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Abstract

In this paper, we investigate a class of multi-group epidemodels with general
exposed distribution and relapse. Nonlinear incidence isused between compart-
ments. It is showed that global dynamics are completelyraegteed by the threshold
parameterRy under suitable conditions. More specifically, the diseasé die out
if Rp <1 and that ifRy > 1, the disease persists in all groups. The approaches
used here, are the theory of non-negative matrices, pemsisttheory in dynamical
systems and graph-theoretical approach to the method qfulbgev functionals. Fur-
thermore, our results demonstrate that heterogeneity antinear incidence rate do
not alter the dynamical behavior of the SIR model with gehexposed distribution
and relapse. On the other hand, our global dynamical resuithide the existence
of Hopf bifurcation leading to sustained oscillatory sa@uos.

1. Introduction

For classical SIR epidemic models, the host population v&ddd into three dis-
joint classes called susceptible (S), infective () andaoead (R). However, it is pointed
that many diseases have latency [1]. Susceptible indilsdiected with the disease
but not yet infective are in the exposed (latent) class. rAdtaviving the latent period,
these individuals pass into the infective class, and theover into the removed class.
A fixed latent period can be considered as an approximatiaheimean latent period,
and this would be appropriate for those diseases whoset Ipgginds vary only rela-
tively slightly. For example, poliomyelitis has a latentripel of 1-3 days comparing
to its much longer infectious period of 14-20 days (see dagble 3.1 in Anderson
and May [1]). However, disease such as tuberculosis, inotudiovine tuberculosis
(a disease spread from animal to animal mainly by direct agihtmay take months
to develop to the infectious stage, and also can relapseceShe time it takes from
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118 J. WANG, X. Liu, J. NG AND D. Hou

the moment of new infection to the moment of becoming infecti may differ from
disease to disease; even for the same disease, it diffars ifidividual to individual,
it is thus of interest to account for length of the latent périas a random variable.
Many relapse phenomenon of disease observed in clinicaly su@n important fea-
ture of some animal and human diseases (see details in [3,71@7]), for example,
herpes, removed individuals may revert back to the infectilass due to reactivation
of the latent infection or incomplete treatment [8, 32].

Van den Driessche et al. [31] formulated and studied folhgunore realistic model
by considering a general exposed distribution functionttier length of the latent period
and the possibility of relapse:

agt) I (t)
T bN —,BS(t)W —DbN,
_[ &) -6 pyp
(1.1) E(t)—/(; BE) N € P(t — &) dé,
% =rl(t) — ( + b)R(t),
I(t) =N — S(t) — E(t) — R(t),

where N is the size of the populatior§(t), E(t), | (t) and R(t) are the population sizes
of susceptible, exposed, infective, and removed classspectivelyx > 0 is a constant
rate at which an individual in the recovered class revertth@infective classh > 0

is the recruitment rate and the removal rate (this guarartegt N can be assumed as
a constant populationsfj > 0 denotes the average number of effective contacts of an
infective individual per unit time, and > O is the rate at which infective individuals
recover. P(t) is the probability (without taking death into account)ttlaa exposed in-
dividual still remains in the exposed classime units after entering the exposed class.
It is biologically reasonable to assume in [31] tHaft) satisfies the following reason-
able properties:

(H1) P: [0, c0) — [0, 1] is nonincreasing, piecewise continuous with pogsiititely
many jumps and satisfieB(0T) = 1; lim;_ P(t) = 0 with f0°° P(t) dt is positive
and finite.

For model (1.1), van den Driessche et al. [31] have shown ttatdisease-free
equilibrium (DFE) is globally asymptotically stable (GAB) Ry, < 1 (see Theorem 3.1
in [31]). One special case with a constant exposed perical rékulting model reduces
to a discrete delay differential equation system), theyehgkoved that the system is
uniformly persistent and the endemic equilibrium (EE) isdlty asymptotically stable
(LAS) if Ry > 1 (see Theorems 5.1 and 5.2 in [31]).
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Incorporating a nonlinear incidence function into (1.1)y let al. [23] studied the
following model

93— b t(sw)1 ) - b0,
9EO _ ¢ sami + / F(SE)! (€)™ 9 dP(t — £) d& — bE(®),
(1.2) d|dtt
L [ FSE! (€)™ dP(t — £) dé + aR(D) - (r + b (),
d R(t)
S =IO = @+ HRA),

where integrals are in the Riemann—Stieltjes sense andathi;near functionf (S(t)) is
assumed to satisfy:
(Hy) f: R, — R, is continuously differentiable with (0) = 0, f'(S) > O for all S> 0.

