

Title	THE INVOLUTION MODULE OF $PSU_3(2^{2^f})$
Author(s)	Pforte, Lars
Citation	Osaka Journal of Mathematics. 2015, 52(2), p. 527-544
Version Type	VoR
URL	https://doi.org/10.18910/57646
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

THE INVOLUTION MODULE OF $\mathrm{PSU}_3(2^{2^f})$

LARS PFORTE

(Received May 10, 2013, revised January 29, 2014)

Abstract

For any group G the involutions \mathcal{I} in G form a G -set under conjugation. The corresponding kG -permutation module $k\mathcal{I}$ is known as the involution module of G , with k an algebraically closed field of characteristic two. In this paper we discuss the involution module of the projective special unitary group $\mathrm{PSU}_3(4^f)$.

1. Introduction

Let \mathcal{I} be the set of all involutions in a group G , that is, the group elements of order two. Then G acts on \mathcal{I} by conjugation. The corresponding kG -permutation module $k\mathcal{I}$ is known as the *involution module* of G . Here k denotes an algebraically closed field of characteristic two. The involution module has been studied in general by G.R. Robinson [8] and J. Murray [4], [5]. Furthermore the author studied the involution module of the special linear group $\mathrm{SL}_2(2^f)$ in [6] and the general linear group $\mathrm{GL}_n(2^f)$ in [7].

In this paper we investigate the involution module of the projective special unitary group $\mathrm{PSU}_3(2^{2^f})$. In the following we introduce this group. For details see [3] and [2]. Let $q := 2^f$, for some $f \geq 2$. Then \mathbb{F}_{q^2} is the finite field with q^2 elements. For any element $x \in \mathbb{F}_{q^2}$ we define $\mathrm{N}(x) := x^{q+1}$ and $\mathrm{tr}(x) := x + x^q$, called *norm* and *trace* of x , respectively. As is standard $\mathrm{GL}_3(q^2)$ denotes the *general linear group*, that is, the group of invertible 3×3 -matrices with entries in \mathbb{F}_{q^2} . The elements in $\mathrm{GL}_3(q^2)$ with determinant one form the *special linear group* $\mathrm{SL}_3(q^2)$. Let $A \in \mathrm{GL}_3(q)$. Then \overline{A} denotes the matrix obtained from A by raising each entry of A to the power q . Moreover A^T is the transpose of A . Finally A is called *hermitian matrix* if $A^T = \overline{A}$.

Let $A \in \mathrm{GL}_3(q^2)$ be hermitian. The set of all $X \in \mathrm{GL}_3(q^2)$ so that $X^T A \overline{X} = A$ form the *unitary group* $\mathrm{U}_3(q^2)$. Its kernel under the determinant map is the *special unitary group* $\mathrm{SU}_3(q^2)$. We have $|\mathrm{SU}_3(q^2)| = q^3(q^2-1)(q^3+1)$. If $\mathrm{Z}(\mathrm{SU}_3(q^2))$ denotes the center of $\mathrm{SU}_3(q^2)$, then we obtain the *projective unitary group* $\mathrm{PSU}_3(q^2) \cong \mathrm{SU}_3(q^2)/\mathrm{Z}(\mathrm{SU}_3(q^2))$. This group is simple, and thus makes an interesting object of study. Even though our main interest lies in $\mathrm{PSU}_3(q^2)$ we work with $\mathrm{SU}_3(q^2)$ in this paper, as all results can be transferred back via the canonical epimorphism $\mathrm{SU}_3(q^2) \rightarrow \mathrm{PSU}_3(q^2)$.

Up to isomorphism this construction of $\mathrm{SU}_3(q^2)$ is independent of the choice of the Hermitian form A . In the following we set

$$A := \begin{pmatrix} & & 1 \\ & 1 & \\ 1 & & \end{pmatrix},$$

and for the remainder of the paper let $G = \{X \in \mathrm{SL}_3(q^2) : X^T A \bar{X} = A\}$.

In Section 2 we take a first look at the involution module of G and show that there is one conjugacy class of involutions. We briefly present the irreducible kN and kG -modules in Sections 3 and 4, respectively, where N is the normalizer of the centralizer of an involution of G . In Section 5 we determine the components of the $k\mathcal{I}$ and finally in Section 6 we study the composition factors of $k\mathcal{I}$. In Theorem 6.6 provides a formula to calculate the multiplicity of each irreducible kG -module in $k\mathcal{I}$. In the remainder of Section 6 we look at a combinatorial method to determine the numbers involved in Theorem 6.6.

2. Local subgroups and involutions in $\mathrm{SU}_3(q^2)$

Let $\alpha, \beta, \gamma \in \mathbb{F}_{q^2}$ such that $\alpha \neq 0$. Then

$$M(\alpha, \beta, \gamma) := \begin{pmatrix} \alpha & \beta & \gamma \\ & \alpha^{q-1} & \alpha^{-1}\beta^q \\ & & \alpha^{-q} \end{pmatrix}$$

lies in $\mathrm{SL}_3(q^2)$. Furthermore let $L := \{M(\alpha, \beta, \gamma) : \alpha \in \mathbb{F}_{q^2}^*, \beta, \gamma \in \mathbb{F}_{q^2}\}$. Since

$$(1) \quad M(\alpha, \beta, \gamma) \cdot M(\alpha', \beta', \gamma') = M(\alpha\alpha', \alpha\beta' + \beta\alpha'^{q-1}, \alpha\gamma' + \alpha'^{-1}\beta\beta'^q + \gamma\alpha'^{-q})$$

it follows that L is a subgroup of $\mathrm{SL}_3(q^2)$. Also it is a straightforward exercise to show that $M(\alpha, \beta, \gamma) \in G$ if and only if $\mathrm{tr}(\alpha\gamma^q) = \mathrm{N}(\beta)$. In particular

$$N := G \cap L = \{M(\alpha, \beta, \gamma) : \alpha \in \mathbb{F}_{q^2}^*, \beta, \gamma \in \mathbb{F}_{q^2}, \mathrm{tr}(\alpha\gamma^q) = \mathrm{N}(\beta)\}.$$

Let us fix elements $\alpha \neq 0$ and β in \mathbb{F}_{q^2} . Then there are exactly q different $x \in \mathbb{F}_{q^2}$ such that $\mathrm{tr}(x) = \mathrm{N}(\beta)$. As for each such x there is a unique $\gamma \in \mathbb{F}_{q^2}$ such that $\alpha\gamma^q = x$, we get that $|N| = q^3(q^2 - 1)$.

Next we present two homomorphisms on N . First consider the map

$$(2) \quad \varphi_1 : N \rightarrow N : M(\alpha, \beta, \gamma) \mapsto M(\alpha, 0, 0).$$

Then φ_1 is a homomorphism by (1). Moreover the kernel of φ_1 is given by

$$S := \{M(1, \beta, \gamma) : \beta, \gamma \in \mathbb{F}_{q^2}, \mathrm{tr}(\gamma) = \mathrm{N}(\beta)\}.$$

Since $|S| = q^3$, it follows that S is a Sylow-2-subgroup of both G and N .

Next consider $\varphi_2: N \rightarrow N: M(\alpha, \beta, \gamma) \mapsto M(N(\alpha), 0, 0)$. As the norm is multiplicative, φ_2 is a homomorphism, by (1). The kernel is

$$C := \{M(\alpha, \beta, \gamma): \alpha, \beta, \gamma \in \mathbb{F}_{q^2}, N(\alpha) = 1, \mathrm{tr}(\alpha \gamma^q) = N(\beta)\}.$$

Therefore $N/C \cong C_{q-1}$ and $|C| = q^3(q+1)$.

As is common let $\mathrm{N}_G(U)$ denote the normalizer of U in G , if $U \leq G$.

