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Abstract
In this paper, we study power similarity of operators. Intjgatar, we show that
if T e PYH) (defined below) for some hyponormal operatdr thenT is subscalar.
From this result, we obtain that such an operator with richcgpm has a nontrivial
invariant subspace. Moreover, we consider invariant anetigyariant subspaces for
T € PYH).

1. Introduction

Let H be a complex Hilbert space and I&{#) denote the algebra of all bounded
linear operators oft{. As usual, we writer(T), 01(T), op(T), 0ap(T), ore(T), @andoie(T)
for the spectrum, the left spectrum, the point spectrum afty@oximate point spectrum,
the right essential spectrum, and the left essential spactf T, respectively.

A closed subspacé of #H is called aninvariant subspacdor an operatorT €
L(H) if TM C M. We say thatM C H is a hyperinvariant subspacér T € L(H)
if M is an invariant subspace for eve8/e L£(#) commuting withT.

An operatorX in L(H) is a quasiaffinityif it has trivial kernel and dense range.
An operatorT in L(H) is said to be aguasiaffine transformof operatorS in L£(H)
if there is a quasiaffinityX in £(#) such thatXT = SX and this relation ofS and
T is denoted byT < S. If both T < Sand S< T, then we say thaS and T are
quasisimilar

An operatorT € L(H) is said to bep-hyponormalif (TT*)? < (T*T)P, where
0 < p < oco. In particular, 1-hyponormal operators an@g?2ihyponormal operators are
called hyponormal operators andsemi-hyponormalbperators, respectively. It is well
known that

hyponormal= p-hyponormal (0< p < 1).

An arbitrary operatolT € L(#) has a unique polar decompositidh= U|T|, where
|T| = (T*T)¥? andU is the appropriate partial isometry satisfying k&y(= ker(T|) =
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ker(T) and kerU*) = ker(T*). Associated withT is a related operatgT |/2U |T|*?,
called theAluthge transformof T, and denoted throughout this paper by For an op-
erator T € L£(H), the sequencéT ™} of Aluthge iterates ofT is defined byT©@ = T
and T+ = TM for every positive integen (see [2], [9], and [10]). We note from [3]
that if T is p-hyponormal, therl is (p + 1/2)-hyponormal.

An operatorT € L(H) is calledscalar of orderm if it possesses a spectral distri-
bution of orderm, i.e., if there is a continuous unital morphism of topol@jialgebras

®: CI'(C) > L(H)

such that®(z) = T, where z stands for the identical function o@ and C'(C) for
the space of all compactly supported functions contingod#fferentiable of ordem,
0 < m < oco. An operator is said to bsubscalarof order m if it is similar to the
restriction of a scalar operator of order to an invariant subspace.

DerINITION 1.1. LetR e L(H) be given. We say that an operatbre L(H) is
power similarto R if there exists a positive integer such thatT" is similar to R".

In this case, we use the notatidh™ R.

It is easy to check that the relatich is an equivalence relation. Indeed,TlfR?Tz

and T, g Ts, then there exist positive integens m and invertible operatorX, Y such
that XT' = T)'X and Y T" = T{"Y. Let s be the least common multiplier af and
m. Thens = nr = mt for some integers, t. HenceY XT° = YXT"' =YT'X =

YTMX = TMY X = TSY X, ie, Ti X Ta.
For a fixed operatoR € L£(#), define the following subset of(#):

PSi(R) = (T € £(H): T" is similar to R"}
wheren is a positive integer. We observe that the following relagidold:
PS(R) c PS(R) Cc PS2(R) c PSp(R) C - --

for each positive integen. Set

PSR):= | JPS(R) = (T e L(H): T X R}.

n=1

We remark that there exists a non-hyponormal operator paiveitar to a hypo-
normal operator. For example, lét € £(H) be a hyponormal operator and IBt €
L(H) be a nilpotent operator of orden > 1. Since zero operators are the only nilpo-
tent hyponormal operators, the direct sim:= H & N is not hyponormal, bufl e
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PS.(H & 0) for any integern > m. Let's consider another example. Assume that
{axleo and {Bi}ee, are bounded sequences of positive real numbers, and lend

B be the weighted shifts iniC(#) with weights {ax} and {8k}, respectively, that is,
A& = axe1 and Be = Brecqs for all k > 0, where{e}:2, is an orthonormal ba-
sis for H. Suppose thafax}p2, is an increasing sequence such thad, 1 = BrPr+1
holds for eachk > 0. Then A is hyponormal. In addition, we get that

