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Abstract
We classify the dynamical action of matrices in $\K{) using the coefficients of
their characteristic polynomial. This generalises eaxierk of Goldman for SU(2,1)
and the classical result for SU(1, 1), which is conjugate t¢2SR). As geometrical
applications, we show how this enables us to classify autphisms of real and
complex hyperbolic space and anti de Sitter space.

1. Introduction

In this paper we use the coefficients of the characteristignoonial to give a dy-
namical classification of unitary matrices preserving a-degenerate Hermitian form.
The most interesting case is where the Hermitian form hasfimite signature. This
includes the case of orthogonal matrices (with respect tamssiply indefinite quad-
ratic form) by restricting to the case where the matrix isl,read so the coefficients
of the characteristic polynomial are also real. The appboawe have in mind is that
orthogonal and unitary matrices often act as isometries efriecnspaces. The most
obvious example of this is when the signaturens k), when orthogonal matrices act
on real hyperbolicn-space and unitary matrices act on complex hyperboispace.
There are more exotic examples, however. For example, isi@meof quaternionic
hyperbolic 1-space and anti de Sitter space may both be atabdad (projectivisations
of) SU(2, 2).

The classification of elements of SLR), SL(2,C) or SU(2,1) has been useful in
many contexts; see [7], [13] or [18]. Our initial motivatiéo this work was to provide
initial tools for generalisation of these works to §J¢) for p > 3. As we did so, we
realised it is natural to consider Hermitian forms of admyr signature. We first give
the classification in arbitrary dimensions, and then we gaooconsider SUg,q) where
p+q=4

In order to illustrate and motivate the main results of thpgralet us work through
the well known example of 2 matrices. In this case, i € SU(p,q) with p+qg =2
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then the characteristic polynomial &f is
wa(X) = X% —tX +1

wheret = tr(A), which is real. There are three possibilities for the eigdumesi;, A,

of A, which are the roots ofa (compare Theorem 4.3.1 of [2] for example). Namely,
() 2<4andr, =¢? i, =€,

(II) °=4 andi, = A, = 1.

(iii) 2 > 4 and, reordering if necessary; = +€, 1, = +e”' wherel > 0.

Based on standard terminology from hyperbolic geometry eferrto these cases as
elliptic, parabolic (provided A # £1) and loxodromic respectively. Suppose tha# e
SU(p, q) with p + q = 2 satisfies the conditions of case (iii)). Lef andv, be non-
zero eigenvectors with eigenvalugs = +€ and A, = +e™ respectively. It is not
hard to show that; andv, must be null vectors with respect to the Hermitian form.
Thereforep = q = 1. A similar argument shows that in case (ii) eithere= £1 or A

is not diagonalisable ang = q = 1.

We want to reformulate this classification in terms that maygeneralised. A key
to this classification is theesultant Rxa, x), which determines whega and x, have
a common root, and hencea(X) has a repeated root. In the case where- q = 2
the resultant is 4- r2. Therefore we have
(i) Ais elliptic if and only if R(xa, xa) =4— 2> 0.

(i) A is parabolic (or£l) if and only if R(xa, x3) = 4—12=0.

(i) A is loxodromic if and only ifR(xa, xa) = 4— 12 < 0.

The case (i) whereA has a repeated eigenvalue is more complicated than the other
cases. In what follows we will not discuss the details of tése.

This argument was generalised to the case whereq = 3 by Goldman in [8];
see also Parker [18]. This is the main motivation for our wbeke. In fact Goldman’s
work concentrated on the cage= 2, g = 1, but it is not hard to see how to gen-
eralise this to other signatures whegn+ q = 3. We give a summary of Goldman’s
results in Section 2.3 below, but we generalise his methodarbitrary signature. In
the case whem = 3, the locus whereR(xa, x») = 0 is a classical curve called del-
toid. Goldman’s work has been generalised in a different divacby Navarrete [16]
who considers elements of SL@). This is related to the theory of complex Kleinian
groups; see the book [3].

Our aim in this paper is to generalise this classificationigiér values ofp+q =
n. First, we consider arbitrarp and give a general result, Theorem 3.1. We refer to
later sections for the precise definitions contained in thiorem. In particularegular
means that the eigenvalues &f are distinct. For the definition ok-loxodromic see
Section 2.2. Roughly speaking, this means thahask pairs of distinct eigenvalues
related by inversion in the unit circle and all other eigduga lie on the unit circle,
so regular O-loxodromic maps are elliptic.
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Theorem 3.1. Let Ae SU(p,q). Let R(xa, x,) denote the resultant of the char-
acteristic polynomialya(X) and its first derivativey,(X). Then for m> 0, we have
the following.

(i) A is regular 2m-loxodromic if and only if Bxa, x5) > 0.
(i) A is regular (2m + 1)-loxodromic if and only if Rxa, x») < O.
(iii) A has a repeated eigenvalue if and only i{xR, x,) = 0.

An immediate corollary of Theorem 3.1 is a classification &J(p, 1). Sinceq =
1, if Ais loxodromic it must be 1-loxodromic. This simplifies theassification:

Corollary 3.2. Let Ae SU(p,1). Let Rxa, x) denote the resultant of the char-
acteristic polynomialya(X) and its first derivativey,(X). Then we have the following.
(i) A is regular elliptic if and only if Rxa, x) > O.

(i) A is regular loxodromic if and only if Ba, xa) < O.
(i) A has a repeated eigenvalue if and only i{xR, x») = O.

Secondly, we give a much more detailed description in the gas q = 4. Here
the characteristic polynomial is

xaX) =X — X3 o X2 —TX +1

wheret = tr(A), which is complex, an@ = (tr’(A) —tr(A?))/2, which is real. In this
case, the locus wherB(xa, x») = 0 was studied by Poston and Stewart [21] following
earlier work by Chillingworth [5]. They named this objectetholy grail. As a subset
of three dimensional space, parametrised by () € C xR, the holy grail comprises a
ruled surface together with four space curves, calldilskers We devote some space
to different ways of parametrising the holy grail and thefediént components of its
complement. The parametrisation of the correspondingcol{ge deltoid) in the case
of p+ g = 3 has been useful when studying complex hyperbolic reptaen spaces
(see [10], [20] or the survey [18]) and we believe that thaultesin this paper will be
foundational to the generalisation of these theorems thdniglimensions. The main
theorem of this section is:

Theorem 4.9. Let Ae SU(p, q) where p+q =4 and lett = tr(A) and o =
(tr2(A) —tr(A2)/2. Let xa(X) be the characteristic polynomial of A and Ie(;R, x})
be the resultant of¢a(X) and x5(X). Then
(i) A is regular 2-loxodromic if and only if Rxa, x,) > 0 and

min{R(r)?> — 4o + 8,3(t)* + 40 +8,6—0,6+ 0} <O0.