Lemma 2.1. *Let $g \in G$. Then $S \cap gSg^{-1} = 1_G$ if and only if $g \in G \setminus N$. In particular, $N = \mathrm{N}_G(S)$.*

Proof. Since S is normal in N it is enough to show that $S \cap gSg^{-1} \neq 1_G$ implies $g \in N$. So let $g = (\alpha_{ij}) \in G$ such that $S \cap gSg^{-1} \neq 1_G$. Then there exists $1_G \neq M(1, \beta, \gamma) \in S \cap gSg^{-1}$. As $N(\beta) = \mathrm{tr}(\gamma)$ it follows that $\gamma \neq 0$. Furthermore there is $1_G \neq M(1, \beta', \gamma') \in S$ such that $M(1, \beta, \gamma) \cdot g = g \cdot M(1, \beta', \gamma')$. By comparing the first and second columns on either side we see that g is an upper triangular matrix. Now $g \in N$ can be derived from the fact that $g^T A \bar{g} = A$. (Note that $\alpha_{11}\alpha_{22}\alpha_{33} = 1$). \square

One can show that also $N = \mathrm{N}_G(C)$. However we do not require this result and omit a proof here. The following result is a consequence of G having a BN-pair (for details see [1]), where our N and the group generated by the matrix A make up the pair.

Lemma 2.2. *There are two (N, N) -double cosets in G , which are N and NAN . Furthermore $N \cap ANA^{-1} = \{M(\alpha, 0, 0): \alpha \in \mathbb{F}_{q^2}^*\}$.*

Next we count the involutions in G . Let $M(1, \beta, \gamma) \in S$. Then $M(1, \beta, \gamma)^2 = M(1, 0, N(\beta))$, by (1). Note that $N(\beta) = \mathrm{tr}(\gamma) = 0$ iff $\beta = 0$ and $\gamma \in \mathbb{F}_q$. Hence $\{M(1, 0, \gamma): \gamma \in \mathbb{F}_q^*\}$ are all involutions in S . Next take $\gamma, \gamma' \in \mathbb{F}_q^*$ and let $\alpha \in \mathbb{F}_{q^2}^*$ such that $N(\alpha) = \gamma' \gamma^{-1}$. Note that such an α always exists. Then $M(\alpha, 0, 0) \cdot M(1, 0, \gamma) \cdot M(\alpha, 0, 0)^{-1} = M(1, 0, \gamma')$, by (1). Hence all involutions in S are G -conjugate, and thus all involutions in G lie in the same conjugacy class. Moreover Lemma 2.1 implies that two different Sylow-2-subgroups of G intersect trivially. As there are $|G: \mathrm{N}_G(S)| = |G: N| = q^3 + 1$ Sylow-2-subgroups of G we conclude that there are $(q^3 + 1)(q - 1)$ involutions forming one conjugacy class.

We consider the involution $T := M(1, 0, 1)$. As usual let $\mathrm{C}_G(T)$ denote its centralizer in G and $\mathrm{Cl}_G(T)$ its conjugacy class in G .

Lemma 2.3. *We have $\mathcal{I} = \mathrm{Cl}_G(T)$ and $C = \mathrm{C}_G(T)$. In particular $k\mathcal{I} \cong k_C \uparrow^G$.*

Proof. It remains to show that $C = \mathrm{C}_G(T)$. Using (1) it follows easily that $C \leq \mathrm{C}_G(T)$. As $|\mathrm{C}_G(T)| = |G|/|\mathrm{Cl}_G(T)| = q^3(q+1)$ the proof is complete. \square

Note that since S is a trivial intersection group and normal in C , every component of $k\mathcal{I}$ is either projective or has vertex S .

Finally observe that $Z(G) = \{\alpha \cdot I : \alpha \in \mathbb{F}_{q^2}, \alpha^3 = 1 = \alpha^{q+1}\}$. Therefore $|Z(G)| = \varepsilon$ and $|\mathrm{PSU}(3, q^2)| = q^3(q^2 - 1)(q^3 + 1)/\varepsilon$, where $\varepsilon := \gcd(3, q + 1)$. In particular $Z(G)$ is of odd size. As the $Z(G)$ acts trivially on the involutions by conjugation it follows that the involution module of G is the inflation of the involution module of $\mathrm{PSU}_3(q^2)$, w.r.t. the canonical epimorphism $\mathrm{SU}_3(q^2) \rightarrow \mathrm{PSU}_3(q^2)$. Hence in order to understand the latter it is sufficient to study the former.

3. The irreducible kN -modules

Recall that S is normal in N . By Clifford theory the irreducible kN -modules are inflated from the irreducible kN/S -module w.r.t. the epimorphism $N \rightarrow N/S$ induced by φ_1 as given in (2). Since $N/S \cong H := \{M(\alpha, 0, 0) : \alpha \in \mathbb{F}_{q^2}^*\}$ is cyclic of order $q^2 - 1$ we can describe the irreducible kN -modules as follows.

For $j \in \{0, 1, \dots, q^2 - 2\}$ let V_j be a one-dimensional k -vector space where

$$(3) \quad M(\alpha, \beta, \gamma) \cdot \omega = M(\alpha, 0, 0) \cdot \omega := \alpha^j \cdot \omega,$$

for all $M(\alpha, \beta, \gamma) \in N$ and $\omega \in V_j$. The various V_j give all irreducible kN -modules.

Often we use an alternative representation of the irreducible kN -modules. Let $F := \{0, 1, \dots, 2f - 1\}$. Then for $I \subseteq F$ we define

$$(4) \quad n(I) := \sum_{t \in I} 2^t.$$

Note the bijection $I \leftrightarrow n(I)$, between the subsets I of F and $\{0, 1, \dots, q^2 - 1\}$. We define $V_J := V_{n(J)}$, for all $J \subseteq F$. Since $n(F) \equiv 0 \pmod{q^2 - 1}$, we have $V_F = V_\emptyset = k_N$. Overall the irreducible kN -modules are given by $V_J := V_{n(J)}$, for all $J \subsetneq F$.

Let τ_J or $\tau_{n(J)}$ denote the Brauer character and V_J^* the dual of V_J . Observe that $V_J \otimes V_{F \setminus J} \cong k_N$, and thus

$$(5) \quad V_J^* \cong V_{\overline{J}}, \quad \text{where} \quad \overline{J} := F \setminus J.$$

4. The irreducible kG -modules

In this section we focus on the irreducible kG -modules. They are described in detail in [2]. Still let $F := \{0, 1, \dots, 2f - 1\}$ and take $t \in F$. Let $M \cong k^3$ with the natural G -structure. Next we define $M_t \cong k^3$ as the kG -module, where X acts on M_t as $X^{(t)}$ acts on M . By $X^{(t)}$ we denote the matrix that derives from X by raising each entry to the power 2^t . Next, for $t = 0, \dots, f - 1$, we have

$$(6) \quad M_t \otimes M_{t+f} \cong k_G \oplus M_{(t,t+f)}, \quad \text{as} \quad kG\text{-modules},$$

where $M_{(t,t+f)}$ is irreducible and has dimension 8.

For every $I \subseteq F$ we define the sets

$$\begin{aligned} I_p &:= \{t \in \{0, 1, \dots, f-1\} : t, t+f \in I\}, \\ I_s &:= \{t \in I : t+f \notin I\}, \\ f(I) &:= \{t+f : t \in I\}, \\ R(I) &:= \{t \in F : t \in I \text{ or } t+f \in I\}. \end{aligned}$$

It helps to think of F as two rows, with the top row ranging from 0 to $f-1$ and the bottom row ranging from f to $2f-1$. Given $I \subseteq F$ the set I_p contains those integers t from the top row whose counterpart $t+f$ in the bottom row also belongs to I . Hence $\{t, t+f\}$ form a “pair” in I . On the other hand the set I_s gives the “single” elements in I , that is, those integers t in both rows where $t+f$ is not contained in I . Here $t+f$ is to be taken modulo $2f$. Furthermore $f(I)$ is the set of all counterparts of elements in I , whereas $R(I)$ is the union of I and $f(I)$.

