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Abstract
We classify the dynamical action of matrices in SU(p,q) using the coefficients of

their characteristic polynomial. This generalises earlier work of Goldman for SU(2,1)
and the classical result for SU(1, 1), which is conjugate to SL(2,R). As geometrical
applications, we show how this enables us to classify automorphisms of real and
complex hyperbolic space and anti de Sitter space.

1. Introduction

In this paper we use the coefficients of the characteristic polynomial to give a dy-
namical classification of unitary matrices preserving a non-degenerate Hermitian form.
The most interesting case is where the Hermitian form has indefinite signature. This
includes the case of orthogonal matrices (with respect to a possibly indefinite quad-
ratic form) by restricting to the case where the matrix is real, and so the coefficients
of the characteristic polynomial are also real. The application we have in mind is that
orthogonal and unitary matrices often act as isometries on metric spaces. The most
obvious example of this is when the signature is (n, 1), when orthogonal matrices act
on real hyperbolicn-space and unitary matrices act on complex hyperbolicn-space.
There are more exotic examples, however. For example, isometries of quaternionic
hyperbolic 1-space and anti de Sitter space may both be embedded in (projectivisations
of) SU(2, 2).

The classification of elements of SL(2,R), SL(2,C) or SU(2, 1) has been useful in
many contexts; see [7], [13] or [18]. Our initial motivationto this work was to provide
initial tools for generalisation of these works to SU(p, 1) for p � 3. As we did so, we
realised it is natural to consider Hermitian forms of arbitrary signature. We first give
the classification in arbitrary dimensions, and then we go onto consider SU(p,q) where
pC q D 4.

In order to illustrate and motivate the main results of the paper, let us work through
the well known example of 2�2 matrices. In this case, ifA 2 SU(p,q) with pCq D 2
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then the characteristic polynomial ofA is

�A(X) D X2
� �X C 1

where� D tr(A), which is real. There are three possibilities for the eigenvalues�1, �2

of A, which are the roots of�A (compare Theorem 4.3.1 of [2] for example). Namely,
(i) �

2
< 4 and�1 D ei � , �2 D e�i � .

(ii) �

2
D 4 and�1 D �2 D �1.

(iii) � 2
> 4 and, reordering if necessary,�1 D �el , �2 D �e�l where l > 0.

Based on standard terminology from hyperbolic geometry we refer to these cases as
elliptic, parabolic (provided A ¤ �I ) and loxodromic respectively. Suppose thatA 2
SU(p, q) with pC q D 2 satisfies the conditions of case (iii). Letv1 and v2 be non-
zero eigenvectors with eigenvalues�1 D �el and �2 D �e�l respectively. It is not
hard to show thatv1 and v2 must be null vectors with respect to the Hermitian form.
Thereforep D q D 1. A similar argument shows that in case (ii) eitherAD �I or A
is not diagonalisable andp D q D 1.

We want to reformulate this classification in terms that may be generalised. A key
to this classification is theresultant R(�A,� 0A), which determines when�A and� 0A have
a common root, and hence�A(X) has a repeated root. In the case wherepC q D 2
the resultant is 4� � 2. Therefore we have
(i) A is elliptic if and only if R(�A, � 0A) D 4� � 2

> 0.
(ii) A is parabolic (or�I ) if and only if R(�A, � 0A) D 4� � 2

D 0.
(iii) A is loxodromic if and only if R(�A, � 0A) D 4� � 2

< 0.
The case (ii) whereA has a repeated eigenvalue is more complicated than the other
cases. In what follows we will not discuss the details of thiscase.

This argument was generalised to the case wherepC q D 3 by Goldman in [8];
see also Parker [18]. This is the main motivation for our workhere. In fact Goldman’s
work concentrated on the casep D 2, q D 1, but it is not hard to see how to gen-
eralise this to other signatures whenp C q D 3. We give a summary of Goldman’s
results in Section 2.3 below, but we generalise his methods to arbitrary signature. In
the case whenn D 3, the locus whereR(�A, � 0A) D 0 is a classical curve called adel-
toid. Goldman’s work has been generalised in a different direction by Navarrete [16]
who considers elements of SL(3,C). This is related to the theory of complex Kleinian
groups; see the book [3].

Our aim in this paper is to generalise this classification to higher values ofpCq D
n. First, we consider arbitraryn and give a general result, Theorem 3.1. We refer to
later sections for the precise definitions contained in thistheorem. In particularregular
means that the eigenvalues ofA are distinct. For the definition ofk-loxodromic see
Section 2.2. Roughly speaking, this means thatA has k pairs of distinct eigenvalues
related by inversion in the unit circle and all other eigenvalues lie on the unit circle,
so regular 0-loxodromic maps are elliptic.
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Theorem 3.1. Let A2 SU(p,q). Let R(�A,� 0A) denote the resultant of the char-
acteristic polynomial�A(X) and its first derivative� 0A(X). Then for m� 0, we have
the following.
(i) A is regular 2m-loxodromic if and only if R(�A, � 0A) > 0.
(ii) A is regular (2mC 1)-loxodromic if and only if R(�A, � 0A) < 0.
(iii) A has a repeated eigenvalue if and only if R(�A, � 0A) D 0.

An immediate corollary of Theorem 3.1 is a classification forSU(p, 1). Sinceq D
1, if A is loxodromic it must be 1-loxodromic. This simplifies the classification:

Corollary 3.2. Let A2 SU(p,1). Let R(�A,� 0A) denote the resultant of the char-
acteristic polynomial�A(X) and its first derivative� 0A(X). Then we have the following.
(i) A is regular elliptic if and only if R(�A, � 0A) > 0.
(ii) A is regular loxodromic if and only if R(�A, � 0A) < 0.
(iii) A has a repeated eigenvalue if and only if R(�A, � 0A) D 0.

Secondly, we give a much more detailed description in the case pC q D 4. Here
the characteristic polynomial is

�A(X) D X4
� �X3

C � X2
� �X C 1

where� D tr(A), which is complex, and� D (tr2(A)� tr(A2))=2, which is real. In this
case, the locus whereR(�A,� 0A)D 0 was studied by Poston and Stewart [21] following
earlier work by Chillingworth [5]. They named this object the holy grail. As a subset
of three dimensional space, parametrised by (� , � ) 2 C �R, the holy grail comprises a
ruled surface together with four space curves, calledwhiskers. We devote some space
to different ways of parametrising the holy grail and the different components of its
complement. The parametrisation of the corresponding object (a deltoid) in the case
of pC q D 3 has been useful when studying complex hyperbolic representation spaces
(see [10], [20] or the survey [18]) and we believe that the results in this paper will be
foundational to the generalisation of these theorems to higher dimensions. The main
theorem of this section is:

Theorem 4.9. Let A2 SU(p, q) where pC q D 4 and let � D tr(A) and � D
(tr2(A)� tr(A2))=2. Let �A(X) be the characteristic polynomial of A and let R(�A,� 0A)
be the resultant of�A(X) and � 0A(X). Then
(i) A is regular 2-loxodromic if and only if R(�A, � 0A) > 0 and

min{<(� )2
� 4� C 8,=(� )2

C 4� C 8, 6� � , 6C � } < 0.

(ii) A is regular 1-loxodromic if and only if R(�A, � 0A) < 0.
(iii) A is regular elliptic if and only if R(�A, � 0A) > 0 and

<(� )2
� 4� C 8> 0, =(� )2

C 4� C 8> 0, � 6< � < 6.
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(iv) A has a repeated eigenvalue if and only if R(�A, � 0A) D 0.

In our first geometric application, Section 5.2, we takep D 3 and q D 1. We
express Corollary 3.2 in terms of� and � and discuss the geometry of the action of
A on complex hyperbolic 3-spaceH3

C

.
Our second geometric application, Section 5.3, concerns isometries of the quater-

nionic hyperbolic lineH1
H

. These isometries are (projections of) matrices in Sp(1, 1)
preserving a quaternionic Hermitian form. Identifying thequaternions withC2 gives a
map of Sp(1, 1) into SU(2, 2). Using this we give the connection between our main
results and Gonogopadhyay’s classification [11] of elements of SL(2,H).

Finally in Section 5.4, we consider the automorphisms of anti de Sitter space,
which may be canonically identified with PSL(2,R). This gives an identification be-
tween the automorphisms of anti de Sitter space and PSL(2,R)�PSL(2,R). By translat-
ing such an automorphism to PSO(2, 2) we can use our classification to determine the
dynamics. In this case “regular” refers to the map in PSO(2, 2) not having a repeated
eigenvalue. Specifically we have

Theorem 5.5. Let (A1, A2) 2 PSL(2,R)�PSL(2,R) be an automorphism of anti
de Sitter space. Then
(i) ( A1, A2) is regular 2-loxodromic if at least one of A1 and A2 is loxodromic, and
also tr2(A1) and tr2(A2) are distinct and neither of them equals4.
(ii) ( A1, A2) is regular elliptic if A1 and A2 are both elliptic andtr2(A1) does not
equal tr2(A2).
(iii) ( A1, A2) is not regular if tr2(A1) D 4 or tr2(A2) D 4 or tr2(A1) D tr2(A2).

2. Preliminaries

2.1. Hermitian forms. Consider a complex vector spaceV D Cn equipped with
the non-degenerate Hermitian formh � , � i. Suppose the associated matrixH has p
positive eigenvalues andq negative eigenvalues. ThereforepC q D n and we say that
both h � , � i and H havesignature(p, q).

