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1. Introduction

Let G be a finite group and let BgO denote the classifying space of real G-vector
bundles. Let P(G) denote the set of all subgroups of G of prime power order. In [O2,
p.587], Oliver defined a G-space B,O which plays a role of the classifying space for the
family of {np| P € P(G)}’s, where np is a real P-vector bundle, possessing natural
G-compatibility. By definition, there is a canonical G-map L¢g : BcO — BEO.

Now suppose that the order of G is not a prime power. Let F' be a finite CW-complex
with base point x. We regard F' as a G-space with trivial action. Let ng be the Oliver
number defined in [O1, p.155] (cf. [O2, Theorem 0.3] for a summary of computation of
ng). Thus, F can be realized as the G-fixed point set of G-action on a finite, contractible
G-CW complex if and only if the Euler characteristic x(F') is congruent to 1 modulo ng.
In case where F' is a smooth manifold, there arise additional requirements for F' so as to
be realized as the G-fixed point set of a smooth G-action on a disk. By [02] (in particular
[02, Theorem 0.1]), the requirements are interpreted into one condition that there exists a
G-homotopically commutative diagram

F OV BgO
(DF) idpl ch

F— {*} —— BLO

where 7 is a real G-vector bundle over F' such that

for some nonnegative integers s, ¢, and c(n) is the classifying map of n. Here R® denotes
the product bundle over F' with the fiber R® on which G acts trivially. The main step of
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Oliver’s construction [02] of a smooth G-action on a disk D with D¢ = F is to extend
Diagram (DF) to a G-homotopically commutative diagram

X _Ix BgO
(DX) px l lLG

Y —— {x4 —— B:O

such that X and Y’ are finite contractible G-CW complexes with the fixed point sets X ¢ =
YC¢ = F, p|r = idp and fx|r = c(n). The G-map fx can be regarded as the classifying
map of a real G-vector bundle nx over X. Applying the equivariant thickening theorem
([P, Theorems 2.4 and 3.1} or [O2, Theorem A.12]) to X and the G-vector bundle nx
derived from fx, one can obtain a desired smooth G-action on D.

The purpose of this paper is to give refinements of Oliver’s results in case where G is
an Oliver group (i.e. in case of ng = 1). That is, we shall construct Diagram (DX) with
controlled K-fixed point sets XX and Y ¥ for various subgroups K of G. More precisely
to say with notation below, we shall control X* and Y? for all p-subgroups P (resp.
P € Pr(Q)) so that 71 (DT) are finite, abelian groups of order prime to p (resp. D are
simply connected), and also control X7, fi and Y for H € L(G) (hence H ¢ G*(G))
so that the connected components D of D including F are without boundary in case
where F is without boundary. These properties of D¥ and D (cf. [M, (4.1.4), (4.1.4") and
(4.1.6)]) are very helpful to constructing various smooth G-actions on disks by equivariant
surgery ([M, Theorem 4.1]) from the G-manifold D. Since the topic is concerned with
details of equivariant surgery theory, we do not touch it further in the current article.

Let S(G) denote the set of all subgroups of G. For a prime p, let P,(G) denote the set
of all p-subgroups of G. The trivial group {1} is contained in P,(G) for any prime p. Let
GP denote the Dress subgroup of G of type p, namely it is the smallest normal subgroup
of G whose index [G : H] is a power of p. Clearly G = G holds if p does not divide |G|.
Let £P(@G) denote the set of all subgroups H of G such that H includes GP. Set

L(G) = JL7(G).

Furthermore, for a set T" of primes dividing the order of G, we set Pr(G) = U,cr Pp(G)
and LT(G) = U,er £7(G). (As convention, we adopt Py(G) = {{1}} and L*(G) =
{G}.) If Ais a set of subgroups of G then we define A-,; by

Asy = A~ {{1}}.

We shall use G and G' in the sense of [O1]. That is, a finite group G belongs to G2 if and
only if there exists a normal series P < H < G such that P and G/H are a p-group and a
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g-group respectively and H/P is cyclic. A finite group G is an Oliver group if and only if
G ¢ G for any primes p and q. Let G ! denote the union of all g},, where p runs over all
primes. We set

Gi(G)={H|H <G, Hegl},
GHG)={H|H<G, HeG'} and
GY(@)T ={H G (G)|H>P forsome P € Pr(G)>; }.