Set $M_\emptyset := k_G$, and for $I \neq \emptyset$ we define

$$M_I := \bigotimes_{t \in I_p} M_{(t,t+f)} \otimes \bigotimes_{t \in I_s} M_t.$$

As explained in [2] this gives all q^2 irreducible, pairwise non-isomorphic kG -modules.

Recall that the involution module of G is inflated from the involution module of $\overline{G} := G/Z(G)$. Hence if M_I appears in $k\mathcal{I}$ then $Z(G)$ acts trivially on M_I . So let $\alpha \cdot I \in Z(G) = \{\alpha \cdot I : \alpha \in \mathbb{F}_{q^2}, \alpha^3 = 1 = \alpha^{q+1}\}$. Then $(\alpha \cdot I) \cdot \omega = \alpha^{2^t} \cdot \omega$, for $\omega \in M_t$ and $(\alpha \cdot I) \cdot \omega = \alpha^{2^t+2^{t+f}} \cdot \omega$, for $\omega \in M_{(t,t+f)}$. Hence, if we use $n(I)$ as defined in (4), we obtain

Corollary 4.1. *Let $I \subseteq F$ such that M_I appear in the involution module $k\mathcal{I}$. Then $\varepsilon | n(I)$, where $\varepsilon = \gcd(3, q+1)$.*

Let φ_I denote the Brauer character of M_I , for $I \subseteq F$, and for every $t \in F$ set $\varphi_t := \varphi_{\{t\}}$. We aim to express $\varphi_t \downarrow_N$ as a linear combination of the irreducible Brauer characters $\{\tau_J : J \subsetneq F\}$ of N . With respect to the basis $\{e_1, e_2, e_3\}$ the action of any $M(\alpha, \beta, \gamma) \in N$ on M_t is given by

$$\begin{pmatrix} \alpha^{2^t} & \beta^{2^t} & \gamma^{2^t} \\ & (\alpha^{q-1})^{2^t} & (\alpha^{-1}\beta^q)^{2^t} \\ & & (\alpha^{-q})^{2^t} \end{pmatrix}.$$

Hence

$$(7) \quad \varphi_t \downarrow_N = \tau_{2^t} + \tau_{2^{t+f}-2^t} + \tau_{-2^{t+f}}.$$

Also one checks easily that the socle of $M_t \downarrow_N$ coincides with $V_{\{t\}}$. This leads to

Lemma 4.2. *Let $I \subseteq F$. Then $M_I \downarrow_N$ has V_I in its socle.*

Finally let M^* denote the dual of some kG -module M . Then for every $t \in F$, we have

$$(8) \quad M_t^* \cong M_{t+f} \text{ and } M_{(t,t+f)}^* \cong M_{(t,t+f)}.$$

5. The components of $k\mathcal{I}$

In this section we provide a complete decomposition of the involution module $k\mathcal{I}$ of G . By Lemma 2.3 we have $k\mathcal{I} \cong k_C \uparrow^G$. Furthermore recall that C is normal in N , where N/C is a cyclic group of order $q-1$. Hence $k_C \uparrow^N \cong kN/C$ is a direct sum of all irreducible kN -modules on which C acts trivially.

In Section 3 we described the irreducible kN -modules. By (3) we know that $M(\alpha, \beta, \gamma) \cdot \omega = \alpha^{n(J)} \cdot \omega$, for all $M(\alpha, \beta, \gamma) \in C$ and $\omega \in V_J$. Hence C acts trivially on V_J if $J_s = \emptyset$, as then $n(J) = \sum_{t \in J} 2^t = (q+1) \cdot \sum_{t \in J_p} 2^t$. Since there are exactly $q-1$ different $J \subsetneq F$ with $J_s = \emptyset$ we conclude that $k_C \uparrow^N \cong \bigoplus_{J \subsetneq F, J_s = \emptyset} V_J$. In particular

$$(9) \quad k_C \uparrow^G \cong \bigoplus_{J \subsetneq F, J_s = \emptyset} V_J \uparrow^G.$$

Moreover we have $V_\emptyset \uparrow^G = k_N \uparrow^G = k_G \oplus X$, where X is a q^3 -dimensional kG -module. Hence there are at least q indecomposable summands in $k_C \uparrow^G$. Furthermore observe that k_N appears in the socle of $M_F \downarrow_N$, by Lemma 4.2. Hence M_F appears in the head of $k_N \uparrow^G$. Consequently $X = M_F$. Using Lemma 2.2 we see that $M_F \downarrow_N = k_H \uparrow^N$, where $H = \{M(\alpha, 0, 0) : \alpha \in \mathbb{F}_{q^2}^*\}$. Since H is a 2'-group we know that $k_H \uparrow^N$ is projective. Then, as N contains a Sylow-2-subgroup of G , we conclude that M_F is projective. In fact M_F is known as the *Steinberg module*.

In the following we show that our q summands of $k\mathcal{I}$ are all indecomposable.

Lemma 5.1. *Let $J \subsetneq F$ so that $J_s = \emptyset$. Then $\text{Hom}_{kG}(V_J \uparrow^G, V_J \uparrow^G)$ is one-dimensional, unless $J = \emptyset$ in which case it is two-dimensional. In particular, $V_J \uparrow^G$ is indecomposable if $J \neq \emptyset$, and $V_\emptyset \uparrow^G \cong k_G \oplus M_F$.*

Proof. By Lemma 2.2 we know that the (N, N) -double cosets in G are given by $\{N, NAN\}$, and furthermore $N \cap ANA^{-1} = H = \{M(\alpha, 0, 0) : \alpha \in \mathbb{F}_{q^2}^*\}$. Now let $J \subsetneq F$. Then, by Mackey's lemma,

$$(V_J \uparrow^G) \downarrow_N = \bigoplus_{s \in N \setminus G / N} (s(V_J)_{N \cap sNs^{-1}}) \uparrow^N = V_J \oplus (A \cdot V_J)_H \uparrow^N.$$

We claim that $A \cdot V_J \cong V_{\bar{J}}$ as kH -modules, where $\bar{J} := F \setminus J$. Let $\omega \in A \cdot V_J$ and $\alpha \in F_{q^2}^*$. Then

$$M(\alpha, 0, 0) \cdot \omega = (A \cdot M(\alpha^{-q}, 0, 0) \cdot A^{-1}) \cdot \omega = \alpha^{-qn(J)} \cdot \omega = \alpha^{n(\bar{J})} \cdot \omega,$$

since $-qn(J) = -q \sum_{t \in J} 2^t = \sum_{t \in J} -2^{t+f} \equiv n(\bar{J}) \pmod{q^2 - 1}$. Therefore

$$(10) \quad (V_J \uparrow^G) \downarrow_N = V_J \oplus (V_{\bar{J}})_H \uparrow^N.$$

Next let $I \subsetneq F$ such that V_I appears in the socle of $(V_{\bar{J}})_H \uparrow^N$. Then by Frobenius reciprocity it follows that $V_{\bar{J}} \cong V_I$, as kH -modules, and thus as kN -modules. Therefore

$$(11) \quad \mathrm{soc}((V_{\bar{J}})_H \uparrow^N) = V_{\bar{J}}.$$

As $\dim_k \mathrm{Hom}_{kG}(V_J \uparrow^G, V_J \uparrow^G) = \dim_k \mathrm{Hom}_{kN}(V_J, (V_J \uparrow^G) \downarrow_N)$ the statement follows from (10) and (11). \square

The following proposition summarizes the complete decomposition of $k_C \uparrow^G$ into indecomposable modules.