For example, suppose thatH is the n � n diagonal matrix,p of whose diagonal
entries areC1 andq are�1. Then clearlyH is Hermitian with signature (p, q). Such
a Hermitian space (V, H ) is referred to as a pseudo-Hermitian space often by math-
ematical physicists, see [1]. It is well-known that Hermitian forms over the complex
numbers are classified by their signatures and so, up to equivalence, we can always
take a pseudo-Hermitian form to work on a Hermitian space.

Let v 2 V . We say thatv is positive, null or negativeif hv,vi is greater than, equal
to or less than zero, respectively. Sometimes terminology from special relativity is used
and these vectors are calledspacelike, lightlike or timelike respectively. Motivated by
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this, we define

V
C

D {v 2 V W hv, vi > 0},(2.1)

V0 D {v 2 V � {0} W hv, vi D 0},(2.2)

V
�

D {v 2 V W hv, vi < 0}.(2.3)

Notice that if � is a non-zero complex scalar thenh�v, �vi D j�j2hv, vi. Thus if v is
positive, null or negative then so is any non-trivial vectorin the subspace ofV spanned
by v. More generally, ifU is a vector subspace ofV then we say thatU is positive,
null or negativeif every vector inU�{0} is positive, null or negative. Similarly, a vec-
tor subspace isnon-negativeor non-positiveif it contains positive (respectively nega-
tive) vectors and non-trivial null vectors. Likewise we saythat a vector subspaceU is
indefinite if U contains both positive and negative vectors (and necessarily null vectors
as well). We remark that, sinceh � , � i is non-degenerate, all null subspaces are one
(complex) dimensional.

2.2. The group U(p,q). Let V denote a vector space of dimensionn with a non-
degenerate Hermitian formh � , � i of signature (p, q). An n� n matrix A is unitary with
respect to this form ifhAv, Awi D hv, wi for all v, w 2 V . We let U(p, q) denote the
group of matrices that are unitary with respect to this form.We often wish to consider
unitary matrices with determinant equal to 1. Such matricesform the group SU(p, q).

We remark that ifh � , � i has signature (p, q) then�h � , � i has signature (q, p).
Thus any matrix in U(p, q) is also in U(q, p). Hence we may suppose thatp � q.

We will be interested in eigenvalues and eigenspaces of unitary matrices. IfA 2
U(p, q) has distinct eigenvalues then we call itregular. This automatically means that
A is diagonalisable. LetA 2 U(p, q) and let� 2 C be an eigenvalue ofA. First, since
A is unitary we must have� ¤ 0. Let V

�

be the eigenspace associated to�. Then we
say that� is of positive type, null type, negative type, non-negative type, non-positive
type or indefinite typeif V

�

is positive, null, negative, non-negative, non-positive or
indefinite respectively.

We will heavily use the following simple lemma.

Lemma 2.1 (Lemma 6.2.5 of Goldman [8]). Let V be a Hermitian vector space

and A a unitary automorphism of V . If� is an eigenvalue of A then�
�1

is also an
eigenvalue of A with the same multiplicity as�. That is, the collection of eigenvalues
of A is invariant under inversion in the unit circle.

Note that if j�j D 1 then�
�1
D � and this statement is vacuous. Clearly ifj�j ¤ 1

then � and �
�1

are distinct.
Furthermore, suppose that� is an eigenvalue ofA with j�j ¤ 1 and multiplicity 1.

Then �
�1

is also an eigenvalue ofA with multiplicity 1. In this case, the eigenspaces
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V
�

and V
�

�1 are both null one dimensional vector subspaces. Moreover,V
�

� V
�

�1 is
an indefinite subspace ofV and the restriction of the Hermitian form to this subspace
has signature (1, 1).

More generally, ifA has distinct eigenvalues�1, : : : ,�k and ordered so thatj�1j �

� � � � j�kj > 1. Then�
�1
1 , : : : ,�

�1
k are also distinct eigenvalues. Then the corresponding

eigenspacesV
� j and V

�

�1
j

are all null and of dimension 1. MoreoverV
�i � V

�

�1
i

and

V
� j � V

�

�1
j

are orthogonal and so

V
�1 � V

�

�1
1
� � � � � V

�k � V
�

�1
k

is a vector subspace of signature (k, k). In particular,k � min{p, q}. In this case, we
say thatA 2 U(p, q) is regular k-loxodromic. If the eigenvalues ofA are distinct and
all have unit modulus, in other wordsA is regular 0-loxodromic, then we sayA is
regular elliptic. There are further divisions whenA has repeated eigenvalues. These
cases depend on the modulus of the eigenvalues, whetherA is diagonalisable and the
minimum polynomial ofA. We will not distinguish between these cases in this paper
and so we will not discuss them here.

2.3. Goldman’s classification in the case ofp C q D 3. Goldman considered
the case of SU(p, q) where p C q D 3 in Section 6.2 of [8]. Our treatment is mo-
tivated by this account and we now give a brief summary of Goldman’s work. Let
A 2 SU(p, q) where pC q D 3. Then the characteristic polynomial ofA is

(2.4) �A(X) D X3
� �X2

C �X � 1

where� D tr(A). The resultant of�A and � 0A is

(2.5) R(�A, � 0A) D �j� j2C 8<(� 3) � 18j� j2C 27.

The locus whereR(�A, � 0A) D 0 is a classical curve called adeltoid, see pp. 26–27
of Kirwan [14]. We can extend the definitions of elliptic, parabolic and loxodromic
as follows. We sayA is regular elliptic if the eigenvalues ofA are distinct and have
modulus 1. We sayA is loxodromic if A has a pair of eigenvalues�1 and �2 with

j�1j > 1> j�2j. In fact, using Lemma 2.1, this implies that�2 D �
�1
1 . If A has a re-

peated eigenvalue thenA is said to beparabolic if it is not diagonalisable andbound-
ary elliptic if it is diagonalisable and not a scalar multiple of the identity. If A is a
scalar multiple of the identity then it acts as the identity on the corresponding project-
ive space. Goldman’s classification result is:

Theorem 2.2 (Theorem 6.2.4 of Goldman [8]). Let A2 SU(p,q) with pCq D 3.
The characteristic polynomial�A and resultant R(�A, � 0A) are given in (2.4) and
(2.5). Then
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Fig. 1. The deltoid.

(i) A is regular elliptic if and only if R(�A, � 0A) > 0.
(ii) A has a repeated eigenvalue if and only if R(�A,� 0A) D 0. In this case A is either
parabolic or boundary elliptic.
(iii) A is loxodromic if and only if R(�A, � 0A) < 0.
Moreover, if A is loxodromic or parabolic then(p, q) D (2, 1) or (1, 2).

Furthermore, in the case of loxodromic maps the matrixA is determined up to
conjugation by� and hence by�A. For regular elliptic maps this is almost true as well.
(There is a small error in Goldman’s statement at this point.) In order to discuss this
further, we need to talk about the signature of eigenspaces.All three eigenspaces will
be definite, thereforep of them will be positive (contained inV

C

) and q will be nega-
tive (contained inV

�

). Clearly, it is not possible to conjugate an element of SU(p, q)
so that a positive eigenvector becomes negative or vice versa. Thus if pD 0 or q D 0
the eigenvalues determine the group up to conjugacy; ifp D 1 (or q D 1) then there
are three possible conjugacy classes depending on the choice of positive eigenspace
(respectively negative eigenspace).

The following statement is a combination of the remaining statement of The-
orem 6.2.4 of [8] and Proposition 3.6 of Parker [18] (see alsoProposition 3.8 of [18]).

Proposition 2.3. Suppose that A2 SU(p, q) with pC q D 3 and � D tr(A).
(i) If A is loxodromic then A is determined up to conjugacy by� .
(ii) If A is regular elliptic and (p, q) D (3, 0) or (0, 3) then A is determined up to
conjugacy by� .
(iii) If A is regular elliptic and(p,q)D (2,1) or (1,2) each value of� determines three
conjugacy classes, these classes being determined by the signature of the eigenspaces.
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3. Classification of elements in SU(p, q)

3.1. Introduction. In this section we consider matrices in SU(p,q) for arbitrary
nD pCq. We discuss how to use the resultant to enumerate the different possibilities
for such matrices. We will also use the description of the resultant of p and q as a
determinant of an (r C s) � (r C s) matrix; for more details see p. 52 of Kirwan [14].

3.2. Classification when p C q D n. A matrix A in SU(p, q) is called
k-loxodromic if it has k pairs of eigenvaluesr j ei � j and r �1

j ei � j with r j > 1 for j D
1, : : : , k, and all other eigenvalues are unit modulus complex numbers. We adopt the
convention of takingk � 0 with the understanding that a 0-loxodromic means that
all eigenvalues are unit modulus complex numbers. Note thatin SU(p, q) we have
k � min{p, q}.

Also, A is said to beregular if the eigenvalues are mutually distinct, that isA has
no repeated eigenvalues.

Theorem 3.1. Let A2 SU(p,q). Let R(�A,� 0A) denotes the resultant of the char-
acteristic polynomial�A(X) and its first derivative� 0A(X). Then for m� 0, we have
the following.
(i) A is regular 2m-loxodromic if and only if R(�A, � 0A) > 0.
(ii) A is regular (2mC 1)-loxodromic if and only if R(�A, � 0A) < 0.
(iii) A has a repeated eigenvalue if and only if R(�A, � 0A) D 0.