Qo0 - - - 02k o d Qo0 - - - Q2k+1

BoB1---Bx  PBo BoB1 -+ Bak+1

for all nonnegative integerk. This implies thatA is similar to B from [8], and so

B € PS(A). In this case, we can choose a non-increasing weight seqUy¢n} for

B, which ensures thaB is not hyponormal; in particular, if we select the beginning
weight B, satisfying that,Bg > apay, then By > B1 and soB is a non-hyponormal opera-
tor power similar to the hyponormal operatdr Furthermore, Example 3.17 also gives
B € PS(A) where A and B are the weighted shifts with weight4/3,1/2,1,1,1,..}
and{1/6, 1, 1/2, 2, 12, 2,. ..}, respectively; here, we observe thatis hyponormal,
but B is not.

In this paper, we study power similarity of operators. Intatar, we show that
if T € PYH) for some hyponormal operatdi, thenT is subscalar. From this result,
we obtain that such an operator with rich spectrum has a im@itmvariant subspace.
Moreover, we consider invariant and hyperinvariant subspdor T € PSH).

2. Preliminaries

An operatorT € L£(#H) is said to have theingle-valued extension propertgbbre-
viated SVEP, if for every open subsé of C and any analytic functionf: G — H
such that T —2)f(z2) =0 on G, it results f(z2) = 0 on G. For an operatoil € £L(H)
and x € H, the resolvent sepr(x) of T at x is defined to consist ofy in C such
that there exists an analytic functiol(z) on a neighborhood of,, with values in#,
which verifies T — z) f(z) = x. We denotethe local spectrumof T at x by o7(x) =
C \ pr(x), and by using local spectra, we defittee local spectral subspacef T by
Ht(F) = {x € H: or(X) C F}, whereF is a subset ofC. An operatorT € L(H) is
said to haveDunfords property (C) if H+(F) is closed for each closed subsét of
C. An operatorT € L(H) is said to haveBishops property(B8) if for every open sub-
set G of C and every sequencé,: G — H of H-valued analytic functions such that
(T — 2)fn(2) converges uniformly to 0 in norm on compact subsetofthen f(2)
converges uniformly to O in norm on compact subset$ofit is well known [13] that

Bishop’s property §) = Dunford’s property C) = SVEP.

For an operatoil € £(#H) and a subseF of C, we define theglocal spectral subspace
H+1(F) to consist of allx € H such that there is an analytic functidn C\ F — # for
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which (T—2)f(z) = x on C\ F. Clearly, if T has the single-valued extension property,
thenHt(F) = ﬁT(F) for any subset~ of C. We say that an operatdr € L(#) has
property (§) if we have the decompositiof{ = ﬂT(U) + 7~{T(V) for any open cover
{U, V} of C.

An operatorT € L(#) is called upper semi-Fredholnif T has closed range and
dimker(T) < oo, and T is called lower semi-Fredholmf T has closed range and
dim(H/ran(T)) < co. WhenT is either upper semi-Fredholm or lower semi-Fredholm,
it is called semi-Fredholm The index of a semi-Fredholm operator & £(#), denoted
index(T), is given by index{’) = dimker(T) —dim(#/ran(T)) and this value is an in-
teger or+too. Also an operatofm € L(H) is said to beFredholmif it is both upper
and lower semi-Fredholm. An operatdre £(H) is said to beWeyl if it is Fredholm
of index zero. For an operatdr € £L(H), if we can choose the smallest positive in-
tegerm such that ke{™) = ker(T™1), thenm is calledthe ascentof T and T is
said to havefinite ascent Moreover, if there is the smallest positive integersatis-
fying ran(T") = ran(T"*1), thenn is calledthe descenbf T and T is said to have
finite descentWe say thafl € £(#) is Browder if it is Fredholm of finite ascent and
finite descent. We define the Weyl spectrum(T) and the Browder spectrums,(T)
by

ou(T)={L € C: T — A is not Weyl
and
op(T) ={r € C: T — A is not Browde}.
It is evident that

0e(T) C 0, (T) C op(T).
We say thatWeyls theorem holdgor T if
o(T)\ moo(T) = 0,(T), or equivalently, o(T)\ 0,(T) = 7moo(T)

wheremoo(T) := {X €isoa(T): 0 < dimker(T — 1) < oo} and isar(T) denotes the set
of all isolated points ofs(T). We say thatBrowders theorem holddor T € L(H) if
op(T) = o,(T).