The authors in [23] shown that global threshold dynamicsermeined in terms of the
basic reproduction numbeR, of the model: ifRy < 1, the disease-free equilibrium is
globally asymptotically stable, whereasR > 1, a unique endemic equilibrium exists
and is globally asymptotically stable.

In recent years, multi-group epidemic models have beengzexpto describe the dis-
ease transmission dynamics of many infectious diseasetardggneous environment,
such as measles, mumps, gonorrhea, or to investigate imfectlisease with multiple
hosts such as West-Nile virus and vector borne diseasesasubhalaria [11, 12]. For
a heterogeneous host population, the disease can tranghiit the same group as well
as between groups. Thus host population can be divided éviral homogeneous groups
in terms of modes of transmission, contact patterns, etuckavels, ethnic backgrounds,
gender, and professions etc. They can also be formed gduogadlp, such as by schools,
communities and cities. So that within-group and interagrinteractions could be mod-
eled separately [21, 33, 34]. For more and detailed justifina for multi-group disease
models and many different types of heterogeneity epidenadets, see, for example,
[7,11,12,14,19, 21, 28, 33, 34] and the references citeeitne

In the present paper, a general multi-group epidemic maakdbon (1.2) is proposed
to describe the disease spread in a heterogeneous hosapopulith general exposed
distribution and relapse. The host population is dividdd mhomogeneous groups. Let
S, Ei, lj and R denote the susceptible, infected but non-infectious,ciideas, and re-
moved populations in thieth group, respectively. The disease incidence rate iri-he
group can be calculated as

> B H(SO);),

j=1

where the sum takes into account cross-infections fromrallijgs andg;j represents the
transmission coefficient between compartmefitand | ;. Set parameters as:
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by the recruitment rate and the removal rate inithl group;
aj constant rate at which an individual in the removed clasartgevo the infectious class
in thei-th group;
ri the rate at which infective individuals recover in tihéh group.

All parameter values are assumed to be nonnegative. Thesdlmn system (1.2),
the newn group model is given by the following nonlinear system ofdimensional dif-
ferential and integral equations:

50 _ Z i {(SE0 - bS ),
= Zﬁ., (SO
(1.3) + Z / Bi F(SEN!E)e ™D di R (t — &) d& — b Ei(1),
S Z / By F(SEN!©e ) dR( ) o
FaRO = + b)),
dR(t) =rilit) — (¢ +b)R(@®), i=1,2,...,n

The first term on the right hand side of second equation in) {&.8he rate at which new
infected individuals come into the exposed class, and tbietéam explains the natural
deaths. The second term accounts for the rate at which tihgdndls move to the infec-
tious class.

Examples off(§)1; satisfying {2) include common incidence functions such as
f(§)I; = Slj, see e.g., [11,13,18[(S)l; = nS1;/(1+6S), see e.g., [2]f ()] =
S'l;, see e.g., [36].

SinceE;(t),i = 1,...,n, are decoupled from th§, |; and R, equations, we only
need to consider the following sub-system of (1.3) conggstif only the§, I; and R
equations of (1.3):

ds®) _ N~ g b
T—b.—gﬁ.,f(sa))l,(t) bi S (t),
dli(t) oot b
(1.4) el —JX_;/O Bi F(SEN;E)e ™D dP(t —£) ds
+ o Ri(t) — (ri + b)li(t),
PO - +mRO, =120

Assume that eacl?;, satisfies assumptiorHg) and f satisfies ;). The contact matrix
B = (Bij )nxn €ncode the patterns of contact and transmission among gthapare built
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into the model. Associated tB, one can construct a directed grapbh= G(B) whose
vertexi represents thith group,i =1, 2,...,n. A directed edge exists from vertgxto
vertexi if and only if gjj > 0. Throughout the papeB = (Bij)nxn iS assumed to be non-
negative and irreducible. Biologically, this is the sameassuming that any two groups
and j have a direct or indirect route of transmission. More spalificindividuals inl;
can infect ones ir§ directly or indirectly [11,12, 21, 33, 34].

The organization of this paper is as follows. In the nextise¢tve give some prelim-
inaries of our main model (1.4). In Section 3, the global gstatic stability of equilibria
for Ry < 1 andRy > 1 is investigated, respectively. The proofs of the mainlteauilize
the persistence theory in dynamical systems, Lyapunouifumals and a subtle grouping
technique in estimating the derivatives of Lyapunov fumdils guided by graph theory,
which was recently developed in [11, 12, 21, 22]. For the eoience of the reader, we
include in Appendix A results from graph theory that are mekfibr our proof.