Proposition 5.2. *The involution module $k\mathcal{I}$ has q components and its decomposition is*

$$k\mathcal{I} \cong k_C \uparrow^G \cong k_G \oplus M_F \oplus \bigoplus_{\emptyset \neq J \subsetneq F, J_s = \emptyset} V_J \uparrow^G.$$

Next we want to investigate the structure of the head and socle of $V_J \uparrow^G$, for $\emptyset \neq J \subsetneq F$ such that $J_s = \emptyset$.

Proposition 5.3. *For every $\emptyset \neq J \subsetneq F$ so that $J_s = \emptyset$ we have $\mathrm{hd}(V_J \uparrow^G) = M_J$ and $\mathrm{soc}(V_J \uparrow^G) = M_{\bar{J}}$.*

Proof. Assume M_I , for $I \subseteq F$, appears in the socle of $V_J \uparrow^G$. Then $\mathrm{soc}(M_I \downarrow_N)$ is a direct summand of $\mathrm{soc}((V_J \uparrow^G) \downarrow_N)$. The latter equals $V_J \oplus V_{\bar{J}}$ by (10) and (11). Now it follows from Lemma 4.2 that $I = J$ or $I = \bar{J}$. Furthermore M_I appears exactly once in the socle of $V_J \uparrow^G$.

We claim that $M_I \downarrow_N$ is indecomposable. Since $I_s = \emptyset$ we have $M_I \otimes M_{\bar{J}} = M_F$. Then $M_I \downarrow_N \otimes M_{\bar{J}} \downarrow_N = M_F \downarrow_N$ and therefore it is enough to show that $M_F \downarrow_N$ is indecomposable. But $M_F \downarrow_N \cong k_H \uparrow^N$, whose socle is k_N , by (11). That proves the claim.

As $(V_J \uparrow^G) \downarrow_N = V_J \oplus (V_{\bar{J}})_H \uparrow^N$, by (10), it follows that $M_I \downarrow_N$ appears in $(V_{\bar{J}})_H \uparrow^N$. However that forces $I = \bar{J}$ and thus $\mathrm{soc}(V_J \uparrow^G) = M_{\bar{J}}$.

The statement about the head follows from $\mathrm{hd}(V_J \uparrow^G) = (\mathrm{soc}(V_J \uparrow^G))^*$ and the facts $M_J^* = M_J$ and $V_J^* = V_{\bar{J}}$, given by (8) and (5), respectively. \square

6. The composition factors of $k\mathcal{I}$

In this section we investigate the composition factors of $k\mathcal{I}$. In Theorem 6.6 we present a formula to calculate the multiplicity of each irreducible kG -module in $k\mathcal{I}$. Finally we study a combinatorial method to determine the numbers involved in Theorem 6.6.

First we look at the components of the projective module $M_F \otimes M_I$, for $I \subseteq F$. In [2] Burkhardt determines these components. Consider the following properties (P1)–(P5).

Let $I, J \subseteq F$ and set $X := f(I) \cap J$:

(P1) $f(I) \cup J = F$,

(P2) $X_s \neq \emptyset$,

(P3) $R(X) = F$,

(P4) between any two elements of X_s there is an even number of elements in $R(X_p)$,

(P5) between any element of X_s and any element of $f(X_s)$ there is an odd number of elements in $R(X_p)$.

DEFINITION 6.1. Let $I, J \subseteq F$. We say J is of type I , if I and J satisfy the properties (P1)–(P5). Furthermore by $\mathcal{T}(I)$ we mean the set of all sets $J \subseteq F$ that are of type I .

Lemma 6.2. Let $I, J \subseteq F$ such that J is of type I . Then

(Q1) $R(I) = F = R(J)$,

(Q2) $R(I_s) \subseteq J$,

(Q3) $I \neq F$ or $J \neq F$,

(Q4) $|(f(I) \cap J)_p|$ is odd.

Proof. Observe that (P3) implies (Q1). As $I_s \subseteq J$, by (P1) and $f(I_s) \subseteq J$, by (P3), we obtain (Q2). Next (Q3) follows from (P2), and (Q4) is a consequence of (P2) and (P5). \square

Before we present Burkhardt's result on the components of $M_F \otimes M_I$, we need the following lemma. For $I \subseteq F$ we define $N(I) := \overline{R(I)}$, that is, $N(I) = \{t \in F : t, t + f \notin I\}$.

Lemma 6.3. Let $I, J \subseteq F$. Then $f(I) \cup J = F$ and $(f(I) \cap J)_s = \emptyset$ if and only if there is some $A \subseteq I_p$ such that $J = I_s \cup N(I) \cup R(A)$. Also in this case $A = I_p \cap J_p$.

Proof. Observe that F is the disjoint union of I_s , $f(I_s)$, $R(I_p)$ and $N(I)$. Also note that $f(I) \cup J = F$ implies $I_s \cup N(I) \subseteq J$. Since $\emptyset = (f(I) \cap J)_s = (f(I_s) \cap J)_s \cup (R(I_p) \cap J)_s = (f(I_s) \cap J) \cup (R(I_p) \cap J_s)$ we obtain $f(I_s) \cap J = \emptyset$ and $R(I_p) \cap J_s = \emptyset$. The former gives $J = I_s \cup N(I) \cup (R(I_p) \cap J)$, while the latter implies that $R(I_p) \cap J = R(I_p) \cap R(J_p) = R(I_p \cap J_p)$. Overall we get $J = I_s \cup N(I) \cup R(A)$, where $A := I_p \cap J_p$.

Now suppose that $J = I_s \cup N(I) \cup R(A)$, for some $A \subseteq I_p$. Then clearly $f(I) \cup J = F$, and since $f(I) \cap J = R(A)$, we obtain $(f(I) \cap J)_s = \emptyset$. \square

For any $I \subseteq F$, let P_I denote the projective cover of M_I . Then the following corollary is a consequence of [2, (31)] and Lemma 6.3.

Corollary 6.4. *Let $I \subsetneq F$. Then*

$$M_F \otimes M_I = \bigoplus_{A \subseteq I_p} 2^{|A|} P_{I_s \cup N(I) \cup R(A)} \oplus \bigoplus_{J \in \mathcal{T}(I)} 2^{|I_p \cap J_p|} P_J,$$

$$M_F \otimes M_F = m \cdot M_F \oplus \bigoplus_{A \subseteq F_p} 2^{|A|} P_{R(A)} \oplus \bigoplus_{J \in \mathcal{T}(F)} 2^{|J_p|} P_J$$

where $m = 1$ if f is even and $m = 2^{f+1} + 1$ if f is odd.

For $I \subseteq F$ we define the Brauer character $\alpha_I := \varphi_I \downarrow_N$. Then for $t \in F$, we have $\alpha_t := \alpha_{\{t\}} = \tau_{2t} + \tau_{2^{f+1}t} + \tau_{-2^{f+1}t}$, by (7), and $\alpha_{t,t+f} := \alpha_{\{t,t+f\}} = \alpha_t \cdot \alpha_{t+f} - \tau_0$, by (6). Hence the multiplicity of τ_0 in $\alpha_{t,t+f}$ equals 2, and thus we can define $\beta_t := \alpha_{t,t+f} - 2\tau_0$. For non-empty $I \subseteq F_p$ we define $\beta_I := \prod_{t \in I} \beta_t$, while $\beta_\emptyset := \tau_0$. Then

$$(12) \quad (\varphi_F \varphi_I) \downarrow_N = \alpha_F \cdot \alpha_{I_s} \cdot \prod_{t \in I_p} (\beta_t + 2\tau_0) = \sum_{A \subseteq I_p} 2^{|A|} \cdot \alpha_F \cdot \alpha_{I_s} \cdot \beta_{I_p \setminus A}.$$

Furthermore, for every $I \subseteq F$, we denote the Brauer character of $P_I \downarrow_N$ by χ_I .