Let z be the coordinate function in the complex pla@eand du(z) the planar
Lebesgue measure. Consider a bounded (connected) opeet tulisf C. We shall
denote byL?(U, H) the Hilbert space of measurable functiohs U — # such that

12
1l = ( /U || f(z)nzdu(z)) < .

The space of functiond € L?(U, H) which are analytic functions it is de-
noted by

A2(U, H) = L?(U, H) N O, H)
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where O(U, ‘H) denotes the Fréchet space &fvalued analytic functions oty with
respect to uniform topology. The spaéé(U, H) is calledthe Bergman spacéor U,
and it is a Hilbert space.

Now let us define a special Sobolev type space. UWlebe again a bounded open
subset ofC and m be a fixed non-negative integer. The vector-valued Sobgbexces
W™(U, H) with respect tod and of orderm will be the space of those functionfs e
L2(U, H) whose derivatived f, ..., d™f in the sense of distributions still belong to
L2(U, H). Endowed with the norm

m
I 1Gm = D18 F 1130,

i=0

W™M(U, H) becomes a Hilbert space contained continuoushLfU, #). Note that
the linear operatoM of multiplication by z on W™(U, ) is continuous and it has a
spectral distributiondy, : Cj'(C) — L(W™(U, H)) of order m defined by the follow-
ing relation:

Oy(p)f =¢f for ¢ eCJ(C) and f e W™(U, H).
Therefore,M is a scalar operator of orden.

3. Main results

In this section, we first prove that if € PJH) for some hyponormal operator
H € L(H), thenT has scalar extensions.

Theorem 3.1. If T € PS,(H) for some hyponormal operator H £(#) and some
positive integer n> 1, then T is subscalar of orde2n. Henceif T € PYH) for some
hyponormal operator He £(#), then T is subscalar.

Proof. Suppose that € PS,(H) for some hyponormal operatdd € £(*) and
some positive integen > 1. For any open diskD in C containingo (T), define the
mapV: H — H(D) by

—_—

Vh=1I®h (=1®h+ (T —2W>(D, H))

where H(D) := W?"(D, H)/(T — 2W2(D, H) and 1® h denotes the constant func-
tion sending anyz € D to h. Let X € L(H) be an invertible operator such thaf =
X~IH"X, and lethy € # and f, € W?'(D, ) be sequences such that

1) Jim (T = 2)fic + 1.® hilwar = 0.
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By the definition of the norm of the Sobolev space and (1), wee ithat
lim [[(T —2)9" fllzp =0
k—o00
fori =1, 2,...,2n, which implies that
Jim I(T" = 20" fill20 = O
fori =1,2,...,2n. SinceT" = X"IH"X, we ensure that

@  Jm(H" = 2)X3 2o = Jim |(H = 2Q(H, 2X3' fil20 =0

fori =1,2,...,2n where Q(%, 2) = A"t + zA"2 4 ... 4+ 21, By the fundamental
theorem of algebra,

Q2 =R —p12) -+ (A — pr12)

where p1z,..., pn-12 list the zeros ofQ(A, z) by multiplicities. Setp, = 1. Since each
pj is nonzero, we obtain from (2) that

n
. 1 5
(3) Jim H(EH —z)xa fi| =0
i=1 2,D
fori=1,2,...,2n.
Claim. It holds forr=1, 2,...,n that
L1
. - _ i —
Jim H(ij z)xa fi 0
2,D,
fori=1,2,...,2(n—r)+ 2, where O = D and each DB is an open disk containing

o(T) with Dy, € Dy forr =1,2,...,n—1

To prove the claim, we will apply the induction an If r = 1, then the claim
holds clearly by (3). Suppose that the claim is true for somet < n, that is,

n
(iH—z) ]_[ (iH—z)xéi fi
Pr j=t41\ P

fori =1,2,...,2(n—t) + 2. Since (¥p)H is hyponormal, we obtain from [15,
Proposition 2.1] that

=0
2,D,

lim

k—o00

=0
2,D;

@) 0P I (piJH ~2)xi %

j=t+1

lim
k—o0
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fori =1,2,..,2(0—t—1)+2, whereP denotes the orthogonal projection bf(Dy, #)
onto A?(Dy, H). Hence