Proof. Write pC q D n.
SupposeA is r -loxodromic, including the case wherer D 0 and soA is elliptic.

Then A has mutually distinct eigenvalues

� j D el jCi� j , �

�1
j D e�l jCi� j , �k D ei �k ,

where l j is a positive real number,j D 1, : : : , r , k D 1, : : : , s and 2r C sD pCq D n.
Then the squares of the differences of these eigenvalues are

(� j � �
�1
j )2
D e2i� j 4 sinh2(l j ),

(� j � �k)2(�
�1
j � �

�1
k )2
D e2i� jC2i�k (2 cosh(l j � lk) � 2 cos(� j � �k))2,

(� j � �
�1
k )2(�

�1
j � �k)2

D e2i� jC2i�k (2 cosh(l j C lk) � 2 cos(� j � �k))2,

(� j � �k)2(�
�1
j � �k)2

D e2i� jC2i �k (2 cosh(l j ) � 2 cos(� j � �k))2,

(� j � �k)2
D �ei � jCi �k (2� 2 cos(� j � �k)).
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Therefore

R(�A, � 0A)

D (�1)n(n�1)=2
Y

j

(� j � �
�1
j )2

Y

j<k

(� j � �k)2(�
�1
j � �

�1
k )2(� j � �

�1
k )2(�

�1
j � �k)2

�

Y

j ,k

(� j � �k)2(�
�1
j � �k)2

Y

j<k

(� j � �k)2

D (�1)n(n�1)=2(�1)s(s�1)=2
r
Y

jD1

e(n�1)2i� j

s
Y

kD1

e(n�1)i �k
Y

j

4 sinh2(l j )

�

Y

j<k

(2 cosh(l j � lk) � 2 cos(� j � �k))2(2 cosh(l j C lk) � 2 cos(� j � �k))2

�

Y

j ,k

(2 cosh(l j ) � 2 cos(� j � �k))2
Y

j<k

(2� 2 cos(� j � �k))

D (�1)n(n�1)=2Cs(s�1)=2
Y

j

4 sinh2(l j )

�

Y

j<k

(2 cosh(l j � lk) � 2 cos(� j � �k))2(2 cosh(l j C lk) � 2 cos(� j � �k))2

�

Y

j ,k

(2 cosh(l j ) � 2 cos(� j � �k))2
Y

j<k

(2� 2 cos(� j � �k)),

where we have used

r
Y

jD1

e(n�1)2i� j

s
Y

kD1

e(n�1)i �k
D (det(A))n�1

D 1.

All the product terms are real and positive providedl j > 0 and� j ¤ �k. Thus we must
find the power of (�1). Sincen D 2r C s we have

n(n� 1)C s(s� 1)D 2n(n� 1)� 4rn C 4r 2
C 2r .

Since 2n(n�1) is even, this implies (�1)n(n�1)=2Cs(s�1)=2
D (�1)r . This proves assertions

(i) and (ii). Assertion (iii) follows from the definition of the resultant.

Corollary 3.2. Let A2 SU(p,1). Let R(�A,� 0A) denotes the resultant of the char-
acteristic polynomial�A(X) and its first derivative� 0A(X). Then we have the following.
(i) A is regular elliptic if and only if R(�A, � 0A) > 0.
(ii) A is regular loxodromic if and only if R(�A, � 0A) < 0.
(iii) A has a repeated eigenvalue if and only if R(�A, � 0A) D 0.
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4. Classification of matrices in SU(p, q) with p C q D 4

4.1. Introduction. In this section we consider the case of SU(p, q) where pC
q D 4. In fact, up to changing the sign of the Hermitian form, there are three possible
groups SU(4, 0)D SU(4), SU(3, 1) and SU(2, 2). Our goal will be to extend Goldman’s
classification of matrices in SU(2, 1) using the resultantR(�A, � 0A) as a polynomial in
tr(A) and tr(A). In this case, the characteristic polynomial is determined by a complex
and a real parameter (see [13, Section 4.5]):

Lemma 4.1. Let A be inSU(p, q), where pC q D 4, with characteristic poly-
nomial �A(X). Write � D tr(A) and � D (1=2)(tr2(A) � tr(A2)) 2 R. Then

(4.1) �A(X) D X4
� �X3

C � X2
� �X C 1.

If �i for i D 1, 2, 3, 4 are the eigenvalues ofA, then note that

� D �1C �2C �3C �4,(4.2)

� D �1�2C �1�3C �1�4C �2�3C �2�4C �3�4.(4.3)

We want conditions on� , � characterising when�A(X) D 0 has repeated solutions, or
equivalently when�A(X) and its derivative� 0A(X) have a common root. Note that:

(4.4) �

0

A(X) D 4X3
� 3�X2

C 2� X � � .

Therefore we need to find the locus of points (� , � ) 2 C � R where the resultant
R(�A,� 0A)D 0. This problem was studied by Poston and Stewart [21]. Basedon earlier
work of Chillingworth [5], they call the locus of points where this resultant vanishes
the holy grail; see Fig. 2. This generalises the deltoid, Fig. 1, which is the zero locus
of the resultant for SU(2, 1).

In this section we investigate the dynamics of isometries whose parameters (� , � )
lie on each part of the holy grail and in each component of the complement. In this
section no assumption is made about the signature ofH , but readers should recall that
a k-loxodromic map can only occur in SU(p, q) when k � min{p, q}.

4.2. Eigenvalues and parameters. Consider a unitary matrixA in SU(p,q) with
p C q D 4, but at this stage we will not specify the signature of the Hermitian form.
Suppose that the eigenvalues ofA (that is the roots of the characteristic polynomial)
are�1, �2, �3, �4. Recall from Goldman’s lemma, Lemma 2.1, the set{�1, �2, �3, �4}

is closed under the map� 7! �

�1
. Note that an even number of eigenvalues satisfy

j�j ¤ 1 and so an even number satisfyj�j D 1. In what follows, after rearranging them
if necessary, suppose that the eigenvalues are paired up as follows.

• if j�1j ¤ 1 then�2 D �
�1
1 ; if j�1j D 1 then j�2j D 1;
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• if j�2j ¤ 1 then�1 D �
�1
2 ; if j�2j D 1 then j�1j D 1;

• if j�3j ¤ 1 then�4 D �
�1
3 ; if j�3j D 1 then j�4j D 1;

• if j�4j ¤ 1 then�3 D �
�1
4 ; if j�4j D 1 then j�3j D 1.

With this ordering of eigenvalues, note thatj�1�2j D j�3�4j D 1. Define� 2 [0, �)
by �1�2 D e2i�. Moreover, since the product of the eigenvalues is 1, we also have
�3�4 D e�2i�. The following parameters will simplify our calculations:

(4.5) x D (�1C �2)e�i�, y D (�3C �4)ei� , t D 2 cos(2�).

The rest of this section will be devoted to investigating theproperties of the change of
parameters (� , � )$ (x, y, �).

Lemma 4.2. The parameters x, y and t defined by(4.5) are all real.

Proof. Clearly t is real. In order to see thatx is real, note that eitherj�1j D

j�2j
�1
¤ 1 and�1 D �

�1
2 , �2 D �

�1
1 or else j�1j D j�2j D 1 and�1 D �

�1
1 , �2 D �

�1
2 .

In the either case

x D (�1C �2)ei�
D (��1

1 C �
�1
2 )ei�

D (�1C �2)e�i�
D x

where we have used�1�2 D e2i�. Thus x is real. Similarly y is real.

Lemma 4.3. With � , � and x, y, � as in (4.5), we have

� D xei�
C ye�i�,(4.6)

� D xyC 2 cos(2�).(4.7)

Proof. From the definition ofx, y and � we have

� D (�1C �2)C (�3C �4) D xei�
C ye�i�,

� D (�1C �2)(�3C �4)C �1�2C �3�4 D xei�ye�i�
C e2i�

C e�2i�.

We now characterise when this change of variables is a local diffeomorphism.

Proposition 4.4. The change of parametersR2
� S1

! C � R given by

(x, y, ei�) 7! (� , � ) D (xei�
C ye�i�, xyC e2i�

C e�2i�)

is a local diffeomorphism provided

x2
C y2

� 4� 2xy cos(2�)C 4 cos2(2�) ¤ 0.
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Proof. Consider the change of coordinates

<(� ) D (x C y) cos(�), =(� ) D (x � y) sin(�), � D xyC e2i�
C e�2i�.

Then the Jacobian is

J D det

0

�

cos(�) cos(�) �(x C y) sin(�)
sin(�) � sin(�) (x � y) cos(�)

y x �4 sin(2�)

1

A

D 4 sin2(2�) � (x C y)2 sin2(�) � (x � y)2 cos2(�)

D �x2
� y2

C 4C 2xy cos(2�) � 4 cos2(2�).

Now we show the change of variables is surjective (compare Lemma 3.8 of [18]).

Proposition 4.5. Given (� ,� ) 2 C�R then there exist(x, y,ei�) 2 R2
�S1 so that

(4.8) <(� ) D (x C y) cos(�), =(� ) D (x � y) sin(�), � D xyC e2i�
C e�2i�.

