' P'.
$$

$$
QB = B'Q'
$$

Subcase (ii). *Q=A', Q'=A.* Impossible, since *P<Q.*

Type **4.**

$$
\left.\begin{aligned}\nA' &< Q' < P', \\
A'P' &= PA & (1), \\
Q'P' &= PQ & (2)\n\end{aligned}\right\} \Rightarrow A'Q' = QA.
$$

Proof. Divide into two cases by (1); cf. Definition 4. Case (i). *B'P'*

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II 125

$$
B' < A' < Q' < P'
$$

\n
$$
B'P' \approx PB, \ Q'P' = PQ
$$

\n
$$
\left\{\stackrel{(\tilde{c}^{-})}{\longrightarrow} B'Q' \approx QB \stackrel{\text{(Def. 4)}}{\longrightarrow} A'Q' = QA.
$$

Case (ii). $P'=A, P=A': A'. Then (2) becomes$

$$
Q'A = A'Q. \tag{2'}
$$

Divide into two subcases by (2)'; cf. Definition 3. Subcase (i). *Q'B=B'Q.*

$$
B' < A' < Q', \ Q'B = B'Q \xrightarrow{\text{(c^-)}} B'Q' \approx QB \xrightarrow{\text{(Def. 4)}} A'Q' = QA.
$$

Subcase (ii). $Q'=A'$, $Q=A$. Impossible, since $A' < Q'$.

Type **5.**

$$
\begin{aligned}\nP < A < Q, \\
PQ &= Q'P' \quad (1), \\
AQ &= Q'A' \quad (2)\n\end{aligned}\n\Rightarrow PA = A'P'.
$$

Proof. Divide into three cases by (2); cf. Definition 1. Case(i). *BQ=Q'B'.*

$$
P < B < Q
$$

$$
BQ = Q'B', PQ = Q'P'\}
$$

$$
\left\{\stackrel{(C^-)}{\Longrightarrow} PB = B'P'\stackrel{(Def.3)}{\Longrightarrow} PA = A'P'.
$$

Case (ii). $Q=B, Q'=B'$. Then

$$
PB = B'P' \Rightarrow PA = A'P'.
$$

Case (iii). $Q = A', Q' = A$. Proved in Type 2.

Type **6.**

$$
Q' < A' < P',
$$

\n
$$
Q'P' = PQ \t(1),
$$

\n
$$
A'P' = PA \t(2)
$$

\n
$$
Q'A' = AQ.
$$

Proof. Divide into two cases by (2); cf. Definition 4. Case (i). $B'P' \approx PB$. **If** *Q'<B"*

$$
B'P' \approx PB, Q'P' = PQ \xrightarrow{(C^-)} Q'B' = BQ, \quad \text{(Def. 2(ii))} Q'A' = AQ.
$$

$$
B'P' \approx PB \xrightarrow{(Det.)} B'A' = AB
$$

If *Q'=B',* then *Q=B* and

$$
B'P'\approx PB \Rightarrow B'A' = AB
$$
, i.e., $Q'A' = AQ$.

Case (ii). $P'=A, P=A'$. Proved in Type 3.

126 S. KATAYAMA AND H. TERASAKA

VERIFICATION OF \tilde{C}^- .

Type 1.

$$
\begin{aligned}\nA &< P < Q, \\
A & Q &> Q'A' \\
PQ &= Q'P' \\
\end{aligned} \quad (1), \quad \Rightarrow \quad \begin{cases}\nPQ &\approx Q'P', \\
AP &\approx P'A'.\n\end{cases}
$$

Proof. Divide into three cases by (1); cf. Definition 1. Case (i). *Q=B, Q'=B'.* Impossible, since $A < P < O$ and since AB is elementary. Case (ii). $Q' < A$ (or $B'A' = AB$) and $BQ \approx Q'B'$. Note that if *Q'<A* then *Q'<B* and

$$
BQ \approx Q'B' \xrightarrow{\left(\tilde{c}^{-}\right)} Q'B \approx B'Q \Rightarrow B'A' = AB.
$$