In the following, an implication A D B for CW complexes A and B should be
understood that B is a subcomplex of A. Let X be a finite G-CW complex and F a set of
subgroups of G. Define

(G, X; F) = [] mo(x™).
HeF

For v € II(G, X;F), X, denotes the underlying space of . If F is invariant under
conjugation by elements in G then II(G, X; F) inherits the canonical G-action. Define
the map p : II(G, X; F) — F by assigning each element y € mo(X ) the subgroup H.
For~, § € II(G, X; F), if X, C X5 and p(7y) > p(9) then we write y < 4.

In the first theorem, we control YF for all P € P(G) and Y¥ for all H ¢ G1(G).

Theorem 1.1. Let G be an Oliver group and A a finite G-CW complex having the
base point x in F := AC. Then there exists a finite G-CW complex Y including A and
possessing the following properties:

(C1) Y is contractible.

(C2) YC =F.

(C3) Foreach P € P(QG), Y P is 1-connected (i.e. connected and simply connected).
(C4) Foreach H € G}(G), Y is connected.

(C5) There is an order preserving G-map
(G, Y;8(G) ~ G'(G)) — I(G, ALl {pt}; S(G) ~ G'(G))
with G ,-homeomorphisms
ky: Yy = Argy) or {pt}e(y), ¥ € II(G, Y;8(G) N G1(G)),

such that k., : Y, — A, is the canonical map if vy is contained in the subset

(G, A; S(G) N\ GYQ)) of (G, Y; S(G) N G}(@)); kgy = gokyo g~ forall
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g € Gandv € II(G,Y;S8(G) \ G}(G)); and the square

k
Y, —— Ay

inclusionl linclusion
ks
Ys —— Ans)

commutes whenever v < § € II(G,Y; S(G) \ G}(@G)).

The idea of the proof of Theorem 1.1 goes back to [LM]. In place of the equivariant
connected sum that is used in [LM] for modification of smooth G-manifolds, we use in the
current paper the equivariant wedge sum defined in Section 2 for modification of G-CW
complexes. In case where G is an Oliver group, our equivariant wedge sum operation is
effective to kill obstructions in the reduced projective class group Ko (Z[G]).

DEFINITION 1.2. We call a six-tuple X = (X,Y, fx,9y,¢x,hx) a (BgO,
B¢, 0)-system if X consists of
finite G-CW complexes X and Y with base point, say * (€ X€, € Y©),
G-maps fx : X = BgOand gy : Y — BZO,
a base point preserving G-map ¢x : X — Y, and

a G-homotopy hx : X x I — BEO from Lg o fx to gy o px .

IfX = (X,Y, fx,9v,¢x,hx) is a (BgO, BO)-system then the associated dia-
gram

_fx BcO

<le lLG

g *
Y—Y>BGO

G-homotopically commutes. Given another (BzO, B5O)-system A = (A, B, fa, 9B,
@A, ha), we say that A extends to X = (XY, fx,9v,px,hx)if X D AandY D B as
G-subcomplexes, and furthermore fx|a = fa, gy | = g and hx|ax1 = ha.

A subset F of G1(G) is said to be upper closed if K is contained in F whenever
K € G(G) and K > H for some H € F.

In the two theorems below, we control X ¥ together with f& : X# — (BgO)* for
all H ¢ GY(G) as well as X ¥ for all P € P(G).
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Theorem 1.3. Let G be an Oliver group, T a set of primes dividing the order of G,

F a conjugation invariant, upper closed subset of G'(G) such that F O Pr(G)s1, and
B = (B,Y, fB,9v,¥B,hB) a (BgO, B5O)-system such that Y is contractible, Y ¢ # {),
Y D B,and pp : B — Y is the inclusion map. Assume

(A1) BP is 1-connected for all P € Pr(G)s1,

(A2) BH is connected for all H € F,

(A3) Foreach H € 8(G) \ GY(G), B¥ coincides with YH,

(A4) Y7 is 1-connected for all P € P(G), and

(AS) YH is connected for all H € G'(G).
Then B extends to a (BgO, BEO)-system X = (XY, fx, gy, ¥x,hx) possessing the
following properties:

(C1) X is contractible.