Proof. If there exist suchx, y, ei� then, writing t D 2 cos(2�), we have

j� j

2
D <(� )2

C=(� )2
D x2

C y2
C xyt,(4.9)

2<(� 2) D 2<(� )2
� 2=(� )2

D (x2
C y2)t C 4xy,(4.10)

� D xyC t .

Eliminating x and y we see thatt must satisfyq(t) D 0 where

q(X) D X3
� � X2

� 4X C<(� )2X C=(� )2X C 4� � 2<(� )2
C 2=(� )2.

Evaluating atX D �2 we see that

q(2)D 8� 4� � 8C 2<(� )2
C 2=(� )2

C 4� � 2<(� )2
C 2=(� )2

D 4=(� )2
� 0,

q(�2)D �8� 4� C 8� 2<(� )2
� 2=(� )2

C 4� � 2<(� )2
C 2=(� )2

D �4<(� )2
� 0.

If <(� ) ¤ 0 and=(� ) ¤ 0 then, by the intermediate value theorem, we can findt with
�2 < t < 2 so thatq(t) D 0. Define� by 2 cos(2�) D t . As cos(2�) ¤ �1 we have
sin(2�) ¤ 0. In this casex and y are given by

x D
<(� ) sin(�)C=(� ) cos(�)

sin(2�)
, y D

<(� ) sin(�) � =(� ) cos(�)

sin(2�)
.
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If =(� ) D 0 and<(� ) ¤ 0 thenq(2)D 0 and

q0(X) D q(X)=(X � 2)D X2
C 2X � � X � 2� C<(� )2.

We have

q0(2)D 8� 4� C<(� )2, q0(�2)D <(� )2
> 0.

If <(� )2
< 4� �8 we haveq0(2)< 0< q0(�2) and we can findt with �2< t < 2 and

q0(t) D 0. In this case definet D 2 cos(2�) and proceed as above. If<(� )2
� 4� � 8

then define� D 0. We must solve<(� ) D x C y and � D xyC 2. A solution is

x D
<(� )C

p

<(� )2
� 4� C 8

2
, y D

<(� ) �
p

<(� )2
� 4� C 8

2
.

If <(� ) D 0 and=(� ) ¤ 0 then q(�2) D 0. As above, if=(� )2
< �8� 4� then

we can findt with �2 < t < 2 and q(t) D 0, giving a similar solution as before. If
=(� )2

> �8� 4� then � D �=2 and

x D
=(� )C

p

=(� )2
C 4� C 8

2
, y D

=(� ) �
p

=(� )2
C 4� C 8

2
.

Finally, suppose<(� ) D =(� ) D 0. If � � 0 then define� D �=2 and x D y D
p

� C 2; if � < 0 define� D 0 and x D �y D
p

�� C 2.

4.3. The resultant. Let �A(x) be the characteristic polynomial ofA 2 SU(p, q)
with pCq D 4. We have expressions for�A(x) and� 0A(x) in (4.1) and (4.4). We now
calculate their resultantR(�A, � 0A) as a polynomial in� , � and � :

R(�A, � 0A) D det

0

B

B

B

B

B

B

B

B

B

�

1 �� � �� 1 0 0
0 1 �� � �� 1 0
0 0 1 �� � �� 1
4 �3� 2� �� 0 0 0
0 4 �3� 2� �� 0 0
0 0 4 �3� 2� �� 0
0 0 0 4 �3� 2� ��

1

C

C

C

C

C

C

C

C

C

A

D 16� 4
� 4� 3(� 2

C �

2)C � 2
j� j

4
� 80� 2

j� j

2
� 128� 2

C 18� (� 2
C �

2)j� j2C 144� (� 2
C �

2)

� 4j� j6 � 27(� 2
C �

2)2
C 48j� j4 � 192j� j2C 256

D 4(� 2
=3� j� j2C 4)3 � 27(2� 3

=27� j� j2�=3� 8�=3C (� 2
C �

2))2.

In [21] Poston and Stewart considered the locus of points where

f (z, z) D <(�z4
C �z3zC 
 z2z2)
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Fig. 2. The holy grail. Here points ofR3 have coordinates (<(� ),=(� ), � ).

has repeated roots. Based on earlier work of Chillingworth [5], they call the locus of
these points theholy grail; see Fig. 2, which should be compared with Figs. 4 and 5 of
[21]. In order to see the connection between the two problems, observe that by setting
� D 1, � D � and 
 D �=2 we have

f (z, z) D z4
�A(�z=z).

When � D 1, Poston and Stewart’s equation for the holy grail, p. 268 of[21], is

1 D (4
 2
=3� j�j2C 4)3 � 27(8
 3

=27� j�j2
 =3� 8
 =3C (�2
C �

2
)=2)2.

Clearly, the above substitution makes1 agree with our expression forR(�A, � 0A).
We now expressR(�A, � 0A) in terms of x, y and t . A consequence of this and

Proposition 4.4 is that the change of parameters (� , � ) $ (x, y, t) is a local diffeo-
morphism whenR(�A, � 0A) ¤ 0.
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Proposition 4.6. In terms of the parameters x, y and t given in(4.5) the resul-
tant is given by the following expression:

R(�A, � 0A) D (x2
� 4)(y2

� 4)(x2
C y2

� 4� xytC t2)2.

Proof. We use equations (4.9), (4.10) and (4.7) substitute for � and � in terms
of x, y and t D 2 cos(2�). Then, expanding and simplifying, we obtain

R(�A, � 0A) D 16� 4
� 4� 3(� 2

C �

2)C � 2
j� j

4
� 80� 2

j� j

2

� 128� 2
C 18� (� 2

C �

2)j� j2C 144� (� 2
C �

2)

� 4j� j6 � 27(� 2
C �

2)2
C 48j� j4 � 192j� j2C 256

D (x2
� 4)(y2

� 4)(x2
C y2

� 4� xytC t2)2.

We remark that there is a symmetry that arises from multiplying A by powers ofi .
In several places below we will use this symmetry to avoid repetition. We note that for
our geometrical applications, we will be interested in PSU(p,q) D SU(p,q)={�I ,�i I }

and soA is only defined up to multiplication byi .

Corollary 4.7. Let x, y and t be the parameters given in(4.5). The resultant
R(�A, � 0A) is preserved by the changes of variable where(x, y, t) is sent to one of

(x, y, t), (x, �y, �t), (�x, y, �t), (�x, �y, t),

(y, x, t), (y, �x, �t), (�y, x, �t), (�y, �x, t).

Moreover, this automorphism group is generated by(�1, �2)$ (�3, �4). and A! i A.

Proof. It is easy to see in that all the changes of variable stated above preserve
the expression forR(�A, � 0A) from Proposition 4.6.

Now consider the effect of multiplyingA by i . In the following table we give the
various changes to our parameters.

A � � � x y t
i A i � �� � C �=2 x �y �t
�A �� � � C � x y t
�i A �i � �� � C 3�=2 x �y �t

A further symmetry may be obtained by interchanging the pairs of eigenvalues (�1,�2)
and (�3, �4). It is easy to see from (4.5) that this has the effect of sending (x, y, t) to
(y, x, t). Repeated application of the automorphismsA! i A and (�1, �2)$ (�3, �4)
give all the changes of variable in the statement of the corollary.
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Using Proposition 4.6, the conditionR(�A, � 0A) > 0 implies (x2
� 4)(y2

� 4) > 0.
Thus, eitherx2 and y2 are both greater than 4, or they are both less than 4. In the
former caseA is 2-loxodromic and in the latter case it is elliptic. Thus itis useful
to distinguish whenxy> 4, �4 < xy< 4 and xy< �4. In the following lemma, we
express these conditions in terms of� and � .

Lemma 4.8. Let � and � be given by(4.6) and (4.7). Suppose that R(�A,� 0A) >
0. Then xy¤ �4. Furthermore:
(i) xy> 4 if and only if either<(� )2

� 4� C 8< 0 or � > 6.
(ii) xy< 4 if and only if both<(� )2

� 4� C 8> 0 and � < 6.
(iii) xy> �4 if and only if both=(� )2

C 4� C 8> 0 and � > �6.
(iv) xy< �4 if and only if =(� )2

C 4� C 8< 0 or � < �6.

Note that a simple consequence of this lemma is that ifR(�A, � 0A) > 0 then both
min{<(� )2

� 4� C 8, 6� � } and min{=(� )2
C 4� C 8, 6C � } are both non-zero.

Proof of Lemma 4.8. IfR(�A, � 0A) > 0 then we have

0< (x2
� 4)(y2

� 4)D (xyC 4)2 � 4(x C y)2
D (xy� 4)2 � 4(x � y)2.

Thereforexy¤ �4. The remaining cases exhaust the other possibilities. Therefore, by
process of elimination, it suffices to prove only one direction of the implications. We
choose to do this from right to left.

If � > 6 then

6< � D xyC 2 cos(2�) � xyC 2.

Thereforexy> 4. Similarly, if � < �6 then xy< �4.
If <(� )2

� 4� C 8< 0 then

0> <(� )2
� 4� C 8D (x � y)2 cos2 � C (16� 4xy) sin2

� � (16� 4xy) sin2
�

and soxy> 4. Similarly, if =(� )2
C 4� C 8> 0 then xy< �4.