Now $B \le P$, since $A < P$.
If $B < P$,

$$
BQ \approx Q'B', PQ = Q'P' \xrightarrow{\left(\tilde{c}^{-}\right)} \begin{cases} BP \approx P'B',\\ (B'A' = AB) \end{cases} \Rightarrow AP \approx P'A'
$$

$$
Q'P' \approx PQ.
$$

Evident, if $B = P$.

$$
L \xrightarrow[\quad Q' \quad P' \quad B' \quad A'
$$

L **: 1 1 1 1**

Case (iii). $Q=A', Q'=A: A < A'$. Then (2) becomes

$$
PA' = AP'
$$
 (2)

 B *P Q*

Divide into three subcases by (2)'; cf. Definition 2.

Subcase (i). $P=B', P'=B: B'A'=AB$. If *B<B',*

$$
BB' \approx BB', B'A' = AB \stackrel{\text{(Def.1,2)}}{\iff} AB' \approx B'A, \text{ i.e., } AP \approx P'A'.
$$

$$
B'A' \approx AB \quad \text{gives} \quad PQ \approx Q'P'.
$$

If *B=B',* evident. Subcase (ii). $B'A' = AB$ and $PB' = BP'$. *lίB<P,* $PB' = BP' \stackrel{(c^-)}{\longrightarrow} \begin{cases} P'B' \approx BP, & B'A' = AB \Rightarrow AP \approx P'A'. \\ PR' & PR' \ge PA' \end{cases}$ $(PB' \approx BP', B'A' = AB \Rightarrow AP' \approx PA', \text{ i.e. } Q'P' \approx PQ.$

If $B = P$, evident.

Subcase (iii). $P=A, P'=A'$. Impossible, since $A < P$.

Type 2.

$$
Q' < P' < A', \\
Q'A' \approx AQ & (1), \\
P'A' = AP & (2), \\
Q'P' \approx PQ.
$$

Proof. Divide into three cases by (2) ; cf. Definition 2. Case (i). $P'=B', P=B: B'A'=AB$. Divide into three subcases by (1); cf. Definition 2. Subcase (i). $Q'=B'$, $Q=B$. Impossible, since $Q' < P'$. Subcase (ii). $Q'B' \approx BO$. $Q'B' \approx BQ$ gives $Q'P' \approx PQ$. $AB \approx B'A'$ gives $AP \approx P'A'$. Subcase (iii). $Q'=A$, $Q=A'$. Evident. Case (iii). $P' < A$ (or $B'A' = AB$) and $P'B' = BP$. Divide into three subcases by (1); cf. Definition 2. Subcase (i). $Q'=B', Q=B$. Impossible, since $Q' \lt P'$. Subcase (ii). $Q'B' \approx BQ$. $O' < P'$ $\qquad \qquad$ $C'P' \approx PO$ $P' < A$ (or $B'A' = AB$) ί Subcase (iii). *Q'=A, Q=A': A<A'.* If *B<P'.* $P'B' = BP \stackrel{(\tilde{c}^{-})}{\Longrightarrow} \begin{cases} BP \approx P'B', B'A' = AB \Rightarrow AP \approx P'A'.\\ BP' = BP', PA', AP = BA \end{cases}$ 1 *PB'* \approx *BP', B'A'* $=$ *AB* \Rightarrow *PA'* \approx *AP'*, i.e., *PQ* \approx *Q'P'*. If $B = P'$, evident. Case (iii). $P'=A, P=A': A\lt A'.$ Divide into three subcases by (1); cf. Definition 2. Subcase (i). $Q' = B'$, $Q = B$. Impossible, since $B'A'$ is elementary. Subcase (ii). $Q' < A$ (or $B'A' = AB$) and $Q'B' \approx BQ$. Since *Q'<P'=A<B,* $Q'B' \approx BO \stackrel{{\langle \tilde{c}^{-1}\rangle}}{\longrightarrow} Q'B \approx B'O \Rightarrow Q'A \approx A'O$, i.e., $Q'P' \approx PO$. $AA' \approx AA'$ gives $AP \approx P'A'$. Subcase (iii). $Q' = A$, $Q = A'$. Impossible, since $Q' < P'$. *Type* 3. *P<Q<A*, $PA \approx A'P'$ (1), $\rbrace \Rightarrow \begin{cases} PQ \approx Q'P' \end{cases}$, $QA = A'Q'$ (2)

Proof. Divide into two cases by (1); cf. Definition 3. Case (i). $B'P' \approx PB$. Divide into two subcases by (2); cf. Definition 3.