(C2) All isotropy subgroups of X \ B are contained in G*(G). Moreover, any cells
of X \ B of isotropy type in G} (G)T has dimension > 3.

(C3) Foreach P € Pr(G), X¥ is 1-connected.

(C4) For each prime p and each nontrivial p-subgroup P, XF is connected and its
fundamental group 71 (X7T) is finite, abelian and of order prime to p.

(C5) Forany H € F, X is connected.

Our proof of the theorem is a slight modification of the proofs of [02, Lemma 2.2
and Proposition 2.3]. The assumption (A?2) is relevant to Condition [BM, (2.1.2)].
The main result of this paper is:

Theorem 1.4. Let G be an Oliver group, T' a set of primes dividing the order of G,
F a conjugation invariant, upper closed subset of G*(G) such that F O Pr(G)s1, and
A = (A, {x}, fa,9{s}, triv, ha) a (BgO, B;0)-system such that AC > . Assume

(A1) AP is 1-connected for all P € Pr(G)>1, and

(A2) AH is connected for all H € F.
Then A' = (A A, fa,9(x} © ca,ida, ha), where ca is the map A — {x}, extends to a
(BGO, BEO)-system X = (XY, fx, gy, ¢x, hx) possessing the following properties:

(Cl) X andY are finite contractible G-CW complexes including A.

(C2) XC =YC = F := A%, moreover

U X = U YH (as G-CW complexes)
HeS(G)~G1(G) HES(G)~G'(G)

and ‘pXIUHesm)\gl(c) xH IS the identity map.
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(C3) Foreach P € Pr(G) (P € P(Q)), XT (resp. YT) is 1-connected.

(C4) For each prime p and each nontrivial p-subgroup P, XF is connected and the
fundamental group w1 (XT) is finite, abelian and of order prime to p.

(C5) Foreach H € F (resp. H € G}(G)), X (resp. YH) is connected.

(C6) There is an order preserving G-map
r: (G, X;8(G) N GHG)) — II(G, Al {pt}; S(G) ~ G*(G))
with G.,-homeomorphisms
ky: Yy — Ay or {ptho(y), ¥ € I(G,Y;8(G) N G'(G)),

such that k., : Y, — A, is the canonical map if vy is contained in the subset
II(G, 4;S(G) N GH(B)) of II(G,Y; S(G) N G @B)); kgy = gokyog™? forall
g€ Gandvy € I(G,Y;S(G) \ GYG)); and the square

k

Y, —— Ay

inclusionl linclusion
ks
Ys —— Ay

commutes whenever v < & € II(G,Y;S(G) \ G}(G)). Moreover, fx|x., =
fala,., when r(y) is contained in the subset II(G,A;S(G)
NGY(Q)), and fx(z) = fa(*) for all z € X., when r(v) is contained in the
subset TI(G, pt; S(G) ~ G1(Q)).

(C7) gy = g(x} o ¢y, where cy isthemap Y — {x}.

This theorem is obtained from Theorems 1.1 and 1.3 with careful observation.

If we eliminate Assumptions (A2) and (A5) from Theorem 1.3 (resp. Assumption
(A2) from Theorem 1.4) then we obtain similar conclusions in which Property (CS5) of
Theorem 1.3 (resp. Theorem 1.4) does not necessarily hold. The modified results are
given as Theorems 5.1 and 5.2.

The organization of the paper is as follows. In Section 2, we explain what is our
equivariant wedge sum. In Section 3, using the equivariant wedge sum, we prove Theorem
1.1. In Section 4, we prove Theorems 1.3 and 1.4. Section 5 is devoted to the modified
versions of Theorems 1.3 and 1.4.

ACKNOWLEDGEMENT. The first author was partially supported by Grant-in-Aid
for Scientific Research. The second author was partially supported by the Polish Scientific
Research Grant KBN Nr 2 PO3A 031 15.
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2. Equivariant wedge sum operation

In the subsequent section, we use equivariant wedge sum operation in the following
context.

