

Title	REMARKS ON “THE DORFMEISTER-NEHER THEOREM ON ISOPARAMETRIC HYPERSURFACES”
Author(s)	Miyaoka, Reiko
Citation	Osaka Journal of Mathematics. 2015, 52(2), p. 373-376
Version Type	VoR
URL	https://doi.org/10.18910/57657
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

REMARKS ON “THE DORFMEISTER–NEHER THEOREM ON ISOPARAMETRIC HYPERSURFACES”

REIKO MIYAOKA

(Received June 12, 2013, revised November 7, 2013)

Abstract

Sections 7 and 8 of “*The Dorfmeister–Neher theorem on isoparametric hypersurfaces*”, (Osaka J. Math. **46**, 695–715) are the heart of the paper, but a lack of clear argument causes some questions, although the statement is true. The purpose of the present paper is to make it clear.

1. $\dim E = 2$ (§7 [2])

We follow the notation and the argument in [2]. First, we correct a typo in the last term of the displayed formula right above (35) of [2]: $(\Lambda_{63}^3)^2$ should be $(\Lambda_{63}^4)^2$.

We call a vector field $v(t)$ along L_6 parametrized by $p(t)$ *even* when $v(t + \pi) = v(t)$, and *odd* when $v(t + \pi) = -v(t)$. Note that E consists of $\nabla_{e_6}^k e_3(t)$, $k = 0, 1, \dots$ which are all odd or all even, and W consists of $\nabla_{e_6}^k \nabla_{e_3} e_6(t)$ of which evenness and oddness is the opposite of E , since $L(t + \pi) = -L(t)$.

Proposition 7.1 ([2]) $\dim E = 2$ does not occur at any point of M_+ .

Proof. $\dim E = 2$ implies $\dim W = 1$, and so W consists of even vectors ($\nabla_{e_3} e_6$ never vanish by Remark 5.3 of [2]). Thus E consists of odd vectors. For X_1, Z_1, X_2, Z_2 on p. 709, X_1 is parallel to $\nabla_{e_6} e_3$ at $p_0 = p(0)$ and $p(\pi)$, and so has opposite sign at $p(0)$ and $p(\pi)$. Note that $Z_1 \in W$ is a constant unit vector parallel to $\nabla_{e_3} e_6(t)$. Also, $\text{span}\{X_2, Z_2\}$ is parallel since this is the orthogonal complement of $E \oplus W$. Because $D_1(\pi) = D_5(0)$ and $D_2(\pi) = D_4(0)$ etc. hold, four cases occur;

$$\begin{aligned} (e_1 + e_5)(\pi) &= (e_1 + e_5)(0) \quad \text{and} \quad (e_2 + e_4)(\pi) = (e_2 + e_4)(0), \\ (e_1 + e_5)(\pi) &= (e_1 + e_5)(0) \quad \text{and} \quad (e_2 + e_4)(\pi) = -(e_2 + e_4)(0), \\ (e_1 + e_5)(\pi) &= -(e_1 + e_5)(0) \quad \text{and} \quad (e_2 + e_4)(\pi) = (e_2 + e_4)(0), \\ (e_1 + e_5)(\pi) &= -(e_1 + e_5)(0) \quad \text{and} \quad (e_2 + e_4)(\pi) = -(e_2 + e_4)(0). \end{aligned}$$

2000 Mathematics Subject Classification. 53C40.

Partly supported by Grants-in-Aid for Scientific Research, 23340012, The Ministry of Education, Japan.