(i) A is regular 1-loxodromic if and only if Rxa, x4) < O.
(iii) A is regular elliptic if and only if Rxa, x,) > 0 and

N(r)2P—40+8>0, J()>°+40+8>0, —6<0 <B86.
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(iv) A has a repeated eigenvalue if and only it{xR, x,) = 0.

In our first geometric application, Section 5.2, we tage= 3 andq = 1. We
express Corollary 3.2 in terms af and o and discuss the geometry of the action of
A on complex hyperbolic 3-spade?..

Our second geometric application, Section 5.3, concemmatries of the quater-
nionic hyperbolic lineHY,. These isometries are (projections of) matrices in Sp(1, 1)
preserving a quaternionic Hermitian form. Identifying theaternions withC? gives a
map of Sp(1, 1) into SU(2, 2). Using this we give the connectietween our main
results and Gonogopadhyay’s classification [11] of elemeftSL(2,H).

Finally in Section 5.4, we consider the automorphisms of det Sitter space,
which may be canonically identified with PSL([R). This gives an identification be-
tween the automorphisms of anti de Sitter space and PR)&RSL(2R). By translat-
ing such an automorphism to PSO(2, 2) we can use our clasiificed determine the
dynamics. In this case “regular” refers to the map in PSO(@& having a repeated
eigenvalue. Specifically we have

Theorem 5.5. Let (Ag, Ay) € PSL(2R) x PSL(2,R) be an automorphism of anti
de Sitter space. Then
(i) (Ag, Ap) is regular 2-loxodromic if at least one of Aand A is loxodromi¢ and
also tr’(A;) and tr?(Ay) are distinct and neither of them equads
(i) (Ag, A) is regular elliptic if A and A are both elliptic andtr?(A;) does not
equal tr’(Ay).
(i) (A1, Ap) is not regular iftr’(Ay) = 4 or tr’(Ay) = 4 or tr’(A1) = tr3(Ay).

2. Preliminaries

2.1. Hermitian forms. Consider a complex vector spa¥e= C" equipped with
the non-degenerate Hermitian fortn, - ). Suppose the associated matiik has p
positive eigenvalues ang negative eigenvalues. Therefope+ g = n and we say that
both (-, -) and H havesignature(p, q).

For example, suppose that is the n x n diagonal matrix,p of whose diagonal
entries are+1 andq are —1. Then clearlyH is Hermitian with signature, g). Such
a Hermitian space\{, H) is referred to as a pseudo-Hermitian space often by math-
ematical physicists, see [1]. It is well-known that Heranitiforms over the complex
numbers are classified by their signatures and so, up to aquoite, we can always
take a pseudo-Hermitian form to work on a Hermitian space.

Let v e V. We say that is positive null or negativeif (v,v) is greater than, equal
to or less than zero, respectively. Sometimes terminology fspecial relativity is used
and these vectors are callspgacelike lightlike or timelike respectively. Motivated by
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this, we define

(2.1) V,y={veV:(v,v) >0},
(2.2) Vo={veV —{0}: (v,v) =0},
(2.3) V_o={veV:(v,Vv) <0}

Notice that if » is a non-zero complex scalar théhv, Av) = |A|?(v, v). Thus ifv is
positive, null or negative then so is any non-trivial vedtithe subspace of spanned

by v. More generally, ifU is a vector subspace &f then we say thal is positive

null or negativeif every vector inU —{0} is positive, null or negative. Similarly, a vec-
tor subspace imon-negativeor non-positiveif it contains positive (respectively nega-
tive) vectors and non-trivial null vectors. Likewise we sidmat a vector subspadé is
indefiniteif U contains both positive and negative vectors (and necéssati vectors

as well). We remark that, sincg-, -) is non-degenerate, all null subspaces are one
(complex) dimensional.

2.2. The group Ufp,q). LetV denote a vector space of dimensiomvith a non-
degenerate Hermitian forrfr, -) of signature p, g). An n x n matrix A is unitary with
respect to this form if Av, Aw) = (v, w) for all v, w € V. We let U(p, q) denote the
group of matrices that are unitary with respect to this fokie often wish to consider
unitary matrices with determinant equal to 1. Such matrfoes the group SUg, q).

We remark that if(-, -) has signature, q) then—(-, -) has signatureq; p).
Thus any matrix in Up, q) is also in U, p). Hence we may suppose thpt> q.

We will be interested in eigenvalues and eigenspaces oamyninhatrices. IfA €
U(p, q) has distinct eigenvalues then we callrégular. This automatically means that
A is diagonalisable. LeA € U(p,q) and letA € C be an eigenvalue oA. First, since
A is unitary we must have # 0. Let V, be the eigenspace associatedi.toThen we
say thati is of positive type null type negative typenon-negative typenon-positive
type or indefinite typeif V, is positive, null, negative, non-negative, non-positive o
indefinite respectively.

We will heavily use the following simple lemma.

Lemma 2.1 (Lemma 6.2.5 of Goldman [8]) Let V be a Hermitian vector space

and A a unitary automorphism of V. ¥ is an eigenvalue of A theh " is also an
eigenvalue of A with the same multiplicity as That is the collection of eigenvalues
of A is invariant under inversion in the unit circle.

Note that if || =1 thenX ' = 1 and this statement is vacuous. Clearlyaf # 1

thenx and " are distinct.
Furthermore, suppose thatis an eigenvalue ofA with |A| # 1 and multiplicity 1.

Then’ " is also an eigenvalue oA with multiplicity 1. In this case, the eigenspaces
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Vi and V;-1 are both null one dimensional vector subspaces. Moredye® V-1 is
an indefinite subspace &f and the restriction of the Hermitian form to this subspace
has signature (1, 1).

More generally, ifA has distinct eigenvalues, ..., Ak and ordered so thdh;| >

- > |kl > 1. ThenX{l, o ,X[l are also distinct eigenvalues. Then the corresponding
elgenspace%J and Vﬁl are all null and of dimension 1. Moreovaf,, & V -1 and

V,, & an are orthogonal and so
V,, ® ngl @DV, & kafl

is a vector subspace of signatuie K). In particular,k < min{p, q}. In this case, we
say thatA € U(p, q) is regular k-loxodromic If the eigenvalues ofA are distinct and

all have unit modulus, in other wordA is regular O-loxodromic, then we sak is
regular elliptic. There are further divisions wheA has repeated eigenvalues. These
cases depend on the modulus of the eigenvalues, whétherdiagonalisable and the
minimum polynomial of A. We will not distinguish between these cases in this paper
and so we will not discuss them here.