Let X and Y be G-CW complexes, H be a subgroup of G, xy € X a point such that
G, = H and * € Y. The equivariant wedge sum X Vg (G xg Y)of X and G xy Y
with attaching data (x g, %) is the identification space

XVe(GxgY)={XT(GxugY)}/ ~,

where [g,*] € G x g Y is identified with gz € X for each [g] € G/H, obtained from
the disjoint union of X and G x g Y. This wedge sum is said to be of type (H). Suppose
XC #0. Incase where Y = X, let (1 + G/H)X denote X Vg (G xg X).

Let Hy, ..., Hy, be subgroups of G (possibly H; = H;) and z1, ..., Zn, points in
X such that G, = H, for 1 < i < mand Gz; N Gz; = () for i # j. Then we define the
wedge sum (1 + G/H;y + - -+ + G/H,,) X with attaching data {(z;,*) | 1 <i < m} by

(1+G/H1+"'+G/Hm)X=XVG(GXH1 X)VG'--VG(GXHmX).

If 3 is an element in the Burnside ring Q(G) of the form

B = Zam

=1

then (1 + 8)X stands for the wedge sum (1 + G/H; + - -- + G/H,,) X with attaching
data {(z;,*) | 1 <i <m}.

Let X be a finite G-CW complex. Then [X] stands for the element in the Burnside
ring Q(G) represented by X. It holds that

[1+G/H)X]—1=(1+[G/H)(X]-1) inQ(G).

In general, we obtain [(1 + 3)X] — 1 = (1 + 3)([X] - 1).
Let f : X — Z be a G-map such that f(z;) = f(x) forall 1 < ¢ < m. Then the
G-map
(14+G/Hi+--+G/Hp)f:1+G/Hi+---+G/Hpn)X — Z
is obtained canonically from f, G xu, f,...,G Xu,, f.

3. Proof of Theorem 1.1
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The proof of Theorem 1.1 contains supplementary remarks which are not necessary
here but valid under the conditions (A1) and (A2):
(A1) AP is 1-connected for all P € Pr(G)>1, and
(A2) AH is connected forall H € F.

These conditions are supposed in Theorems 1.3 and 1.4 and the remarks will be used in
the proof of Theorem 1.4.
The proof of Theorem 1.1 is divided into the 5 steps below.

Step 1.  Attaching 1-dimensional G-cells of isotropy type (H) in G!(G) to A, we can
obtain a finite G-CW complex A’ such that A’? is connected for all H € G*(G). (Note
that if A satisfies (A2) above then we need only 1-dimensional G-cells of type (H) in
GY(G) \ F. When A satisfies (A1, A2), so does A’.)

Step 2. Let 3 be an element in the Burnside ring 2(G) such that x g (5) = 1 for all
H ¢ L(G) and x¢(8) = 0 (LM, Proposition 1.1 and Theorem 1.3]). Let

(=8)%= 3 aulG/H] €QG)
(H)#(G)

be an element such that
ag >0 and (—8)% = -8 mod 2|G||Ko(Z[G))| - UG).

(Here I?O(Z[G]) is a finite group by [S, Proposition 9.1.])
Take a finite G-CW complex X satisfying the following properties:

(1) X§ consists of exactly one point, say z¢.
(2) Foreach H € S(G) ~ G!(G), dim X{T = 0.
(3) Foreach H € G1(G), X{! is connected.

(4) Foreach P € P(G), X{ is 1-connected.

(5) Foreach H < G,

[(G-X5H)/G| > ng := max({an | (H) # (G)}){I(G"(G)\P(G))/G|+2}.

Choose arbitrary points zz; € X5 forall (H) < (G)andi = 1,...,ng. Set X; =

A"V X,. Then, X; clearly have the properties corresponding to (C2, C5) of Theorem 1.1.
(When A satisfies (A1, A2), so does X;.) .

Step 3. Let H be a maximal subgroup in G}(G) such that x(X#) # 1. Form the
equivariant wedge sum (1 + (—3)%) X such that the points [g, *|; of (G x g X1);, (H) #
(G). [g] € G/H and 1 < i < ay, are identified with the points gzy; of Xo with
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G_o = H, respectively. Note that this wedge sum operation does not change the G-fixed
H,i

point set and that (1+(—3)%) X has the properties corresponding to (C2, C5) of Theorem
1.1. (When A satisfies (A1, A2), so does (1 + (—3)%)X;.) Also, it follows that

[(1+(=8)") X1] = 1= 1+ (=H)")([X1] = 1) inQ(G).
Suppose H is a maximal subgroup in G} (G) \ P(G) such that x(X{7) # 1. Then

X((1+ (=8)) X)) = x((1 - B)X1)™) = (1 = xu(8))x(X{")
= 0mod |G)|.