Now assume that<(� )2
� 4� C 8> 0, � < 6 and R(�A, � 0A) > 0. We note that in

terms of x, y and � these inequalities imply

0< (x � y)2 cos2 � C (16� 4xy) sin2
�,(4.11)

xy� 4< 4 sin2
�,(4.12)

4(x � y)2
< (4� xy)2.(4.13)

Using (4.13) to eliminate (x � y)2 from (4.11), we see that

0< 4(x � y)2 cos2 � C 16(4� xy) sin2
� < (4� xy)((4� xy) cos2 � C 16 sin2

�).



ON THE CLASSIFICATIONS OF UNITARY MATRICES 975

Using (4.12) we see that

(4� xy) cos2 � C 16 sin2
� > 4 sin2

�(4� cos2 �) > 0.

Thereforexy< 4 as claimed.
Similarly, if =(� )2

C 4� C 8> 0, � > �6 and R(�A, � 0A) > 0 then xy> �4.

Putting this together, we have the following theorem:

Theorem 4.9. Let A2 SU(p, q) where pC q D 4 and let � D tr(A) and � D
(tr2(A)� tr(A2))=2. Let �A(X) be the characteristic polynomial of A and let R(�A,� 0A)
be the resultant of�A(X) and � 0A(X). Then
(i) A is regular 2-loxodromic if and only if R(�A, � 0A) > 0 and

min{<(� )2
� 4� C 8,=(� )2

C 4� C 8, 6� � , 6C � } < 0.

(ii) A is regular 1-loxodromic if and only if R(�A, � 0A) < 0.
(iii) A is regular elliptic if and only if R(�A, � 0A) > 0 and

<(� )2
� 4� C 8> 0, =(� )2

C 4� C 8> 0, �6< � < 6.

(iv) A has a repeated eigenvalue if and only if R(�A, � 0A) D 0.

4.4. Parametrising the holy grail. In this section we consider the points where
R(�A, � 0A) D 0, called theholy grail. We claim that, after reordering eigenvalues, we
may suppose that eithery D 2 or elsex2y2

> 16 andx2
C y2

� 4� xytC t2
D 0. The

former condition determines a ruled surface made up of threeparts, theupper bowl,
central tetrahedronand lower bowl, names introduced by Poston and Stewart. The lat-
ter condition determines four space curves called thewhiskers. This is illustrated in
Fig. 2 of this paper or in Fig. 5 of Poston and Stewart [21], where the different parts
are labelled.

Proposition 4.10. Let x, y and t be the parameters given by(4.5). Up to apply-
ing one of the automorphisms given inCorollary 4.7, the condition R(�A, � 0A) D 0 is
equivalent to one of the following equations
(i) y D 2;
(ii) (x2

� 4)(y2
� 4)> 0 and x2

C y2
� 4� xytC t2

D 0.

Proof. Using Proposition 4.6 we see that points on the holy grail are given by

0D (x2
� 4)(y2

� 4)(x2
C y2

� 4� xytC t2)2.

If (x4
� 4)(y2

� 4) D 0 then eitherx D �2 or y D �2. After applying the auto-
morphisms from Corollary 4.7, we see that we may takey D 2.
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Fig. 3. A cross section through the holy grail.

If (x2
� 4)(y2

� 4)¤ 0 then x2
C y2

� 4� xytC t2
D 0. Hence

t D
xy�

p

(x2
� 4)(y2

� 4)

2
.

Since t is real, we must have (x2
� 4)(y2

� 4)> 0.

The following result is stated on page 269 of Poston and Stewart [21]. It is illus-
trated in the cross-section drawn in Fig. 3.

Corollary 4.11. The points on the holy grail with yD 2 form a ruled surface
in C � R.

Proof. The points inC � R for which y D 2 are

(� , � ) D (xei�
C 2e�i�, 2x C 2 cos(2�))

D (2e�i�, 2 cos(2�))C x(ei� , 2).

This is the equation of a ruled surface (see Section 3.5 of do Carmo [6], for example).
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Suppose thatyD 2. Then the three main parts of the holy grail are determined by
the conditionsx > 2, �2� x � 2 and x < �2.

Corollary 4.12. Suppose that yD 2. Then the parameters� and � are given by
(i) If x D 2 cosh(l ) > 2 then

� D 2 cosh(l )ei�
C 2e�i� , � D 4 cosh(l )C 2 cos(2�).

(ii) If x D 2 cos(�) 2 [�2, 2] then

� D 2 cos(�)ei�
C 2e�i� , � D 4 cos(�)C 2 cos(2�).

(iii) If x D �2 cosh(l ) < �2 then

� D �2 cosh(l )ei�
C 2e�i� , � D �4 cosh(l )C 2 cos(2�).

The parameter values of Corollary 4.12 exhaust the possibilities when condition
(i) of Proposition 4.10 is satisfied. They correspond to theupper bowl, central tetrahe-
dron and lower bowl respectively. We can relate these parameter values to the possible
Jordan decompositions that can arise.

Proposition 4.13. Suppose that A2 SU(p, q) and yD 2.
(i) If x D 2 cosh(l ) > 2 or x D �2 cosh(l ) < �2 then A is either diagonalisable or its
Jordan normal form has a2� 2 Jordan block associated to the eigenvalue e�i � . The
latter can only happen if pD q D 2.
(ii) If x D 2 cos(�) 2 [�2, 2] then A can have any Jordan normal form. There can be
at mostmin{p, q} Jordan blocks of size at least2.

Proof. The eigenspace associated to each Jordan block of size at least 2 is spanned
by a null vector. These null vectors are linearly independent. Therefore there can only
be min{p, q} Jordan blocks of size at least 2.

In (i) the eigenvectors corresponding to the eigenvaluese�lCi� or �e�lCi� span
a subspace where the restriction ofH has signature (1, 1). If the other eigenvalues
correspond to a Jordan block of size 2, then its eigenvector is linearly independent from
the above subspace. Therefore min{p, q} is at least 2. SincepC q D 4 we havep D
q D 2.

In (ii) all eigenvalues have absolute value 1, so there is no further restriction.
In both cases, it is an easy exercise to write down matrices and Hermitian forms

to demonstrate that there are no further restrictions.

We now consider what happens when condition (ii) of Proposition 4.10 is satisfied.
Suppose that (x2

�4)(y2
�4)> 0 and�4� xy� 4. Then�2< x < 2 and�2< y < 2.
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Write x D 2 cos(�) and y D 2 cos( ). If we also havex2
C y2

� 4� xytC t2
D 0 then

t D 2 cos(2�) D 2 cos(� �  ). In other words, 2� D � �  or 2� D �� �  . There
are several cases. We choose the case 2� D � C . Eliminating , the eigenvalues are

�1 D ei �Ci�, �2 D e�i �Ci�, �3 D e�i �Ci�, �4 D ei ��3i�.

Reorder the eigenvalues by swapping�2 and �4.

�

0

1 D ei �Ci�, �

0

2 D ei ��3i�, �

0

3 D e�i �Ci�, �

0

4 D e�i �Ci�.

With this new parametrisation we get new parameterse2i�0
D �

0

1�
0

2 D e2i ��2i� and

x0 D (�01C �
0

2)e�i�0
D 2 cos(2�), y0 D (�03C �

0

4)ei�0
D 2, t 0 D 2 cos(2� � 2�).

Therefore, this is a point on the central tetrahedron. The other cases are similar.
We therefore concentrate on the points withxy> 4 or xy< �4.

Lemma 4.14. Suppose x2C y2
� 4� xytC t2

D 0 and �2� t � 2.
(i) If xy > 4 then xD y and tD 2.
(ii) If xy < �4 then xD �y and tD �2.

Proof. We have

0D x2
C y2

� 4� xytC t2
D (x � y)2

C (2� t)(xy� 4)C (2� t)2.

Since�2� t � 2 we see that ifxy> 4 we must have (x� y)2
D (2� t)2

D 0. Similarly

0D x2
C y2

� 4� xytC t2
D (x C y)2

C (2C t)(�xy� 4)C (2C t)2.

If xy< �4 then (x C y)2
D (2C t)2

D 0.

The locus of points described in Lemma 4.14 are thewhiskers.

Corollary 4.15. The whiskers are given by

(� , � ) D (�2 cosh(l ), 4 cosh2(l )C 2),

(� , � ) D (�2i cosh(l ), �4 cosh2(l ) � 2)

where l> 0 is a real parameter.

Proposition 4.16. Suppose that A2 SU(p, q) satisfies the hypotheses of
Lemma 4.14. Then pD q D 2 and A is either diagonalisable or its Jordan normal
form has two blocks of size2.
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Proof. In this case, (up to multiplyingA by a power ofi ) the eigenvalues areel ,
el , e�l , e�l where l > 0. Since there are two eigenvectors that are greater than 1, we
see that min{p, q} � 2. Thus p D q D 2.

Since each eigenvalue has multiplicity 2, the possible Jordan blocks have size 1 or
2. Using the same argument as in Lemma 2.1, we see that the eigenspace associated
to el has the same dimension as the eigenspace associated toe�l . ThereforeA is either
diagonalisable or has two Jordan blocks of size 2. It is easy to write down matrices
that show both possibilities can arise (see comment after Theorem 5.5).

4.5. When A is 2-loxodromic. In the next three sections we give a few more
details about the components of the complement of the holy grail. In particular, we
relate the coordinates (x, y, t) with more geometrical parameters.