Subcase (i). *QB=B'Q'.*

$$
P < Q < B
$$

\n
$$
PB \approx B'P', QB = B'Q'
$$
\n
$$
\left\{\n\begin{array}{l}\n\langle \tilde{c}^{-} \rangle \\
\tilde{Q}B \approx B'Q' \Rightarrow QA \approx A'Q'\n\end{array}\n\right\}.
$$

Subcase (ii). *Q=A', Q'=A.* Since

$$
B'P' \approx PB \xrightarrow{(\tilde{c}^{-})} PB' \approx BP'
$$

$$
P < A
$$
 $\Rightarrow AP' \approx PA'$, i.e., $Q'P' \approx PQ$.

 $QA \approx A'O'$ is evident.

Case (ii). $P=A', P'=A: A'A \approx A'A$. Divide into two subcases by (1); cf. Definition 3.

Subcase (i). *QB=B'Q'.*

Since $B' < A = P < Q$,

$$
QB = B'Q' \xrightarrow{(c^-)} B'Q \approx Q'B \Rightarrow A'Q \approx Q'A, \text{ i.e., } PQ \approx Q'P'.
$$

\n
$$
QB \approx B'Q'
$$

\n
$$
(B' < Q)
$$

\n
$$
\Rightarrow QA \approx A'Q'.
$$

Subcase (ii). *Q=A', Q'=A.* Impossible, since *P<Q.*

Type 4.

$$
\left\{\n \begin{aligned}\n A' &< Q' < P', \\
 A'P' &> PA & (1), \\
 Q'P' &= PQ & (2)\n \end{aligned}\n \right\}\n \Rightarrow\n \left\{\n \begin{aligned}\n PQ &\approx Q'P' \\
 A'Q' &\approx QA.\n \end{aligned}\n \right.
$$

Proof. Divide into two cases by (1); cf. Definition 4. Case (i). $B'P' \approx PB$.

$$
B' < Q' < P',
$$

\n
$$
B'P' \approx PB, Q'P' = PQ
$$
\n
$$
\begin{cases}\n\frac{(\tilde{c}^{\prime})}{PQ} \approx Q'P' \\
B'Q' \approx QB \Rightarrow A'Q' \approx QA.\n\end{cases}
$$

Case (ii). $P'=A, P=A': A'. (2) becomes$

$$
Q'A = A'Q \tag{2'}
$$

Divide into two subcases by (2)'; cf. Definition 3. Subcase (i). *Q'B=B'Q.*

$$
B' < Q', \quad Q'B = B'Q \stackrel{\text{(c^-)}}{\longrightarrow} \begin{cases} B'Q' \approx QB \Rightarrow A'Q' \approx QA, \\ B'Q \approx Q'B \Rightarrow A'Q \approx Q'A, \text{ i.e., } PQ \approx Q'P'. \end{cases}
$$

Subcase (ii). $Q' = A'$, $Q = A$. Impossible, since $Q' < P'$ and $A' < A$. *Type* 5. ^{*P}*</sup>

$$
\begin{aligned}\nP < A < Q, \\
PQ &\approx Q'P' \\
AQ &= Q'A' \\
Q' &= Q'A'\n\end{aligned}\n\bigg(\bigg) \Rightarrow\n\begin{cases}\nAQ &\approx Q'A', \\
PA &\approx A'P'.\n\end{cases}
$$

Proof. Divide into three cases by (2); cf. Definition 1. Case (i). $Q=B$, $Q'=B'$. Then

(1):
$$
PB \approx B'P' \Rightarrow \begin{cases} PA \approx A'P'.\\ AB \approx B'A', \text{ i.e., } AQ \approx Q'A'. \end{cases}
$$

