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Abstract
The Hurwitz action of then-braid groupBn on then-fold product (Bm)n of the

m-braid groupBm is studied. Using a natural action ofBn on trees withn labeled
edges andn C 1 labeled vertices, we determine all elements of the orbit ofevery
n-tuple of then distinct standard generators ofBnC1 under the Hurwitz action ofBn.

1. Introduction

Let Bn denote then-braid group, which has the following presentation [1, 4].

�

�1, : : : , �n�1
�i� j�i D � j�i� j (ji � j j D 1),
�i� j D � j�i (ji � j j > 1)

�

,

where�i is the i -th standard generator represented by a geometricn-braid depicted in
Fig. 1.1.

Throughout this paper,n is an integer withn = 2. Let G be a group and letGn

be then-fold direct product ofG. For elementsg and h of G, let g� h denoteh�1gh
and let g � h denoteg � (h�1) D hgh�1.

DEFINITION 1.1. TheHurwitz action of Bn on Gn is the right action defined by

(g1, : : : , gi�1, gi , giC1, giC2, : : : , gn) � �i

D (g1, : : : , gi�1, giC1, gi � giC1, giC2, : : : , gn)

and

(g1, : : : , gi�1, gi , giC1, giC2, : : : , gn) � ��1
i

D (g1, : : : , gi�1, giC1 � gi , gi , giC2, : : : , gn),

where�1, : : : , �n�1 are the standard generators ofBn.

We call the orbit of (g1, : : : , gn) 2 Gn under the Hurwitz action ofBn the Hurwitz
orbit of (g1, : : : , gn) and denote it by (g1, : : : , gn) � Bn. We say two elements ofGn

are Hurwitz equivalentif they belong to the same Hurwitz orbit.
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Fig. 1.1.

When G is a braid groupBm and eachg j ( j D 1, : : : , n) is a positive simple braid
(that means a conjugate of�1), the Hurwitz orbit of ann-tuple (g1, : : : , gn) corresponds
to an equivalence class of an “algebraic” braided surface ina bidisk D2

� D2 with n
branch points [11, 13, 14, 15, 17]. Here, we say that two braided surfacesS and S0 are
equivalentif there is a fiber-preserving diffeomorphismf W D2

�D2
! D2

�D2 (that is,
f (D2

�{x})D D2
�{g(x)} for some diffeomorphismgW D2

! D2) carrying S to S0 rel
D2
� �D2. It is natural to ask if two given braided surfaces are equivalent or not. This

question is equivalent to asking if two givenn-tuples (g1, : : : , gn) and (g01, : : : , g0n) of
positive simple braids determined by their monodromies areHurwitz equivalent or not.
This is a very hard problem and no algorithm to solve it is known. However, we can
determine all elements of the Hurwitz orbits of somen-tuples of positive simple braids.

Throughout this paper, we use the symbol “si ” to denote thei -th standard gener-
ator of BnC1, and “�i ” to denote that ofBn.

We prove that for every permutation' of {1, : : : , n}, there is a natural bijection
from the Hurwitz orbit of (s

'(1), : : : , s
'(n)) to a set consisting of all trees satisfying

the conditions of Definition 2.2. As a result, we determine all elements in the Hurwitz
orbit of (s

'(1), : : : , s
'(n)) for every permutation' of {1, : : : , n} (see Theorem 4.3). We

will also prove Theorem 1.2 by using Theorem 4.3.
Let XnC1 be the set of the integers{2, 3,: : : ,n}. For a permutation' of {1,: : : ,n},

let A' D {i 2 XnC1 j '
�1(i � 1)< '

�1(i )}.

Theorem 1.2. For permutations' and  of {1, : : : , n}, the following conditions
are mutually equivalent.
(1) (s

'(1), : : : , s
'(n)) and (s

 (1), : : : , s
 (n)) are Hurwitz equivalent.

(2) The products s
'(1) � � � s'(n) and s

 (1) � � � s (n) are equal in BnC1.
(3) The sets A' and A are equal.