Thus, we can form the equivariant wedge sum
Xo=0+ (-8 X1 Ve (G/H x S)Vg -+~ Vg (G/H x S),

where S = 53 or S, so that x(X4!) = 1. Here the points gzp ,, (g € G) are regarded
as the base points of (1 + (—3)%) X, and the base point of {gH} x S is identified with
9TH n,- This X5 has the properties corresponding to (C2, C5) of Theorem 1.1. (When A
satisfies (A1, A2), so does X5.)

Thus, we may suppose that X, satisfies x(X4') = 1 for all H € G}(G) \ P(G).
Note that all isotropy subgroups in X3 ~ (1 4 (—3)%) X, are contained in G1(G).

Step 4. Suppose that P € P(G) is a maximal subgroup among nontrivial p-groups such
that X is not 1-connected. (When A satisfies (A1, A2), P is not containéd in Pr(G)~1.)
Attaching G-cells G/P x Int(D?%)’s with i = 1, 2 to X5, we can construct a finite G-CW
complexes X3 such that X7 is 1-connected.

Thus we may assume that for all P € P(G)s1, X is 1-connected. Note that all
isotropy subgroups of cells in X3 \ X are contained in P(G). (When A satisfies (Al,
A2), they are contained in P(G) \ Pr(G).)

Now employing Oliver’s method [O1], we can construct a finite G-CW complex X,
including X5 such that X4 \ X3 consists of cells G/P x Int(D?)’s with P € P(G)~; and
i > 3and X[ is Zp)-acyclic. By construction above, X4 have the properties correspond-
ing to (C2, C4, C5) in Theorem 1.1.

Step 5. Setd = dim X4. We may suppose d > 4. We can attach free cells of dimension
< d so that X4 is 1-connected and ﬁk(X4; Z) = 0 for any k < d. Then H4(X4;Z) is
Z[G]-projective.

Now perform the wedge sum operation on X, and obtain X5 = (1 + (—3)%)X,
such that the points [g, *; of (G xg X4);, (H) # (G), [9] € G/H and 1 < i < ay, are
identified with points gz}, in

Xo N~ U Gxg,)i U U GzH g,
(H),i (H)
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suchthat G« = H,respectively. Thus, X has the properties corresponding to (C2-5) in
H,i B

Theorem 1.1. By [S, Corollary 9.1], Ko(Z[G]) is a Green module over Ko{Q[G]). Since
Res$(8) = 1 in Q(C) for any cyclic subgroup C of G, (1 — 8)[Q] = 0 in Ko(Q[G]).
Thus,

[Ha(X5;Z)] = 0 € Ko(Z[G))

follows from

[Hy(Xs5;2)) = (1+ (—B8)7)[Ha(X4; Z)]
= {(1 - B)[QI}Ha(X4; Z)).

Thus, Hy(X5; Z) is stably Z[G]-free.
By attaching free cells of dimension d to x € X5, we obtain

Xe = X5 VEYGH) V.- v BYGT)

such that Hy(Xe;Z) is Z[G)-free. Here Gt = G 1I {} and ©¢(G*) denotes the d-fold
reduced suspension of G*. Now, by attaching free cells of dimension d + 1, we produce a
finite G-CW complex

Y = X¢U (G x DY) U---U (G x D)
such that Y is (nonequivariantly) contractible. Then Y satisfies (C1-5) in Theorem 1.1. []

4. Proofs of Theorems 1.3 and 1.4

This section is devoted to the proofs of Theorems 1.3 and 1.4. In order to improve
Oliver’s results, we employ again the equivariant wedge sum associated to elements of the
Burnside ring.

