<table>
<thead>
<tr>
<th>Title</th>
<th>THE INVOLUTION MODULE OF PSU_3(2^2^f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Pforte, Lars</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 52(2) P.527-P.544</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2015-04</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/57646</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/57646</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
THE INVOLUTION MODULE OF \(\text{PSU}_3(2^{2f}) \)

LARS PFORTE

(Received May 10, 2013, revised January 29, 2014)

Abstract

For any group \(G \) the involutions \(I \) in \(G \) form a \(G \)-set under conjugation. The corresponding \(kG \)-permutation module \(kI \) is known as the involution module of \(G \), with \(k \) an algebraically closed field of characteristic two. In this paper we discuss the involution module of the projective special unitary group \(\text{PSU}_3(4^f) \).

1. Introduction

Let \(I \) be the set of all involutions in a group \(G \), that is, the group elements of order two. Then \(G \) acts on \(I \) by conjugation. The corresponding \(kG \)-permutation module \(kI \) is known as the involution module of \(G \), with \(k \) denoting an algebraically closed field of characteristic two. The involution module has been studied in general by G.R. Robinson [8] and J. Murray [4], [5]. Furthermore the author studied the involution module of the special linear group \(\text{SL}_2(2^f) \) in [6] and the general linear group \(\text{GL}_n(2^f) \) in [7].

In this paper we investigate the involution module of the projective special unitary group \(\text{PSU}_3(2^{2f}) \). In the following we introduce this group. For details see [3] and [2]. Let \(q := 2^f \), for some \(f \geq 2 \). Then \(\mathbb{F}_q^2 \) is the finite field with \(q^2 \) elements. For any element \(x \in \mathbb{F}_q^2 \) we define \(N(x) := x^{q+1} \) and \(\text{tr}(x) := x + x^* \), called norm and trace of \(x \), respectively. As is standard \(\text{GL}_3(q^2) \) denotes the general linear group, that is, the group of invertible \(3 \times 3 \)-matrices with entries in \(\mathbb{F}_q^2 \). The elements in \(\text{GL}_3(q^2) \) with determinant one form the special linear group \(\text{SL}_3(q^2) \). Let \(A \in \text{GL}_3(q) \). Then \(\overline{A} \) denotes the matrix obtained from \(A \) by raising each entry of \(A \) to the power \(q \). Moreover \(A^T \) is the transpose of \(A \). Finally \(A \) is called hermitian matrix if \(A^T = \overline{A} \).

Let \(A \in \text{GL}_3(q^2) \) be hermitian. The set of all \(X \in \text{GL}_3(q^2) \) so that \(X^T A \overline{X} = A \) form the unitary group \(U_3(q^2) \). Its kernel under the determinant map is the special unitary group \(\text{SU}_3(q^2) \). We have \(|\text{SU}_3(q^2)| = q^3(q^2 - 1)(q^3 + 1) \). If \(Z(\text{SU}_3(q^2)) \) denotes the center of \(\text{SU}_3(q^2) \), then we obtain the projective unitary group \(\text{PSU}_3(q^2) \cong \text{SU}_3(q^2)/Z(\text{SU}_3(q^2)) \).

This group is simple, and thus makes an interesting object of study. Even though our main interest lies in \(\text{PSU}_3(q^2) \) we work with \(\text{SU}_3(q^2) \) in this paper, as all results can be transferred back via the canonical epimorphism \(\text{SU}_3(q^2) \to \text{PSU}_3(q^2) \).

2010 Mathematics Subject Classification. 20G40.
Up to isomorphism this construction of $SU_3(q^2)$ is independent of the choice of the Hermitian form A. In the following we set

$$A := \begin{pmatrix}
1 & 1 \\
1 & 1 \\
1 & 1
\end{pmatrix},$$

and for the remainder of the paper let $G = \{X \in SL_3(q^2) : X^T A \overline{X} = A\}$.

In Section 2 we take a first look at the involution module of G and show that there is one conjugacy class of involutions. We briefly present the irreducible kN and kG-modules in Sections 3 and 4, respectively, where N is the normalizer of the centralizer of an involution of G. In Section 5 we determine the components of kI and finally in Section 6 we study the composition factors of kI. In Theorem 6.6 provides a formula to calculate the multiplicity of each irreducible kG-module in kI. In the remainder of Section 6 we look at a combinatorial method to determine the numbers involved in Theorem 6.6.

2. Local subgroups and involutions in $SU_3(q^2)$

Let $\alpha, \beta, \gamma \in \mathbb{F}_{q^2}$ such that $\alpha \neq 0$. Then

$$M(\alpha, \beta, \gamma) := \begin{pmatrix}
\alpha & \beta & \gamma \\
\alpha^{-1} & \beta^{-1} & \gamma^{-1} \\
\alpha^{-q} & \beta^{-q} & \gamma^{-q}
\end{pmatrix}$$

lies in $SL_3(q^2)$. Furthermore let $L := \{M(\alpha, \beta, \gamma) : \alpha \in \mathbb{F}_{q^2}, \beta, \gamma \in \mathbb{F}_{q^2}\}$. Since

$$M(\alpha, \beta, \gamma) \cdot M(\alpha', \beta', \gamma') = M(\alpha \alpha', \alpha \beta' + \beta \alpha^{-1}, \alpha \gamma' + \beta \beta' + \gamma \alpha^{-q})$$

it follows that L is a subgroup of $SL_3(q^2)$. Also it is a straightforward exercise to show that $M(\alpha, \beta, \gamma) \in G$ if and only if $tr(\alpha \gamma^q) = N(\beta)$. In particular

$$N := G \cap L = \{M(\alpha, \beta, \gamma) : \alpha \in \mathbb{F}_{q^2}^*, \beta, \gamma \in \mathbb{F}_{q^2}, \ tr(\alpha \gamma^q) = N(\beta)\}.$$

Let us fix elements $\alpha \neq 0$ and β in \mathbb{F}_{q^2}. Then there are exactly q different $x \in \mathbb{F}_{q^2}$ such that $tr(x) = N(\beta)$. As for each such x there is a unique $\gamma \in \mathbb{F}_{q^2}$ such that $\alpha \gamma^q = x$, we get that $|N| = q^3(q^2 - 1)$.

Next we present two homomorphisms on N. First consider the map

$$\varphi_1 : N \rightarrow N : M(\alpha, \beta, \gamma) \mapsto M(\alpha, 0, 0).$$

Then φ_1 is a homomorphism by (1). Moreover the kernel of φ_1 is given by

$$S := \{M(1, \beta, \gamma) : \beta, \gamma \in \mathbb{F}_{q^2}, \ tr(\gamma) = N(\beta)\}.$$
Since \(|S| = q^3\), it follows that \(S\) is a Sylow-2-subgroup of both \(G\) and \(N\).

Next consider \(\varphi_2: N \rightarrow N: M(\alpha, \beta, \gamma) \mapsto M(N(\alpha), 0, 0)\). As the norm is multiplicative, \(\varphi_2\) is a homomorphism, by (1). The kernel is

\[
C := \{M(\alpha, \beta, \gamma): \alpha, \beta, \gamma \in \mathbb{F}_q^2, \ N(\alpha) = 1, \ \text{tr}(\alpha \gamma^i) = N(\beta)\}.
\]

Therefore \(N/C \cong C_{q-1}\) and \(|C| = q^3(q + 1)\).

As is common let \(N_G(U)\) denote the normalizer of \(U\) in \(G\), if \(U \leq G\).