2.3. Goldman’s classification in the case op + q = 3. Goldman considered
the case of SUg, q) where p + g = 3 in Section 6.2 of [8]. Our treatment is mo-
tivated by this account and we now give a brief summary of @ald's work. Let
A € SU(p, q) where p + q = 3. Then the characteristic polynomial &f is

(2.4) xaX) = X3 — X2 +TX —1
wheret = tr(A). The resultant ofya and x, is
(2.5) R(xa, xa) = —|7[> + 8R(r3) — 18| + 27.

The locus whereR(xa, x4) = 0 is a classical curve called deltoid see pp.26-27
of Kirwan [14]. We can extend the definitions of elliptic, pholic and loxodromic
as follows. We sayA is regular elliptic if the eigenvalues ofA are distinct and have
modulus 1. We sayA is loxodromicif A has a pair of eigenvalues; and A, with
[A1] > 1> |Az]. In fact, using Lemma 2.1, this implies that = Xl_l. If A has a re-
peated eigenvalue thef is said to beparabolicif it is not diagonalisable antbound-
ary elliptic if it is diagonalisable and not a scalar multiple of the idigntlf A is a
scalar multiple of the identity then it acts as the identity tbe corresponding project-
ive space. Goldman’s classification result is:

Theorem 2.2 (Theorem 6.2.4 of Goldman [8]) Let Ae SU(p,q) with p+qg = 3.
The characteristic polynomiaa and resultant Rxa, x,) are given in(2.4) and
(2.5). Then
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Fig. 1. The deltoid.

(i) A is regular elliptic if and only if Rxa, xa) > O.

(i) A has a repeated eigenvalue if and only ifxR, x5) = 0. In this case A is either
parabolic or boundary elliptic.

(iii) A is loxodromic if and only if Rxa, xa) <O.

Moreovey if A is loxodromic or parabolic therfp, g) = (2, 1) or (1, 2).

Furthermore, in the case of loxodromic maps the matkids determined up to
conjugation byr and hence bya. For regular elliptic maps this is almost true as well.
(There is a small error in Goldman’s statement at this ppilt.order to discuss this
further, we need to talk about the signature of eigenspakitghree eigenspaces will
be definite, thereforg of them will be positive (contained i) andg will be nega-
tive (contained inV_). Clearly, it is not possible to conjugate an element of g4y
so that a positive eigenvector becomes negative or viceavaimsus ifp=0orq=20
the eigenvalues determine the group up to conjugacy # 1 (or q = 1) then there
are three possible conjugacy classes depending on theeclhbipositive eigenspace
(respectively negative eigenspace).

The following statement is a combination of the remainingteshent of The-
orem 6.2.4 of [8] and Proposition 3.6 of Parker [18] (see &soposition 3.8 of [18]).

Proposition 2.3. Suppose that & SU(p, q) with p+q = 3 and = = tr(A).
(i) If A is loxodromic then A is determined up to conjugacytby
(i) If A is regular elliptic and(p, q) = (3, 0) or (0, 3) then A is determined up to
conjugacy byr.
(i) If A is regular elliptic and(p,q) = (2,1) or (1,2) each value ofr determines three
conjugacy classegshese classes being determined by the signature of the sgigees.
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3. Classification of elements in SU q)

3.1. Introduction. In this section we consider matrices in §J§) for arbitrary
n= p+q. We discuss how to use the resultant to enumerate the diffpassibilities
for such matrices. We will also use the description of theultast of p andq as a
determinant of anr(+ s) x (r + s) matrix; for more details see p.52 of Kirwan [14].

3.2. Classification whenp + q = n. A matrix A in SU(p, q) is called
k-loxodromicif it has k pairs of eigenvalues;e® and rj—le‘eJ with r; > 1 for j =
1,...,k, and all other eigenvalues are unit modulus complex numbafs adopt the
convention of takingk > 0 with the understanding that a O-loxodromic means that
all eigenvalues are unit modulus complex numbers. Note ith&U(p, q) we have
k < min{p, q}.

Also, A is said to beregular if the eigenvalues are mutually distinct, thatAshas
no repeated eigenvalues.

Theorem 3.1. Let Ae SU(p,q). Let R(xa, x,) denotes the resultant of the char-
acteristic polynomialya(X) and its first derivativex,(X). Then for m> 0, we have
the following.

(i) A is regular 2m-loxodromic if and only if Rxa, xa) > O.
(if) A is regular (2m + 1)-loxodromic if and only if Rxa, xa) <O.
(i) A has a repeated eigenvalue if and only i{xR, x») = 0.

Proof. Writep+q = n.
SupposeA is r-loxodromic, including the case where= 0 and soA is elliptic.
Then A has mutually distinct eigenvalues

i —-1 i i
)\'J :e||+|¢1’ )\’J — _|J+|¢J' = ng,

wherel; is a positive real number, =1,...,r, k=1,...,sand 2 +s=p+qg=n.
Then the squares of the differences of these eigenvalues are

(] _Xjfl)z = %4 sintf(l)),

(= W20 =Ty )2 = €49+ 29(2 coshlj — Iy) — 2 costp; — ¢i))?,
(=T (5]t = )2 = €49+ 29(2 coshl + Iy) — 2 costs; — ¢,
(rj — Mk)z(xjil — m)? = ?12%(2 coshl;) — 2 cosg; — k),

() — mi)? = —€ %2 — 2 cosp; — b))
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Therefore
R(xa» xa)
= (—1)n-v H(x — 7 P TT0 = M2 T =R D20 — R 2R T = m)?
j<k
100 = m?Gy " [ T —me?
ik j<k
— (_1)n(n71)/2(_1)s(sfl)/2 l—[ e(nfl)Z'q}j 1_[ e(nfl)iOk 1_[ 4 Slnh"(lj)
j=1 k=1 i
. H(Z coshlj — I) — 2 cospj — ¢k))*(2 coshlj + Ix) — 2 cosp; — ¢))?
j<k
[ 2 coshty) — 2 coss; — 6k))* [ [(2 — 2 cos; — 6k))
j.k j<k

— (_1)n(n—1)/2+s(s—1)/2 l_[ 4 sml,?(ll)
i
. H(Z coshlj — I) — 2 cospj — ¢k))*(2 coshlj + Ix) — 2 cosp; — ¢))?

j<k
[ T2 coshty) — 2 cosps; — x))* [ [(2 - 2 cosp; — a)),
ik j<k

where we have used

r
l_[ (n 1)2i¢; l_[ e(nfl)iﬂk — (det(A))nfl =1

k=1

All the product terms are real and positive provided- 0 andé; # 6. Thus we must
find the power of £1). Sincen = 2r 4+ s we have

nn—1)+s(s—1)=2n(n—1)—4rn + 4% 4+ 2r.