Proof of Theorem 1.3.  'We can construct a finite G-CW complex

X, =BV V  Ee/mt) v vE(G/H) )}
(H)CGHG)NP(G)

with t = 3 or 4 such that x(Xf) = x(YH) for all H € G'(G) \ P(G). Here
(G/H)t = G/HU {x}, Z*((G/H)™ denotes the t-fold reduced suspension of (G/H)*,
and the wedge sum is taken at the base point x € A. Clearly B is extendible to X; =
(X1,Y, fx1,9v, ¢x1, hx,).
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Apply [02, Lemma 2.2] together with its proof. (Recall Oliver’s assertion in [02,
Proof of Lemma 2.2, Finite case] that 7 () is injective and Ker(m;(Ba;)) is finite
abelian of order prime to p.) By attachment of G-cells of isotropy type (P), where P runs
over P(G)>1, extend X; to a (BgO, BEO)-system X, = (X2,Y, fx,, 9y, ¢x,, hx,)
such that X are mod p acyclic for all P € P(G)>1, such that X£ are 1-connected for
all P € Pr(G)>1, and such that the fundamental groups 71 (XZ) are finite, abelian and
of order prime to p for all P € P(G)>1 \ Pr(G)>1, where p is the prime dividing | P)|.
Here we can do in such a way that if a G-cell in X \ X has isotropy type (H) in Pr(G)
then the dimension of the cell is greater than or equal to 3.

Finally apply [O2, Proposition 2.3] and obtain a desired X from X . O

Proof of Theorem 1.4. Let A be the G-CW complex given in Theorem 1.4. Apply
the proof of Theorem 1.1 and let Y be the finite, contractible G-CW complex obtained in
the proof of Theorem 1.1. Set

B=au |J YHul{J @O,
HeS(G)NG(G) HeF

where (Y )(2) is the 2-skeleton of Y . We shall see that A’ is extendible to a (B¢ O, B0)-
system B = (B,Y, fB,gv,¥B,hp). Firstly, define o : B — Y to be the canonical
inclusion. Secondly, define gy : Y — B0 so as to satisfy (C7) in Theorem 1.4. The
restrictions of G-maps fg : B — BgO and hp : B x I — B0 to A are, of course,
given as f4 and ha. The restrictions of them to Y with H € S(G) \ G!(G) are given
by

fa(x) whenz €Y, such that 7(v) € II(G, pt; S(G) ~ G*(@)),
hA|AJHX,(w, t) whenz €Y,
such that r(v) € TI(G, 4; S(G) N~ G*(G)), t € I,
ha(x,t) whenz €Y,
such that r(vy) € TI(G, pt; S(G) ~ G}(G)), t € I,

fala,.,(x) whenz €Y, suchthatr(y) € II(G, A; S(G) Gla@)),
fB(z) =

hg(z,t) =

where v € II(G,Y;S(G) \ G*(G)) and A,(,) is the connected component described in
Theorem 1.1 (C5). It suffices to define the restrictions of fg and hp to (Y#)?), where
H € F. By the construction of Y in the proof of Theorem 1.1, (Y #)(?) is the wedge sum
of (A¥)@s and (X{7)@)’s (see Proof of Theorem 1.1, Steps 1 and 2). Thus the desired
maps can be constructed similarly.
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Note that B is 1-connected for each P € Pr(G)>; and B¥ is connected for every
H € F. Now, apply Theorem 1.3 to this B. Then we obtain a desired (B¢O, B5O)-

system X = (X,Y, fx, gy, ¢x, hx). 0

5. Modifications of Theorems 1.3 and 1.4

The goal of the current section is to point out that Theorems 1.3 and 1.4 both have
their analogies without their assumptions (A2). These new versions of both theorems we
found useful in applications concerned with constructions of smooth G-actions on disks
and spheres with specified G-fixed point sets. More precisely, we are able to modify
Oliver’s construction [02] of smooth G-actions on disks so that to control the isotropy
subgroups occurring around the G-fixed point sets. This, in turn, allows us to apply equi-
variant surgery as developed in [LMP], [LM], and [M] to convert the resulting smooth
G-actions on disks into smooth G-actions on spheres without changing the G-fixed point
sets.