Lemma 2.1. Let \(g \in G\). Then \(S \cap gSg^{-1} = 1_G\) if and only if \(g \in G \setminus N\). In particular, \(N = N_G(S)\).

Proof. Since \(S\) is normal in \(N\) it is enough to show that \(S \cap gSg^{-1} \neq 1_G\) implies \(g \in N\). So let \(g = (a_{ij}) \in G\) such that \(S \cap gSg^{-1} \neq 1_G\). Then there exists \(1_G \neq M(1, \beta, \gamma) \in S \cap gSg^{-1}\). As \(N(\beta) = \text{tr}(\gamma)\) it follows that \(\gamma \neq 0\). Furthermore there is \(1_G \neq M(1, \beta', \gamma') \in S\) such that \(M(1, \beta, \gamma) \cdot g = g \cdot M(1, \beta', \gamma')\). By comparing the first and second columns on either side we see that \(g\) is an upper triangular matrix. Now \(g \in N\) can be derived from the fact that \(g^T A g = A\). (Note that \(\alpha_{11}\alpha_{22}\alpha_{33} = 1\).

One can show that also \(N = N_G(C)\). However we do not require this result and omit a proof here. The following result is a consequence of \(G\) having a BN-pair (for details see [1]), where our \(N\) and the group generated by the matrix \(A\) make up the pair.

Lemma 2.2. There are two \((N, N)\)-double cosets in \(G\), which are \(N\) and \(NAN\). Furthermore \(N \cap ANA^{-1} = \{M(\alpha, 0, 0): \alpha \in \mathbb{F}_q^*\}\).

Next we count the involutions in \(G\). Let \(M(1, \beta, \gamma) \in S\). Then \(M(1, \beta, \gamma)^2 = M(1, 0, N(\beta))\), by (1). Note that \(N(\beta) = \text{tr}(\gamma) = 0\) iff \(\beta = 0\) and \(\gamma \in \mathbb{F}_q^*\). Hence \(\{M(1, 0, \gamma): \gamma \in \mathbb{F}_q^*\}\) are all involutions in \(S\). Next take \(\gamma, \gamma' \in \mathbb{F}_q^*\) and let \(\alpha \in \mathbb{F}_q^*\) such that \(N(\alpha) = \gamma' \gamma^{-1}\). Note that such an \(\alpha\) always exists. Then \(M(\alpha, 0, 0) \cdot M(1, 0, \gamma) \cdot M(\alpha, 0, 0)^{-1} = M(1, 0, \gamma')\), by (1). Hence all involutions in \(S\) are \(G\)-conjugate, and thus all involutions in \(G\) lie in the same conjugacy class. Moreover Lemma 2.1 implies that two different Sylow-2-subgroups of \(G\) intersect trivially. As there are \(|G: N_G(S)| = |G : N| = q^3 + 1\) Sylow-2-subgroups of \(G\) we conclude that there are \((q^3 + 1)(q - 1)\) involutions forming one conjugacy class.

We consider the involution \(T := M(1, 0, 1)\). As usual let \(C_G(T)\) denote its centralizer in \(G\) and \(\text{Cl}_G(T)\) its conjugacy class in \(G\).

Lemma 2.3. We have \(\mathcal{I} = \text{Cl}_G(T)\) and \(C = C_G(T)\). In particular \(k\mathcal{I} \cong k_C\).

Proof. It remains to show that \(C = C_G(T)\). Using (1) it follows easily that \(C \subseteq C_G(T)\). As \(|C_G(T)| = |G|/|\text{Cl}_G(T)| = q^3(q + 1)\) the proof is complete.
Note that since \(S \) is a trivial intersection group and normal in \(C \), every component of \(kI \) is either projective or has vertex \(S \).

Finally observe that \(Z(G) = \{ \alpha \cdot 1 : \alpha \in \mathbb{F}_{q^2}, \alpha^3 = 1 = \alpha^{q+1} \} \). Therefore \(|Z(G)| = \varepsilon \) and \(|\text{PSU}(3, q^2)| = q^3(q^2 - 1)(q^3 + 1)/\varepsilon \), where \(\varepsilon := \gcd(3, q + 1) \). In particular \(Z(G) \) is of odd size. As the \(Z(G) \) acts trivially on the involutions by conjugation it follows that the involution module of \(G \) is the inflation of the involution module of \(\text{PSU}_3(q^2) \), w.r.t. the canonical epimorphism \(\text{SU}_3(q^2) \to \text{PSU}_3(q^2) \). Hence in order to understand the latter it is sufficient to study the former.

3. The irreducible \(kN \)-modules

Recall that \(S \) is normal in \(N \). By Clifford theory the irreducible \(kN \)-modules are inflated from the irreducible \(kN/S \)-module w.r.t. the epimorphism \(N \to N/S \) induced by \(\varphi_1 \) as given in (2). Since \(N/S \cong H := \{ M(\alpha, 0, 0) : \alpha \in \mathbb{F}_{q^2}^* \} \) is cyclic of order \(q^2 - 1 \) we can describe the irreducible \(kN \)-modules as follows.

For \(j \in \{0, 1, \ldots, q^2 - 2\} \) let \(V_j \) be a one-dimensional \(k \)-vector space where

\[
M(\alpha, \beta, \gamma) \cdot \omega = M(\alpha, 0, 0) \cdot \omega := \alpha^j \cdot \omega,
\]

for all \(M(\alpha, \beta, \gamma) \in N \) and \(\omega \in V_j \). The various \(V_j \) give all irreducible \(kN \)-modules.

Often we use an alternative representation of the irreducible \(kN \)-modules. Let \(F := \{0, 1, \ldots, 2f - 1\} \). Then for \(I \subseteq F \) we define

\[
n(I) := \sum_{i \in I} 2^i.
\]

Note the bijection \(I \leftrightarrow n(I) \), between the subsets \(I \) of \(F \) and \(\{0, 1, \ldots, q^2 - 1\} \). We define \(V_J := V_{n(J)} \), for all \(J \subseteq F \). Since \(n(F) \equiv 0 \mod (q^2 - 1) \), we have \(V_F = V_0 = k_N \).

Overall the irreducible \(kN \)-modules are given by \(V_J := V_{n(J)} \), for all \(J \subseteq F \).

Let \(\tau_J \) or \(\tau_{n(J)} \) denote the Brauer character and \(V_J^* \) the dual of \(V_J \). Observe that \(V_J \otimes V_{F \setminus J} \cong k_N \), and thus

\[
V_J^* \cong V_{\overline{J}}, \quad \text{where } \overline{J} := F \setminus J.
\]

4. The irreducible \(kG \)-modules

In this section we focus on the irreducible \(kG \)-modules. They are described in detail in [2]. Still let \(F := \{0, 1, \ldots, 2f - 1\} \) and take \(t \in F \). Let \(M \cong k^3 \) with the natural \(G \)-structure. Next we define \(M_t \cong k^3 \) as the \(kG \)-module, where \(X \) acts on \(M_t \) as \(X^{(t)} \) acts on \(M \). By \(X^{(t)} \) we denote the matrix that derives from \(X \) by raising each entry to the power \(2^t \). Next, for \(t = 0, \ldots, f - 1 \), we have

\[
M_t \otimes M_{t+f} \cong k_G \oplus M_{(t,t+f)}, \quad \text{as } kG \text{-modules},
\]
where $M_{0,t+f}$ is irreducible and has dimension 8.