Since 2(n—1) is even, this implies«{1)""-1/2+s(s-1)/2 — (_1Y . This proves assertions
(i) and (ii). Assertion (iii) follows from the definition ofhe resultant. ]

Corollary 3.2. Let Ae SU(p,1). Let Rxa, x) denotes the resultant of the char-
acteristic polynomialya(X) and its first derivativey,(X). Then we have the following.
(i) A is regular elliptic if and only if Rxa, xa) > O.

(i) A is regular loxodromic if and only if &a, x») <O.
(i) A has a repeated eigenvalue if and only i{xRR, x,) = 0.
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4. Classification of matrices in SUg, q) with p+q=14

4.1. Introduction. In this section we consider the case of $lh§) where p +
g = 4. In fact, up to changing the sign of the Hermitian form, ¢hare three possible
groups SU(4, 0= SU(4), SU(3,1) and SU(2,2). Our goal will be to extend Goldima
classification of matrices in SU(2, 1) using the result®(ka, x,) as a polynomial in
tr(A) andtr(A). In this case, the characteristic polynomial is determiibg a complex
and a real parameter (see [13, Section 4.5]):

Lemma 4.1. Let A be inSU(p, q), where p+ q = 4, with characteristic poly-
nomial xa(X). Write T = tr(A) and o = (1/2)(tr’(A) — tr(A?)) € R. Then

(4.1) xaX) =X — X34+ oX2—TX + 1.

If & fori =1, 2,3, 4 are the eigenvalues &f then note that

4.2) T = A1+ A2+ Az + Ag,
(4.3) 0 = AMA2 + A1A3 + A1Ag + AoA3z + AoAg + AsAg.

We want conditions o, T characterising whemya(X) = 0 has repeated solutions, or
equivalently whenya(X) and its derivativex,(X) have a common root. Note that:

(4.4) XA(X) = 4X3 - 3cX?+ 20X — 7.

Therefore we need to find the locus of points ¢) € C x R where the resultant
R(xa, xa) = 0. This problem was studied by Poston and Stewart [21]. Base€arlier
work of Chillingworth [5], they call the locus of points wheithis resultant vanishes
the holy grail; see Fig. 2. This generalises the deltoid, Fig. 1, which & zbro locus
of the resultant for SU(2, 1).

In this section we investigate the dynamics of isometrie®sehparametersc( o)
lie on each part of the holy grail and in each component of thaplement. In this
section no assumption is made about the signature obut readers should recall that
a k-loxodromic map can only occur in SP(q) whenk < min{p, q}.

4.2. Eigenvalues and parameters. Consider a unitary matripd in SU(p,q) with
p + q = 4, but at this stage we will not specify the signature of therkigan form.
Suppose that the eigenvalues Af(that is the roots of the characteristic polynomial)
are A1, A2, A3, As. Recall from Goldman’s lemma, Lemma 2.1, the e, Ao, A3, A4}
is closed under the map +— % ' Note that an even number of eigenvalues satisfy
|A| # 1 and so an even number satishf = 1. In what follows, after rearranging them
if necessary, suppose that the eigenvalues are paired l@sst

o if a1l #1thenip =2, 5 if A2 =1 then|ag = 1;
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o if [\o] #£1theniy =%, 5 if [hg] = 1 then|ay| = 1;

o if |A3] # 1 theniy = X;l; if |A3] =1 then|x4| = 1;

o if |Ag] # 1 thenisz = X[l; if [A4] =1 then|rs| = 1.

With this ordering of eigenvalues, note thahAo| = |Azhs] = 1. Define¢ € [0, )
by A1io :Ae2i¢. Moreover, since the product of the eigenvalues is 1, we aése@ h
A3ks = €72%, The following parameters will simplify our calculations:

(4.5) X =14+ r)e?, y=(z+ r)€? t=2cos(2).

The rest of this section will be devoted to investigating fiieperties of the change of
parameterst(, o) <> (X, VY, ¢).

Lemma 4.2. The parameters xy and t defined by4.5) are all real.

Proof. Clearlyt is real. In order to see that is real, note that eitheji;| =
|A2|7t # 1 and iy = A;%, A2 = A71 or else|r| = [Az] = 1 andAy = A7%, Az = AL
In the either case

X = (1 + 22)€? = 071+ A51E? = (A + 2p)e7? = x

where we have useth, = €2?. Thusx is real. Similarlyy is real. ]

Lemma 4.3. Witht, o0 and x vy, ¢ as in (4.5), we have

(4.6) T =xd? +ye'?,
4.7) 0 = XY+ 2 cos(2).

Proof. From the definition ok, y and ¢ we have

T = (1 + A2) + (A3 + ha) = x€% + ye 4,
0 = (A + A2)(A3 + Ag) + Ao + Azhg = x€Pye? + 29 729, O

We now characterise when this change of variables is a laffalochorphism.
Proposition 4.4. The change of paramete®? x S' — C x R given by
X, Y, €%) > (r,0) = (x? + ye'?, xy + €% + &729)
is a local diffeomorphism provided

X% 4+ y? — 4 — 2xy cos(2) + 4 cog(2¢) # 0.
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Proof. Consider the change of coordinates
N(z) = (X + y) cosp), I(z) = (Xx—y)sin@), o =xy+e’? e 2,

Then the Jacobian is

cosgp) cosep) —(x+ y)sin@)
J= det( sin@) —sin(@) (X —Y)cosg) )

y X —4 sin(2p)
= 45sif(2¢) — (x + y)? sirf(¢) — (x — y)* cos(¢)
= —x2 — y? + 4 + 2xy cos(2) — 4 co2(2¢). O

Now we show the change of variables is surjective (compararhe 3.8 of [18]).
Proposition 4.5. Given(r,o) € C xR then there exis(x, y,€?) e R?x S' so that
(4.8)  NR(r) = (X+y)cosp), 3I(r)=((xX—y)sin@), o=xy+e?+e2?