Suppose thatj�1j D j�2j
�1
> 1 and j�3j D j�4j

�1
> 1. In this case, (after possibly

multiplying A by a power ofi if necessary) we can write

�1 D elCi�, �2 D e�lCi�, �3 D em�i�, �4 D e�m�i�

where l > 0 andm> 0. Hence

(4.14) � D 2 cosh(l )ei�
C 2 cosh(m)e�i�, � D 4 cosh(l ) cosh(m)C 2 cos(2�).

and x D 2 cosh(l ), y D 2 cosh(m), t D 2 cos(2�). In this case

R(�A, � 0A)

D 256 sinh2(l ) sinh2(m)(cosh(l Cm) � cos(2�))2(cosh(l �m) � cos(2�))2.

When l D m and � D �=2 then we see that� D 0 and � D 4 cosh2(l ) � 2 D
2 cosh(2l ). Such points lie inside the top bowl of the holy grail. Therefore, by conti-
nuity, this region comprises points whereR(�A,� 0A) > 0. The presence of the whiskers
in this bowl mean these two components of the set whereR(�A,� 0A)> 0 are not simply
connected. This leads to subtleties when it comes to giving parameters. The whiskers
comprise points withl D m and � D 0 or � D � . We now give a characterisation in
terms of� and � of the points where exactly one of these conditions is satisfied.

Lemma 4.17. Suppose that� and � satisfy (4.14).
(i) If � D 0 and l¤ m then=(� ) D 0, <(� ) > 0 and <(� )2

� 4� C 8> 0.
(ii) If � D � and l¤ m then=(� ) D 0, <(� ) < 0 and <(� )2

� 4� C 8> 0.
(iii) If � ¤ 0, � and lD m then=(� ) D 0 and <(� )2

� 4� C 8< 0.

Proof. If � D 0 and l ¤ m then

� D 2 cosh(l )C 2 cosh(m), � D 4 cosh(l ) cosh(m)C 2.
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Clearly =(� ) D 0 and<(� ) > 0. Also

<(� )2
� 4� C 8D (2 cosh(l ) � 2 cosh(m))2

> 0.

The case where� D � and l ¤ m is similar.
If � ¤ 0, � and l D m then

� D 4 cosh(l ) cos(�), � D 4 cosh2(l )C 2 cos(2�).

Clearly =(� ) D 0. Also,

<(� )2
� 4� C 8D �16 sinh2(l ) sin2(�) < 0.

Define C to be the set of all (� , � ) 2 C � R satisfying
(i) R(�A, � 0A) > 0,
(ii) min{<(� )2

� 4� C 8, 6� � } < 0,
(iii) max{<(� )2

� 4� C 8,=(� )2} > 0.
Geometrically, conditions (i) and (ii) imply thatC is contained “inside” or “above” the
upper bowl of the holy grail. Condition (iii) means that the points with both=(� ) D 0
and<(� )2

� 4� C 8 � 0 are not inC. Using Lemma 4.17 (iii) and the description of
the whiskers, we see that this excludes those points withl D m.

Proposition 4.18. The map

8 W {(l , m, ei�) 2 R2
C

� S1
W l > m} ! C

given by(4.14) is a diffeomorphism.

Proof. We have seen above that if� and� are given by (4.14) thenR(�A,� 0A) > 0.
Moreover sincexyD 4 cosh(l ) cosh(m) > 4, using Lemma 4.8 we see that

min{<(� )2
� 4� C 8, 6� � } < 0.

In addition,

<(� )2
� 4� C 8D 4(cosh(l ) � cosh(m))2

� 16((cosh(l )C cosh(m))2
� 1) sin2

�,

=(� )2
D 4(cosh(l ) � cosh(m))2 sin2

�.

Since l ¤ m either =(� )2
> 0 or sin2

� D 0. In the latter case,<(� )2
� 4� C 8 > 0.

Therefore

max{<(� )2
� 4� C 8,=(� )2} > 0.

Hence the image of8 is containedC.
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Conversely, Proposition 4.5 implies that given any (� , � ) 2 C � R we can find
(x, y, ei�) satisfying (4.8). Using Lemma 4.8 (i) we see that if

R(�A, � 0A) > 0, min{<(� )2
� 4� C 8, 6� � } < 0

then (x2
�4)(y2

�4)> 0 andxy> 4. Thusx > 2 andy> 2. We can writex D 2cosh(l )
and y D 2 cosh(m). Using Lemma 4.17 (iii) we see that if

max{<(� )2
� 4� C 8,=(� )2} > 0

then l ¤ m. Swapping the roles ofx and y if necessary (as in Corollary 4.7) we may
assume thatl > m. Therefore8 is onto.

In real coordinates

<(� ) D 2(cosh(l )C cosh(m)) cos(�),

=(� ) D 2(cosh(l ) � cosh(m)) sin(�),

� D 4 cosh(l ) cosh(m)C 2 cos(2�).

This change of variables leads to the Jacobian

J D 16 sinh(l ) sinh(m) det

0

�

cos(�) cos(�) �(cosh(l )C cosh(m)) sin(�)
sin(�) � sin(�) (cosh(l ) � cosh(m)) cos(�)

cosh(m) cosh(l ) � sin(2�)

1

A

D �16 sinh(l ) sinh(m)(cosh(l Cm) � cos(2�))(cosh(l �m) � cos(2�)).

This is clearly non-zero whenl > m> 0. Therefore8 is a local diffeomorphism.
As m tends to 0 then (� , � ) tends to the upper bowl of the holy grail; asl � m

tends to 0 then (� , � ) tends to points where=(� ) D 0 and<(� )2
� 4� C 8 � 0; as l

tends to1 then (� , � ) tends to infinity. Therefore8 is proper.
Therefore8 is a covering map. For fixedm and very large values ofl we have

(� , � ) � (el ei�, 2el cosh(m)). Hence8 has winding number 1 for such values ofl and
hence everywhere. Thus8 is a global diffeomorphism.

4.6. When A is simple loxodromic. Suppose thatj�1j D j�2j
�1
> 1 and j�3j D

j�4j
�1
D 1. In this case, (after possibly multiplyingA by a power ofi if necessary)

we can write

�1 D elCi�, �2 D e�lCi�, �3 D ei �i�, �4 D e�i �i�

where l > 0. Then

(4.15) � D 2 cosh(l )ei�
C 2 cos( )e�i�, � D 4 cosh(l ) cos( )C 2 cos(2�)
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and x D 2 cosh(l ), y D 2 cos( ), t D 2 cos(2�). In this case

R(�A, � 0A)

D �256 sinh2(l ) sin2( )(cosh(l ) � cos( C 2�))2(cosh(l ) � cos( � 2�))2.

When D �=2 and� D �=4 then� D
p

2 cosh(l )(1C i ). Such points are outside the
holy grail. Therefore by continuity,R(�A,� 0A)< 0 in this region. The following propos-
ition may be proved in a similar manner to Proposition 4.18 (compare Proposition 3.8
of [18]).

Proposition 4.19. The map

8 W {(l ,  , ei�) 2 R
C

� (0, �) � S1}! {(� , � ) 2 C � R W R(�A, � 0A) < 0}

given by(4.15) is a diffeomorphism.

We remark that, depending on the signature of the Hermitian form, Proposition 4.19
may still not mean thatA is determined up to conjugacy by (� , � ). Suppose that the
eigenvalue� j corresponds to the eigenspaceU j . Since j�1j D j�2j

�1
> 1, the eigen-

spacesU1 andU2 must both be null and the Hermitian form restricted toU1�U2 must
have signature (1, 1). If the signature of the form is (3, 1) or(1, 3) thenU3 andU4 must
both be positive or negative respectively. On the other hand, if the form has signature
(2, 2) then one ofU3 or U4 is positive and the other is negative. This determines two
conjugacy classes in this case. For example, if the form is the standard diagonal form
diag(1, 1,�1,�1) then for" D �1 consider the following matrices in SU(2, 2)

A
"

D

0

B

B

�

cosh(l )ei� 0 0 sinh(l )ei�

0 ei " �i� 0 0
0 0 e�i " �i� 0

sinh(l )ei� 0 0 cosh(l )ei�

1

C

C

A

.

Both these matrices have the same values of� and � but yet they are not conjugate
within SU(2, 2) (even though they are conjugate in SL(4,C)).

4.7. When A is regular elliptic. Suppose thatj�1j D j�2j
�1
D 1 and j�3j D

j�4j
�1
D 1. In this case, (after possibly multiplyingA by a power ofi if necessary)

we can write

�1 D ei �Ci�, �2 D e�i �Ci�, �3 D ei �i�, �4 D e�i �i�.

Then

� D 2 cos(�)ei�
C 2 cos( )e�i�, � D 4 cos(�) cos( )C 2 cos(2�).
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and x D 2 cos(�), y D 2 cos( ), t D 2 cos(2�). In this case

R(�A, � 0A) D 256 sin2(�) sin2( ) sin2(� C (� C  )=2) sin2(� � (� C  )=2)

� sin2(� C (� �  )=2) sin2(� � (� �  )=2).

When � D  and� D �=2 then we see that� D 0 and� D 4 cos2(�)� 2D 2 cos(2�).
This lies in the central tetrahedron of the holy grail. Therefore, by continuity, this re-
gion comprises points whereR(�A, � 0A) > 0.