2. Preliminaries

The initial condition of the model (1.3) is assumed to be gias
(S(0), Ei(0), 1i(0), R (0)) e RY;  §(0)+ Ei(0) + 1i(0) + R(0) < 1.

The Volterra integro-differential equation system (1.3)hwproperties ;) satisfies the
hypotheses stated by Miller ([24], p.338) that are sufficientensure the existence,
uniqueness and continuity of solutions. Moreover, it can &efied that every solution
of (1.3) with nonnegative initial data remain nonnegatie.particular, S (t) > 0, for

t > 0. From the first equation of (1.3), it follows th&(t) < by — b S(t). Hence,
limsup_., S(t) <1. For each, adding the four equations in (1.3) gives

S@) + E®) + I/t) + R(t) = b —bi(S(t) + Ei(t) + 1i(t) + R(1)),
which implies that, for each, lim sup_ ..(S(t) + Ei(t) + li(t) + R(t)) = 1. Denote
[={(S B, li,R) eR™
S E, Iiy,R>0,§<L S+E+L+R=<1i=1,...,n}.

is the feasible region for (1.3), which is positively invamt with respect to model (1.3).
All positive semi-orbits inI" are precompacR*" (see [4]), and thus have non-empty
w-limit sets. We have the following result.

Lemma 2.1. All positive semi-orbits i have non-empty-limit sets.

Model (1.4) always admits a disease-free equilibrium (DFg)= (S, 0, 0,0.,.. .,
,0,0,0) inT, where &, ..., ) =(1,...,1). Let

t
q = lim [ R,
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which means the average latent period that an individuabiesnin the exposed class
before becoming infective or dying, and we denote

(2.1) Qi :=— lim /OO e ¢ d. P (&) de.

t—o0 0

Then, O<qg <1 andQ; = 1—big € (0, 1). Define

3= [ e aRrEd
it follows that J(t) > 0, vt > 0 and J;(0) = Q; > 0.

Following the method of Diekmann et al. [9], the basic repiitbn numberR, is
defined as the expected number of secondary cases produeadentirely susceptible
population by a typical infected individual during its emrtiinfectious period. Its bio-
logical significance is that iRy < 1 the disease dies out while Ry > 1 the disease
becomes endemic (also see Thieme [29], van den Driessch&Vatrdough [30]). For
model (1.4), we obtain

Qif (M1 -+ Quf(SAm

F= : " :
Qn f ($)5n1 e Qn f ($)ﬂnn
and
o (bl + b i)
then the next generation matrix is
Quf(MBufes +b1)  QuF(SBun(en + bn)
bi(os + by +11) bn(en + b + 1)
Fy = : : ,
Qn f(ﬁ)ﬂnl(al +by) o Qn f(ﬁ)ﬂnn(“n + bn)
by(es + by + 1) on + by + 1y

and hence the basic reproduction number of model (1.4) sulzaed by the spectral
radius of the next generation matrix

Ro = p(FV Y.
It is well known thatp(FV™1) = p(V~LF). Thus

(2.2) Ro = p(M°),
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where
Q1 f()Bra(es + by) o Quf () Bin(es + by)
bi(ay + by + 1) b1y + by +r1)
MO — V—lf — .
Qn f (Sg)ﬂnl(an + bn) L Qn f (Sg)ﬂnn(an + bn)
bn(on + b +1n) an + b+

Note that (1.4) may not have an endemic equilibrium (EE) foitdi timet. Ac-
cording to statements in [24], if (1.4) has an EE, then it neadtsfy the limiting sys-
tem given by

ds(t) .
S =n _éﬂ” UCIOIORIEI0}
dli(t) [ bt
2.3) Tdt _;/o Bi F(SENE)e I dPi(t &) dg
+ i Ri(t) — (ri + bi)li(t),
—dljt(t) =rili(t) = (o +b)Ri(t), i1=1,2,...,n

Since the limiting model (2.3) contains an infinite delag, dssociated initial condition
needs to be restricted in an appropriate fading memory spkoe any %; € (0, by),
define the following Banach space of fading memory type (sge {15, 16] and ref-
erences therein):

Ci = {¢ € C((—o0, O], R):

$(s)€"® is uniformly continuous on-oo, 0], and supp(s)|e"s < oo},

s=<0
and
Yr = {¢i € Ci: ¢i(s) = 0 for all s < 0}
with norm |||l = supol¢(s)|€”s. Let ¢,¢ € Ci be such that(s) = ¢(t +59), ¢i(s) =
@(t +5), s e (-0, 0]. Let @i, ¢ € Ci and R o € Ry such thatgi(s) > 0, ¢i(s) > 0,

s € (—oo, 0]. We consider solutions of model (2.3%4, 1, Ru(t), - - -, Sty Ints Ra(t)),
with initial conditions

(2.4) So=¢i, lio=¢, RO =Ro i=12...,n
Standard theory of functional differential equations [1®plies S;, Ii; € C; for t > 0.