For every $I \subseteq F$ we define the sets

$$
I_p := \{ t \in \{0, 1, \ldots, f-1\} : t, t+f \in I \},
$$

$$
I_s := \{ t \in I : t+f \notin I \},
$$

$$
f(I) := \{ t+f : t \in I \},
$$

$$
R(I) := \{ t \in F : t \in I \text{ or } t+f \in I \}.
$$

It helps to think of F as two rows, with the top row ranging from 0 to $f-1$ and the bottom row ranging from f to $2f-1$. Given $I \subseteq F$ the set I_p contains those integers t from the top row whose counterpart $t+f$ in the bottom row also belongs to I. Hence $\{t, t+f\}$ form a “pair” in I. On the other hand the set I_s gives the “single” elements in I, that is, those integers t in both rows where $t+f$ is not contained in I. Here $t+f$ is to be taken modulo $2f$. Furthermore $f(I)$ is the set of all counterparts of elements in I, whereas $R(I)$ is the union of I and $f(I)$.

Set $M_0 := kG$, and for $I \neq \emptyset$ we define

$$
M_I := \bigotimes_{t \in I_p} M_{0,t+f} \otimes \bigotimes_{t \in I_s} M_t.
$$

As explained in [2] this gives all q^2 irreducible, pairwise non-isomorphic kG-modules.

Recall that the involution module of G is inflated from the involution module of $\overline{G} := G/Z(G)$. Hence if M_I appears in $k\overline{I}$ then $Z(G)$ acts trivially on M_I. So let $\alpha \cdot I \in Z(G) = \{ \alpha \cdot I : \alpha \in F_{q^2}, \ alpha^q = 1 = \alpha^{q+1} \}$. Then $(\alpha \cdot I) \cdot \omega = \alpha^{2^i} \cdot \omega$, for $\omega \in M_I$ and $(\alpha \cdot I) \cdot \omega = \alpha^{2^i+2^{i+1}} \cdot \omega$, for $\omega \in M_{0,t+f}$. Hence, if we use $n(I)$ as defined in (4), we obtain

Corollary 4.1. Let $I \subseteq F$ such that M_I appear in the involution module $k\overline{I}$. Then $\varepsilon | n(I)$, where $\varepsilon = \gcd(3, q + 1)$.

Let φ_I denote the Brauer character of M_I, for $I \subseteq F$, and for every $t \in F$ set $\varphi_t := \varphi_{\{t\}}$. We aim to express $\varphi_1|N$ as a linear combination of the irreducible Brauer characters $\{\tau_J : J \subseteq F\}$ of N. With respect to the basis $\{e_1, e_2, e_3\}$ the action of any $M(\alpha, \beta, \gamma) \in N$ on M_I is given by

$$
\begin{pmatrix}
\alpha^{2^i} & \beta^{2^i} & \gamma^{2^i} \\
(\alpha^{q-1})^{2^i} & (\alpha^{-1} \beta^{q})^{2^i} & (\alpha^{-1})^{2^i}
\end{pmatrix}.
$$

Hence

$$
\begin{align*}
\varphi_1 \downarrow N &= \tau_2^{2^i} + \tau_{2^{i+1}}^{2^i} + \tau_{-2^{i+1}}^{2^i} \\
\end{align*}
$$

(7)
Also one checks easily that the socle of M, \downarrow_N coincides with $V_{(t)}$. This leads to

Lemma 4.2. Let $I \subseteq F$. Then M, \downarrow_N has V_I in its socle.

Finally let M^* denote the dual of some kG-module M. Then for every $t \in F$, we have

(8) \hspace{1cm} M_t^* \cong M_{t+f}$ and $M_{(t,t+f)}^* \cong M_{(t,t+f)}$.

5. The components of $k\mathcal{I}$

In this section we provide a complete decomposition of the involution module $k\mathcal{I}$ of G. By Lemma 2.3 we have $k\mathcal{I} \cong k_C \uparrow^G_C$. Furthermore recall that C is normal in N, where N/C is a cyclic group of order $q - 1$. Hence $k_C \uparrow^N \cong kN/C$ is a direct sum of all irreducible kN-modules on which C acts trivially.

In Section 3 we described the irreducible kN-modules. By (3) we know that $M(\alpha, \beta, \gamma) \cdot \omega = \alpha^{p(J)} \cdot \omega$, for all $M(\alpha, \beta, \gamma) \in C$ and $\omega \in V_J$. Hence C acts trivially on V_J if $J = \emptyset$, as then $n(J) = \sum_{i \in I} 2^i = (q + 1) \cdot \sum_{i \in I} 2^i$. Since there are exactly $q - 1$ different $J \subseteq F$ with $J = \emptyset$ we conclude that $k_C \uparrow^N \cong \bigoplus_{J \subseteq F, J = \emptyset} V_J$. In particular

(9) \hspace{1cm} k_C \uparrow^G \cong \bigoplus_{J \subseteq F, J = \emptyset} V_J \uparrow^G.

Moreover we have $V_0 \uparrow^G = k_N \uparrow^G = kG \oplus X$, where X is a q^3-dimensional kG-module. Hence there are at least q indecomposable summands in $k_C \uparrow^G$. Furthermore observe that k_N appears in the socle of $M_F \downarrow_N$, by Lemma 4.2. Hence M_F appears in the head of $k_N \uparrow^G$. Consequently $X = M_F$. Using Lemma 2.2 we see that $M_F \downarrow_N = k_H \uparrow^N$, where $H = \{M(\alpha, 0, 0); \alpha \in \mathbb{F}_q^*\}$. Since H is a 2' group we know that $k_H \uparrow^N$ is projective. Then, as N contains a Sylow-2-subgroup of G, we conclude that M_F is projective. In fact M_F is known as the Steinberg module.

In the following we show that our q summands of $k\mathcal{I}$ are all indecomposable.

Lemma 5.1. Let $J \subseteq F$ so that $J = \emptyset$. Then $\text{Hom}_{kG}(V_J \uparrow^G, V_J \uparrow^G)$ is one-dimensional, unless $J = \emptyset$ in which case it is two-dimensional. In particular, $V_J \uparrow^G$ is indecomposable if $J \neq \emptyset$, and $V_0 \uparrow^G \cong k_G \oplus M_F$.

Proof. By Lemma 2.2 we know that the (N, N)-double cosets in G are given by \{N, N\}, and furthermore $N \cap ANA^{-1} = H = \{M(\alpha, 0, 0); \alpha \in \mathbb{F}_q^*\}$. Now let $J \subseteq F$. Then, by Mackey’s lemma,

\[(V_J \uparrow^G) \downarrow_N = \bigoplus_{s \in N \setminus G/N} (s(V_J)N \downarrow_{sNs^{-1}}) \uparrow^N = V_J \oplus (A \cdot V_J)H \uparrow^N. \]
We claim that $A \cdot V_J \cong V_\overline{J}$ as kH-modules, where $\overline{J} := F \setminus J$. Let $\omega \in A \cdot V_J$ and $\alpha \in F_q^*$. Then

$$M(\alpha, 0, 0) \cdot \omega = (A \cdot M(\alpha^{-q}, 0, 0) \cdot A^{-1}) \cdot \omega = \alpha^{-q n(J)} \cdot \omega = \alpha^n \cdot \omega,$$

since $-qn(J) = -q \sum_{i \in I} 2^i = \sum_{i \in I} -2^{i+j} \equiv n(J) \mod (q^2 - 1)$. Therefore

\begin{equation}
(10) \quad (V_J \uparrow^G) \downarrow_N = V_J \oplus (V_\overline{J})_H \uparrow^N.
\end{equation}

Next let $I \not\subset F$ such that V_I appears in the socle of $(V_\overline{J})_H \uparrow^N$. Then by Frobenius reciprocity it follows that $V_\overline{J} \cong V_I$, as kH-modules, and thus as kN-modules. Therefore

\begin{equation}
(11) \quad \text{soc}((V_\overline{J})_H \uparrow^N) = V_I.
\end{equation}

As $\dim \text{Hom}_k(G(V_J \uparrow^G, V_J \uparrow^G) = \dim \text{Hom}_k(N(V_J, (V_J \uparrow^G) \downarrow_N)$ the statement follows from (10) and (11).