REMARK 1.3. Let BC

nC1 be the semi-group which has the generatorss�1 , : : : , s�n
and the relationss�i s�j D s�j s�i if ji � j j > 2 and s�i s�j s�i D s�j s�i s�j if ji � j j D 1. Let

i W BC

nC1 ! BnC1 be the natural semi-group homomorphism, i.e.,i (s�i ) D si for each
i 2 {1,:::,n}. In [7], Garside proved thati is injective. (We call an element ofi (BC

nC1) a
positive elementof BnC1.) Using the Garside’s theorem, T. Ben-Itzhak and M. Teicher
showed the equivalence of the conditions (1) and (2) of Theorem 1.2 in [2]. This is
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explained as follows. Ifji � j j > 2, then (si , sj ) and (sj , si ) are Hurwitz equivalent. If
ji � j j D 1, then (si , sj , si ) and (sj , si , sj ) are Hurwitz equivalent. (See [2].) Thus, for
permutations' and of {1, : : : , n}, (s

'(1), : : : , s
'(n)) and (s

 (1), : : : , s
 (n)) are Hurwitz

equivalent if and only if the productss�
'(1) � � � s

�

'(n) and s�
 (1) � � � s

�

 (n) in BC

nC1 are equal.
By the Garside’s theorem, this condition is equal to the condition that the products
s
'(1) � � � s'(n) and s

 (1) � � � s (n) in BnC1 are equal. Thus, we have the equivalence of (1)
and (2) of Theorem 1.2. In this paper, we will prove the equivalence of (1) and (3) of
Theorem 1.2 by using Theorem 4.3.

2. Main result

Let SnC1 be the symmetric group of degreenC1 and letTnC1 be the set of elem-
ents (�1, : : : , �n) of the n-fold direct product (SnC1)n of SnC1 such that�1, : : : , �n are
transpositions which generateSnC1. For any element (�1, : : : , �n) of TnC1, the Hurwitz
orbit (�1, : : : , �n) � Bn is contained inTnC1 [10, 12]. Thus, we obtain an action ofBn

on TnC1 as a restriction of the Hurwitz action on (SnC1)n. Let GnC1 be the set of trees
with n edges labeled{e1, : : : , en} and nC 1 vertices labeled{v1, : : : , vnC1}. A natural
action of Bn on GnC1 has been observed [5, 6, 8]. It is explained as follows.

Take an element (�1, : : : ,�n) of TnC1 and put�i D (ki l i ) (ki < l i ) for i 2 {1,: : : ,n}.
We define0(�1,: : : ,�n) as a graph withnC1 vertices labeled{v1,: : : ,vnC1} andn edges
labeled{e1, : : : , en} such that the edge labeledei connects with two vertices labeledvki

and vl i for i 2 {1, : : : , n}. Since�1, : : : , �n generateSnC1, the graph0(�1, : : : , �n) must
be a tree [5, 6]. Hence,0(�1, : : : ,�n) 2 GnC1. We call the induced map0W TnC1! GnC1

the graphic map. The map0 is bijective [5, 6]. Thus, we obtain the action ofBn on
GnC1 defined by
 � � D 0((0�1(
 )) � �) for 
 2 GnC1 and � 2 Bn [5, 6, 8]. We call
this action theHurwitz action of Bn on GnC1.

For 1� i � n, let ti be the transposition (i i C1) of SnC1. Take a permutation' of
{1,: : : ,n}. Let pW BnC1! SnC1 be the canonical projection and letP D pn

W (BnC1)n
!

(SnC1)n be the map defined by (b1,: : : ,bn) 7! (p(b1),: : : , p(bn)). Then, for any� 2 Bn, it
holds P((b1, : : : ,bn) ��)D (P(b1, : : : ,bn)) ��. Thus, for every permutation' of {1,: : : ,n},
we haveP((s

'(1), : : : ,s'(n)) � Bn)D (t
'(1), : : : , t'(n)) � Bn. Since (t

'(1), : : : , t'(n)) 2 TnC1 (and
hence,0(t

'(1), : : : , t
'(n)) 2 GnC1), we have0(t

'(1), : : : , t
'(n))� Bn � GnC1. In [16], it is

proved that the mapP D Pj(s
'(1),:::,s'(n))�Bn W (s'(1), : : : , s

'(n)) � Bn! (t
'(1), : : : , t

'(n)) � Bn is
bijective. Then,0ÆP((s

'(1),:::,s'(n)) �Bn)D 0((t
'(1),:::t'(n)) �Bn)D 0(t

'(1),:::,t'(n))�Bn.
Since0 and P are bijective, the map0ÆPW (s

'(1), : : : ,s'(n)) �Bn! 0(t
'(1), : : : , t'(n))�Bn

is bijective.