In the first case, $\alpha(\pi) = -\alpha(0)$ and $\beta(\pi) = -\beta(0)$ follow. Then X_2 becomes even and Z_2 becomes odd, which contradicts that $\text{span}\{X_2, Z_2\}$ is parallel. In the second case, $\alpha(\pi) = -\alpha(0)$ and $\beta(\pi) = \beta(0)$ hold, and so X_2 is odd, and Z_2 is even, again a contradiction. Other cases are similar. \square

2. $\text{Dim } E = 3$ (§8 [2])

When $\dim E = 3$, $e_3(t)$ is an even vector, since E is parallel along L_6 . Using Proposition 8.1 [2], we extend e_1, e_2, e_4, e_5 as follows: Taking the double cover $\tilde{c}(t)$ of $c(t)$, i.e., $t \in [0, 4\pi]$, if necessary, we choose a differentiable frame $e_i(t)$ as follows: First take $e_1(t), e_2(t)$ continuously for $t \in [0, 4\pi]$. Then we define $e_5(t) = e_1(t + \pi)$ and $e_4(t) = e_2(t + \pi)$ for $t \in [0, 3\pi]$. Thus we have a differentiable frame $e_i(t)$ for $t \in [0, 3\pi]$, though we only need $t \in [0, 2\pi]$.

With respect to this frame, we can take a differentiable orthonormal frame of E and E^\perp by

$$(1) \quad \begin{aligned} e_3(t), \quad X_1 &= \alpha(t)(e_1 + e_5)(t) + \beta(t)(e_2 + e_4)(t), \\ X_2(t) &= \frac{1}{\sqrt{\sigma(t)}} \left(\frac{\beta(t)}{\sqrt{3}}(e_1 - e_5)(t) - \sqrt{3}\alpha(t)(e_2 - e_4)(t) \right) \end{aligned}$$

and

$$(2) \quad \begin{aligned} Z_1(t) &= \frac{1}{\sqrt{\sigma(t)}} \left(\sqrt{3}\alpha(t)(e_1 - e_5)(t) + \frac{\beta(t)}{\sqrt{3}}(e_2 - e_4)(t) \right), \\ Z_2(t) &= \beta(t)(e_1 + e_5) - \alpha(t)(e_2 + e_4)(t), \end{aligned}$$

where $\alpha(t), \beta(t), \sigma(t)$ are differentiable for $t \in [0, 3\pi]$, satisfying

$$(3) \quad \alpha^2(t) + \beta^2(t) = \frac{1}{2}, \quad \sigma(t) = 2 \left(3\alpha^2(t) + \frac{\beta^2(t)}{3} \right).$$

Note that $\sigma(t) = \sigma(t + \pi)$ holds, since $\sigma(t)$ is an eigenvalue of $T(t) = {}^tRR(t)$ (see (45) [2] and the statement after it).

Proposition 8.2 ([2]) $\sigma(t)$ is constant and takes values 1/3 or 3.

REMARK. We need not distinguish the case $\sigma = 1$ in the proof.

Proof of Proposition 8.2 ([2]). From (3), the conclusion follows if we show $\alpha(t)\beta(t) \equiv 0$. Suppose $\alpha(t)\beta(t) \not\equiv 0$. By definition, we have

$$(4) \quad e_1(\pi) = e_5(0), \quad e_2(\pi) = e_4(0).$$

We must be careful for

$$e_5(\pi) = e_1(2\pi) = \epsilon_1 e_1(0), \quad e_4(\pi) = e_2(2\pi) = \epsilon_2 e_2(0),$$

where $\epsilon_i = \pm 1$. However, since e_3 is even and by (4), we obtain

$$\epsilon := \epsilon_1 = \epsilon_2.$$

CASE 1 $\epsilon = 1$. In this case, we have

$$(5) \quad \begin{aligned} X_1(\pi) &= \alpha(\pi)(e_1(\pi) + e_5(\pi)) + \beta(\pi)(e_2(\pi) + e_4(\pi)) \\ &= \alpha(\pi)(e_5(0) + e_1(0)) + \beta(\pi)(e_4(0) + e_2(0)), \end{aligned}$$

which belongs to E , and is orthogonal to $e_3(0)$ and $X_2(0)$. Thus we obtain

$$(6) \quad X_1(\pi) = \bar{\epsilon} X_1(0), \quad \text{namely, } \alpha(\pi) = \bar{\epsilon} \alpha(0), \quad \beta(\pi) = \bar{\epsilon} \beta(0),$$