(iH —Z)P ﬁ (iH —z)xé‘f
P P ‘

j=t+1

lim

k—o00

=0
2,D,

fori =1,2,...,2(n—t—1)+2. Since (¥p;)H is hyponormal, it has Bishop’s property
(B) and so

(5) lim

k—o00

=0
2,Dr41

n 1 .
PT] (—H —z)xé' fi
izt Pi

fori =1,2,...,2h—t—1)+ 2. From (4) and (5) we get that

n
. 1 -
lenc]o 1_[ (E‘H_Z)Xa fi =0
j=t+1 2,Dyy1
fori =1,2,...,2h—t — 1)+ 2, which completes the proof of our claim.

From the claim withr = n, we have
lim |(H —2)Xd' f¢]l2p, =0
k—o00
fori =1, 2. SinceH is hyponormal, it follows from [15, Proposition 2.1] that
(6) lim [ X(1I = P) fll2,p, = lim [I(I = P)Xfk[l2,0, = 0
k—o00 k—o00

where P denotes the orthogonal projection bf(D,, H) onto A?(D,, H). Since X is
invertible, it holds that

) Jm (1 = P) iz, = 0.
From (1) and (7), we see that

Jim (T —2) P +(1® hlzp, = 0.
Let T be a curve inD, surroundingo(T). Then

lim [IPf(@) + (T =2 " @ hy| = 0

uniformly for z € T', which yields that

. 1
kILngoHﬁ/FPfk(z)dz+ he| =0
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by Riesz—Dunford functional calculus. Since/(@ri)) /.. Pfi(z)dz= 0 by Cauchy’s
theorem, we have lig,||hk|| = 0, which means that the may is one-to-one and
has closed range.

The class of a vectorf or an operatorA on H(D) will be denoted byf, re-
spectiverK. Let M be the multiplication byz on W?"(D, #). As noted at the end
of section two,M is a scalar operator of ordenzand has a spectral distributichy,.
Since (T — 2)W2(D, H) is invariant under®y () for every o € C§“((C), M is a scalar
operator of order 2 with spectral distributiondy. Since

VTh=1I® Th=z@h= M@ ®h) = MVh

for every h € H, we get the identityV T = MV. In particular, ran(V) is invariant
for M. Furthermoreran(V) is closed by the argument above, and hera®V) is a
closed invariant subspace of the scalar operﬁorSinceT is similar to the restriction
M|ran(V) and M is scalar of order 2, the operatofT is subscalar of orderm2 O

Corollary 3.2. Assume that Te PSH) for some hyponormal operator H L(H).
If o(T) has nonempty interipthen T has a nontrivial invariant subspace.

Proof. The proof follows from Theorem 3.1 and [6]. ]

Corollary 3.3. If T € P§H) for some hyponormal operator d L(H), then the
following statements hold.
(@ T has the single-valued extension propeiunfords property (C), and Bishofs
property (B).
(b) If Q is a quasinilpotent operator commuting with, Then T+ Q has the single-
valued extension property.
(c) If f is any function analytic on a neighborhood ef(T), then both Wejy$ and
Browders theorems hold for (fT) and o, (f(T)) = op(f(T)) = f(0w(T)) = f(op(T)).
(d) o(f(T))—moo(f(T)) = f(o(T)—moo(T)) for every analytic function f on a neigh-
borhood ofo (T).

Proof. (a) From section two, it suffices to prove thathas Bishop’s property
(B). We note that Bishop’s property) is transmitted from an operator to its restric-
tions to closed invariant subspaces and every scalar apdras Bishop’s propertys)
(see [15]). SinceT is subscalar by Theorem 3.1, we complete the proof.