Lemma 6.5. *Let $\emptyset \neq I \subseteq F$. Then*

$$\chi_I = \alpha_F \cdot \alpha_{I_s} \cdot \beta_{N(I)_p} - \sum_{J \in \mathcal{T}(I_s \cup N(I))} 2^{|N(I)_p \cap J_p|} \cdot \chi_J,$$

$$\chi_\emptyset = \alpha_F \cdot \beta_{F_p} - m \cdot \chi_F - \sum_{J \in \mathcal{T}(F)} 2^{|J_p|} \cdot \chi_J,$$

where $m = 1$ if f is even and $m = 2^{f+1} + 1$ if f is odd.

Proof. Let $\emptyset \neq I \subseteq F$. Then

$$(13) \quad \left(\sum_{\emptyset \neq A \subseteq N(I)_p} 2^{|A|} \cdot \chi_{I \cup R(A)} \right) + \chi_I + \sum_{J \in \mathcal{T}(I_s \cup N(I))} 2^{|N(I)_p \cap J_p|} \cdot \chi_J$$

$$= (\varphi_F \cdot \varphi_{I_s \cup N(I)}) \downarrow_N = \sum_{A \subseteq N(I)_p} 2^{|A|} \cdot \alpha_F \cdot \alpha_{I_s} \cdot \beta_{N(I)_p \setminus A},$$

where the equalities follows from Corollary 6.4 and (12), respectively. Next take $\emptyset \neq A \subseteq N(I)_p$, and let $X := I_s \cup N(I) \setminus R(A)$. Then $X_p = N(I)_p \setminus A$, $X_s = I_s$ and $N(X) =$

$R(I_p) \cup R(A)$. Furthermore $R(X) \neq F$, and consequently there is no set of type X , as property (Q1) is violated. Applying both Corollary 6.4 and (12) to $(\varphi_F \varphi_X) \downarrow_N$ we get

$$\sum_{B \subseteq N(I_p) \setminus A} 2^{|B|} \cdot \chi_{I \cup R(A) \cup R(B)} = \sum_{B \subseteq N(I_p) \setminus A} 2^{|B|} \cdot \alpha_F \cdot \alpha_{I_s} \cdot \beta_{N(I_p) \setminus (A \cup B)}.$$

Now by induction over $|N(I_p) \setminus A|$ we conclude that $\alpha_F \cdot \alpha_{I_s} \cdot \beta_{N(I_p) \setminus A} = \chi_{I \cup R(A)}$. Therefore (13) reduces to

$$\alpha_F \cdot \alpha_{I_s} \cdot \beta_{N(I_p)} = \chi_I + \sum_{J \in \mathcal{T}(I_s \cup N(I))} 2^{|N(I_p) \cap J_p|} \cdot \chi_J.$$

This proves the first part of the lemma. The second part is proven similarly. \square

For two characters φ_1 and φ_2 let $\#(\varphi_1, \varphi_2)$ denote the multiplicity of φ_1 in φ_2 . Likewise for modules M_1 and M_2 let $\#(M_1, M_2)$ denote the multiplicity of M_1 in M_2 . For $I \subseteq F$ we define

$$m_I := \sum_{K \subsetneq F, K_s = \emptyset} \#(\tau_K, \alpha_{I_s} \cdot \beta_{I_p}).$$

Theorem 6.6. *Let $\emptyset \neq I \subseteq F$ and $m = 1$ if f is even and $m = 2^{f+1} + 1$ if f is odd. Then*

$$\begin{aligned} \#(M_I, k_C \uparrow^G) &= m_{I_s \cup N(I)} - \sum_{J \in \mathcal{T}(I_s \cup N(I))} 2^{|N(I_p) \cap J_p|} \cdot m_{J_s}, \\ \#(M_\emptyset, k_C \uparrow^G) &= m_F - m - \sum_{J \in \mathcal{T}(F)} 2^{|J_p|} \cdot m_{J_s}. \end{aligned}$$

Proof. First let $J \subseteq F$ be of some type $L \subseteq F$. We claim that $\chi_J = \alpha_F \cdot \alpha_{J_s}$. By (Q1) we have $R(J) = F$. Hence $N(J) = \emptyset$ and $J \neq \emptyset$. Also $\mathcal{T}(J_s \cup N(J)) = \emptyset$. This is true since $J_s \cup N(J) = J_s$ and $(f(J_s) \cap K)_p = \emptyset$, for any $K \subseteq F$, which then violates property (Q4). Overall the claim now follows from Lemma 6.5.

Next let $\emptyset \neq I \subseteq F$. By Lemma 6.5 and the above paragraph we obtain

$$\begin{aligned} \chi_I &= \alpha_F \cdot \left(\alpha_{I_s} \cdot \beta_{N(I_p)} - \sum_{J \in \mathcal{T}(I_s \cup N(I))} 2^{|N(I_p) \cap J_p|} \cdot \alpha_{J_s} \right), \\ \chi_\emptyset &= \alpha_F \cdot \left(\beta_{F_p} - m \cdot \tau_\emptyset - \sum_{J \in \mathcal{T}(F)} 2^{|J_p|} \cdot \alpha_{J_s} \right). \end{aligned}$$

Now let $K \subsetneq F$ so that $K_s = \emptyset$. Then $\#(M_I, V_K \uparrow^G)$ coincides with the dimension of $\text{Hom}_{kG}(V_K \uparrow^G, P_I) \cong \text{Hom}_{kN}(V_K, P_I \downarrow_N)$. As $M_F \downarrow_N \otimes V_K$ is the projective cover of V_K

we get that $\#(M_I, V_K \uparrow^G)$ equals the multiplicity of $M_F \downarrow_N \otimes V_K$ as a direct summand of $P_I \downarrow_N$. The Brauer character of $M_F \downarrow_N \otimes V_K$ is given by $\alpha_F \cdot \tau_K$, and thus we obtain

$$\begin{aligned} \#(M_I, V_K \uparrow^G) &= \# \left(\tau_K, \alpha_{I_s} \cdot \beta_{N(I)_p} - \sum_{J \in \mathcal{T}(I_s \cup N(I))} 2^{|N(I)_p \cap J_p|} \cdot \alpha_{J_s} \right), \\ \#(M_\emptyset, V_K \uparrow^G) &= \# \left(\tau_K, \beta_{F_p} - m \cdot \tau_\emptyset - \sum_{J \in \mathcal{T}(F)} 2^{|J_p|} \cdot \alpha_{J_s} \right). \end{aligned}$$

As $\#(M_I, k_C \uparrow^G) = \sum_{K \subsetneq F, K_s = \emptyset} \#(M_I, V_K \uparrow^G)$ the proof is complete. \square

In the following we wish to calculate the number m_I combinatorically.

DEFINITION 6.7. Let $I \subseteq F$. A map $\varsigma: I \rightarrow \{1, 2, 3\}$ is called a *solution* of I if
 (S1) $I_1 \cap f(I_3) = I_2 \cap f(I_2) = I_3 \cap f(I_1) = \emptyset$,
 (S2) $\sum_{t \in I_1 \cup I_3} 2^t + \sum_{t \in I_2} 2^{t+1+f} \equiv 0 \pmod{q+1}$,
 where $I_j := \{t \in I: \varsigma(t) = j\}$, for $j = 1, 2, 3$.

Furthermore a solution ς of I with $I_3 = \emptyset$ is called a *basic solution* of I .

Let $I \subseteq F$. Every solution ς of I can be associated to a basic solution of I , by composing ς with the map $\tau: \{1, 2, 3\} \rightarrow \{1, 2, 3\}$ such that $\tau(1) = 1 = \tau(3)$ and $\tau(2) = 2$. Note that two solutions ς_1 and ς_2 of I are associated to the same basic solution if and only if ς_1 and ς_2 map the same elements of I onto 2.