Case (ii). *BQ=Q'B'.*

$$
\begin{array}{l}\nP < B \\
PQ \approx Q'P', \\
BQ \approx Q'B' \\
PB \approx B'P' \implies AB \approx B'A'\n\end{array} \bigg\{\n\begin{array}{l}\nPB \approx B'P' \Rightarrow PA \approx A'P' \\
BQ \approx Q'B' \\
\Rightarrow AB \approx B'A'\n\end{array}\n\bigg\} \Rightarrow AQ \approx Q'A'.
$$

Case (iii). $Q = A'$, $Q' = A$. Proved in Type 2. *Type* 6. $Q' < A' < B'$,

$$
Q' < A' < P',
$$
\n
$$
Q'P' \approx PQ, \quad (1),
$$
\n
$$
A'P' = PA \quad (2)
$$
\n
$$
Q'A' \approx AQ.
$$

Proof. Divide into two cases by (2); cf. Definition 4. Case (i). $B'P' \approx PB$. Then

 $Q' \leq B'$, since $Q' < A'$.

If $Q'\lt B'$, then

$$
\left.\begin{array}{l}\nQ'P' \approx PQ \\
B'P' \approx PB\n\end{array}\right\} \xrightarrow{\left(\begin{array}{l}\n\langle \tilde{c}^{-} \rangle \\
\end{array}\right)}\n\left.\begin{array}{l}\nQ'B' \approx BQ \\
\end{array}\right\} \Rightarrow Q'A' \approx AQ.
$$
\n
$$
B'P' \approx PB \Rightarrow \left\{\begin{array}{l}\nAB \approx B'A' \\
PA \approx A'P'\n\end{array}\right\}
$$

If $Q'=B'$, evident.

Case (ii). $P' = A$, $P = A'$. Proved in Type 3. Thus the proof of Lemma is complete.

We are now in a position to construct a model $M(R, C, I)$ on the basis of Lemma.

First take all the triples of natural numbers (ί, *j , k),* make a numbering *N* on them such that different triples (i, j, k) and (i', j', k') have different numbers $N(i, j, k) \neq N(i', j', k').$

Suppose a system A_{n_i} of n_i different points A_1, A_2, \dots, A_{n_i} has been already defined such that points are linearly ordered and that it satisfies Axioms *Euy* R, C^+ , \tilde{C}^+ , C^- and \tilde{C}^- . Call a triple of points (A_i, A_j, A_k) $(1 \leq i, j, k \leq n_i)$ with $A_i \leq A_j$ *saturated* if the equality

$$
A_i A_j = A_k A_l
$$

has a solution in $A_i \in A_{ni}$, and *insaturated* if not, and let (A_p, A_q, A_r) be the insaturated triple with the smallest $N(p, q, r)$.

For the sake of simplicity, set

$$
A_p = P_m, A_q = P_1, A_r = P_1',
$$

and choose points P_{m-1} , P_{m-2} , \cdots , P_2 of A_{n_i} such that

$$
A_p\!\!=\!\!P_m\!\!<\!\!P_{m-1}\!\!<\!\cdots\!<\!\!P_2\!\!<\!\!P_1\!\!=\!A_q
$$

and that the consecutive segments

$$
P_{m}P_{m-1}, P_{m-1}P_{m-2}, \cdots, P_{2}P_{1}
$$

are all elementary.

If there is any saturated triple (P_m, P_1, P_1') , let (P_{s-1}, P_1, P_1') be such a one with the largest *s*. Then there must be a point $P_{s-1} \in A_{ni}$ with

$$
P_{s-1}P_1 = P_1'P_{s-1}'.
$$
\n(1)

If there is no saturated triple, set $s=2$. Introduce then $m-s+1$ new points

$$
P_s', P_{s+1}', \cdots, P_m'
$$

and define the linear ordering

$$
P_{s-1} < P_{s} < \cdots < P_{m} < P''
$$
,

where either $P_{s-1}^{\prime} P'' (P'' \in A_{ni})$ is an elementary segment or P'' is to be regarded as the point at infinity, if there is no point $X \in A_{n_i}$ with $P_{s-1} < X$.