(b) SinceT is subscalar from Theorem 3.1, the proof follows from (a) &id

(c) Let f be any function analytic on a neighborhood «fT). SinceT is sub-
scalar from Theorem 3.1, so i§(T) and thus Weyl's theorem holds fof(T) from
[1]. Moreover, sincef (T) has the single-valued extension property by [13], Broveder
theorem holds forf (T) and the given equalities are satisfied from [1, Corollarg2B.
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(d) Since bothT and f(T) satisfy Weyl's theorem by (c), it follows that
f(ow(T)) = f(o(T)—m0o(T)) and o, (f(T)) = o (f(T))—moo( f(T)). Since the identity
ow(f(T)) = f(ow(T)) holds from (c), we complete the proof. 0

Corollary 3.4. Let T € PSH) for some hyponormal operator & L(H). Then

0 T) on H&H has Bishofs property(8).

the operator matrix(I 0

Proof. SetA= (alo -5 ) SinceA? = T@T andT has Bishop’s propertys) from

Corollary 3.3, we obtain thad? has Bishop’s propertyA), and so doesA by [13]. [J

Corollary 3.5. Let Ty e PSH;) and T, € PqH,) for some hyponormal operators
Hi, Ho € L(H). If T; and T, are quasisimilartheno (T1) = o(T2) and 0e(T1) = 0e(T2).

Proof. SinceT; and T, have Bishop's propertys) by Corollary 3.3, the proof
follows from [16]. ]

If T e L(H) andx € H, then{T"x}°, is calledthe orbit of x underT, and is
denoted byO(x, T). If O(x, T) is dense inH, thenx is calleda hypercyclic vector
for T. If there exists a hypercyclic vector € H, an operatorT € L(H) is said to
be hypercyclic An operatorT € L(H) is called hypertransitiveif every nonzero vec-
tor in H is hypercyclic forT. Denote the set of all nonhypertransitive operators in
L(H) by (NHT). The hypertransitive operator problem is the open questibether
(NHT) = L(H).

Proposition 3.6. If T € PSH) for some hyponormal operator d £(#), then T
is nonhypertransitive. In particulaif T is invertiblg then T and T! have a common
nontrivial invariant closed subset.

Proof. SinceH is not hypercyclic, any power oH is not hypercyclic by [4].
SinceT" is similar to H" for some positive integen, we obtain thafT" is not hyper-
cyclic, and neither isT by [4]. ThereforeT is nonhypertransitive. In addition, the
second result follows from the first statement and [11]. O

Corollary 3.7. Let T € PYH) for some hyponormal operator K L(H). If
or(X)ND # @ and o7 (x) N (C \ D) # @ for every nonzero x H, whereD stands
for the open unit disk inC, then T* is hypercyclic.

Proof. Suppose thatr (x)ND # @ andot(x)N(C\D) # @ for all nonzerox € H.
Then we get tha#{7(C \ D) = {0} and H1(D) = {0}. SinceT has Bishop’s property
(B) by Corollary 3.3, T* has property §). Thus, by [13, Proposition 2.5.14], we can
infer that both?{r.(D) and H+-(C \ D) are dense ir{. By using [7, Theorem 3.2],
T* is hypercyclic. ]
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In the following proposition, we give some spectral projsrunder power similar-
ity to a hyponormal operator. An operatdre L£L(#) is called quasitriangularif there
is a sequencégPy} of finite rank orthogonal projections oK converging strongly to
the identity operatol on # such that lim_.||(I — P)T R|| = 0. When bothT and
T* are quasitriangular, we say thhiguasitriangular

Proposition 3.8. If T € PYH) for some hyponormal operator ¢ £(*), then
the following statements hold.
(@) oap(T)* C oap(T*) = o1(T*) = o(T™).
(b) T is invertible if and only if T is right invertible.
(c) Suppose that T is not a scalar multiple of the identity opmratn #. If T has
no nontrivial invariant subspagcehen T is biquasitriangular.
(d) T has finite ascent.

Proof. (a) Sincel has the single-valued extension property from CorollaB; 3.
we haveo (T*) = oap(T*) (see [1] or [13]). Hence it holds that

oap(T)" Co(T)" = o(T") = 0ap(T") = o (T").

(b) The proof follows from (a); indeeds (T) = o|(T*)* = o(T*)* = o(T).

(c) SinceT has no nontrivial invariant subspace, thes(T*) = @. ThusT* has
the single-valued extension property. Since bdttand T* have the single-valued ex-
tension property, we conclude from [12] th&tis biquasitriangular.

(d) If T e PYH), thenT" = X~*H"X for some positive integen. It suffices to
show the inclusion kef{("*1) C ker(T"). If x € ker(T"*1), thenT?"x = 0 andH?"Xx =
0 sinceT?" = X~1H?X. By the hyponormality ofH, it holds that kerd) = ker(H?),
which implies thatH"Xx = 0 and soT"x = 0. Thus kerT"*?) c ker(T"). O

Corollary 3.9. If T € PSH) for some hyponormal operator H L(#), then
ker(T) Nnran(T™) = {0} for some positive integer n.