The following proposition summarizes the complete decomposition of $kC \uparrow^G$ into indecomposable modules.

Proposition 5.2. The involution module $k\underline{I}$ has q components and its decomposition is

$$k\underline{I} \cong k^C \uparrow^G \cong k_G \oplus M_F \bigoplus \bigoplus_{\emptyset \neq J \not\subset F, I = \emptyset} V_J \uparrow^G.$$
6. The composition factors of $k\mathcal{I}$

In this section we investigate the composition factors of $k\mathcal{I}$. In Theorem 6.6 we present a formula to calculate the multiplicity of each irreducible kG-module in $k\mathcal{I}$. Finally we study a combinatorial method to determine the numbers involved in Theorem 6.6.

First we look at the components of the projective module $M_F \otimes M_I$, for $I \subseteq F$. In [2] Burkhardt determines these components. Consider the following properties (P1)–(P5).

Let $I, J \subseteq F$ and set $X := f(I) \cap J$:

(P1) $f(I) \cup J = F$,
(P2) $X_s \neq \emptyset$,
(P3) $R(X) = F$,
(P4) between any two elements of X_s there is an even number of elements in $R(X_p)$,
(P5) between any element of X_s and any element of $f(X_s)$ there is an odd number of elements in $R(X_p)$.

Definition 6.1. Let $I, J \subseteq F$. We say J is of type I, if I and J satisfy the properties (P1)–(P5). Furthermore by $\mathcal{T}(I)$ we mean the set of all sets $J \subseteq F$ that are of type I.

Lemma 6.2. Let $I, J \subseteq F$ such that J is of type I. Then

(Q1) $R(I) = F = R(J)$,
(Q2) $R(I_s) \subseteq J$,
(Q3) $I \neq F$ or $J \neq F$,
(Q4) $|(f(I) \cap J)_p|$ is odd.

Proof. Observe that (P3) implies (Q1). As $I_s \subseteq J$, by (P1) and $f(I_s) \subseteq J$, by (P3), we obtain (Q2). Next (Q3) follows from (P2), and (Q4) is a consequence of (P2) and (P5).

Before we present Burkhardt’s result on the components of $M_F \otimes M_I$, we need the following lemma. For $I \subseteq F$ we define $N(I) := \overline{R(I)}$, that is, $N(I) = \{t \in F: t, t + f \not\in I\}$.

Lemma 6.3. Let $I, J \subseteq F$. Then $f(I) \cup J = F$ and $(f(I) \cap J)_s = \emptyset$ if and only if there is some $A \subseteq I_p$ such that $J = I_s \cup N(I) \cup R(A)$. Also in this case $A = I_p \cap J_p$.

Proof. Observe that F is the disjoint union of I_s, $f(I_s)$, $R(I_p)$ and $N(I)$. Also note that $f(I) \cup J = F$ implies $I_s \cup N(I) \subseteq J$. Since $\emptyset = (f(I) \cap J)_s = (f(I_s) \cap J)_s \cup (R(I_p) \cap J)_s = (f(I_s) \cap J) \cup (R(I_p) \cap J_s)$ we obtain $(f(I_s) \cap J) = \emptyset$ and $R(I_p) \cap J_s = \emptyset$. The former gives $J = I_s \cup N(I) \cup (R(I_p) \cap J)$, while the latter implies that $R(I_p) \cap J = R(I_p) \cap R(J_p) = R(I_p \cap J_p)$. Overall we get $J = I_s \cup N(I) \cup R(A)$, where $A := I_p \cap J_p$.
Now suppose that $J = I_1 \cup N(I) \cup R(A)$, for some $A \subseteq I_p$. Then clearly $f(I) \cup J = F$, and since $f(I) \cap J = R(A)$, we obtain $(f(I) \cap J)_p = \emptyset$.

For any $I \subseteq F$, let P_I denote the projective cover of M_I. Then the following corollary is a consequence of [2, (31)] and Lemma 6.3.

Corollary 6.4. Let $I \subsetneq F$. Then

$$M_F \otimes M_I = \bigoplus_{A \subseteq I_p} 2^{[\alpha]} P_{L_{\cup N(I) \cup R(A)}} \otimes \bigoplus_{J \in T(I)} 2^{[J_p \cap J]} p_J,$$

$$M_F \otimes M_F = m \cdot M_F \oplus \bigoplus_{A \subseteq F_p} 2^{[\alpha]} P_{R(A)} \oplus \bigoplus_{J \in T(F)} 2^{[J]} p_J,$$

where $m = 1$ if f is even and $m = 2^{f+1} + 1$ if f is odd.

For $I \subseteq F$ we define the Brauer character $\alpha_I := \varphi_I \downarrow_N$. Then for $t \in F$, we have $\alpha_t := \alpha_{\{t\}} = 2\tau_t + 2\tau_{t+2} + \tau_{-2\tau_t}$, by (7), and $\alpha_{t,t+f} := \alpha_{\{t,t+f\}} = \alpha_t \cdot \alpha_{t+f} - \tau_{0}$, by (6). Hence the multiplicity of τ_{0} in $\alpha_{t,t+f}$ equals 2, and thus we can define $\beta_I := \alpha_{t,t+f} - 2\tau_{0}$. For non-empty $I \subseteq F$ we define $\beta_I := \prod_{t \in I_p} \beta_t$, while $\beta_{\emptyset} := \tau_{0}$. Then

$$(\varphi_F \varphi_I) \downarrow_N = \alpha_F \cdot \alpha_{I_p} \cdot \prod_{t \in I_p} (\beta_t + 2\tau_{0}) = \sum_{A \subseteq I_p} 2^{[\alpha]} \cdot \alpha_F \cdot \alpha_{I_p} \cdot \beta_{I_p \setminus A}.$$

Furthermore, for every $I \subseteq F$, we denote the Brauer character of $P_I \downarrow_N$ by χ_I.

Lemma 6.5. Let $\emptyset \neq I \subseteq F$. Then

$$\chi_I = \alpha_F \cdot \alpha_{I_p} \cdot \beta_{N(I)_p} = \sum_{J \in T(I \cup N(I))} 2^{[N(I)_p \cap J]} \cdot \chi_J,$$

$$\chi_{\emptyset} = \alpha_F \cdot \beta_{F_p} - m \cdot \chi_F = \sum_{J \in T(F)} 2^{[J]} \cdot \chi_J,$$

where $m = 1$ if f is even and $m = 2^{f+1} + 1$ if f is odd.