We consider model (2.3) in the phase space

X = H(C, X Ci XR).
i=1
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It can be verified that solutions of (2.3) iX with initial conditions (2.4) remain
nonnegative.

An equilibrium P* = (S, I, R}, ..., §, I, R;) in the interior of " is called an
endemic equilibrium, wher&*, 1*, R* > 0 satisfy the equilibrium equations

(2.5) bi_Z,Bijf(S*)lj*_biS*zo'
=1
(2.6) D UBIQH(S) + R = (i + )l =0,
=1
(2.7) il — (& +b)R" =0.

Next we will give our main results.

3. Main results
Denote
(3.1) Hu)=u—-1-Inu, VYu=>0,

then we haveH (u) > 0 andH(u) = 0 if and only if u = 1.
3.1. Global dynamics of disease free equilibrium.

Theorem 3.1. Assume that each; Batisfies(H;), f satisfies(H,), and the ma-
trix B = (Bij)nxn is irreducible. The following results hold for modgl.4) with Ry
given by(2.2):

(i) If Rg <1, then the DFE is globally asymptotically stable.
(i) If Rg > 1, then the DFE is unstable.

Proof. SinceB = (Bij)nxn is irreducible, the nonnegative matrix

o ( QiBij f(P)ei +b)
M _( bi(i +ri +by) )nxn

is also irreducible, and® has a positive left eigenvectaid, w, ...,wn) corresponding
to the spectral radiu®y = p(M° < 1. Let

_ oi(e +b)
C b +bi 1) T

Consider a Lyapunov functional

Lore =) [Qi M (T ) O+ LA+ Fw)},
i=1 j=1 i {
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whereU™ is given as/; J (&) f(S(t — &)1t — &) d&.

By (3.1) and assumptionH;), we know thatL; > O with equality if and only if
St =9 i) =0, R(t) =0 and J (&) f(S(t —&))I;(t —&) = O for almost all§ > 0.
Differentiating U, along the solution of model (1.4) and using integration bytga
we obtain

t
3(/ Ji@)f(sa—a)l,-(t—s)ds)
0

ot
t 0
_ Ji(t)S(O)lj(o>+/o O (F(S -y ) e
t
- Ji(t)s<0)lj(0)—/o Ji@)%(f(sa—s»n(t—s» de
t
o f(sa»l,-(t)+[o F(S( - )t — &) ¢ d. R (e) de.

Thus the derivative oL prg is given as

n f _ f n
Lorclag=3"c [Qi [%ﬁ} [bi —hSM-3 6 HSO)! j(t)}
i—1 =1

N .t
N CEIER S EILIOLE
j=1

+ai RO+ + ) 8 Qi F(SO);()

=1
n oot

+3 [ A SE-ene-oe ™ dRE)de
=170

(3.2)

ai
b (ri 1y (t) — (i +bi)Ri(t)):|

0[] )

Z bla)l (O(| +b| <Z '3” Qi f(slo)l Mh(t))

(i +by +17) (o +1oy)

O [HEO 1)
=200 e e

<(p(M®) —1)(w1, @y, ..., wn)l <0, if Ry<1.
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Here I (t) = (I1(t), I2(t), ..., In(t)". Let

Y ={(S, 11, Ri, ..+, Sy Iny Ro): Lpeelaay = 0},

and Z be the largest compact invariant setYa We will show Z = (S}, 0, 0,...,
S, 0, 0). From inequality (3.2) and > O, Loeel4) = 0 implies

[f(S(t)) - (&)
f(S()

and thus§(t) = SO = 1. Hence, from the first equation of (1.4), we obtain

][bi bS] =0,

> B f(SM)) =0,
=

and thus
Bij F(S)I;t) =0,

forallt > 0 and 1<, j <n. Then, by irreducibility ofB, for eachj, there exists
i # j such thatg;; # 0, thuslj(t) =0, j =1,...,n. Thereforez =(,0,0...,5,0,0).
Using Lemma 2.1 and the LaSalle—Lyapunov theorem (see &he®&.4.7 of [20] or
Theorem 5.3.1 of [15]), we conclude tha)(0,0,..., S, 0, 0) globally attracts all the
solutions of model (1.4) ifRy < 1.