REMARK 2.1. Take an element (�1, : : : , �n) of TnC1. Let TnC1(�1, : : : , �n) be the
subset ofTnC1 defined by{(� 01, : : : ,� 0n) 2 TnC1 j �

0

1 � � ��
0

n D �1 � � ��n}. In [10], A. Hurwitz
proved that there exists (nC 1)n�1 elements ofTnC1(�1, : : : , �n). In [12], P. Kluitmann
proved that the Hurwitz orbit (�1, : : : , �n) � Bn is equal to the setTnC1(�1, : : : , �n) by
an induction onn and using combinatorially calculations ofSnC1. Hence, there exists
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(nC1)n�1 elements in the Hurwitz orbit (�1, : : : , �n) � Bn. In [9], S.P. Humphries proved
that the Hurwitz orbit (s1,: : : ,sn) �Bn consists of (nC1)n�1 elements. In [16], the author
proved that for any permutation' of {1, : : : , n}, the Hurwitz orbit (s

'(1), : : : , s
'(n)) � Bn

consists of (nC 1)n�1 elements.

Let C be a circle inR2. Let PnC1(C) D C � � � � � C denote the product space of
n C 1 copies ofC. Let QnC1(C) D {(q1, : : : , qnC1) 2 PnC1(C) j qi ¤ q j for i ¤ j }.
We call QnC1(C) the configuration space of ordered nC 1 distinct points of C. Fix
an elementq D (q1, : : : , qnC1) 2 QnC1(C) and let0q

nC1 be the set of segments{qi q j j

1 � i < j � nC 1} in R

2. Take elementse and e0 of 0q
nC1. If �eD {qi , qi 0}, �e0 D

{qi , qi 00} and qi 0 ¤ qi 00 , i.e., e and e0 share a common end pointqi , then we say that
e and e0 are adjacent(at qi ). Moreover, if the end pointsqi 0 , qi and qi 00 appear onC
counterclockwise in this order, then we say thate0 is a right adjacent to e (at qi ).

DEFINITION 2.2. An n-tuple (e1,:::,en) of elements of0q
nC1 is good if it satisfies

the conditions (i)–(iii).
(i) If k ¤ l , then ek and el are disjoint or adjacent.
(ii) If k < l and ek and el are adjacent, thenel is a right adjacent toek.
(iii) The union e1 [ � � � [ en is contractible.

Let G(0q
nC1) be the set ofn-tuples of elements of0q

nC1 which are good. When
(e1, : : : , en) is an element ofG(0q

nC1), the unione1 [ � � � [ en is regarded as a graph
with nC1 verticesq1, : : : ,qnC1 andn edgese1, : : : ,en. Note that the graphe1[� � �[en

is a tree. Putting labelsvi on the pointsqi for 1� i � nC 1, we regardG(0q
nC1) as a

subset ofGnC1. The following is our main theorem.

Theorem 2.3. For a permutation' of {1, : : : , n}, there exists an elementq of
QnC1(C) such that the Hurwitz orbit0(t

'(1), : : : , t
'(n))� Bn is equal to the setG(0q

nC1)
(� GnC1). Hence, the map0 Æ P gives a bijection from the Hurwitz orbit(s

'(1), : : : ,
s
'(n)) � Bn to the setG(0q

nC1).

REMARK 2.4. In [16], the author found an elementq of QnC1(C) such that the
Hurwitz orbit 0(t

'(1), : : : , t
'(n)) � Bn is contained inG(0q

nC1). Thus, we obtained an
action of Bn on G(0q

nC1) as the restriction of the Hurwitz action ofBn on GnC1. In
this paper, we will show the transitively of this action.

3. Some notions

Throughout this section,XnC1 is the set of the integers{2, 3, : : : , n} and A is a
fixed subset ofXnC1.
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For integersi and j with 15 i < j 5 nC1, we definesA
i j 2 BnC1 andsA

j i 2 BnC1 by

sA
i j D sA

j i D si �

 

j�1
Y

kDiC1

sk
�k

!

,

where �k D 1 if k 2 A and �k D �1 if k � A. We call sA
i j a band generator of BnC1

associated withA. Note that a standard generatorsi of BnC1 is a band generatorsA
i iC1.

Let 6A
nC1 be the set of band generators{sA

i j 2 BnC1 j 15 i < j 5 nC1} associated with
A. Let TnC1 be the set of transpositions ofSnC1. The natural projectionp W BnC1 !

SnC1 gives the bijectionp D pj
6

A
nC1
W 6

A
nC1 ! TnC1 which satisfiesp(sA

i j ) D (i j ) for
15 i < j 5 nC 1.