Proof. Let $\emptyset \neq I \subseteq F$. Then

$$(\varphi_F \cdot \varphi_{I \cup N(I)}) \downarrow_N = \sum_{A \subseteq N(I)_{p}} 2^{[\alpha]} \cdot \chi_I \downarrow_{R(A)} + \chi_I + \sum_{J \in T(I \cup N(I))} 2^{[N(I)_p \cap J]} \cdot \chi_J$$

$$= (\varphi_F \cdot \varphi_{I \cup N(I)}) \downarrow_N = \sum_{A \subseteq N(I)_{p}} 2^{[\alpha]} \cdot \alpha_F \cdot \alpha_{I_p} \cdot \beta_{N(I)_p \setminus A},$$

where the equalities follow from Corollary 6.4 and (12), respectively. Next take $\emptyset \neq A \subseteq N(I)_p$, and let $X := I_0 \cup N(I) \setminus R(A)$. Then $X_p = N(I)_p \setminus A$, $X_{\emptyset} = I_0$, and $N(X) = A$.
$R(I_p) \cup R(A)$. Furthermore $R(X) \neq F$, and consequently there is no set of type X, as property (Q1) is violated. Applying both Corollary 6.4 and (12) to $(\varphi_F \varphi_X)_{\downarrow N}$ we get

$$\sum_{B \subseteq N(I)_p \setminus A} 2^{\left| B \right|} \cdot \chi_{I \cup R(A) \cup R(B)} = \sum_{B \subseteq N(I)_p \setminus A} 2^{\left| B \right|} \cdot \alpha_F \cdot \alpha_L \cdot \beta_{N(I)_p \setminus A(B)}.$$

Now by induction over $|N(I)_p \setminus A|$ we conclude that $\alpha_F \cdot \alpha_L \cdot \beta_{N(I)_p \setminus A} = \chi_{I \cup R(A)}$. Therefore (13) reduces to

$$\alpha_F \cdot \alpha_L \cdot \beta_{N(I)_p} = \chi_I + \sum_{J \in T(I \cup N(I))} 2^{|N(I)_p \cap J|} \cdot \chi_J.$$

This proves the first part of the lemma. The second part is proven similarly.

For two characters φ_1 and φ_2 let $\#(\varphi_1, \varphi_2)$ denote the multiplicity of φ_1 in φ_2. Likewise for modules M_1 and M_2 let $\#(M_1, M_2)$ denote the multiplicity of M_1 in M_2. For $I \subseteq F$ we define

$$m_I := \sum_{K \subseteq F, K \neq \emptyset} \#(\tau_K, \alpha_L \cdot \beta_{I_p}).$$

Theorem 6.6. Let $\emptyset \neq I \subseteq F$ and $m = 1$ if f is even and $m = 2^{f+1} + 1$ if f is odd. Then

$$\#(M_I, k_C \uparrow^G) = m_{I \cup N(I)} - \sum_{J \in T(I \cup N(I))} 2^{|N(I)_p \cap J|} \cdot m_J,$$

$$\#(M_\emptyset, k_C \uparrow^G) = m_F - m - \sum_{J \in T(F)} 2^{|J|} \cdot m_J.$$

Proof. First let $J \subseteq F$ be of some type $L \subseteq F$. We claim that $\chi_J = \alpha_F \cdot \alpha_J$. By (Q1) we have $R(J) = F$. Hence $N(J) = \emptyset$ and $J \neq \emptyset$. Also $T(J \cup N(J)) = \emptyset$. This is true since $J_s \cup N(J) = J_s$ and $(f(J_s) \cap K)_p = \emptyset$, for any $K \subseteq F$, which then violates property (Q4). Overall the claim now follows from Lemma 6.5.

Next let $\emptyset \neq I \subseteq F$. By Lemma 6.5 and the above paragraph we obtain

$$\chi_I = \alpha_F \cdot \left(\alpha_L \cdot \beta_{N(I)_p} - \sum_{J \in T(I \cup N(I))} 2^{|N(I)_p \cap J|} \cdot \alpha_J \right),$$

$$\chi_\emptyset = \alpha_F \cdot \left(\beta_{F_p} - m \cdot \tau_{\emptyset} - \sum_{J \in T(F)} 2^{|J|} \cdot \alpha_J \right).$$

Now let $K \subseteq F$ so that $K_s = \emptyset$. Then $\#(M_I, V_K \uparrow^G)$ coincides with the dimension of $\text{Hom}_{K}(V_K \uparrow^G, P_I) \cong \text{Hom}_{K \cap N}(V_K, P_I \downarrow N)$. As $M_F \downarrow N \otimes V_K$ is the projective cover of V_K
we get that $\#(M_I, V_K \uparrow^G)$ equals the multiplicity of $M_F \downarrow_N \otimes V_K$ as a direct summand of $P_I \downarrow_N$. The Brauer character of $M_F \downarrow_N \otimes V_K$ is given by $\alpha_F \cdot \tau_K$, and thus we obtain

$$\#(M_I, V_K \uparrow^G) = \# \left(\tau_K \cdot \alpha_I \cdot \beta_{N(I)}^p - \sum_{J \in T(I \cup N(I))} 2^{I(N(I))} \cdot \alpha_J \right),$$

$$\#(M_\emptyset, V_K \uparrow^G) = \# \left(\tau_K \cdot \beta_p - \sum_{J \in T(F)} 2^{I(J)} \cdot \alpha_J \right).$$

As $\#(M_I, k_C \uparrow^G) = \sum_{K \subseteq F, K \neq \emptyset} \#(M_I, V_K \uparrow^G)$ the proof is complete. \hfill \square

In the following we wish to calculate the number m_I combinatorially.

Definition 6.7. Let $I \subseteq F$. A map $\varsigma: I \to \{1, 2, 3\}$ is called a **solution** of I if

1. $I_1 \cap f(I_1) = I_2 \cap f(I_2) = I_3 \cap f(I_1) = \emptyset$,
2. $\sum_{i \in I_1 \cup I_2} 2^i + \sum_{i \in I_3} 2^{i+1} \equiv 0 \mod (q+1)$,

where $I_j := \{ t \in I : \varsigma(t) = j \}$, for $j = 1, 2, 3$.

Furthermore a solution ς of I with $I_3 = \emptyset$ is called a **basic solution** of I.

Let $I \subseteq F$. Every solution ς of I can be associated to a basic solution of I, by composing ς with the map $\tau: \{1, 2, 3\} \to \{1, 2, 3\}$ such that $\tau(1) = 1 = \tau(3)$ and $\tau(2) = 2$. Note that two solutions ς_1 and ς_2 of I are associated to the same basic solution if and only if ς_1 and ς_2 map the same elements of I onto 2.

Now we can also determine how many solutions of I are associated to a given basic solution ς of I. Note that every time we change certain 1’s in the image of ς to 3’s we obtain a new solution, as long as we make sure to treat pairs $\{ t, t + f \}$ that are both mapped onto 1 equally. Hence if we define $T_\varsigma := \{ t \in \{0, 1, \ldots, f - 1\} : \{ t, t + f \} \cap I_1 \neq \emptyset \}$, then for every subset $P \subseteq T_\varsigma$ we obtain a solution of I that is associated to ς. Overall a basic solution ς has $2^{\#(P) - 1}$ solutions associated to it.

Lemma 6.8. Let $I \subseteq F$. Then m_I equals the number of solutions of I, that is,

$$m_I = \sum 2^{I,F},$$

where the sum is taken over all basic solutions ς of I.

Proof. It is enough to show that m_I equals the number of solutions of I, as the rest of the statement then follows from the previous paragraph.