Proof. If there exist suclx, y, €% then, writingt = 2 cos(2), we have

(4.9) |72 = R(r)? + 3(r)? = X2 + y? + xyt,
(4.10) 20R(12) = 20(1)? — 23(7)? = (x® + yA)t + 4xy,
o =Xy+t.

Eliminating x andy we see that must satisfyq(t) = 0 where
a(X) = X3 — o X2 —4X + R(1)>X + J(r)*X + 4o — 20 (1)? + 23(7).
Evaluating atX = £2 we see that
a(2) = 8 — 4o — 84 20 ()% 4 23(z)? + 4o — 20 (1)? + 23(1)? = 43(1)? > 0,
q(—2) = —8 — 4o + 8 — 20(r)? — 23(1)? + 4o — 2% (1) + 23(1)? = —4%R(r)* < 0.

If N(z) # 0 andJ(r) # O then, by the intermediate value theorem, we can findth
—2 <t < 2 so thatq(t) = 0. Define¢ by 2 cos(®) =t. As cos(d) # +1 we have
sin(2p) # 0. In this casex andy are given by

_ N(z) sin(@) + I(r) cos) _ N(z) sin(@) — I(r) cosep)
x= Sin(2p) C Y= sin(2p) '
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If () =0 anddi(r) # 0 thenqg(2) =0 and
do(X) = q(X)/(X —2) = X2+ 2X — o X — 20 + R(r)%

We have
Q(2) = 8—40 + NR(r)%,  qo(—2) = R(r)? > 0.
If 9%(r)? < 40 —8 we haveqy(2) < 0 < go(—2) and we can find with —2 <t < 2 and

qo(t) = 0. In this case definé = 2 cos(2) and proceed as above. ¥(r)? > 40 — 8
then definep = 0. We must solvéli(r) = x + y ando = Xy + 2. A solution is

w = @)+ VR(r)? — 4o + 8 y= N(r) — VR(r)2— 4o + 8
= - oy =

2

If %(r) = 0 andJ(r) # 0 thenq(—2) = 0. As above, if3(r)? < —8 — 4o then
we can findt with —2 <t < 2 andq(t) = 0, giving a similar solution as before. If
J(r)? > —8 — 4o then¢ = /2 and

(1) + V3(r)* +40 +8 y= 3(r) = V(1) +40 +8
: L y=

2

Finally, supposéi(zr) = J(r) = 0. If o > 0 then definep = n/2 andx =y =
Jo +2;if o <0 definegp =0 andx = -y = /-0 + 2. O

4.3. The resultant. Let xa(x) be the characteristic polynomial @& € SU(p, q)
with p+q = 4. We have expressions fora(x) and x4(x) in (4.1) and (4.4). We now
calculate their resultanR(xa, x») as a polynomial int, T ando:

1 -t o -7 1 0 0
0 1 -7 o -7 1 0
0O O 1 -7 o -1 1
R(xa, xp) =det| 4 -3¢t 20 -7 0 O
0 4 -3t 20 -7t O 0
0O O 4 -3t 20 -t O
0 T

0 0 4 -3t 20 -—
= 1604 — 403(1% + 72) + o 2|7 |* — 800 %|7|? — 12&2

+ 180 (1% + T2)|7|? + 14405 (1% + T?)

— 4]7|® = 27(@? + 7% + 48/t * — 1927| + 256
= 4(02/3— |2+ 4)° - 27(23/27 — |t|?0/3— 80 /3 + (1 + T?))2.

In [21] Poston and Stewart considered the locus of pointsrevhe

f(z,2) = R + B2+ y222°)
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Fig. 2. The holy grail. Here points &2 have coordinatesi{(z), 3(r), o).

has repeated roots. Based on earlier work of Chillingwosh they call the locus of
these points théoly grail; see Fig. 2, which should be compared with Figs. 4 and 5 of

[21]. In order to see the connection between the two prohl@hbserve that by setting
a=1, 8=t andy =o/2 we have
f(z.2) = Z'xa(-2/2).
Whena = 1, Poston and Stewart’s equation for the holy grail, p. 268241, is

A = (8y%/3— B2 + 4)° — 27(8/%/27— |82y /3— 8y /3+ (8% + B)/2)

Clearly, the above substitution makes agree with our expression fdR(xa, xa)-

We now expressR(xa, xn) in terms ofx, y andt. A consequence of this and
Proposition 4.4 is that the change of parameterso] < (X, y, t) is a local diffeo-
morphism whenR(xa, x) # 0.
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Proposition 4.6. In terms of the parameters, ¥ and t given in(4.5) the resul-
tant is given by the following expression

R(xas xa) = (¢ = 4)(y? — 40 + y* — 4= xyt+ 2.

Proof. We use equations (4.9), (4.10) and (4.7) substitoter fand o in terms
of x, y andt = 2 cos(®). Then, expanding and simplifying, we obtain
R(xa, xa) = 160* — 403(1? + 72) + o|7|* — 800 ?|7|?
— 1282 4+ 180 (22 + T2)|7|? + 1440 (1% + T2)
—4|7|° - 27(? + 7%)% 4 48|t|* — 192 |* + 256
= (X2 —4)(y? — 4)(x® + y* — 4 — xyt + t9)2, O
We remark that there is a symmetry that arises from multigyh by powers ofi.
In several places below we will use this symmetry to avoicetigipn. We note that for

our geometrical applications, we will be interested in P&} = SU(p,q)/{x1, Lil }
and soA is only defined up to multiplication by.

Corollary 4.7. Let x, y and t be the parameters given {#.5). The resultant
R(xa, xa) is preserved by the changes of variable whetey, t) is sent to one of
(X, y! t)! (X! —y' _t)v (—X, y, _t); (_Xn —y, t)y
(y! X, t)! (yl =X, _t)v (_y! X, _t)! (_yr —X, t)

Moreover this automorphism group is generated By, A2) <> (A3, A4). and A— i A.

Proof. It is easy to see in that all the changes of variableedtabove preserve
the expression foR(xa, x,) from Proposition 4.6.

Now consider the effect of multiplyingh by i. In the following table we give the
various changes to our parameters.