If Ry > 1 andl(t) # 0, it follows that p(M°®) — 1)(w1, w2, . .., wy)l > 0, which
implies that, in a sufficiently small enough neighborhood(§{, 0, O,..., S, 0, 0),
Lbrel.a) > 0. Therefore, 8, 0,0,..., S, 0, 0) is unstable wheiR, > 1. O

3.2. Disease persistence.In this subsection, we obtain some global information
about the disease in terms of persistence and show thgiMFP) > 1, the disease will
persist in all groups. This conclusion together with a vkelbwn result for persistent
systems actually implies the existence of an endemic équith for the model (2.3).

For convenience, the positive solution of (2.3) is denotgd b

S(t, ¢, ¢, R(0)), I (t, ¢, ¢, R(0)), R(t, ¢, ¢, R(0))
= (S(t ¢, ¢, RO)), ..., S(t ¢, ¢, RO)),
l1(t, ¢, @, RQQ)), . - ., In(t, ¢, @, R(0)),
Ru(t, ¢, ¢, R(0)), ..., Ru(t, ¢, ¢, R(0))),
whose components are all positive and boundedt ferQ.

Theorem 3.2. Assume thap(M?) > 1. Then there exist ad such that for every
(¢, 9, R(0)) € Ya x Yo xR with ¢(0) > 0, the solution(S(t), | (t), R(t)) of (2.3) satisfies

liminf 1i(t, ¢, ¢, RO) =&, i=1,2...,n.
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Moreovey the model(2.3) admits at least one positive equilibrium.

Proof. Define
X = {(#, ¢, R(0)) € Yo x Y5 xR},
Xo={(¢, 9, RO) € YaxYaxReX:¢(0)>0,i=1,2,...,n},
and
9 Xo = X\ Xo.

It then suffices to prove that (2.3) is uniformly persistenthwespect to Xo, 9 Xp).
Let ®(t): X — X be the solution semiflow of (2.3), that is,

®)(, ¢, R()) = (S(¢, ¢, RO)), 1:(#, ¢, R(0), R(t, R(0))).

It follows from Lemma 2.1 that botlX and X, are positively invariant fob(t). Clearly,
9 Xo = {(¢, ¢, R(0)) € X: ¢;(0) = 0} for at least one € {1, 2,...,n} and it is relatively
closed inX. Furthermore, model (2.3) is point dissipativelin

Define

Q5 = {(¢, ¢, R(0)) € X: (S(¢9, ¢, R(0)), (¢, ¢, R(0), R(t, R(0))) € 3Xo}.
We next show that

Assume 6, ¢, R(0)) € Q5. It suffices to show that;(t, ¢, ¢, R(0)) = 0, Vt > 0.
Suppose this is not true, then there existsi@n0 < ip < n, and aty > 0 such that
li,(to) > 0. Thus set{1, 2,..., n} can be departed intq, and Q, such that

Ii(tOl ¢| ¢, R(O)) = 01 Vi € Ql; Ii(tO! ¢| ¢, R(O)) > 01 Vi € QZ-

Obviously, Q; is non-empty due to the definition a; and Q, is also non-empty
since li,(to, ¢, ¢, R(0)) > 0. For anyj € Q, by the irreducibility of the matrix &;),
there is ani; € Q, such that

dlj ()
dt

o= =2 [ A (S0~ )10~ e (o) d
i=1

+ojR(to) — (ri +bi)lj(to) > 0.

It follows that there is argo such thatl;(t) > O for j € Q; andty <t < tg+€p. Clearly,
we can restrickg > 0 small enough such thadt(t) > 0 fori € Q, andty <t < tg+ €o.
This means that (¢, ¢, R(0)), It(¢, ¢, R(0), R(t, R(0))) ¢ 0Xo for tg <t < ty + €q,
which contradicts the assumption that, {, R(0)) € 5. This proves (3.3).
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Let us consider the following linear system

as() _

(3.4) T

Zﬂ” f(SM)E—bS), i=12...,n

j=1

Note that for anye > 0 small enough such that (3.4) admits a unique positive ibguil
rium (SX(#), ..., S(€)) which is globally asymptotically stable. By the impliditnction
theorem, it follows that (&), ..., S)(€)) is continuous in&. Thus, we can further
restrictz small enough such thas{(s), ..., S@E) > (S —n, ..., L —n).