By definition m_I counts the occurrences of characters of the form τ_K in $\alpha_I \beta_{I,p}$, where $K \subseteq F$ so that $K_s = \emptyset$. Recall that $\alpha_0 = \tau_0^2 + \tau_0^2 \cdot \tau_2^v - \tau_0^2 \cdot \tau_2^v$ and $\beta_0 = \alpha_0 \alpha_{t,f} - 3 \alpha_0$, for $t \in F$. In particular note that in $\alpha_0 \alpha_{t,f}$ the three occurrences of the trivial characters τ_0, derive from multiplying the first summand of α_0 with the third
summand of \(\alpha_{t+f} \), the second summand of \(\alpha_t \) with the second summand of \(\alpha_{t+f} \) and the third summand of \(\alpha_t \) with the first summand of \(\alpha_{t+f} \). Hence for every summand \(\tau_K \) in \(\alpha_I \beta_{I_p} \), we have a disjoint union \(I_1 \cup I_2 \cup I_3 \) of \(I \), where \(I_1 \cap f(I_3) = I_2 \cap f(I_2) = I_3 \cap f(I_1) = \emptyset \), such that

\[
\sum_{i \in K} 2^i \equiv \sum_{i \in I_1} 2^i + \sum_{i \in I_2} (2^{i+f} - 2^i) + \sum_{i \in I_3} -2^{i+f} \mod (q^2 - 1).
\]

On the other hand for every such disjoint union we get a summand \(\tau_K \) in \(\alpha_I \beta_{I_p} \). However we are only interested in those \(K \subseteq F \) with \(K_s = \emptyset \), that is, \(\sum_{i \in K} 2^i \equiv 0 \mod (q + 1) \). Observe that \(\sum_{i \in I_1} -2^{i+f} \equiv \sum_{i \in I_2} 2^i \mod (q + 1) \) and \(\sum_{i \in I_2} (2^{i+f} - 2^i) \equiv \sum_{i \in I_2} 2^{i+1+f} \mod (q + 1) \). Therefore we only count those disjoint unions \(I_1 \cup I_2 \cup I_3 \) of \(I \), where \(I_1 \cap f(I_3) = I_2 \cap f(I_2) = I_3 \cap f(I_1) = \emptyset \) and

\[
\sum_{i \in I_1 \cup I_3} 2^i + \sum_{i \in I_2} 2^{i+1+f} \equiv 0 \mod (q + 1).
\]

As those correspond to the solutions of \(I \), the proof is complete. \(\square \)

Hence in order to determine \(m_I \) we need to find all basic solutions of \(I \). First observe the following

Lemma 6.9. Let \(I \subseteq F \). A map \(\varsigma : I \to \{1, 2\} \) is a basic solution if and only if

- (BS1) \(I_2 \cap f(I_2) = \emptyset \),
- (BS2) \(\sum_{i \in I_2} 2^i \equiv 3 \cdot \sum_{i \in I_2} 2^i \mod (q + 1) \),

where \(I_2 = \{ t \in I : \varsigma(t) = 2 \} \).

Proof. For a basic solution property (S1) can be replaced by (BS1), since \(I_3 = \emptyset \). Next observe that

\[
\sum_{i \in I_2} 2^{i+1+f} \equiv 2 \cdot q \cdot \sum_{i \in I_2} 2^i \equiv -2 \cdot \sum_{i \in I_2} 2^i \mod (q + 1).
\]

Thus (S2) becomes \(\sum_{i \in I} 2^i \equiv 3 \cdot \sum_{i \in I_2} 2^i \mod (q + 1) \). But as \(\sum_{i \in I} 2^i = \sum_{i \in I_p} 2^i + \sum_{i \in I_p} (2^i + 2^{i+f}) = \sum_{i \in I_p} 2^i + (q + 1) \cdot \sum_{i \in I_p} 2^i \) it follows that for basic solutions (S2) and (BS2) are equivalent. \(\square \)

Observe that we have confirmed Corollary 4.1. Let \(\varepsilon = \gcd(3, q + 1) \) and suppose \(M_I \) appears in \(k_C \uparrow \hat{G} \), for some \(I \subseteq F \). Then by Theorem 6.6, we have \(m_{I_2 \cup N(I)} \geq 1 \). Thus by Lemma 6.8 there is a basic solution of \(I_2 \cup N(I) \). But now Lemma 6.9 (ii) implies that \(\varepsilon \) divides \(n(I) \). As \(n(I) \) and \(n(I_p) \) are congruent modulo \(q + 1 \), they are also congruent modulo \(\varepsilon \). Consequently \(\varepsilon \mid n(I) \), which is the statement of Corollary 4.1.
In the following we explain how to find all basic solutions for a given $I \subseteq F$ using Lemma 6.9. For instance let $f = 5$, and consider F as two rows

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 & 9
\end{array}
\]

Next let $I = \{0, 1, 2, 3, 4, 5, 8, 9\}$, which is given by

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
5 & 8 & 8 & 9
\end{array}
\]

By Lemma 6.9 our aim is to find subsets I_2 of I such that $\sum_{t \in I_2} 2^t \equiv 3 \cdot \sum_{t \in I_2} 2^t \mod (q + 1)$, where I_2 contains from each column at most one element. Since in our example $\sum_{t \in I_2} 2^t = 2 + 8 = 6$, we are looking for solutions of the linear congruence $6 \equiv 3x \mod 33$. The following image shows the powers of 2 modulo $q + 1$ that can be obtained

\[
\begin{array}{cccc}
2^0 & 2^1 & 2^2 & 2^3 & 2^4 \\
-2^0 & -2^1 & -2^2 & -2^3 & -2^4
\end{array}
\]

As x is the sum of at most one entry from each column, we get the upper bound $M = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 = 31$ and the lower bound $m = -2^0 - 2^3 - 2^4 = -25$ for x. One checks easily that $6 \equiv 3x \mod 33$ has five solutions between -25 and 31, which are -20, -9, 2, 13 and 24. However it is difficult to see if we have found all possibilities of writing, say -20, as a sum of the available powers of two. Thus we propose the following technique.

We start by allocating all entries of the lower row to I_2, that is, $\{5, 8, 9\}$ in our case. Then $x = -25$, which is not what we want. Now every time we remove an entry from I_2 we have to add the respective power of 2 to -25. For instance if we remove 9 we have to add 2^4. Likewise we may include entries form the first row. For instance 2, which means we have to add 2^2. We could also wish to include 4. As this would also force us to remove 9 first we have to add 2^4 for the removal of 9 and 2^1 for the inclusion of 4, that is, 2^5 altogether. The following table shows the change we cause to x by including elements of the top row or removing elements from the bottom row.

\[
\begin{array}{cccc}
2^1 & 2^2 & 2^3 & 2^4 \\
2^0 & \cdot & \cdot & 2^4
\end{array}
\]

So let us start with $x_0 = -20$. Initially we have $I_2 = \{5, 8, 9\}$. In order to get form -25 to -20 we need to add $5 = 2^0 + 2^2$. Observe that the only way to get 2^0 is to remove 5 from I_2, (and not include 0). Now the only way to get 2^2 is by including 2. We get $I_2 = \{2, 8, 9\}$, which we represent as follows

\[
\begin{array}{cccc}
1 & 1 & 2 & 1 \\
1 & \cdot & \cdot & 2
\end{array}
\]
Next let $x_0 = -9$. The difference $16 = 2^4$ can be obtained in three different ways. Firstly by including 3, which involves the removal of 8. Secondly by removing 9 and thirdly by removing 8 and including 0, 1, 2, since $2^4 = 2^3 + 2^2 + 2^1 + 2^1$. Overall we have three basic solutions as follows

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & \cdot & \cdot & 1 \\
\end{array} \quad \begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & \cdot & \cdot & 1 \\
\end{array} \quad \begin{array}{cccc}
2 & 2 & 2 & 1 \\
1 & \cdot & \cdot & 1 \\
\end{array}
\]

Now let $x_0 = 2$. Then $| -25 - 2| = 27 = 2^0 + 2^1 + 2^3 + 2^4$. Here there is only one basic solution, which is