Let Pk D (k, 0) 2 R2 for an integer with 15 k 5 nC 1. Let C1 be the circle in
R

2 whose diameter is the segmentP1PnC1. Take the points Qk 2 C1 for 15 k 5 nC 1
such that Q1 D P1, QnC1 D PnC1 and Qk D (k, yk) for each 25 k 5 n, where yk < 0
if k 2 A and yk > 0 if k � A. We call the points Q1, : : : , QnC1 on the circleC1 the
points associated withA. We call the elementQ D (Q1, : : : , QnC1) of the configuration
spaceQnC1(C1) the ordered nC 1 points associated withA. Let 0A

nC1 denote the set

of segments0A
nC1 D 0

Q
nC1 D {Qi Q j j 1 5 i < j � nC 1} in R

2. We have a bijection

from 6

A
nC1 to 0

A
nC1 defined bysA

i j 7! Qi Q j for 1 5 i < j 5 n C 1, and we call the

segmentQi Q j the segment corresponding to sA
i j .

REMARK 3.1. In [16], the reason why we callQi Q j the segment corresponding
to sA

i j is explained as follows.

Let P0 D Q0 D (0,0)2 R2 and PnC2 D QnC2 D (nC2,0)2 R2. Let C2 be the circle
in R2 whose diameter is the segmentP0PnC2. Let D be the disk inR2, with �D D C2.
Take an isotopy{hu}u2[0,1] of D such that for eachu 2 [0, 1], h0 D id, huj�D D id, and

for each u 2 [0, 1] and each (x, y) 2
SnC1

iD0 Qi QiC1, hu(x, y) D (x, (1 � u)y). Then

h1(Qi ) D Pi for any i . For 15 i < j 5 n C 1, we define�A
i j by the arch1(Qi Q j )

in D. Note that ��A
i j D {Pi , Pj }, �A

i j is upper thanPk if k 2 A and �A
i j is lower

than Pk if k � A. The braid groupBnC1 is isomorphic to the mapping class group
of (D, {P1, : : : , PnC1}) relative to the boundary (cf. [3]). The band generatorsA

i j corres-
ponds to the isotopy class of a homeomorphism from (D,{P1, : : : ,PnC1}) to itself which
twists a sufficiently small disk neighborhood of the arc�A

i j by 180Æ-rotation clockwise
using its collar neighborhood. By the homeomorphismh1 W (D, {Q1, : : : , QnC1}) !
(D,{P1, : : : ,PnC1}), we identify the mapping class group of (D,{Q1, : : : ,QnC1}) and that
of (D, {P1, : : : , PnC1}). Then the band generatorsA

i j corresponds to the isotopy class of
a homeomorphism from (D, {Q1, : : : , QnC1}) to itself which twists a sufficiently small
disk neighborhood of the segmentQi Q j by 180Æ-rotation clockwise. Thus, we say that

the segmentQi Q j corresponds to the band generatorsA
i j 2 6

A .
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Fig. 3.1.

Let (g1, : : : , gn) be an element of then-fold product (6A
nC1)n of 6A

nC1 and let
(a1, : : : , an) be the n-tuple of the segmentsai corresponding togi . Then, we call
(a1, : : : , an) the segment system corresponding to(g1, : : : , gn).

DEFINITION 3.2. An element of (0A
nC1)n is A-good if it is good. An element of

(6A
nC1)n is A-good if the corresponding segment system is A-good. We denote theset

of elements of (6A
nC1)n (resp. (0A

nC1)n) which are A-good byG(6A
nC1) (resp.G(0A

nC1)).

EXAMPLE 3.3. Let n D 4 and AD {2}. Then, the element (sA
23, sA

24, sA
13, sA

25) of
(6A

5 )4 is an A-good element. The segmentsa1, : : : , a4 corresponding tosA
23, sA

24, sA
13, sA

25

are depicted in Fig. 3.1.

Let 6�

D

S

A�{2,:::,n}(6
A
nC1)n and0� D

S

A�{2,:::,n}(0
A
nC1)n. Let 8W 6�

! 0

� be the

map which sends an element of (6

A
nC1)n to the segment system corresponding to it for

each subset A of{2,: : : ,n}. It is obvious that the map8 is bijective and8((6A
nC1)n)D

(0A
nC1)n. By Definition 3.2,8(G(6A

nC1)) D G(0A
nC1). For each subset A of{2, : : : , n},

we simply write8 for the bijective map8jG(6A
nC1) W G(6A

nC1)! G(0A
nC1).