Next we claim that

(3.5) lim supmax{li(t, ¢, ¢, R(0))} > &, for all (¢, ¢, R(0)) € Xo.
t—o0
Otherwise, there is a large enoudh > 0 such that O< Ii(t, ¢, ¢, R(0)) <&, i =
1,2,...,n, for all t > T;. Then fort > T;, we have
ds(t .
(3.6) S() b—Z,BUf(S(t))a—bS(t) i=1,2,...,n

j=1

Since the equilibrium ﬁ(é), ..., S%(&)) of (3.6) is globally asymptotically stable and
() > S*—p, there is al, such thatS(t) > S —n for t > T, + T,. By the continuity of
the functionf, there exists a positive constaht> T1+ T, such thatf (S(t)) > f(S?)—n
for t > T3. Further, we can choosk, > T3 large enough such that fé e bi d: B (§) >
Qi —n >0, Vt > T4. Thus, we can get

— )i (F(S) — e + by)
bi (e +ri +by)

p(Mo(n)) = ,0((Qi ) > 1, for sufficiently smally.
nxn

Consequently, fot > Ty,

ol Zf i (S - EN1(t—e™O) &R (€) d
+maay4n+uﬂmx
—dljt(t) =rilit)— (o +b)R(), i=12,...,n

Choose sufficiently largds > T, such thatf(S(t — &)) > () —n, Vt > Ts and
& €0, T4]. Hence we have

LI (f(s?)—n)Z/ B 1yt — £)e© 4, R (¢) ds

+ o R(t) = (ri + b)li(t),
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for all t > Ts. By the mean value theorem for integrals we obtain that fgor tarthere
exists a&; € [t — Ty, t] such that

Ta Ta
[ 1t - £)e PO d, R (5) de = —1,(2) / e D d, Py (5) d
0 0
- 1E)Q o).

Then we get

dl (t) > (£(S) = n)(Qi _S)Z,B,J (&) + i R (t) — (ri + b)1i(Y),

j=1

forall t>Ts.

Then by a standard comparison argument and the nonnegatixét know that the as-
sumptionp(Mg(n)) > 1 implies that the trivial solution of linear system

d
ﬂ>(f(§°) Qi — e)Zﬁ.,l,(&)Jra.R(t)—(r+b)l(t)

j=1
dR(t
%() =rilit)— (¢ +b)R®), i=1,2,...,n, foral t>Ts
is unstable. This together with (3.7) and the comparisororéra implies that there
is at least ond € 1,...,n such thatlj(t) - oo ast — oo, a contradiction to the

boundedness of solutions. Therefore (3.5) holds. ]

Note that &, ..., ) is globally asymptotically stable iR"] " /{0} for system (3.6).

By the afore- mentloned claim, it then follows tha&°(0, 0) is an isolated invariant set
in X, and W3(S°, 0, 0)N Xo = @. Clearly, every orbit inQ, converge to £, 0, 0),
and &, 0, 0) is the only invariant set i&,. By Theorem 4.6 in [29] for a stronger
repelling property ofd Xy, we conclude that system (2.3) is indeed uniformly persis-
tent with respect to Xo, 9Xo). Moreover, by theorem 2.4 in [35], system (2.3) has an
equilibrium §, ..., S, 1/, ..., 15 R}, ..., R € Xo.

Let X(t) = (¢it, ¢it, R (t)) be a solution of (2.3). By Lemma 2.1 and Theorem 3.2
and using similar arguments to [26], it follows that thelimit set @ of X is non-
empty, compact, and invariant and thatis the union of orbits of (2.3). By a similar
argument as Lemma 4.1 in [26], we have:

Corollary 3.1. Suppose that 2> 1 and (¢it,¢it, Ri (t)) be a solution of(2.3) that
lies in ©, then there exists a positive constant- 0 such thate < S(t), I (), R(t) < 1
forallt > 0.

REMARK 3.1. Uniform persistence of (2.3), together with uniformubdedness
of solutions in the interior of”, implies the existence of a positive equilibrium of (2.3)
(see Theorem 2.8.6 in [5]).
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3.3. Global dynamics of endemic equilibrium.
Theorem 3.3. Consider systen(2.3). Assume that each; Batisfies(H;), f sat-

isfies (Hz), and the matrix B= (Bij)nxn is irreducible. If R > 1 and (¢it, ¢it, R(t))
is a solution to(2.3) that lies inT", then

Im @, e, RO) = P* = (S1 11, Riv -0 S5 130 RY)

Proof. LetP*=(S},I1;,R},....S;. 15, R}) denote the unique endemic equilibrium
of model (2.3). Define a Lyapunov functional as

Lee=QiLs+ L, +U_+ Lg,

[o4]
aj + by

I AREIOERICY) I U R
LS_A de, Ly =1 H(l*) LR_RiH(ﬁ),

f(St—)t—6)
( ISR )dé'

where

and

= ” ij f N
;/g B £(S)17 H@H

The definition of the fading memory space, Lemma 2.1 and GoxoBB.1 imply Lgg
is well-defined, that isLgg is bounded for allt > 0. It follows from Lemma 2.1
and assumptionH>) that Leg > 0 with equality if and only ifS(t) = §, Ii(t) = I},
Rt)=R andS(t—-¢) =5, li(t—&) = I;* for almost all¢ > 0.