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \cdot & \cdot & 1 \\
\end{array}
\]

For $x_0 = 13$ we have $| -25 - 13| = 38 = 2^1 + 2^2 + 2^5$. There are two possibilities of 2^1. Also with one 2^1 gone there is only one possibility to obtain 2^2. Finally $2^5 = 2^4 + 2^1$ can be obtained in two different ways, leading to the four basic solutions

\[
\begin{array}{cccc}
2 & 1 & 2 & 1 \\
1 & \cdot & \cdot & 2 \\
\end{array} \quad \begin{array}{cccc}
2 & 1 & 2 & 1 \\
1 & \cdot & \cdot & 1 \\
\end{array} \quad \begin{array}{cccc}
2 & 2 & 2 & 1 \\
1 & \cdot & \cdot & 1 \\
\end{array}
\]

Finally let $x_0 = 24$. Then $| -25 - 24| = 49 = 2^0 + 2^4 + 2^5$. There is only one way to obtain this sum and we get

\[
\begin{array}{cccc}
1 & 2 & 1 & 1 \\
1 & \cdot & \cdot & 1 \\
\end{array}
\]

Hence we have found all basic solutions of I. Finally the number of solutions associated to each basic solution depends on the number of columns that contain a 1, as in each such column all the 1’s may be changed to 3’s. Going through all basic solutions given above we obtain

\[
(14) \quad m_f = 2^4 + 2^5 + 2^3 + 2^3 + 2^4 + 2^4 + 2^3 + 2^3 + 2^5 = 184.
\]

In the above example we have $I_s = \{1, 2\}$. Next let $I' \subseteq F$ such that $I_s' = \{1, 2\}$. Note that then $I' \subseteq I$. We can use the above results to calculate $m_{I'}$. Take for instance $I' = \{0, 1, 2, 5\}$. A basic solution for I' becomes a basic solution for I, by sending all elements in $I\setminus I'$ onto one. The only basic solution for I where $\{3, 4, 8, 9\}$ is mapped onto one is when $x = 2$. Hence the only basic solution for I' is

\[
\begin{array}{cccc}
1 & 2 & 1 & \cdot \\
1 & \cdot & \cdot & \cdot \\
\end{array}
\]
Consequently we have \(m_f = 2^2 = 4 \).

Finally let us characterize those sets \(I \subseteq F \) that have a basic solution.

Definition 6.10. Let \(U \subseteq F \). We call \(U \) a \emph{U-form}

1. of length zero, if \(U = \{ t, t + f \} \), for some \(t \in F \),
2. of length one, if \(U = \{ t, t + 1 \} \), for some \(t \in F \),
3. of length \(n \geq 2 \), if there is \(H \subseteq H(t, n) \setminus \{ t \} \), for some \(t \in F \), such that \(U = (H(t, n) \setminus H) \cup (f(H) - 1) \) is a disjoint union, where \(H(t, n) = \{ t, t + n \} \cup \{ t + 1 + f, \ldots, t + n - 1 + f \} \).

Theorem 6.11. Let \(I \subseteq F \). Then \(I \) has a basic solution if and only if \(I \) is the disjoint union of \(U \)-forms.

Proof. First suppose that \(I \) has a basic solution \(\zeta \). We argue by induction on \(|I|\) that \(I \) is a disjoint union of \(U \)-forms. This is clear if \(|I| = 0 \), and thus in the following let \(|I| \geq 1 \).

Define \(X := I_1 \cup (f(I_2) + 1) \) and \(Y := I_1 \cap (f(I_2) + 1) \). By property (S2) there is some \(K \subseteq F \), such that \(K_t = \emptyset \) and

\[
\sum_{t \in K} 2^t = \sum_{t \in I_1} 2^t + \sum_{t \in I_2} 2^{t+1+f} = \sum_{t \in X} 2^t + \sum_{t \in Y} 2^t \mod (q^2 - 1).
\]

First suppose that \(Y = \emptyset \). Then \(X = K \). If \(I_2 = \emptyset \), then there is some \(t \in I_1 \) so that \(U = \{ t, t + f \} \subseteq I \). If \(I_2 \neq \emptyset \), then there is some \(t \in I_2 \) such that \(t + 1 \in K \). Note that by (S1) we have \(t + 1 \in I_1 \) and thus \(U = \{ t, t + 1 \} \subseteq I \). In both cases \(U \) is a \(U \)-form such that \(\zeta \) is a basic solution on \(I \setminus U \). Now by induction \(I \setminus U \) is a disjoint union of \(U \)-forms, and thus so is \(I \). Hence we may assume that \(Y \neq \emptyset \).

Set \(T := (f(Y) - 1) = \{ t_1, \ldots, t_r \} \), that is, \(T \) contains all \(t \in I_2 \) such that \(t + 1 + f \in I_1 \). For each \(i \in \{ 1, \ldots, r \} \) let \(n_i \geq 2 \) be maximal such that \(\{ t_i + 2 + f, \ldots, t_i + n_i - 1 + f \} \subseteq X \setminus Y \). We set \(S_i := \{ t_i + 1 + f, \ldots, t_i + n_i - 1 + f \} \). Then \(S_i \subseteq X \).

Next we claim that \(S_i \cap S_j = \emptyset \), for all \(i \neq j \). Assume otherwise. Then there is \(a \in S_i \cap S_j \) so that \(a - 1 \in (S_i \cup S_j) \setminus (S_i \cap S_j) \). Without loss of generality let \(a - 1 \in S_i \setminus S_j \). Then \(t_j = a - 1 + f \) and thus \(a \in Y \), contradicting \(a \in S_i \). That proves the claim.

Let \(S = \bigcup_{i=1}^r S_i \). Since \(2^{t_i+1+f} + \sum_{t \in S_i} 2^t \equiv 2^{t_i+n_i+f} \mod (q^2 - 1) \), we get

\[
\sum_{i \in K} 2^t = \sum_{i \in I_1 \setminus S} 2^t + \sum_{i \in (f(I_2) + 1) \setminus S} 2^t + \sum_{i=1}^r 2^{t_i+n_i+f} \mod (q^2 - 1).
\]

Note that the maximality of \(T \) ensures that the first two sums have no power of 2 in common, and the maximality of \(n_i \) ensures that the last sum has no power of 2 in common with the first two sums. Hence \(t_1 + n_1 + f \in K \), and thus \(a := t_1 + n_1 \in K \).
Assume \(a \notin X \). Then \(a = t_i + n_i + f \), for some \(i \in \{2, \ldots, r\} \). Note that \(n_1 \neq n_i \), as otherwise \(t_1 = t_i + f \in I_2 \cap f(I_2) \), in contradiction to (S1). If \(n_1 < n_i \), then \(t_1 = t_i + n_i - n_1 + f \). As \(n_1 \geq 2 \), we have \(t_1 + 1 \in S_i \subseteq X \). But \(t_1 + 1 \notin f(I_2) + 1 \), by (S1), and thus \(t_1 + 1 \in I_1 \). Hence \(U = \{t_1, t_1 + 1\} \) is a \(U \)-form such that \(\zeta \) is a basic solution on \(I \setminus U \). Likewise if \(n_1 < n_i \), then \(t_i + 1 \in I_1 \) and \(U = \{t_i, t_i + 1\} \) is a \(U \)-form such that \(\zeta \) is a basic solution on \(I \setminus U \). Hence in the following we may assume that \(t_1 + n_1 \in X \).