Proposition 3.4. Let A and B be subsets of{2, : : : , n}. Then, the conditions
G(6A

nC1) D G(6B
nC1), G(0A

nC1) D G(0B
nC1) and A D B are mutually equivalent.
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Proof. If AD B, then it is obvious that the other two conditions hold. By virtue
of the bijective map8 W 6�

! 0

�, the conditionsG(6A
nC1) D G(6B

nC1) and G(0A
nC1) D

G(0B
nC1) are equivalent. We prove that the conditionG(0A

nC1)D G(0B
nC1) implies AD B.

Let QX
k denote the point (k,yk), on the circleC1, associated with a subset X� {2,:::,n}.

Take elements (a1,: : : ,an) 2 G(0A
nC1) and (b1,: : : ,bn) 2 G(0B

nC1). Then, by the conditions
of Definition 2.2,�a1[� � �[�an D {QA

1 ,: : : ,QA
nC1} and�b1[� � �[�bn D {QB

1 ,: : : ,QB
nC1}.

Hence, the conditionG(0A
nC1) D G(0B

nC1) implies QA
k D QB

k for 1� k � nC 1, and this
implies AD B. This completes the proof of Proposition 3.4.

Let A be a subset of{2,: : : ,n} and let Q1, : : : ,QnC1 be the points, on the circleC1,
associated with A. We regardG(0A

nC1) as a subset ofGnC1 putting labelsv1,: : : ,vnC1 on
the points Q1, : : : , QnC1, resp. Recall that the Hurwitz action ofBn on GnC1 is defined
by 
 � � D 0((0�1(
 )) � �) for 
 2 GnC1 and � 2 Bn, where0 is the graphic map
0 W TnC1! GnC1. By Proposition 3.5 (2), we obtain an action ofBn on G(0A

nC1) as a
restriction of the Hurwitz action ofBn on GnC1. We call it theHurwitz action of Bn
on G(0A

nC1).

Proposition 3.5 ([16]). (1) If (g1, : : : , gn) 2 G(6A
nC1), then, for any � 2 Bn, we

have (g1, : : : , gn) � � 2 G(6A
nC1).

(2) If (a1, : : : ,an) 2 G(0A
nC1), then, for any � 2 Bn, we have(a1, : : : ,an)�� 2 G(0A

nC1).

Take an element (g1, : : : , gn) D (sA
i1 j1

, : : : , sA
in jn

) 2 G(6A
nC1). Then,8(g1, : : : , gn) D

(Qi1Q j1, : : : , QinQ jn) D 0((i1 j1), : : : , (in jn)) D 0 Æ P(g1, : : : , gn) (2 G(0A
nC1)). Moreover,

for any element� 2 Bn, (g1, : : : , gn) � � 2 G(6A
nC1) by Proposition 3.5 (1), and we have

8((g1,:::,gn)��)D 0ÆP((g1,:::,gn)��)D 0(P(g1,:::,gn)��)D 0(((i1 j1),:::,(in jn))��)D
0((0�1(Qi1Q j1, : : : , QinQ jn)) ��) D (Qi1Q j1, : : : , QinQ jn)� � D 8(g1, : : : , gn)� �. Thus,
we have the following proposition.

Proposition 3.6. For an element(g1, : : : , gn) of G(6A
nC1), we have

(1) 8(g1, : : : , gn) D 0 Æ P(g1, : : : , gn) (2 G(0A
nC1)) and

(2) for any element� 2 Bn, 8((g1, : : : , gn) � �) D 8(g1, : : : , gn)� �.

By Proposition 3.6 (2), the bijective map8W G(6A
nC1)! G(0A

nC1) implies that two
statements of (1) and (2) of Proposition 3.5 are equivalent.

4. Proof of Theorem 1.2 and Theorem 2.3.

Throughout this section,n is a fixed integern with n � 2 and XnC1 is the set of
the integers{2, : : : , n}.

For a permutation' of {1, : : : , n}, let A' D {i 2 XnC1 j '
�1(i � 1)< '�1(i )}.

For the first step of the proof of Theorem 1.2 and Theorem 2.3, we prepare the
following lemma which is proved in [16]:
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Lemma 4.1 ([16]). (s
'(1), : : : , s

'(n)) is an element ofG(6A'

nC1).