A T ol¢ X y t
iA|l it —o|¢+m/2 | X -y -t
-A| -t oclo+m X y t

—iA|—-it —0|¢+3r/2|x -y -t

A further symmetry may be obtained by interchanging thespafreigenvaluesig, 1,)
and (.3, A4). It is easy to see from (4.5) that this has the effect of sandx, y, t) to
(y, x, t). Repeated application of the automorphisks—> i A and @1, 12) <> (A3, A4)
give all the changes of variable in the statement of the tamol O
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Using Proposition 4.6, the conditioR(xa, x,) > 0 implies &> — 4)(y? — 4) > 0.
Thus, eitherx? and y? are both greater than 4, or they are both less than 4. In the
former caseA is 2-loxodromic and in the latter case it is elliptic. Thusistuseful
to distinguish wherxy > 4, —4 < xy < 4 andxy < —4. In the following lemma, we
express these conditions in termsofand t.

Lemma 4.8. Lett ando be given by(4.6) and (4.7). Suppose that &a, xp) >
0. Then xy# 4. Furthermore
() xy> 4 if and only if eitherf(r)>—40 +8 <0 or o > 6.
(i) xy < 4 if and only if both%(r)? —40 +8>0ando < 6.
(iiiy xy > —4 if and only if both3(r)? + 40 +8 > 0 and o > —6.
(iv) xy < —4 if and only if 3(r)?2 + 40 +8 <0 or o < —6.

Note that a simple consequence of this lemma is tha(ifa, x») > O then both
min{R(z)?> — 40 + 8, 6— o} and mir(J(z)?> + 40 + 8, 6+ o} are both non-zero.

Proof of Lemma 4.8. IfR(xa, xa) > O then we have
0 < (= 4)(y? —4) = (Xy + 4P — 4(X + y)? = (xy — 4 — 4(x — y)°.

Thereforexy # +4. The remaining cases exhaust the other possibilitiesretdre, by
process of elimination, it suffices to prove only one diractof the implications. We
choose to do this from right to left.

If o > 6 then

6 <o =Xy+ 2cos(P) < xy+ 2.

Thereforexy > 4. Similarly, if o < —6 thenxy < —4.
If R(r)?>— 40 +8 <0 then

0> N(r)2—4do + 8= (X —y)?co ¢ + (16— 4xy) sir’ ¢ > (16— 4xy) sir? ¢
and soxy > 4. Similarly, if 3(z)? + 40 + 8 > 0 thenxy < —4.

Now assume thati(r)> — 40 +8 > 0, o0 < 6 and R(xa, xa) > 0. We note that in
terms ofx, y and ¢ these inequalities imply

(4.11) 0 < (x — y)?cog ¢ + (16— 4xy) sir? ¢,
(4.12) Xy —4 < 4sirf ¢,
(4.13) 4(x — y)? < (4—xy)2

Using (4.13) to eliminatex— y)? from (4.11), we see that

0 < 4(x — y)? cog ¢ + 16(4— xy) Sir? ¢ < (4 — xy)((4 — xy) cog ¢ + 16 sir? ¢).
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Using (4.12) we see that
(4—xy) cog ¢ + 16 sirf ¢ > 4 sirf ¢(4 — cos ¢) > 0.

Thereforexy < 4 as claimed.
Similarly, if J(t)?> +40 +8> 0, 0 > —6 andR(xa, x) > 0 thenxy > —4. [J

Putting this together, we have the following theorem:

Theorem 4.9. Let Ae SU(p, q) where p+ g =4 and lett = tr(A) and o =
(tr’(A) —tr(A%)/2. Let xa(X) be the characteristic polynomial of A and lei(;R, x,)
be the resultant ofya(X) and x,(X). Then
(i) A is regular 2-loxodromic if and only if Rxa, x») > 0 and

min{R(z)> — 4o + 8, 3(r)? + 40 +8,6—0, 6+ 0} < 0.

(i) A is regular 1-loxodromic if and only if Rxa, xa) <O.
(iii) A is regular elliptic if and only if Rxa, x,) > 0 and

MN(r)?—40 +8>0, J(r)°+40+8>0, —6<0 <B86.
(iv) A has a repeated eigenvalue if and only itxR, x,) = 0.

4.4, Parametrising the holy grail. In this section we consider the points where
R(xa, xa) = 0, called theholy grail. We claim that, after reordering eigenvalues, we
may suppose that either= 2 or elsex?y? > 16 andx? + y> —4—xyt+1t2 = 0. The
former condition determines a ruled surface made up of tipaes, theupper bow|
central tetrahedrorand lower bow| names introduced by Poston and Stewart. The lat-
ter condition determines four space curves called viliéskers This is illustrated in
Fig. 2 of this paper or in Fig. 5 of Poston and Stewart [21], rehthe different parts
are labelled.

Proposition 4.10. Let x, y and t be the parameters given (4.5). Up to apply-
ing one of the automorphisms given @orollary 4.7,the condition Rxa, xa) = 0 is
equivalent to one of the following equations
h y=2
(i) (x>—4)(y>—4)>0and ¥ +y?>—4—xyt+t>=0.

Proof. Using Proposition 4.6 we see that points on the hoail gre given by
0= (x2—4)(Y? —4)(X> + y? — 4 — xyt + t?)>2.

If (x* — 4)(y? — 4) = 0 then eitherx = +2 or y = +2. After applying the auto-
morphisms from Corollary 4.7, we see that we may tgke 2.
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Fig. 3. A cross section through the holy grail.

0. Hence

—4) # 0 thenx? + y? — 4 — xyt + t2

2

If (x* —4)(y

=27~ 4)

Xy =+

Sincet is real, we must havexf — 4)(y? — 4) > 0.

The following result is stated on page 269 of Poston and Stef@a]. It is illus-

trated in the cross-section drawn in Fig. 3.

Corollary 4.11. The points on the holy grail with ¥ 2 form a ruled surface

in C x R.

The points inC x R for whichy = 2 are

Proof.

(t,0) = (xé? +2e7¢

2x + 2 cos(2))

(2e7'?, 2 cos(d)) + x(e'¢

2).

This is the equation of a ruled surface (see Section 3.5 of aon@G [6], for example).

O]
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Suppose thay = 2. Then the three main parts of the holy grail are determined b
the conditionsx > 2, —2 < x <2 andx < —2.

Corollary 4.12. Suppose that ¥ 2. Then the parameters and o are given by
(i) If x =2coshl) > 2 then

t = 2cosh()€? + 2e7'*, & = 4 cosh() + 2 cos(2).
(i) If x = 2cosP) € [-2, 2] then
T =2cosp)e? + 267'?, o = 4cos) + 2 cos(2).
(i) If x = =2 cosh() < —2 then
t = —2 cosh)e'? + 2¢7'%, & = —4 cosh() + 2 cos(2).