Repeated applications of Lemma beginning with the successive introduction of basic congruence relations

$$
P_{s}P_{s-1} = P_{s-1}'P_{s}',P_{s+1}P_{s} = P_{s}'P_{s+1}',\vdotsP_{m}P_{m-1} = P_{m-1}'P_{m'}
$$
\n(2)

lead us to a system of points $A_1, ..., A_{n_i}, P_s', ..., P_{m}$ in a linear order, satisfying Axioms E_u , R, C⁺, \tilde{C}^+ , C⁻ and \tilde{C}^- . Then we have from (1) and (2) on account of C^+

$$
P_m P_1 = P_1' P_m' \tag{3}
$$

If we set

ON CONGRUENT AXIOMS IN LINEARLY ORDERED SPACES, II 131

$$
P_{s}^{\prime} = A_{ni+1}, \ P_{s+1}^{\prime} = A_{ni+2}, \ \cdots, \ P_{m}^{\prime} = A_{ni+1},
$$

we have by (3)

$$
A_{p}A_{q}=A_{r}A_{ni+1},
$$

and (A_p , A_q , A_r) becomes a saturated triple in the system of points

$$
A_{n_{i+1}} = \{A_1, A_2, \cdots, A_{n_i}, \cdots, A_{n_{i+1}}\}.
$$

Now let n_i be equal to 4 and let A_{n_i} be defined as a system of four points A_1 , A_2 , A_3 , A_4 in a linear order

$$
A_{\rm I} \!\!<\!\! A_{\rm I} \!\!<\!\! A_{\rm 2} \!\!<\!\! A_{\rm 3}
$$

with the following congruence relations:

\n- i)
$$
A_i A_j = A_i A_j
$$
 for all $i, j = 1, \dots, 4$, provided $A_i < A_j$,
\n- ii) $A_1 A_2 = A_2 A_3$ but $A_2 A_3 + A_1 A_2$,
\n- iii) $A_2 A_3 = A_1 A_4$,
\n

and

iv)
$$
A_1A_4 = A_2A_3
$$
, $A_1A_2 = A_4A_3$, $A_4A_3 = A_1A_2$.

In A_{n_1} all Axioms E_u , R, C⁺ (=C), Č⁺, C⁻ and Č⁻ are seen to be fulfillled. Thus we see by induction that in each $\boldsymbol{A}_{n_{i}}$ $(i{=}1,2,3,\cdots)$ all Axioms from $\boldsymbol{\mathrm{E}}_{u}$ to $\tilde{\mathbb{C}}^-$ are fulfilled, so that in particular Axioms \mathbb{E}_u , R and C are satisfied in the system of points

$$
A=\bigcup_{i=1}^{\infty}A_{ni}.
$$

If A_p , A_q , A_r is any triple of points with $A_p \ll A_q$ in A , then there is by the way of introducing new points of A_{ni+1} into each A_{ni} (i=1, 2, …) a natural number n_j such that the equality

$$
A_p A_q = A_r A_s
$$

is satisfied by an $A_s \in A_{n_j}$. Thus Axiom E is satisfied in A .

Recalling the fact seen in the proof of Lemma that when the point *Aⁿ* is added to the set A_{n-1} as a new point to obtain A_n , the new congruence relations in troduced with it are confined to those between some old segments and new ones having A_n as an end point, so we see that the relation $A_2A_3 + A_1A_2$ in A_{n_1} remains true throughout all *Ani.* Thus in *A*:

- \rightarrow S: Axiom S fails to be satisfied, for $A_1A_2 = A_2A_3$ but $A_2A_3 + A_1A_2$.
- T: Axiom T fails to be satisfied, for $A_1A_2 = A_2A_3$, $A_2A_3 = A_1A_4$ but $A_1A_2 = A_1A_4$ by Axiom E_u.
- \rightarrow A: Axiom A fails to be satisfied, for if A holds, then by Theorem 11 (see Part I) Axiom S would hold good too.

Thus *A* is the desired model M(R,C,I) in which Axioms R,C, and I alone hold besides Axiom E.

NIIHAMA TECHNICAL COLLEGE, NIIHAMA SOPHIA UNIVERSITY, TOKYO