Let A be a subset ofXnC1. By virtue of the bijective map8W G(6A
nC1)! G(0A

nC1),
two statements of (1) and (2) of Theorem 4.2 are equivalent. Theorem 4.2 is also our
main result in this paper.

Theorem 4.2. (1) For each element(a1, : : : , an) of G(0A
nC1), the Hurwitz orbit

(a1, : : : , an)� Bn is equal to the setG(0A
nC1).

(2) For each element(g1, : : : , gn) of G(6A
nC1), the Hurwitz orbit (g1, : : : , gn) � Bn is

equal to the setG(6A
nC1).

The following theorem is directly obtained from Lemma 4.1 and Theorem 4.2 (2).

Theorem 4.3. For a permutation' of {1, : : : , n}, the Hurwitz orbit (s
'(1), : : : ,

s
'(n)) � Bn is equal to the setG(6A'

nC1).

We can prove Theorem 1.2 and Theorem 2.3 by using Theorem 4.3.

Proof of Theorem 1.2. We prove that the conditions (1) and (3)are equivalent.
Take permutations' and of {1, : : : , n}. The condition (1) is equivalent to (s

'(1), : : : ,
s
'(n)) � Bn D (s

 (1), : : : , s
 (n)) � Bn. By Theorem 4.3, this is equivalent toG(6A'

nC1) D

G(6A 

nC1). By Proposition 3.4, this is equivalent to A' D A , and we have the result.

Proof of Theorem 2.3. Fix a permutation' of {1,:::,n} and let AD A' . By The-
orem 4.3, (s

'(1), : : : ,s'(n)) �Bn D G(6A
nC1). Then,8((s

'(1), : : : ,s'(n)) �Bn)D 8(G(6A
nC1))D

G(0A
nC1). Let QD (Q1, : : : ,QnC1) be the orderednC1 points of associated with A, that

is an element of the configuration spaceQnC1(C1) of the circleC1. Then,G(0A
nC1) D

G(0Q
nC1) and we regardG(0Q

nC1) as a subset ofGnC1 putting labelsv1, : : : , vnC1 on
the points Q1, : : : , QnC1, resp. By Proposition 3.6 (2),8((s

'(1), : : : , s
'(n)) � Bn) D

8(s
'(1), : : : ,s'(n))�Bn. By Proposition 3.6 (1),8(s

'(1), : : : ,s'(n))�Bn D 0 ÆP((s
'(1), : : : ,

s
'(n)) �Bn)D 0((P(s

'(1), : : : ,s'(n))) �Bn)D 0((t
'(1), : : : , t'(n)) �Bn)D 0(t

'(1), : : : , t'(n))�Bn,

where0 W TnC1 ! GnC1 is the graphic map. Thus,0(t
'(1), : : : , t

'(n)) � Bn D G(0Q
nC1),

and we have the result.

Let C be a circle inR2. Fix an elementq D (q1, : : : , qnC1) of the configuration
spaceQnC1(C). Let 0nC1 denote the set of segments0q

nC1 D {qi q j j 1 5 i < j 5

nC 1} in R

2. Let G(0nC1) be the set of good elements of (0nC1)n. Let r1, : : : , rnC1

be nC 1 points with{r1, : : : , rnC1} D {q1, : : : , qnC1} such thatr1, : : : , rnC1 stand on
C counterclockwise in this order.

Let A be an subset ofXnC1 and let Q1, : : : , QnC1 be thenC1 points, on the circle
the C1, associated with A. Let R1, : : : , RnC1 be nC 1 points with{R1, : : : , RnC1} D



DETERMINING THE HURWITZ ORBIT 67

{Q1, : : : , QnC1} such that R1, : : : , RnC1 stand on the circleC1 counterclockwise in
this order. Leth W R2

! R

2 be a self-homeomorphism ofR2 such thath(C1) D C,
h(Ri )D r i for 1� i � nC1 andh(Ri R j )D r i r j for 1� i < j � nC1. Then,h induces
the bijectionh W 0A

nC1! 0nC1. Let f W (0A
nC1)n

! (0nC1)n be then-fold product of h,
i.e., for each element (a1,:::,an) of (0A

nC1)n, f (a1,:::,an)D (h(a1),:::,h(an)). Then, it is
obvious that f (G(0A

nC1)) D G(0nC1) and the mapF D f jG(0A
nC1) W G(0A

nC1)! G(0nC1) is
bijective. If (e1,: : : ,en) 2 G(0nC1), then, for any� 2 Bn, we easily see that (e1,: : : ,en)�
� D F((F�1(e1, : : : , en)) � �). By virtue of the mapF and the Hurwitz action of
Bn on G(0nC1), Proposition 3.5 is equivalent to Proposition 4.4, and Theorem 4.2 is
equivalent to Theorem 4.5. The rest of this section is devoted to proving Theorem 4.5
(and hence Theorem 4.2).