Proof. If T € PSH) for some hyponormal operatdd € L£(H), then we obtain
from Proposition 3.8 that kef(") = ker(T"*1) for some positive integen. If y €
ker(T) N ran(T"), then Ty = 0 andy = T"x for somex € #H. This implies that
Tlx = Ty = 0. Sincex € ker(T"*1) = ker(T"), we havey = T"x = 0. Hence
ker(T) Nran(T™) = {0}. ]

In the following proposition, we show that the translatiowariant property does
not hold inPS,(H), in general.

Proposition 3.10. Let T,H € L(H). Then Te PS(H) if and only if there exists
a positive integer n such that ¥ 1 € PS,(H —A) for all » € C.
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Proof. If there is a positive integer such thatT — A € PS,(H — ) for all » € C,
then we can choose an invertible operaore £(H) with (T —A)" = X7 1(H —1)"X
for all » € C, which implies that

n n
Z(_l)nfk)\‘nfk-rk — X1 (Z(_l)nk)‘nk H k) X
k=0 k=0

for all » € C. Since both sides are-()"\" when k = 0, we obtain the following
equation;

n n
Z(_l)n—k)\'n—k-rk — X—l (Z(_l)n—kkn—ka> X
k=1 k=1

for all A € C. Dividing both sides byA"~! when i # 0, we get that

n
Z(_l)n—k)\l—k-r k + (_1)n—1T
k=2

1(2(—1)“"/\1ka> X + XH(=1D)"H)X

k=2

for all nonzerox € C. Setix = re'? with r > 0 and reald. Then
n

nkel(l k n—1
S ()R TR ()T

k=2

= x—1<zn:( i ké " >x+x Y(=1)"H)X

k=2

for all r > 0 and all reaB. Lettingr — oo, we haveT = X *H X. HenceT € PS(H).
Conversely, ifT € PS(H), thenT —1 € PS(H —2) for all A € C, which completes
the proof. ]

We say thatT € £(#) has Dunfords boundedness conditiofB) if T has the
single-valued extension property and there exists a cond#ta> 0 such that||x| <
K|Ix + y|| wheneveror(x) Nor(y) = @, whereK is independent ok andy.

Proposition 3.11. Let T € PSH) for some hyponormal operator td L(H). If
T has the property thatr(Pe(X)) C o7(x) for all x € H and each closed set F i@
where R denotes the orthogonal projection & onto #Hr(F), then it has Dunfor
boundedness conditiofB).

Proof. SinceT has Dunford’s property@) by Corollary 3.3,Ht(F) is closed.
Let X1, X2 € H be such thator(x1) N or(X) = 0. SetF; = or(x;) for j =1, 2.
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By the hypothesis, we haver(Pg,X1) C o1(X1) = Fi. Moreover, it is obvious that
O’T(PFZX]_) C F». Hence

o1 (PeX1) C F1 N Fo = o1 (X)) Nor(Xe) = 9.

SinceT has the single-valued extension property from CorollaBy &e get thatg,x; =
0. This means that; L Ht(F2). But sinceor(x2) = F,, it holds thatx, € Hy(F;) and
S0 (X1, X2) = 0. This implies that

1% + X2l = (Ixall® + %2l =[x,
which completes our proof. 0

Lemma 3.12. Let T e PYH) for some hyponormal operator H £(#) with T #
Al for any A € C. If there exists x H \ {0} such thator(x) & o(T), then T has a
nontrivial hyperinvariant subspace.

Proof. If there exists a nonzero vectwre H such thator(x) & o(T), set
M :=Hr(or(X)), ie, M={yeH:or(y)Cor(X)}.

Since T has Dunford’s property@) by Corollary 3.3, M is a T-hyperinvariant sub-
space from [13]. Sinc& € M, we get thatM ## {0}. Suppose thai\f = H. SinceT
has the single-valued extension property, it follows that

o(T) = Jlor(y): y e H} Cor(x) S o(T).
But this is a contradiction, and hendel is a nontrivial T-hyperinvariant subspacel]

Theorem 3.13. Let T € PYH) for some hyponormal operator K L£(H) with
T # Al for any A € C. If there exists x H \ {0} such that||T"x|| < Cr" for all posi-
tive integers nwhere C> 0 and 0 <r < r(T) are constantsthen T has a nontrivial
hyperinvariant subspace.