Differentiating Ls along the solution of model (2.3) and using equilibrium equa
tions (2.5)—(2.7), we obtain

dLs
|(23)
_ %[u SN G f(S(t))'i(t)—biS(t)}
j=1 j=1
(3.7) ‘ ; " -
_ %[w —BISO+ 3 A &) =3 A HEE)W)
j=1 j=1
n fz(sl*) | * n

—Zﬂu 1(S) +Zﬂuf(51*)| (t).

=1
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Differentiating L, along the solution of model (2.3), we obtain

o s "]'*[ Z/ B H(S(E—£)1j(t — £)e>© d Pi(e)
+a.R(t)—<Zlﬁ.,Q.f(s*)|L “'R>I(t)}
;
(3.8) =é [ a0 - 9o deRe) ds
+(X|Ri(t)—alR|lft)|i*
—jn;ﬁuQif(s*)%h(t)+j2ilﬁuczif(s*)l,-* 'lffl(t)w.a

Differentiating Lr along the solution of model (2.3) and using equilibrium eores
(2.5)-(2.7), we obtain

| -AEE[ ﬁf‘w 1O~ @+ BIRO]
(3.9) @3 o
S L L )
i i | |i*Ri(t) .
Differentiating U_ along the solution of model (2.3) and using integration bytga
we obtain
du_ v A FSE—ENE—§)
T(zg) JX;/ ,3|Jf(3*)|j3.(§)dtH( Gk )d§
. ) v O f(sa—s»lja—s))
- J;/O @13 g H (g ) as
- oy * f(S(t))lj(t))
= ij f P QH| —/ =
[ reh HSE=)1;(t—§)
(3.10) +;/o Bij F(§)1e bi& déP,(S)H( f($*)|;* )ds

=Y B f(SM);M)

j=1
+Z/ .Bije_biédEH(é)[f(S(t_é))lj(t_é)
=170

fFS)I;() ] .
HCIGEIUIGEIN

— ()17 In
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Combining (3.7)—(3.9) vields

dLee
dt

FO)- ) oy . [ _ﬂ_ﬂ}
(23)—Q| f(S) [bi S —bi §(t)] +oi R"| 2 IR iR

D enaf, HESOLO  HE) 1O )
+Zﬂ"Q'f(S)'J(Z_ T )

(3.11)
+Z/ fi Tl (Sl -£)e O d.R(e) de

Ldu
dt -

Using (3.10), we rewrite (3.11) as

dLee
dt 23)
HS) = () _RI_RY
_Ql—f(s) [bls* biS (t)]—l—oz,R,|:2 R| |iRi*j|
O ) | % _f(s* i _Ii(t)
+§ﬂuQuf(S)|J(2 TORME h*)
+ B f(S
=1
® HSE—O) -1 fSM)L0)
< e dgp'@)[ TSIRI0 +'”f(sa—s»l-(t—s)]dé
ot (i S ) e S OO LO
;ﬂquf(S{*)ll(H(S(t))+lns(t)+ 2 Ii*)
N ey [ b F(S(t -t —&)1F
j:1ﬂ|1f(3)|,/o e aROH (M )«

' i j i

j=

Here we used the facts that

f f * ], . |
e S g -nsoi=o. [2- Tp -T2 <o

S f(S(t—-8)l; (t L
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Set
Bij = B Qi f(S)1F, 1<i,j=<n,
and
(S By B - —Bu |
1#1
_BlZ Z BZI et _BnZ
B = 1£2
_lgln _BZn ZBnI
L I#n

Note thatB is the Laplacian matrix of the matri )nxn (See Appendix). Sincesj )nxn
is irreducible, matricesfj)nxn and B are also irreducible. Le€i; denote the cofac-
tor of the (, j) entry of B. We know that systenBv = 0 has a positive solution =
(v1, v2, - . -, vn), Wherey; =G >0fori =1,..., n.

n
L= ZUiLEE,
i=1

then
di| _§~, dlee |
dt |y & dt '@
() i) 1 (t) li (t)
<IJX:1U,/3,JQ.f($*)| ( E —1In R +1In h*)
_ N JLO l(t) s 1)
—ijzlvlﬁlel f(sk)l ( ) |2::1vlﬂ” Qi f(S*)H (ln |i(t)|j*)
=:¥; — Wy,
We first showw; = 0 for all I, I, ..., Ip > 0. It follows from Bv = 0 that