Proposition 4.4. If (e1, : : : , en) 2 G(0nC1), then, for any k2 {1, : : : , n� 1} and
any � 2 {�1, 1}, we have(e1, : : : , en)� � �k 2 G(0nC1).

Theorem 4.5. For each element(e1, : : : , en) of G(0nC1), the Hurwitz orbit
(e1, : : : , en)� Bn is equal to the setG(0nC1).

For elementsa and b of 0nC1 satisfying thata and b are disjoint orb is a right
adjacent toa, we define the elementsa � b and b � a of 0nC1 as follows.
(1) If a and b are disjoint, then, leta � bD a and letb � a D b.
(2) If b is a right adjacent toa andaD qxqy, bD qyqz, then, leta�bD b�aD qxqz.

Let (e1, : : : , en) be an element ofG(0nC1). By the conditions (i) and (ii) of Defin-
ition 2.2, for anyk 2 {1, : : : , n�1}, ek and ekC1 are disjoint orekC1 is a right adjacent
to ek. This implies that the elementsek �ekC1 and ekC1�ek of 0nC1 are defined. Then,
we have the following proposition.

Proposition 4.6 ([16]). The Hurwitz action of Bn on G(0nC1) is given by

(e1, : : : , ek�1, ek, ekC1, ekC2, : : : , en)� �k

D (e1, : : : , ek�1, ekC1, ek � ekC1, ekC2, : : : , en)

and

(e1, : : : , ek�1, ek, ekC1, ekC2, : : : , en)� ��1
k

D (e1, : : : , ek�1, ekC1 � ek, ek, ekC2, : : : , en).

For a power� D (1 2 � � � n C 1)t (t 2 Z) of the n C 1-cyclic permutation
(1 2 � � � nC 1), let ck D r

�(k)r�(kC1) for 1� k � n. Then, we see that (c1, : : : , cn) is
an element ofG(0nC1) and we call itcyclic.

Lemma 4.7. Any two cyclic elements ofG(0nC1) are Hurwitz equivalent.
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Proof. Let�!c0 D (r1r2,:::,rnrnC1), that is a cyclic element ofG(0nC1). It is enough
to prove that any cyclic element�!c is Hurwitz equivalent to�!c0 . Put�!c D (c1, : : : ,cn)D
(r
�(1)r�(2), : : : , r

�(n)r�(nC1)) for a power� of the cyclic permutation (1 2� � � nC1). By

Proposition 4.6,�!c � (�1�2 � � ��n�1)D (c2,c3, : : : ,cn, (� � � ((c1�c2)�c3)� � � � )�cn). Since
the pointsr1, : : : ,rnC1 stand onC1 counterclockwise in this order, so do the pointsr

�(1),
r
�(i ) and r

�(iC1) for 2 � i � n. Hence,r
�(1)r�(i ) is a right adjacent toci D r

�(i )r�(iC1).
Sincec1 D r

�(1)r�(2) and r
�(1)r�(i ) � ci D r

�(1)r�(iC1), we have (� � � ((c1 � c2) � c3) � � � � ) �

cn D r
�(1)r�(nC1). Thus,�!c � (�1 � � � �n�1) D (r

�(2)r�(3), : : : , r
�(n)r�(nC1), r

�(nC1)r�(1)). If

�(t) D nC 1, then�!c � (�1 � � � �n�1)t
D

�!c0 and we have the result.

Let C0nC1 D {r1r2, : : : , rnrnC1, rnC1r1}. Then, the following lemma holds.

Lemma 4.8. For any element(e1, : : : , en) of G(0nC1), there exists an element
k 2 {1, : : : , n} such that ek 2 C0nC1.

Proof. Suppose that there exists an element (e1, : : : ,en) of G(0nC1) such thatek 2

0nC1nC0nC1 for eachk 2 {1,: : : ,n}. Since thenC1-gon jr1r2 � � �rnC1j is convex, there
exist elementsi , j 2 {1, : : : , n} (i ¤ j ) such thatei and ej intersect in their interior.
This contradicts the condition (i) of Definition 2.2. Thus, we have the result.