Now we can also determine how many solutions of I are associated to a given basic solution ς of I . Note that every time we change certain 1's in the image of ς to 3's we obtain a new solution, as long as we make sure to treat pairs $\{t, t+f\} \subseteq I$ that are both mapped onto 1 equally. Hence if we define $T_\varsigma := \{t \in \{0, 1, \dots, f-1\} : \{t, t+f\} \cap I_1 \neq \emptyset\}$, then for every subset $P \subseteq T_\varsigma$ we obtain a solution of I that is associated to ς . Overall a basic solution ς has $2^{|T_\varsigma|}$ solutions associated to it.

Lemma 6.8. Let $I \subseteq F$. Then m_I equals the number of solutions of I , that is,

$$m_I = \sum 2^{|T_\varsigma|},$$

where the sum is taken over all basic solutions ς of I .

Proof. It is enough to show that m_I equals the number of solutions of I , as the rest of the statement then follows from the previous paragraph.

By definition m_I counts the occurrences of characters of the form τ_K in $\alpha_{I_s} \beta_{I_p}$, where $K \subsetneq F$ so that $K_s = \emptyset$. Recall that $\alpha_t = \tau_{2^t} + \tau_{2^{t+f}-2^t} + \tau_{-2^{t+f}}$ and $\beta_t = \alpha_t \alpha_{t+f} - 3\tau_0$, for $t \in F$. In particular note that in $\alpha_t \alpha_{t+f}$ the three occurrences of the trivial characters τ_0 , derive from multiplying the first summand of α_t with the third

summand of α_{t+f} , the second summand of α_t with the second summand of α_{t+f} and the third summand of α_t with the first summand of α_{t+f} . Hence for every summand τ_K in $\alpha_{I_s}\beta_{I_p}$ we have a disjoint union $I_1 \cup I_2 \cup I_3$ of I , where $I_1 \cap f(I_3) = I_2 \cap f(I_2) = I_3 \cap f(I_1) = \emptyset$, such that

$$\sum_{t \in K} 2^t \equiv \sum_{t \in I_1} 2^t + \sum_{t \in I_2} (2^{t+f} - 2^t) + \sum_{t \in I_3} -2^{t+f} \pmod{q^2 - 1}.$$

On the other hand for every such disjoint union we get a summand τ_K in $\alpha_{I_s}\beta_{I_p}$. However we are only interested in those $K \subsetneq F$ with $K_s = \emptyset$, that is, $\sum_{t \in K} 2^t \equiv 0 \pmod{q+1}$. Observe that $\sum_{t \in I_3} -2^{t+f} \equiv \sum_{t \in I_3} 2^t \pmod{q+1}$ and $\sum_{t \in I_2} (2^{t+f} - 2^t) \equiv \sum_{t \in I_2} 2^{t+1+f} \pmod{q+1}$. Therefore we only count those disjoint unions $I_1 \cup I_2 \cup I_3$ of I , where $I_1 \cap f(I_3) = I_2 \cap f(I_2) = I_3 \cap f(I_1) = \emptyset$ and

$$\sum_{t \in I_1 \cup I_3} 2^t + \sum_{t \in I_2} 2^{t+1+f} \equiv 0 \pmod{q+1}.$$

As those correspond to the solutions of I , the proof is complete. \square

Hence in order to determine m_I we need to find all basic solutions of I . First observe the following

Lemma 6.9. *Let $I \subseteq F$. A map $\varsigma: I \rightarrow \{1, 2\}$ is a basic solution if and only if*

- (BS1) $I_2 \cap f(I_2) = \emptyset$,
- (BS2) $\sum_{t \in I_s} 2^t \equiv 3 \cdot \sum_{t \in I_2} 2^t \pmod{q+1}$,

where $I_2 = \{t \in I : \varsigma(t) = 2\}$.

Proof. For a basic solution property (S1) can be replaced by (BS1), since $I_3 = \emptyset$. Next observe that

$$\sum_{t \in I_2} 2^{t+1+f} \equiv 2 \cdot q \cdot \sum_{t \in I_2} 2^t \equiv -2 \cdot \sum_{t \in I_2} 2^t \pmod{q+1}.$$

Thus (S2) becomes $\sum_{t \in I} 2^t \equiv 3 \cdot \sum_{t \in I_2} 2^t \pmod{q+1}$. But as $\sum_{t \in I} 2^t = \sum_{t \in I_s} 2^t + \sum_{t \in I_p} (2^t + 2^{t+f}) = \sum_{t \in I_s} 2^t + (q+1) \cdot \sum_{t \in I_p} 2^t$ it follows that for basic solutions (S2) and (BS2) are equivalent. \square

Observe that we have confirmed Corollary 4.1. Let $\varepsilon = \gcd(3, q+1)$ and suppose M_I appears in $k_C \uparrow^G$, for some $I \subseteq F$. Then by Theorem 6.6, we have $m_{I_s \cup N(I)} \geq 1$. Thus by Lemma 6.8 there is a basic solution of $I_s \cup N(I)$. But now Lemma 6.9 (ii) implies that ε divides $n(I_s)$. As $n(I)$ and $n(I_s)$ are congruent modulo $q+1$, they are also congruent modulo ε . Consequently $\varepsilon \mid n(I)$, which is the statement of Corollary 4.1.

In the following we explain how to find all basic solution for a given $I \subseteq F$ using Lemma 6.9. For instance let $f = 5$, and consider F as two rows

0	1	2	3	4
5	6	7	8	9

Next let $I = \{0, 1, 2, 3, 4, 5, 8, 9\}$, which is given by

0	1	2	3	4
5	.	.	8	9

By Lemma 6.9 our aim is to find subsets I_2 of I such that $\sum_{t \in I_2} 2^t \equiv 3 \cdot \sum_{t \in I_2} 2^t \pmod{q+1}$, where I_2 contains from each column at most one element. Since in our example $\sum_{t \in I_2} 2^t = 2 + 2^2 = 6$, we are looking for solutions of the linear congruence $6 \equiv 3x \pmod{33}$. The following image shows the powers of 2 modulo $q+1$ that can be obtained

2^0	2^1	2^2	2^3	2^4
-2^0	.	.	-2^3	-2^4

As x is the sum of at most one entry from each column, we get the upper bound $M = 2^0 + 2^1 + 2^2 + 2^3 + 2^4 = 31$ and the lower bound $m = -2^0 - 2^3 - 2^4 = -25$ for x . One checks easily that $6 \equiv 3x \pmod{33}$ has five solutions between -25 and 31 , which are $-20, -9, 2, 13$ and 24 . However it is difficult to see if we have found all possibilities of writing, say -20 , as a sum of the available powers of two. Thus we propose the following technique.

We start by allocating all entries of the lower row to I_2 , that is, $\{5, 8, 9\}$ in our case. Then $x = -25$, which is not what we want. Now every time we remove an entry from I_2 we have to add the respective power of 2 to -25 . For instance if we remove 9 we have to add 2^4 . Likewise we may include entries from the first row. For instance 2, which means we have to add 2^2 . We could also wish to include 4. As this would also force us to remove 9 first we have to add 2^4 for the removal of 9 and 2^4 for the inclusion of 4, that is, 2^5 altogether. The following table shows the change we cause to x by including elements of the top row or removing elements from the bottom row.