Zﬁjiv,- = Zlgikvi
=1 k=1
or using Bji = ;i Q; f(S)I%,

Zﬂ“Qlf(S;k)ll*vJ ZZ,Bikaf(S*)Iljvi’ | =1,...,n-
k=1

j=1
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This implies that

n n

ZviﬁiijS*H:ZEiZ'BiiQiSjk”J=Z|L* Bik Q () I vi
k=1

ij=1 i=1 ji=1 ji=1 |
n I
=Y upy st*h-*l—'*,
ij=1 i
and thusw; =0 for all 14, 15,..., 1, > 0.
Next we showw, = 0 for all I4, I, ..., I, > 0. Let G denote the directed graph

associated with matrix&j). G has vertices 1, 2,.., n with a directed arci( j) from

k to j if and only if Bi,- # 0. E(G) denotes the set of all directed arcs ®&f Using
Kirchhoff’'s Matrix Tree Theorem (see Appendix), we know that= C;; can be inter-
preted as a sum of weights of all directed spanning subffee$ G that are rooted at
vertexi. Consequently, each term inf;j is the weightw(Q) of a unicyclic subgraph
Q of G, obtained from such a tre€ by adding a directed ard,(j) from the rooti

to vertex j. Note that the arci( ) is part of the unique cycl€ Q of Q, and that the
same unicyclic grapl® can be formed when each arc 6fQ is added to a correspond-
ing rooted treeT. Therefore, the double sum M, can be reorganized as a sum over
all unicyclic subgraphsQ containing vertices 1, 2,.., n, that is, W, = } o Hq, Where

*

Ho=w(Q: Y In 'Iii*l';=w(Q).|n< I Iﬂ*llj)

(I,))eE(CQ) ) (,)eECQ '

Since E(C Q) is the set of arcs of a cycl€ Q, we have

1¥1; 141
I1 L+ andthus | I1 =0
(.h)eECCQ ' (.h)eECQ ']

which implies Hg = 0 for eachQ, it follows that W, = 0, for all 14, I, ..., I > 0.
Together with (3.12) and (3.13), we getl(/dt)|.3) < 0 with equality holds if and
only if

SO =8t-§)=8, IO=Lt-§=1F, RH=R".

Therefore, the only compact invariant subset of the set avif@l /dt)|23 = 0 is the
singleton{P*}. By LaSalles invariance principleR* globally attracts in the interior
of I'. That is, lim_«(¢it, @i, R(t)) = P* =(§, I, R}, ..., §, |7, R:). The proof
is complete. ]

REMARK 3.2. Compared to results in [11] and [12], the group striectuar sys-
tem (1.4) and (2.3) greatly increases the complexity etdtbin the derivatives of the
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Lyapunov functionals. The key to our analysis is a completscdption of the patterns
exhibited in the derivative of the Lyapunov functionalsngsigraph theory.

Appendix

Given a nonnegative matri\ = (&;), the directed graph GA) associated with
A = (&) has vertices 1, 2, .,n with a directed arci(j) fromi to j iff a; =0. Itis
strongly connectedf any two distinct vertices are joined by an oriented path.triva
A is irreducible if and only ifG(A) is strongly connected [6]. Areeis a connected
graph with no cycles. A subtre€ of a graphG is said to bespanningif T contains
all the vertices ofG. A directed treeis a tree in which each edge has been replaced
by an arc directed one way or the other. A directed tree is gaible rooted at a
vertex, called the root, if every arc is oriented in the di@t towards to the root. An
oriented cyclein a directed graph is a simple closed oriented pathuricyclic graph
is a directed graph consisting of a collection of disjoinbtesl directed trees whose
root are on an oriented cycle. We refer the reader to ([25pofém 5.5) for more
details of these concepts.

For a given nonnegative matrid = (a;), let

Z ay —&z - —anl
1#1
—a Z ay -+ —am
L = 122
S T TR W-*
L A0

be the Laplacian matrix of the directed gra@{A) and C;; denote the cofactor of the
(i, j) entry of L. For the linear system

(3.14) Lv =0,
the following results hold (see details in [12]).

Theorem 3.4 (Kirchhoff's matrix tree theorem) Assume that r» 2 and that A
is irreducible. Then following results hald
(1) The solution space of systdi®.14) has dimensiori, with a basis(vy,vs,...,vn) =
(C11, C22, . . ., Chn).
(2) Fori<k=n,

Ckk=2w(T)=Z H am >0,

TeTk TeTk (r,m)eE(T)
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whereTy is the set of all directed spanning subtrees (fApthat are rooted at vertex
k, w(T) is the weight of a directed tree,Tand E(T) denotes the set of directed arcs

in T.
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