Theorem 5.1. Let G be an Oliver group, T a set of primes dividing the order of
G and B = (B,Y, fB,gy,¢B,hB) a (BgO, Bf;0)-system such that Y is contractible,
Y¢ £0,Y DB, and pp : B — Y is the inclusion map. Assume that

(Al) BP? is 1-connected for all P € Pr(G)>1,

(A2) Foreach H € S(G) \ G (G), BY coincides with Y, and

(A3) YP is 1-connected for all P € P(G).
Then B extends to a (BcO, B5O)-system X = (XY, fx, gy, ¢x, hx) possessing the
following properties:

(C1) X is contractible.

(C2) All isotropy subgroups of X ~ B are contained in G'(G). Moreover, any cells
of X \ B of isotropy type in G*(G)T has dimension > 3.

(C3) Foreach P € Pr(G), X is 1-connected.

(C4) For each prime p and each nontrivial p-subgroup P, X¥ is connected and its
fundamental group 71 (X T) is finite, abelian and of order prime to p.

Now, we wish to point out that with some modifications of the arguments presented
in the proof of Theorem 1.4, we obtain the following theorem.

Theorem 5.2. Let G be an Oliver group, T a set of primes dividing the order of G,
and A = (A, {*}, fa, g(x}, triv, ha) a (BcO, B§O)-system with a base point * € AC.
Assume that

(A1) AP is 1-connected for all P € Pr(G)»1.
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Then A' = (A, A, fa,9¢+} © ca,ida, ha), where cy is the map A — {*}, extends 10 a
(BcO, B;O)-system X = (X,Y, fx, gy, ¢x, hx) possessing the following properties:

(C1) X andY are finite coﬁtractible G-CW complexes including A.
(C2) XG =YC = F := A®, moreover

U XH = U YH (as G-CW complexes)
HeS(G)NGL(G) HeS(G)\GL(G)
and LpX|UHeS(G)\gl(c) xH IS the identity map.
(C3) Foreach P € Pr(G) (P € P(G)), XF (resp. YT) is 1-connected.

(C4) For each prime p and each nontrivial p-subgroup P, XF is connected and the
fundamental group 71 (X T) is finite, abelian and of order prime to p.

(C5) There is an order preserving G-map
r: (G, X;8(G) ~ G1(G)) — I(G, ALl {pt}; S(G) \ G'(G))
with G.,-homeomorphisms
ky: Xy = Apiyy or {pt}o(r), v €II(G, X;8(G) N G(G)),

such that k, : X, — A, is the canonical map if v is contained in the subset
(G, A; S(G) N\ GH@G)) of (G, X;S8(G) N G} (Q)); kgy = go kyo g™t for
allg € Gand~ € II(G, X;S8(G) \ G1(G)); and the square

k
Xy = Any

inclusionl linclusion

X5 — Ars)

commutes whenever v < § € II(G, X;S(G) \ G'(G)). Moreover, fx|x., =
fala,,, o ky when r(v) is contained in the subset II(G, A; S(G) \ G'(@)),
and fx(z) = fa(x) for all x € X., when r(v) is contained in the subset
(G, pt; S(G) \ GHG)).

(C6) gy = g{x} © Cy, where cy isthemap Y — {x}.

REMARK. By Condition 5.2 (C2), it holds that
(G, X;8(G) . G1(G)) =1(G,Y;8(G) \ 6'(Q))

and X,, =Y, forall v € II(G, X; S(G) \ G*(G)).
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Proof of Theorem 5.2. First, in the proof of Theorem 1.1, Step 1 is replaced as
follows.

Step 1’. By attachment of G-cells of isotropy type (P) in P(G) to A, one can obtain a
finite G-CW complex A’ such that A’" is connected for all P € P(G).

With the replacement, the proof of Theorem 1.1 yields a finite G-CW complex X’
such that X’ D A’ and X’ fulfills the conditions (C1), (C2), (C3), and (C5) stated in
Theorem 1.1.

Second, in the proof of Theorem 1.4, B is replaced by

B =AU U vfu (J (vF)@
HeS(G)~G1(G) PeP(G)

for Y as in Theorem 1.4, where (Y'7)(?) is the 2-skeleton of Y'©. Now, by the arguments
presented in the proof of Theorem 1.4, we can obtain the desired (BzO, B O)-system
X =(X,Y, fx, 9y, ¢x,hx), proving Theorem 5.2. O
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