Now let \(t = t_1 \) and \(n = n_1 \). Set \(H := (H(t,n) \setminus \{t, t + 1 + f\}) \cap (f(I_2) + 1) \). Then \(H \subseteq H(t,n) \setminus \{t\} \). We claim that \((H(t,n) \setminus H) \cap (f(H) - 1) = \emptyset \). Note that \(f(H) - 1 = I_2 \cap \{t + 1, \ldots, t + n - 2, t + n - 1 + f\} \). Hence \(t + n - 1 + f \) is the only possible element in \(H(t,n) \cap (f(H) - 1) \). In this case we have \(t + n - 1 + f \in I_2 \). In particular \(t + n - 1 + f \notin I_1 \) and so \(t + n - 1 + f \neq t + f + 1 \). Also recall that \(t + n - 1 + f \notin X \setminus Y \). Hence \(t + n - 1 + f \notin f(I_2) + 1 \). Therefore \(t + n - 1 + f \in H \), which proves the claim.

Thus \(U = (H(t,n) \setminus H) \cup (f(H) - 1) \) is a \(U \)-form. Also \(U \subseteq I \), which is clear since all \(x \in H(t,n) \setminus \{t\} \) either belong to \(I_1 \) or to \(f(I_2) + 1 \). Finally \(U \cap I_1 = H(t,n) \setminus (H \cup \{t\}) \) and \(U \cap I_2 = (f(H) - 1) \cup \{t\} \). Since

\[
\sum_{k \in I_1 \cap U} 2^k + \sum_{k \in I_2 \cap U} 2^{k+1+f} \\
= 2^{t+1+f} + \sum_{k \in H(t,n) \setminus (H \cup \{t\})} 2^k + \sum_{k \in f(H) - 1} 2^{k+1+f} \\
= 2^{t+1+f} + \sum_{k \in H(t,n) \setminus \{t\}} 2^k \equiv 2^{t+n} + 2^{t+n+f} \equiv 0 \pmod{(q+1)},
\]

we see that \(\zeta \) is still a basic solution on \(I \setminus U \). Thus, by induction, \(I \) is a disjoint union of \(U \)-forms.

Now suppose that \(I = U_1 \cup \cdots \cup U_r \) is a disjoint union of \(U \)-forms. We define a map \(\zeta \) on each \(U_i \). If \(U_i = \{t, t + f\} \) is of length zero, then set \(\zeta(t) = 1 = \zeta(t + f) \). If \(U_i = \{t, t + 1\} \) is of length one, then \(\zeta(t) = 2 \) and \(\zeta(t + 1) = 1 \). Finally, if \(U_i \) is of length \(n \geq 2 \), that is, \(U = (H(t,n) \setminus H) \cup (f(H) - 1) \), for some \(H \subseteq H(t,n) \setminus \{t\} \), then \(\zeta(x) = 1 \), for all \(x \in H(t,n) \setminus (H \cup \{t\}) \) and \(\zeta(x) = 2 \), for all \(x \in \{(t) \cup (f(H) - 1)\} \). We claim that in each case property (S2) is satisfied on \(U_i \). This is straightforward if \(U \) is of length zero or one. So let \(U \) be of length \(n \geq 2 \). Then

\[
\sum_{k \in I_1 \cap U_i} 2^k + \sum_{k \in I_2 \cap U_i} 2^{k+f+1} \\
= \sum_{k \in H(t,n) \setminus (H \cup \{t\})} 2^k + \sum_{k \in f(H) \setminus (t+f+1)} 2^k \\
\equiv 2^{t+f+1} + \sum_{k \in H(t,n) \setminus \{t\}} 2^k \equiv 2^{t+n+f} + 2^{t+n} \pmod{(q+1)}
\]

Hence (S2) holds on each \(U_i \), and thus on \(I \).
However note that $I_2 \cap f(I_2)$ may not be empty, and thus property (S1) fails to hold. Thus for each $t \in I_2 \cap f(I_2)$ we set $\zeta(t) = 1 = \zeta(t + f)$. Since $2^t + 2^s + f \equiv 2^{t+1} + 2^{t+f+1} \mod (q + 1)$, this does not effect the validity of property (S2). In particular we have constructed a basic solution of I.

We can now construct irreducible M_I that have basic solutions. Take for instance $f = 13$ and consider the union of the following U-forms of

<table>
<thead>
<tr>
<th>a</th>
<th>c</th>
<th>b</th>
<th>b</th>
<th>c</th>
<th>·</th>
<th>·</th>
<th>d</th>
<th>·</th>
<th>d</th>
<th>d</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>·</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>·</td>
<td>d</td>
<td>d*</td>
<td>d*</td>
<td>·</td>
<td>·</td>
<td>d</td>
</tr>
</tbody>
</table>

In particular $M_{(0,1,2,3,5,8,11,13,15,16,17,20,21,22,25)}$ has basic solutions.

We conclude this paper by calculating the multiplicity of certain irreducible modules in the involution module of $\text{PSU}_3(q^2)$. Let $f = 5$ and take $I = \{1, 2\}$. We use Theorem 6.6. Observe that $K := \mathcal{I}_s \cup N(I) = \{0, 1, 2, 3, 4, 5, 8, 9\}$, and $m_K = 184$, by (14). It remains to calculate m_{J_s}, for all $J \in \mathcal{T}(K)$. So let J be of type K. Then $R(K_s) = \{1, 2, 6, 7\} \subseteq J$, by (Q2). Next set $X := f(K) \cap J$. Observe that $X_p \subseteq \{0, 3, 4\}$. Moreover by (Q4) we know that $|X_p|$ is odd. This either implies $|X_p| = 3$, in which case $J = F$ and thus $m_{J_s} = 0$, or $|X_p| = 1$, in which case J_s contains exactly two elements. Assuming $m_{J_s} \neq 0$, it follows from Theorem 6.11 that J_s is a union of U-forms. Hence J_s is a U-form of length one, and thus it is one the four possible sets $\{3, 4\}$, $\{4, 5\}$, $\{8, 9\}$ and $\{0, 9\}$. Since $X_s = f(K_s) \cup J_s = \{6, 7\} \cup J_s$, we conclude from (P4) and (P5) that $J_s = \{8, 9\}$ or $J_s = \{4, 5\}$. One checks easily that $m_{J_s} = 2$ in either case. Furthermore $|N(I)_p \cap J_p| = |X_p| = 1$. Overall we get

$$\#(M_I, k_C \uparrow^G) = m_K - 2 \cdot m_{\{8, 9\}} - 2 \cdot m_{\{4, 5\}} = 184 - 2 \cdot 2 - 2 \cdot 2 = 176.$$

Hence $M_{\{1,2\}}$ appears 176 times in the involution module of $\text{PSU}_3(4^5)$.

Next we choose $I = \{1, 2, 3, 4, 8, 9\}$. Then $\mathcal{I}_s \cup N(I) = \{0, 1, 2, 5\}$. Since $R(I_s \cup N(I)) \neq F$, there is no set of type $I_s \cup N(I)$. Hence $\#(M_I, k_C \uparrow^G) = m_{\{0,1,2,5\}}$. Before Definition 6.10 we found that $m_{\{0,1,2,5\}} = 4$. Hence $M_{\{1,2,3,4,8,9\}}$ appears 4 times in the involution module of $\text{PSU}_3(4^5)$.

Acknowledgements. I wish to thank the anonymous referee for some very constructive input towards the final version of this paper.
References

Department of Mathematics
National University of Ireland, Maynooth
Co. Kildare,
Ireland

E-mail: lars.pforte@nuim.ie