For a power� of the nC 1-cyclic permutation (1 2� � � nC 1), let G
�

(0nC1) be
the set defined by{(e1, : : : , en) 2 G(0nC1) j en D r

�(n)r�(nC1)}. Let 0n,� be the subset
of 0nC1 defined by{r i r j 2 0nC1 j i , j ¤ �(nC 1)} and letG(0n,�) be the set of good
elements of (0n,�)n�1. Then, we have the following.

Lemma 4.9. Let (e1, : : : , en) be an element ofG
�

(0nC1) for a power � of the
(nC 1)-cyclic permutation(1 2 � � � nC 1). Then, we have:
(1) the degree of the vertex r

�(nC1) of the graph e1 [ � � � [ en is 1, and
(2) (e1, : : : , en�1) is an element ofG(0n,�).

Proof. First, we prove (1). Suppose that the degree of the vertex r
�(nC1) is greater

than 1. Then, there existsr
�(nC1)rx 2 {e1, : : : , en�1} for some x 2 {1, : : : , n C 1} n

{�(n),�(nC1)}. Since the pointsr
�(1),: : : ,r�(n) andr

�(nC1) stand onC counterclockwise
in this order, so do the pointsr

�(n), r
�(nC1) and rx in this order. Thus,r

�(nC1)rx is right
adjacent tor

�(n)r�(nC1) D en. This contradicts the condition (ii) of Definition 2.2. Thus,
the degree of the vertexr

�(nC1) must be 1.
By (1), the unione1 [ � � � [ en�1 is contractible, hence (e1, : : : , en�1) satisfies the

condition (iii) of Definition 2.2. It is obvious that (e1, : : : , en�1) satisfies (i) and (ii) of
Definition 2.2. Thus, we obtain (2).

Theorem 4.5 is proved by Proposition 4.4, Lemma 4.7 and the following lemma.
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Lemma 4.10. Any element ofG(0nC1) is Hurwitz equivalent to a cyclic element
of G(0nC1).

Proof. Let (e1, : : : , en) be an element ofG(0nC1). We prove this by induction
on n.

First, consider a case wheren D 2. Then, (e1, e2) D (r1r2, r2r3), (r2r3, r3r1) or
(r3r1, r1r2). They are cyclic and we have the result whenn D 2.

Next, consider a case wheren > 2. By Lemma 4.8, we can take an elementk 2
{1, : : : , n} such thatek 2 C0nC1. Let

(e01, : : : , e0n) D (e1, : : : , en)� (�n�1�n�2: : : �k)�1.

Using Proposition 4.6, by direct calculations

(e01, : : : , e0n) D (e1, e2, : : : , ek�1, ekC1 � ek, ekC2 � ek, : : : , en � ek, ek).

By Proposition 4.4, (e01, : : : , e0n) is an element ofG(0nC1). Since e0n D ek 2 C0nC1,
e0n D r

�(n)r�(nC1) for a power� of the nC 1-cyclic permutation (1 2� � � nC 1). Then,
(e01, : : : , e0n) is an element ofG

�

(0nC1). By Lemma 4.9 (2), (e01, : : : , e0n�1) is an element
of G(0n,�). By the assumption of the induction, (e01, : : : , e0n�1) is Hurwitz equivalent to
a cyclic element (r

�(�(1))r�(�(2)), : : : , r
�(�(n�1))r�(�(n))) of G(0n,�), where� is a power of

the n-cyclic permutation (�(1) �(2) � � � �(n)). By Lemma 4.7, it is Hurwitz equivalent
to (r

�(1)r�(2), : : : , r
�(n�1)r�(n)). Then, (e01, : : : , e0n�1, e0n) is Hurwitz equivalent to

(r
�(1)r�(2), : : : , r

�(n�1)r�(n), e0n) D (r
�(1)r�(2), : : : , r

�(n)r�(nC1)),

that is a cyclic element ofG(0nC1), and we have the result.

Proof of Theorem 4.5. By Proposition 4.4, it is sufficient to prove that any two
elements ofG(0nC1) are Hurwitz equivalent. Take an element�!g of G(0nC1). By
Lemma 4.10,�!g is Hurwitz equivalent to a cyclic element�!c of G(0nC1). By Lemma 4.7,
�!c is Hurwitz equivalent to a special cyclic element�!c0. Hence, any element ofG(0nC1)
is Hurwitz equivalent to�!c0. This completes the proof of Theorem 4.5.
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