The parameter values of Corollary 4.12 exhaust the potibilwhen condition
(i) of Proposition 4.10 is satisfied. They correspond to upper bow] central tetrahe-
dron and lower bowlrespectively. We can relate these parameter values to thsibpe
Jordan decompositions that can arise.

Proposition 4.13. Suppose that & SU(p, q) and y= 2.
(i) If x =2cosh() > 2 or x = —2cosh[) < —2 then A is either diagonalisable or its
Jordan normal form has @ x 2 Jordan block associated to the eigenvalug’e The
latter can only happen if p=q = 2.
(i) If x =2cos@) € [-2, 2] then A can have any Jordan normal form. There can be
at mostmin{p, g} Jordan blocks of size at leagt

Proof. The eigenspace associated to each Jordan blockeofisieast 2 is spanned
by a null vector. These null vectors are linearly independ@&erefore there can only
be min p, q} Jordan blocks of size at least 2.

In (i) the eigenvectors corresponding to the eigenvalefes'? or —e*!'*i¢ span
a subspace where the restriction df has signature (1, 1). If the other eigenvalues
correspond to a Jordan block of size 2, then its eigenvesttinearly independent from
the above subspace. Therefore fing} is at least 2. Since + q = 4 we havep =
q=2.

In (ii) all eigenvalues have absolute value 1, so there isurthér restriction.

In both cases, it is an easy exercise to write down matricesHermitian forms
to demonstrate that there are no further restrictions. O

We now consider what happens when condition (ii) of Propmsi#.10 is satisfied.
Suppose that? —4)(y>?—4) >0 and—4 <xy<4. Then-2<x <2 and-2 <y < 2.
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Write x = 2 cosf) andy = 2 cos(/). If we also havex? + y? —4 — xyt+1t2 = 0 then
t = 2cos(2) = 2cos@ + ). In other words, @2 =0 +  or 2p = —6 + . There
are several cases. We choose the case=-2 + . Eliminating , the eigenvalues are

= @OHO g, = g PHO g gifHe g, 00
Reorder the eigenvalues by swappihgand A4.
VR VR [ R VRS L YA T
With this new parametrisation we get new paramet% = Aj1, = e?~2¢ and
X' =)+ r)e'? =2cos(@), Y =5+ r)e? =2, t'=2cos(@ - 2¢).

Therefore, this is a point on the central tetrahedron. Tinerotases are similar.
We therefore concentrate on the points with > 4 or xy < —4.

Lemma 4.14. Suppose %+ y?—4—xyt+t?=0and-2<t <2.
() If xy>4then x=y and t=2.
(i) If xy < —4then x=-y and t=-2.
Proof. We have
0=x24+y?—4—xyt+t2=(x—y)? + 2-t)(xy—4)+ 2—-1)%.
Since—2 <t < 2 we see that iky > 4 we must havex—y)? = (2—t)? = 0. Similarly
0=x?+y?—4—xyt+t>= (X +y)?> + 2+ t)(—xy—4) + (2 + )2
If xy <—4then &+ y)®>=(2+1)?>=0. O
The locus of points described in Lemma 4.14 are whieskers
Corollary 4.15. The whiskers are given by
(z,0) = (2 coshl), 4 cosR(l) + 2),
(t, o) = (£2i cosh(), —4 cosR(l) — 2)

where |> 0 is a real parameter.

Proposition 4.16. Suppose that Ac SU(p, q) satisfies the hypotheses of
Lemma 4.14 Then p=qg =2 and A is either diagonalisable or its Jordan normal
form has two blocks of siz2.
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Proof. In this case, (up to multiplyinéd\ by a power ofi) the eigenvalues are,
¢, e, e' wherel > 0. Since there are two eigenvectors that are greater thare1, w
see that mifip,q} > 2. Thusp=q = 2.

Since each eigenvalue has multiplicity 2, the possible alotolocks have size 1 or
2. Using the same argument as in Lemma 2.1, we see that thespae associated
to € has the same dimension as the eigenspace associateld fbhereforeA is either
diagonalisable or has two Jordan blocks of size 2. It is easwrite down matrices
that show both possibilities can arise (see comment afteordm 5.5). ]

4.5. WhenA is 2-loxodromic. In the next three sections we give a few more
details about the components of the complement of the hadyl.gm particular, we
relate the coordinates<(y, t) with more geometrical parameters.

Suppose thatii| = |Ao|™* > 1 and|A3| = |x4|™ > 1. In this case, (after possibly
multiplying A by a power ofi if necessary) we can write

A=t g, = =@Mt ), = M
wherel > 0 andm > 0. Hence
(4.14) t = 2 cosh()€? + 2 coshn)e'?, & = 4 coshl) cosh(m) + 2 cos(2).
and x = 2 coshl), y = 2 coshfn), t = 2 cos(2). In this case

R(xa, xA)
= 256 sinff(l) sint?(m)(cosh{ + m) — cos(2)))?(cosh( — m) — cos(2$))>.

When| = m and ¢ = 7/2 then we see that = 0 ando = 4 cosi(l) — 2 =
2 cosh(2). Such points lie inside the top bowl of the holy grail. THere, by conti-
nuity, this region comprises points wheR{xa, x,) > 0. The presence of the whiskers
in this bowl mean these two components of the set whr{pga, x,) > O are not simply
connected. This leads to subtleties when it comes to givengupeters. The whiskers
comprise points witH = m and¢ = 0 or ¢ = =. We now give a characterisation in
terms ofo and t of the points where exactly one of these conditions is setisfi

Lemma 4.17. Suppose that and o satisfy(4.14)
() If =0and|#m thenJ(r) =0, R(zr) > 0 and R(r)?> —4o + 8> 0.
(i) If  =m and | # m thenJ(z) = 0, R(r) < 0 and R(r)?> — 4o + 8> 0.
(i) If ¢ £ 0,7 and | = m then3(r) = 0 and %(r)?> — 40 + 8 < 0.

Proof. If ¢ =0 andl # m then

7 = 2 cosh() + 2 cosh(n), o = 4 coshl) cosh(m) + 2.
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Clearly 3(r) = 0 and9i(r) > 0. Also
N (r)? — 4o 4+ 8 = (2 cosh() — 2 coshf))? > 0.