2^1	2^1	2^2	2^4	2^5
2^0	.	.	2^3	2^4

So let us start with $x_0 = -20$. Initially we have $I_2 = \{5, 8, 9\}$. In order to get from -25 to -20 we need to add $5 = 2^0 + 2^2$. Observe that the only way to get 2^0 is to remove 5 from I_2 , (and not include 0). Now the only way to get 2^2 is by including 2. We get $I_2 = \{2, 8, 9\}$, which we represent as follows

1	1	2	1	1
1	.	.	2	2

Next let $x_0 = -9$. The difference $16 = 2^4$ can be obtained in three different ways. Firstly by including 3, which involves the removal of 8. Secondly by removing 9 and thirdly by removing 8 and including 0, 1, 2, since $2^4 = 2^3 + 2^2 + 2^1 + 2^1$. Overall we have three basic solutions as follows

1	1	1	2	1
2	.	.	1	2

1	1	1	1	1
2	.	.	2	1

2	2	2	1	1
1	.	.	1	2

Now let $x_0 = 2$. Then $| -25 - 2 | = 27 = 2^0 + 2^1 + 2^3 + 2^4$. Here there is only one basic solution, which is

1	2	1	1	1
1	.	.	1	1

For $x_0 = 13$ we have $| -25 - 13 | = 38 = 2^1 + 2^2 + 2^5$. There are two possibilities of 2^1 . Also with one 2^1 gone there is only one possibility to obtain 2^2 . Finally $2^5 = 2^4 + 2^4$ can be obtained in two different ways, leading to the four basic solutions

2	1	2	1	2
1	.	.	2	1
2	1	2	2	1
1	.	.	1	1
1	2	2	1	2
2	.	.	2	1
1	2	2	2	1
2	.	.	1	1

Finally let $x_0 = 24$. Then $| -25 - 24 | = 49 = 2^0 + 2^4 + 2^5$. There is only one way to obtain this sum and we get

1	1	1	2	2
1	.	.	1	1

Hence we have found all basic solutions of I . Finally the number of solutions associated to each basic solution depends on the number of columns that contain a 1, as in each such column all the 1's may be changed to 3's. Going through all basic solutions given above we obtain

$$(14) \quad m_I = 2^4 + 2^5 + 2^5 + 2^3 + 2^4 + 2^4 + 2^4 + 2^3 + 2^3 + 2^5 = 184.$$

In the above example we have $I_s = \{1, 2\}$. Next let $I' \subseteq F$ such that $I'_s = \{1, 2\}$. Note that then $I' \subseteq I$. We can use the above results to calculate $m_{I'}$. Take for instance $I' = \{0, 1, 2, 5\}$. A basic solution for I' becomes a basic solution for I , by sending all elements in $I \setminus I'$ onto one. The only basic solution for I where $\{3, 4, 8, 9\}$ is mapped onto one is when $x = 2$. Hence the only basic solution for I' is

1	2	1	.	.
1

Consequently we have $m_{I'} = 2^2 = 4$.

Finally let us characterize those sets $I \subseteq F$ that have a basic solution.

DEFINITION 6.10. Let $U \subseteq F$. We call U a *U-form*

1. of length zero, if $U = \{t, t + f\}$, for some $t \in F$,
2. of length one, if $U = \{t, t + 1\}$, for some $t \in F$,
3. of length $n \geq 2$, if there is $H \subseteq H(t, n) \setminus \{t\}$, for some $t \in F$, such that $U = (H(t, n) \setminus H) \cup (f(H) - 1)$ is a disjoint union, where $H(t, n) = \{t, t + n\} \cup \{t + 1 + f, \dots, t + n - 1 + f\}$.

Theorem 6.11. *Let $I \subseteq F$. Then I has a basic solution if and only if I is the disjoint union of *U-forms*.*

Proof. First suppose that I has a basic solution ς . We argue by induction on $|I|$ that I is a disjoint union of *U-forms*. This is clear if $|I| = 0$, and thus in the following let $|I| \geq 1$.

Define $X := I_1 \cup (f(I_2) + 1)$ and $Y := I_1 \cap (f(I_2) + 1)$. By property (S2) there is some $K \subseteq F$, such that $K_s = \emptyset$ and

$$\sum_{t \in K} 2^t \equiv \sum_{t \in I_1} 2^t + \sum_{t \in I_2} 2^{t+1+f} \equiv \sum_{t \in X} 2^t + \sum_{t \in Y} 2^t \pmod{q^2 - 1}.$$

First suppose that $Y = \emptyset$. Then $X = K$. If $I_2 = \emptyset$, then there is some $t \in I_1$ so that $U = \{t, t + f\} \subseteq I$. If $I_2 \neq \emptyset$, then there is some $t \in I_2$ such that $t + 1 \in K$. Note that by (S1) we have $t + 1 \in I_1$ and thus $U = \{t, t + 1\} \subseteq I$. In both cases U is a *U-form* such that ς is a basic solution on $I \setminus U$. Now by induction $I \setminus U$ is a disjoint union of *U-forms*, and thus so is I . Hence we may assume that $Y \neq \emptyset$.

Set $T := f(Y) - 1 = \{t_1, \dots, t_r\}$, that is, T contains all $t \in I_2$ such that $t + 1 + f \in I_1$. For each $i \in \{1, \dots, r\}$ let $n_i \geq 2$ be maximal such that $\{t_i + 2 + f, \dots, t_i + n_i - 1 + f\} \subseteq X \setminus Y$. We set $S_i := \{t_i + 1 + f, \dots, t_i + n_i - 1 + f\}$. Then $S_i \subseteq X$.

Next we claim that $S_i \cap S_j = \emptyset$, for all $i \neq j$. Assume otherwise. Then there is $a \in S_i \cap S_j$ so that $a - 1 \in (S_i \cup S_j) \setminus (S_i \cap S_j)$. Without loss of generality let $a - 1 \in S_i \setminus S_j$. Then $t_j = a - 1 + f$ and thus $a \in Y$, contradicting $a \in S_i$. That proves the claim.

Let $S = \bigcup_{i=1}^r S_i$. Since $2^{t_i+1+f} + \sum_{t \in S_i} 2^t \equiv 2^{t_i+n_i+f} \pmod{q^2 - 1}$, we get

$$\sum_{t \in K} 2^t \equiv \sum_{t \in I_1 \setminus S} 2^t + \sum_{t \in (f(I_2 \setminus T) + 1) \setminus S} 2^t + \sum_{i=1}^r 2^{t_i+n_i+f} \pmod{q^2 - 1}.$$

Note that the maximality of T ensures that the first two sums have no power of 2 in common, and the maximality of n_i ensures that the last sum has no power of 2 in common with the first two sums. Hence $t_1 + n_1 + f \in K$, and thus $a := t_1 + n_1 \in K$.

Assume $a \notin X$. Then $a = t_i + n_i + f$, for some $i \in \{2, \dots, r\}$. Note that $n_1 \neq n_i$, as otherwise $t_1 = t_i + f \in I_2 \cap f(I_2)$, in contradiction to (S1). If $n_1 < n_i$, then $t_1 = t_i + n_i - n_1 + f$. As $n_1 \geq 2$, we have $t_1 + 1 \in S_i \subseteq X$. But $t_1 + 1 \notin f(I_2) + 1$, by (S1), and thus $t_1 + 1 \in I_1$. Hence $U = \{t_1, t_1 + 1\}$ is a U -form such that ς is a basic solution on $I \setminus U$. Likewise if $n_i < n_1$, then $t_i + 1 \in I_1$ and $U = \{t_i, t_i + 1\}$ is a U -form such that ς is a basic solution on $I \setminus U$. Hence in the following we may assume that $t_1 + n_1 \in X$.

Now let $t = t_1$ and $n = n_1$. Set $H := (H(t, n) \setminus \{t, t + 1 + f\}) \cap (f(I_2) + 1)$. Then $H \subseteq H(t, n) \setminus \{t\}$. We claim that $(H(t, n) \setminus H) \cap (f(H) - 1) = \emptyset$. Note that $f(H) - 1 = I_2 \cap \{t + 1, \dots, t + n - 2, t + n - 1 + f\}$. Hence $t + n - 1 + f$ is the only possible element in $H(t, n) \cap (f(H) - 1)$. In this case we have $t + n - 1 + f \in I_2$. In particular $t + n - 1 + f \notin I_1$ and so $t + n - 1 + f \neq t + f + 1$. Also recall that $t + n - 1 + f \in X \setminus Y$. Hence $t + n - 1 + f \in f(I_2) + 1$. Therefore $t + n - 1 + f \in H$, which proves the claim.