Proof. Putf(2):=—> 12,z ™DT"x, which is analytic for|z| > r; in fact, w =
z71 for |z| > r, then f(w) = — Y o2 g 1T x for 0 < |w| < 1/r. Since the hypothesis
implies that lim sup_, . |IT"x|¥"™ <r, the radius of convergence for the power series
Yo, @™ IT"x is at least fr. Setting f(0) := 0, we get thatf(w) is analytic for
|lw| < 1/r, i.e., f(2) is analytic for|z| > r. Since

T-2f@ == z™OT™x+ 3" 7"T"x = x

n=0 n=0
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for all z e C with |z| > r, we havepr(X) D {ze C: |z] >}, i.e.,
or(X) C{zeC: |zl <r}.

Sincer < r(T), it holds thatot(x) & o(T). Thus, we conclude from Lemma 3.12 that
T has a nontrivial hyperinvariant subspace. O

Finally, we consider a special case of power similarity.

Proposition 3.14. Let T € £(#H). Suppose that R £(#) is an operator satisfy-
ing the following conditions
(@ T"=R",
(b) TR =R, R™2T =T", and
(c) T"1+R™1£0
for some positive integer & 2. If T has a nontrivial hyperinvariant subspachen R
has a nontrivial invariant subspace.

Proof. Suppose thaR has no nontrivial invariant subspace. Th€nand R have
no common nontrivial invariant subspace. Defife= T"! + R for some posi-
tive integern > 2. Then we haveAT = (T"! + R™)T = T" 4+ R™!T and RA=
R(T" !+ R™) = RT" 1+ R". SinceR™1T = RR 2T = RT™!, we get thatAT =
RA Similarlyy, AR = T A holds. By [14, Lemma],A = 0 or A is a quasiaffinity.
However, A is nonzero by (c), and so it should be a quasiaffinity. Thisli@spthat T
and R are quasisimilar. Sinc& has nontrivial a hyperinvariant subspace by hypoth-
esis, [17, Theorem 6.19] implies th& has a nontrivial hyperinvariant subspace. So
we have a contradiction. Hende has a nontrivial invariant subspace. O

As some applications of Proposition 3.14, we get the foltmvcorollaries.

Corollary 3.15. Under the same hypotheses asFroposition 3.14if T is a nor-
mal operator that is not a scalar multiple of the identity cgter on # or T is honzero
and is not a quasiaffinifthen R has a nontrivial invariant subspace.

Proof. If T satisfies the first condition, theéh has a nontrivial hyperinvariant sub-
space by [17, Corollary 1.17]. [T is nonzero and is not a quasiaffinity, thep(T) U
op(T*) # @, and soT has a nontrivial hyperinvariant subspace. Hence, in batex®
has a nontrivial invariant subspace from Proposition 3.14. ]

Corollary 3.16. Let Ae PS(B) for some Be L(H), i.e., there exists an invert-
ible operator X such that A= X~1B2X, and XAX1+ B # 0. If B has a nontrivial
hyperinvariant subspacehen A has a nontrivial invariant subspace.
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Proof. SinceB? = X A2X~1 = (XAX™1)?, taking R = XAX1 and T = B in
Proposition 3.14, we obtain tha& has a nontrivial invariant subspace. ]

We observe that even if is hyponormal in Proposition 3.14, it is not necessary
that R is hyponormal from the following examples.

ExXAMPLE 3.17. LetA and B be weighted shifts defined bje, = axec.1 and
Bec = Brex+1 with positive weight sequencesu )i, and { Bk}, Note thatA and B
satisfy the conditions in Proposition 3.14 if and only if

®8) {Otkolk+1 s kpn-1 = BrBr+1 - Brtn—1s
Q1042+ Akpn—2 = Prt1Br+2 - * Brtn—2

for all nonnegative integerk. In particular, we note that ifA and B satisfy the con-
ditions in Proposition 3.14 fon = 3, then they must be the same by (8).

Let {2, = {1/3,1/2,1,1,1,..} and {B} 2, = {1/6,1,92,2,%/2,2,...}. Then
equation (8) holds fon = 4. Hence, we obtain thaf and B satisfy all conditions in
Proposition 3.14 fon = 4. Since{ak};e, is increasing bu{p}2 , is not, we conclude
that A is hyponormal, whileB is not.
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