where $\bar{\epsilon} = \pm 1$. On the other hand, we have

$$(7) \quad \begin{aligned} X_2(\pi) &= \frac{1}{\sqrt{\sigma(\pi)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_1(\pi) - e_5(\pi)) - \sqrt{3} \alpha(\pi) (e_2(\pi) - e_4(\pi)) \right) \\ &= \frac{1}{\sqrt{\sigma(0)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_5(0) - e_1(0)) - \sqrt{3} \alpha(\pi) (e_4(0) - e_2(0)) \right), \end{aligned}$$

where we use $\sigma(\pi) = \sigma(0)$. Thus from (6), we obtain

$$X_2(\pi) = -\bar{\epsilon} X_2(0).$$

However, because E is parallel, X_1 and X_2 should be both even or both odd, a contradiction.

CASE 2 $\epsilon = -1$. In this case, we have

$$(8) \quad \begin{aligned} X_1(\pi) &= \alpha(\pi)(e_1(\pi) + e_5(\pi)) + \beta(\pi)(e_2(\pi) + e_4(\pi)) \\ &= \alpha(\pi)(e_5(0) - e_1(0)) + \beta(\pi)(e_4(0) - e_2(0)), \end{aligned}$$

which belongs to E , and is orthogonal to $e_3(0)$ and $X_1(0)$. Thus we obtain

$$(9) \quad X_1(\pi) = \bar{\epsilon} X_2(0), \quad \text{namely, } \alpha(\pi) = -\bar{\epsilon} \frac{\beta(0)}{\sqrt{3}\sigma(0)}, \quad \text{and } \beta(\pi) = \bar{\epsilon} \frac{\sqrt{3}\alpha(0)}{\sqrt{\sigma(0)}},$$

for $\bar{\epsilon} = \pm 1$. On the other hand, we see that

$$(10) \quad \begin{aligned} X_2(\pi) &= \frac{1}{\sqrt{\sigma(\pi)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_1(\pi) - e_5(\pi)) - \sqrt{3} \alpha(\pi) (e_2(\pi) - e_4(\pi)) \right) \\ &= \frac{1}{\sqrt{\sigma(0)}} \left(\frac{\beta(\pi)}{\sqrt{3}} (e_5(0) + e_1(0)) - \sqrt{3} \alpha(\pi) (e_4(0) + e_2(0)) \right) \end{aligned}$$

where we use $\sigma(\pi) = \sigma(0)$. Because it belongs to E and is orthogonal to $e_3(0)$ and $X_2(0)$, and further because $(X_1(0), X_2(0)) \mapsto (X_1(\pi), X_2(\pi))$ should be orientation preserving, we obtain,

$$(11) \quad X_2(\pi) = -\bar{\epsilon}X_1(0), \quad \text{namely,} \quad \frac{\beta(\pi)}{\sqrt{3}\sigma(0)} = -\bar{\epsilon}\alpha(0) \quad \text{and} \quad -\frac{\sqrt{3}\alpha(\pi)}{\sqrt{\sigma(0)}} = -\bar{\epsilon}\beta(0).$$

However, then (9) and (11) have no solution. \square

These contradictions are caused by the assumption $\alpha(t)\beta(t) \not\equiv 0$. Thus $\alpha(t)\beta(t) \equiv 0$ follows. Now, by the argument in §9 [2], we obtain

Theorem 2.1 ([1], [2]) *Isoparametric hypersurfaces with $(g, m) = (6, 1)$ are homogeneous.*

ACKNOWLEDGMENT. The author thanks to U. Abresch and A. Siffert for their questions and indication.

References

- [1] J. Dorfmeister and E. Neher: *Isoparametric hypersurfaces, case $g = 6, m = 1$* , Comm. Algebra **13** (1985), 2299–2368.
- [2] R. Miyaoka: *The Dorfmeister–Neher theorem on isoparametric hypersurfaces*, Osaka J. Math. **46** (2009), 695–715.

Mathematical Institute
 Graduate School of Sciences
 Tohoku University
 Sendai, 980-8578
 Japan
 e-mail: r-miyaok@m.tohoku.ac.jp