Thus $U = (H(t, n) \setminus H) \cup (f(H) - 1)$ is a U -form. Also $U \subseteq I$, which is clear since all $x \in H(t, n) \setminus \{t\}$ either belong to I_1 or to $f(I_2) + 1$. Finally $U \cap I_1 = H(t, n) \setminus (H \cup \{t\})$ and $U \cap I_2 = (f(H) - 1) \cup \{t\}$. Since

$$\begin{aligned} & \sum_{k \in I_1 \cap U} 2^k + \sum_{k \in I_2 \cap U} 2^{k+1+f} \\ & \equiv 2^{t+1+f} + \sum_{k \in H(t, n) \setminus (H \cup \{t\})} 2^k + \sum_{k \in f(H)-1} 2^{k+1+f} \\ & \equiv 2^{t+1+f} + \sum_{k \in H(t, n) \setminus \{t\}} 2^k \equiv 2^{t+n} + 2^{t+n+f} \equiv 0 \pmod{q+1}, \end{aligned}$$

we see that ς is still a basic solution on $I \setminus U$. Thus, by induction, I is a disjoint union of U -forms.

Now suppose that $I = U_1 \cup \dots \cup U_r$ is a disjoint union of U -forms. We define a map ς on each U_i . If $U_i = \{t, t + f\}$ is of length zero, then set $\varsigma(t) = 1 = \varsigma(t + f)$. If $U_i = \{t, t + 1\}$ is of length one, then $\varsigma(t) = 2$ and $\varsigma(t + 1) = 1$. Finally, if U_i is of length $n \geq 2$, that is, $U = (H(t, n) \setminus H) \cup (f(H) - 1)$, for some $H \subseteq H(t, n) \setminus \{t\}$, then $\varsigma(x) = 1$, for all $x \in H(t, n) \setminus (H \cup \{t\})$ and $\varsigma(x) = 2$, for all $x \in (\{t\} \cup (f(H) - 1))$. We claim that in each case property (S2) is satisfied on U_i . This is straightforward if U is of length zero or one. So let U be of length $n \geq 2$. Then

$$\begin{aligned} & \sum_{k \in I_1 \cap U_i} 2^k + \sum_{k \in I_2 \cap U_i} 2^{k+f+1} \\ & \equiv \sum_{k \in H(t, n) \setminus (H \cup \{t\})} 2^k + \sum_{k \in H \cup \{t+1+f\}} 2^k \\ & \equiv 2^{t+f+1} + \sum_{k \in H(t, n) \setminus \{t\}} 2^k \equiv 2^{t+f+n} + 2^{t+n} \equiv 0 \pmod{q+1}. \end{aligned}$$

Hence (S2) holds on each U_i , and thus on I .

However note that $I_2 \cap f(I_2)$ may not be empty, and thus property (S1) fails to hold. Thus for each $t \in I_2 \cap f(I_2)$ we set $\varsigma(t) = 1 = \varsigma(t+f)$. Since $2^t + 2^{t+f} \equiv 2^{t+1} + 2^{t+f+1} \pmod{q+1}$, this does not effect the validity of property (S2). In particular we have constructed a basic solution of I . \square

We can now construct irreducible M_I that have basic solutions. Take for instance $f = 13$ and consider the union of the following U -forms of

- (a) length zero,
- (b) length one,
- (c) length four, with $H = \emptyset$ and
- (d) length five, with H containing the two d^* .

a	c	b	b	.	c	.	.	d	.	.	d	.
a	.	c	c	c	.	.	.	d	d^*	d^*	.	.

In particular $M_{\{0,1,2,3,5,8,11,13,15,16,17,20,21,22,25\}}$ has basic solutions.

We conclude this paper by calculating the multiplicity of certain irreducible modules in the involution module of $\mathrm{PSU}_3(q^2)$. Let $f = 5$ and take $I = \{1, 2\}$. We use Theorem 6.6. Observe that $K := I_s \cup N(I) = \{0, 1, 2, 3, 4, 5, 8, 9\}$, and $m_K = 184$, by (14). It remains to calculate m_{J_s} , for all $J \in \mathcal{T}(K)$. So let J be of type K . Then $R(K_s) = \{1, 2, 6, 7\} \subseteq J$, by (Q2). Next set $X := f(K) \cap J$. Observe that $X_p \subseteq \{0, 3, 4\}$. Moreover by (Q4) we know that $|X_p|$ is odd. This either implies $|X_p| = 3$, in which case $J = F$ and thus $m_{J_s} = 0$, or $|X_p| = 1$, in which case J_s contains exactly two elements. Assuming $m_{J_s} \neq 0$, it follows from Theorem 6.11 that J_s is a union of U -forms. Hence J_s is a U -form of length one, and thus it is one the four possible sets $\{3, 4\}$, $\{4, 5\}$, $\{8, 9\}$ and $\{0, 9\}$. Since $X_s = f(K_s) \cup J_s = \{6, 7\} \cup J_s$, we conclude from (P4) and (P5) that $J_s = \{8, 9\}$ or $J_s = \{4, 5\}$. One checks easily that $m_{J_s} = 2$ in either case. Furthermore $|N(I)_p \cap J_p| = |X_p| = 1$. Overall we get

$$\#(M_I, k_C \uparrow^G) = m_K - 2 \cdot m_{\{8,9\}} - 2 \cdot m_{\{4,5\}} = 184 - 2 \cdot 2 - 2 \cdot 2 = 176.$$

Hence $M_{\{1,2\}}$ appears 176 times in the involution module of $\mathrm{PSU}_3(4^5)$.

Next we choose $I = \{1, 2, 3, 4, 8, 9\}$. Then $I_s \cup N(I) = \{0, 1, 2, 5\}$. Since $R(I_s \cup N(I)) \neq F$, there is no set of type $I_s \cup N(I)$. Hence $\#(M_I, k_C \uparrow^G) = m_{\{0,1,2,5\}}$. Before Definition 6.10 we found that $m_{\{0,1,2,5\}} = 4$. Hence $M_{\{1,2,3,4,8,9\}}$ appears 4 times in the involution module of $\mathrm{PSU}_3(4^5)$.

ACKNOWLEDGEMENTS. I wish to thank the anonymous referee for some very constructive input towards the final version of this paper.

References

- [1] J.L. Alperin and R.B. Bell: Groups and Representations, Graduate Texts in Mathematics **162**, Springer, New York, 1995.
- [2] R. Burkhardt: *Über die Zerlegungszahlen der unitären Gruppen $\mathrm{PSU}(3, 2^{2f})$* , J. Algebra **61** (1979), 548–581.
- [3] L.C. Grove: Classical Groups and Geometric Algebra, Graduate Studies in Mathematics **39**, Amer. Math. Soc., Providence, RI, 2002.
- [4] J. Murray: *Projective modules and involutions*, J. Algebra **299** (2006), 616–622.
- [5] J. Murray: *Components of the involution module in blocks with cyclic or Klein-four defect group*, J. Group Theory **11** (2008), 43–62.
- [6] L. Pforte: *On the involution module of $\mathrm{SL}_2(2^f)$* , J. Group Theory **14** (2011), 709–725.
- [7] L. Pforte: *On the involution module of $\mathrm{GL}_n(2^f)$* , J. Algebra **396** (2013), 151–168.
- [8] G.R. Robinson: *The Frobenius–Schur indicator and projective modules*, J. Algebra **126** (1989), 252–257.

Department of Mathematics
 National University of Ireland, Maynooth
 Co. Kildare,
 Ireland
 e-mail: lars.pforte@nuim.ie