5. Geometrical applications

5.1. Introduction. Our primary motivation for the classification of elements of
SU(p, q) with pC q D 4 was to consider SU(3, 1), a four fold cover of PSU(3, 1), the
holomorphic isometry group of complex hyperbolic spaceH3

C

. In order to demonstrate
that this classification is also of interest in the case of SU(2, 2), we use our results in
two special cases. First we show that we can embed the orientation preserving isometry
group ofH1

H

, which is isometric toH4
R

, into PSU(2,2). Secondly, we do a similar thing
with automorphisms of anti de Sitter space.

5.2. Isometries of complex hyperbolic space H3
C

. Let h � , � i be a Hermitian
form of signature (3, 1) onC4. Recall from Section 2.1 the definitions (2.3) and (2.2)
of V

�

, the negative vectors, andV0, the null vectors. LetP be the canonical projection
map fromC

4
� {0} to CP3 then Recall that ifv is in V

�

or V0 then so is�v for any
non-zero complex scalar�. Thus it makes sense to speak ofPV

�

and PV0 as subsets
of CP3. Complex hyperbolic3-spaceH3

C

is defined to bePV
�

and its boundary is
defined to bePV0; see [8] for many more details.

Let v and w be points inH3
C

D PV
�

corresponding to vectorsv and w in V
�

.
Then theBergman distance�(v,w) between then is defined in terms of the Hermitian
form as follows (see Section 3.1.7 of [8] for example):

cosh2
�

�(v, w)

2

�

D

hv, wihw, vi
hv, vihw, wi

.

The holomorphic isometry group of complex hyperbolic 3-space H3
C

is the project-
ive unitary group PSU(3, 1)D SU(3, 1)={�I ,�i I }. In this group all loxodromic maps

are simple, that is they have a single pair of eigenvalues�1 and �2 D �
�1
1 with abso-

lute value different from 1, as described in Section 4.6. Theclassification of elements
of SU(3, 1) via their resultant is simply the casep D 3 of Corollary 3.2:

Proposition 5.1. Let A2 SU(3,1). Let R(�A,� 0A) denotes the resultant of the char-
acteristic polynomial�A(X) and its first derivative� 0A(X). Then we have the following.
(i) A is regular elliptic if and only if R(�A, � 0A) > 0.
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(ii) A is regular loxodromic if and only if R(�A, � 0A) < 0.
(iii) A has a repeated eigenvalue if and only if R(�A, � 0A) D 0.

Furthermore, using Proposition 4.13 we can say slightly more about the case when
A has a repeated eigenvalue.

Proposition 5.2. Suppose that A2 SU(3, 1) has a repeated eigenvalue. If A is
diagonalisable, then it is either elliptic or loxodromic(and both possibilities arise).
Otherwise it is parabolic, and the possible minimal polynomials of A are:
(i) m(x) D (x � e�i�)2(x � ei �Ci�)(x � e�i �Ci�) where� ¤ 0, � , �2� (mod 2�);
(ii) m(x) D (x � e�i�)2(x � ei�) where� ¤ 0, � (mod 2�);
(iii) m(x) D (x � e�i�)2(x � e3i�) where� ¤ 0, �=2, � , 3�=2 (mod 2�);
(iv) m(x) D (x � e�i�)3(x � e3i�) where� ¤ 0, �=2, � , 3�=2 (mod 2�);
(v) m(x) D (x � e�ik�=2)2 for k D 0, 1, 2, 3;
(vi) m(x) D (x � e�ik�=2)3 for k D 0, 1, 2, 3.

For a detailed classification of elements of SU(3, 1) with repeated eigenvalues see
[12]. With respect to the Hermitian form

(5.1) H D

0

B

B

�

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

1

C

C

A

,

we can find representatives of cases (i) to (vi) with one of thefollowing two forms:

A1 D

0

B

B

�

e�i� 0 0 ie�i�

0 ei �Ci� 0 0
0 0 e�i �Ci� 0
0 0 0 e�i�

1

C

C

A

, A2 D

0

B

B

�

e�i� 0 �2e�i�
�2e�i�

0 e3i� 0 0
0 0 e�i� 2e�i�

0 0 0 e�i�

1

C

C

A

.

In (i) we have A1; in (ii) we have A1 with � D 0; in (iii) we have A1 with � D 2�;
in (iv) we have A2; in (v) we haveA1 with � D 0 and� D k�=2; in (vi) we haveA2

with � D k�=2.
Our goal in remainder of this section is to relate our parameters for loxodromic

maps in SU(3, 1) with the geometry of their action onH3
C

. This generalises the work
in Parker [18] where the geometry of loxodromic maps in SU(2,1) was considered.

We now recall the notation of Section 4.6. Suppose thatA 2 SU(3, 1) has
eigenvalues

(5.2) �1 D elCi�, �2 D e�lCi�, �3 D ei �i�, �4 D e�i �i�.

The eigenspacesV1 and V2 in C

3,1 corresponding to�1 and �2 are both null. After
projectivisation, they correspond to fixed pointsq1 andq2 of A on �H3

C

. Also, V1�V2
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is indefinite. Its projectivisation is a complex line, whoseintersectionL with H3
C

is a
copy of the Poincaré disc model of the hyperbolic plane, called thecomplex axisof A.
The (Poincaré) geodesic inL with endpointsq1 and q2 is called theaxis of A and is
denoted�(A). The eigenspacesV3 and V4 in C3,1 corresponding to�3 and�4 are each
positive. They are orthogonal toV1� V2, whose projectivisation intersectsH3

C

in L.

Proposition 5.3. Let A in SU(3,1)be a loxodromic map with axis� and complex
axis L. Let l, � and  be the parameters associated to A given by(5.2). Then A
translates a Bergman distance2l along � and rotates the complex lines orthogonal to
L by angles�2� C  and �2� �  .

Proof. We use the diagonal Hermitian formh , i given by the matrixH from
(5.1) and we follow the ideas of Parker [18, Proposition 3.10]. In this case we may
represent pointsz in H3

C

by (z1, z2, z3) 2 C3 with 2<(z1) C jz2j
2
C jz3j

2
< 0. If the

eigenvalues ofA are given by (5.2) then, up to conjugacy, we may suppose

AD diag(elCi�, ei �i�, e�i �i�, e�lCi�).

Thus A fixes oD (0, 0, 0, 1) and1D (1, 0, 0, 0). The action ofA on H3
C

is given by

AW (z1, z2, z3) 7! (e2l z1, elCi �2i�z1, el�i �2i�z2).

The axis of A is the geodesic� joining the fixed points and the complex axis ofA is
the unique complex line containing�. They are given by

� D {(�x, 0, 0)2 H3
C

W x > 0}, L D {(�x C iy, 0, 0)2 H3
C

W x > 0}.

Suppose thatpD (�x, 0, 0) is a point of the axis� of A. Let p denote the lift ofp to
C

4 given by p D (�x, 0, 0, 1)t . Then the translation length ofA along� is �(A(p), p).
We have

cosh(�(A(p), p)=2)D

�

�

�

�

hAp, pi
hp, pi

�

�

�

�

D

�

�

�

�

�xelCi�
� xe�lCi�

�2x

�

�

�

�

D cosh(l ).

This implies�(A(p), p) D 2l as claimed.
The tangent vectors toH3

C

spanning the complex lines orthogonal toL are given
by � D (0, 1, 0)t and � D (0, 0, 1)t . Clearly the (projective) action ofA sends� in
Tp(H2

C

) to elCi �2i�
� in TA(p)(H2

C

) and � to el�i �2i�
�. The rest of the result follows.

5.3. Isometries of H1
H

D H4
R

. Quaternionic hyperbolic 1-spaceH1
H

may be iden-
tified with hyperbolic 4-spaceH4

R

. The isometries of quaternionic hyperbolic 1-space
are contained in the projective symplectic group PSp(1, 1)D Sp(1, 1)=(�I ). The group
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Sp(1, 1) is the group of 2� 2 quaternionic matrices preserving a quaternionic Hermit-
ian form of signature (1, 1); see Parker [17] for example. There is a canonical way
to identify a quaternion with a 2� 2 complex matrix and therefore to identify a 2� 2
quaternionic matrix with a 4� 4 complex matrix; see Gongopadhyay [11] for example.
When we do this, the quaternionic Hermitian form of signature (1, 1) becomes a com-
plex Hermitian form of signature (2, 2). The upshot of this construction is that it is
possible to embed (the double cover of) the group of orientation preserving isometries
of hyperbolic 4-space into SU(2, 2). In this section we show how the classification
given in the previous sections relate to the well known classification of four dimen-
sional hyperbolic isometries. Our construction follows Gongopadhyay [11], where arbi-
trary invertible 2� 2 quaternionic matrices were considered. See also Parker and Short
[19] for an alternative method of classifying quaternionicMöbius transformations.

Let A
H

be a 2� 2 matrix of quaternions acting on a column vectorz
H

of quater-
nions as

A
H

z
H

D

�

a b
c d

��

z
w

�

D

�

azC bw
czC dw

�

.

If A is in Sp(1, 1) thenjaj D jdj, jbj D jcj, jaj2� jcj2 D 1, abD cd and acD bd; see
Lemma 1.1 of [4] or Proposition 6.3.1 of [17] for example. Ifa is a quaternion we can
write it asaD a1C ja2 wherea1,a2 2 C. Thena corresponds to the following matrix:

�

a1 �a2

a2 a1

�

.

It is not hard to show that this identification is a group homomorphism fromH with
quaternionic multiplication to M(2,C) with matrix multiplication. Using this identifi-
cation, the matrixA

H

corresponds to a 4� 4 complex matrixA given by:

AD

0

B

B

�

a1 �a2 b1 �b2

a2 a1 b2 b1

c1 �c2 d1 �d2

c2 c1 d2 d1

1

C

C

A

.

Likewise z
H

corresponds to a 4�2 matrix and we only consider its first column, which
is a vectorz in C

4. The action ofA
H

on z
H

induces the standard action ofA on z 2
C

4 by matrix multiplication. Using this identification, we seethat if A
H

is in Sp(1, 1)
then A 2 SU(2, 2).

Suppose that�
H

2 H is a right eigenvalue forA
H

. This means that there is a
quaternionic vectorv so thatA

H

vD v�
H

. It is always possible to find a unit quaternion
� so that� D ��1

�

H

� is in C; see Parker and Short [19] or Gongopadhyay [11] for
example. (That is, writing� D �1C j�2 with �1, �2 2 C gives �2 D 0.) In this case

A
H

(v�) D v�
H

� D (v�)�.
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Hence� 2 C is also a right eigenvalue ofA
H

. (In the language of quaternions, right
eigenvalues of quaternionic matrices are defined up to similarity.) It is easy to show
that � is also an eigenvalue ofA. Since we can also find� 2 H so that� D ��1

�

H

�,
a similar argument shows that� is also an eigenvalue ofA. Hence, if j�j ¤ 1, using
Lemma 2.1 the eigenvalues ofA are

�, �, �

�1, �

�1
.

If j�j D 1 then this is true of all eigenvalues and they are

ei � , e�i � , ei , e�i .

This implies that� is real (which could have been seen by inspection) and so the
characteristic polynomial�A(X) of A has real coefficients. Hence the coefficients ofX
and X3 in �A(X) are the same. This rules out case (i) of [11] Theorem 1.1; seealso
Corollary 6.2 of Parker and Short [19]. Putting� 2 R in the expression forR(�A, � 0A)
in terms of� and � in Section 4.3 gives.

R(�A, � 0A) D (� 2
C 4� C 4� 4� 2)(� 2

� 4� C 8)2

D (� C 2� 2� )(� C 2C 2� )(� 2
� 4� C 8)2.

We can now state our classification theorem, which should be compared to Theorem 1.1
of Gongopadhyay [11].

Proposition 5.4. Let A2 SU(2, 2) correspond to a map inSp(1, 1). Then A has
characteristic polynomial

�A(X) D X4
� �X3

C � X2
� �X C 1

where tr(A) D � 2 R and � 2 R. Moreover
(i) A is regular 2-loxodromic if and only if� 2

� 4� C 8< 0.
(ii) A is regular elliptic if and only if� 2

� 4� C 8> 0 and (� C 2)2 ¤ 4� 2.
(iii) A has a repeated eigenvalue if and only if� 2

� 4� C 8D 0 or (� C 2)2 D 4� 2.

We note that the connection between our notation and that of Gongopadhyay is that
c1 D c3 D �

2
=4 andc2 D � . The main difference between our result and Theorem 1.1

of Gongopadhyay [11] is that his result does not involve (�C2)2�4� 2. We now explain
this. Using our expression for the eigenvalues ofA, we see that whenj�j ¤ 1 then

(� C 2� 2� )(� C 2C 2� ) D j�C ��1
� 2j2j�C ��1

C 2j2 > 0.

Otherwise� D 2 cos(�)C 2 cos( ) and � D 4 cos(�) cos( )C 2 and

(� C 2� 2� )(� C 2C 2� ) D 16(1� cos(�))(1� cos( ))(1C cos(�))(1C cos( ))

� 0.
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Hence (� C 2� 2� )(� C 2C 2� ) D 0 if and only if ei �
D �1 or ei 

D �1. If both of
these are true then� 2

� 4� C 8D 0. Otherwise, the eigenvalues ofA are

ei � , e�i � , � 1, � 1,

whereei �
¤�1. In this case� 2

�4�C8D 4(1�cos�)2
> 0. Furthermore, the repeated

eigenvalue� D �1 corresponds to the same quaternionic eigenvector�

H

D �1. Thus
there is a two dimensional complex eigenspace associated to�, and soA is elliptic.

5.4. Automorphisms of anti de Sitter space. There is a canonical identification
betweenR4 and M(2,R), the collection of 2�2 real matrices. Under this identification,
the determinant map detW M(2, R) ! R corresponds to a quadratic form of signature
(2, 2) onR4. Anti de Sitter spaceis the projectivisation of the positive vectors with
respect to this quadratic form. It may be canonically identified with PSL(2,R) by con-
sidering the section where this quadratic form takes the value C1; see Section 7 of
Mess [15] or Section 2 of Goldman [9]. The automorphism group of anti de Sitter
space with its Lorentz structure is PSL(2,R) � PSL(2,R). Using the identification of
anti de Sitter space withR4 gives an isomorphism between PSL(2,R)�PSL(2,R) and
PSO0(2, 2)D SO0(2, 2)=(�I ), where SO0(2, 2) is the identity component of SO(2, 2);
again see Mess [15] or Goldman [9].

Let us make this explicit. IdentifyR4 and M(2,R) by the map:

F W x D

0

B

B

�

x1

x2

x3

x4

1

C

C

A

7! X D

�

x1 x2

x3 x4

�

.

The determinant map det(X) corresponds to the quadratic formQ(x) D x1x4 � x2x3.
This is associated to the symmetric matrixH of signature (2, 2) where

H D
1

2

0

B

B

�

0 0 0 1
0 0 �1 0
0 �1 0 0
1 0 0 0

1

C

C

A

.

Let A1, A2 2 SL(2,R). Then the pair (A1, A2) acts on SL(2,R) and this action corres-
ponds toA 2 SO(2, 2) as follows:

F(Ax) D A1F(x)A�1
2 .

(Note we invert the matrix on the right so that the map from SL(2,R) � SL(2,R) to
SO(2, 2) is a homomorphism.) If

A1 D

�

a1 b1

c1 d1

�

, A2 D

�

a2 b2

c2 d2

�

.
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Then it is easy to see that

AD

0

B

B

�

a1d2 �a1c2 b1d2 �b1c2

�a1b2 a1a2 �b1b2 b1a2

c1d2 �c1c2 d1d2 �d1c2

�c1b2 c1a2 �d1b2 d1a2

1

C

C

A

.

Clearly � D tr(A) D (a1C d1)(a2C d2) D tr(A1) tr(A2). It is not hard to see that

� D

1

2
(tr2(A) � tr(A2))

D

1

2
(tr2(A1) tr2(A2) � tr(A2

1) tr(A2
2))

D

1

2
(tr2(A1) tr2(A2) � (tr2(A1) � 2)(tr2(A2) � 2))

D tr2(A1)C tr2(A2) � 2.

Theorem 5.5. Let (A1, A2) 2 PSL(2,R)�PSL(2,R) be an automorphism of anti
de Sitter space. Then
(i) ( A1, A2) is regular 2-loxodromic if either A1 or A2 is loxodromic and also4 ¤
tr2(A1) ¤ tr2(A2) ¤ 4.
(ii) ( A1, A2) is regular elliptic if A1 and A2 are both elliptic andtr2(A1) ¤ tr2(A2).
(iii) ( A1, A2) is not regular if tr2(A1) D 4 or tr2(A2) D 4 or tr2(A1) D tr2(A2).

Proof. Consider the parametersx, y and t defined in (4.5). Since tr(A) is real,
we havet D 2, that is� D 0 or � D � . Moreover

(x C y)2
D j� j

2
D tr2(A1) tr2(A2),

xyC 2D � D tr2(A1)C tr2(A2) � 2.

A consequence of this is that

(x2
� 4)(y2

� 4)D (xy)2
� 4(x2

C y2)C 16D (tr2(A1) � tr2(A2))2,

x2
C y2

� 4� xytC t2
D (x C y)2

� 4xyD (tr2(A1) � 4)(tr2(A2) � 4).

Therefore, using the identity from Proposition 4.6, we have

R(�A, � 0A) D (x2
� 4)(y2

� 4)(x2
C y2

� 4� xytC t2)2

D (tr2(A1) � tr2(A2))2(tr2(A1) � 4)2(tr2(A2) � 4)2.

Then A has a repeated eigenvalue if and only if one of the following conditions hold:

tr(A2) D � tr(A1), tr(A1) D �2, tr(A2) D �2.
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OtherwiseA is 2-loxodromic or elliptic. Furthermore, we have

<(� )2
� 4� C 8D (tr2(A1) � 4)(tr2(A2) � 4),

=(� )2
C 4� C 8D 4 tr2(A1)C 4 tr2(A2),

6� � D 8� tr2(A1) � tr2(A2).

Then using Theorem 4.9 we see (A1, A2) is elliptic if and only if A1 and A2 are both
elliptic with tr2(A1) ¤ tr2(A2).

Note that takingA1 to be loxodromic andA2 to be parabolic gives an example of
a matrix in SU(2, 2) lying on one of the whiskers and whose Jordan normal form has
two blocks of size 2; see Proposition 4.16.
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