The case where = 7 and| # m is similar.
If » #0,7 andl = m then

T = 4 cosh() cosgp), o =4 cost(l) + 2 cos().
Clearly 3(z) = 0. Also,
N(r)? — 4o 4+ 8 = —16 sinl(l) sir(¢) < O. O

Define C to be the set of all4, o) € C x R satisfying
() R(xa xa) >0,
(i) min{R(r)>—40 +8,6—0} <0,
(iii) max{N(r)? —4o + 8, 3(r)?} > 0.
Geometrically, conditions (i) and (ii) imply that is contained “inside” or “above” the
upper bowl of the holy grail. Condition (iii) means that theimts with both3(z) =0
and %(r)? — 40 4+ 8 < 0 are not inC. Using Lemma 4.17 (iii) and the description of
the whiskers, we see that this excludes those points Mithm.

Proposition 4.18. The map
o {(I,m €% eR2 xS >m} —C
given by(4.14)is a diffeomorphism.

Proof. We have seen above thatitndo are given by (4.14) theR(xa, x») > 0.
Moreover sincexy = 4 coshl) cosh) > 4, using Lemma 4.8 we see that
min{R(c)? — 4o +8,6—0} <O.
In addition,
N(r)? — 4o + 8 = 4(cosh() — coshf))? — 16((coshl) + coshm))? — 1) sirf ¢,
J(r)? = 4(cosh() — coshm))? sir? ¢.

Sincel # m either 3(z)2 > 0 or sif ¢ = 0. In the latter casefi(r)? — 40 + 8 > 0.
Therefore

max{M(t)? — 4o + 8, J(r)?} > 0.

Hence the image o is containedC.
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Conversely, Proposition 4.5 implies that given any ) € C x R we can find
(x, y, €%) satisfying (4.8). Using Lemma 4.8 (i) we see that if

R(xa, xa) >0, min{R(r)?—40 +8,6—0} <0

then &>—4)(y?—4) > 0 andxy > 4. Thusx > 2 andy > 2. We can writex = 2coshl)
andy = 2 coshfn). Using Lemma 4.17 (iii) we see that if

max{R(r)? — 4o 4+ 8,3(z)?} > 0

thenl # m. Swapping the roles ok andy if necessary (as in Corollary 4.7) we may
assume that > m. Therefore® is onto.
In real coordinates

R(z) = 2(coshl) + coshm)) cosg),
J(r) = 2(coshl) — cosh()) sin(g),
o = 4 coshl) coshm) + 2 cos(2).

This change of variables leads to the Jacobian

cosgp) cosgp) —(cosh() + coshfm)) sin(p)
J = 16 sinh() sinh(m) det( sin@) —sin(@) (cosh() —coshm)) cosg) )
coshfm) cosh() — sin(2p)

= —16 sinh() sinh{m)(cosh{ + m) — cos(2$))(cosh( — m) — cos(2)).

This is clearly non-zero wheh> m > 0. Therefore® is a local diffeomorphism.
As m tends to O thent, o) tends to the upper bowl of the holy grail; &s- m
tends to O thent, o) tends to points wher&(r) = 0 andi(r)? — 40 + 8 < 0; asl
tends tooo then @, o) tends to infinity. Thereforeb is proper.
Therefore® is a covering map. For fixedh and very large values df we have
(z,0) ~ (€€?, 2¢ coshfm)). Henced has winding number 1 for such values loénd
hence everywhere. Thud is a global diffeomorphism. ]

4.6. WhenA is simple loxodromic. Suppose thafii| = || > 1 and|A3| =
A4~ = 1. In this case, (after possibly multiplying by a power ofi if necessary)
we can write

wherel > 0. Then

(4.15) T = 2 cosh()€? + 2 cosfy)e™?, o = 4 cosh() cos(/) + 2 cos(2)
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and x = 2 coshl), y = 2 cosf), t = 2 cos(2). In this case

R(xa: Xp)
—256 sink(l) sirf(y)(cosh() — cos(y + 2¢))?(cosh() — costy — 2¢))>.

Wheny = /2 and¢ = /4 thent = +/2 cosh{)(1 +i). Such points are outside the
holy grail. Therefore by continuityR(xa, x») < 0 in this region. The following propos-
ition may be proved in a similar manner to Proposition 4.1@{pare Proposition 3.8
of [18]).

Proposition 4.19. The map
®: {(I,v¥,€?) e Ry x(0,7) x S} — {(r,0) € C xR: R(xa, ) < 0}
given by(4.15) is a diffeomorphism.

We remark that, depending on the signature of the Hermitiam f Proposition 4.19
may still not mean thatA is determined up to conjugacy by,(c). Suppose that the
eigenvaluex; corresponds to the eigenspadg. Since|A1] = [x2|™! > 1, the eigen-
spacedJ; andU, must both be null and the Hermitian form restrictedtp® U, must
have signature (1, 1). If the signature of the form is (3, 1j1913) thenU3z andU, must
both be positive or negative respectively. On the other h#nithe form has signature
(2, 2) then one ols or U, is positive and the other is negative. This determines two
conjugacy classes in this case. For example, if the formasstandard diagonal form
diag(1, 1,—1, —1) then fore = +1 consider the following matrices in SU(2, 2)

cosh()€? 0 0 sinh()e?
A 0 dvie g 0
¢ 0 0 g iev—ie 0
sinh()e? 0 0 coshi)e?¢

Both these matrices have the same values @nd o but yet they are not conjugate
within SU(2, 2) (even though they are conjugate in SIG¥).

4.7. When A is regular elliptic. Suppose thatii| = |x2|™> = 1 and |r3] =
|L4|™t = 1. In this case, (after possibly multiplying by a power ofi if necessary)
we can write

AL = i9+i¢’ Ay = efi0+i¢, Az = eix//fid)’ Aa = —iY—i¢
Then
7 = 2cosP)e? + 2 cosfy)e”'?, o = 4cosp) cosfl) + 2 cos(D).
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and x = 2 cosf), y = 2cosfy), t = 2cos(2). In this case

R(xa, xp) = 256 sirf(0) sir(y) sif(¢ + (0 + v)/2) sirf(¢ — (0 + ¥)/2)
-sin(¢ + (0 — v)/2) sirf(¢ — (0 — ¥)/2).

When6 = ¢ and¢ = /2 then we see that = 0 ando = 4 cog(p) — 2 = 2 cos(D).
This lies in the central tetrahedron of the holy grail. There, by continuity, this re-
gion comprises points wherB(xa, x) > O.

5. Geometrical applications

5.1. Introduction. Our primary motivation for the classification of elements of
SU(p, q) with p+ g = 4 was to consider SU(3, 1), a four fold cover of PSU(3, 1), the
holomorphic isometry group of complex hyperbolic sp&tg. In order to demonstrate
that this classification is also of interest in the case of 53}, we use our results in
two special cases. First we show that we can embed the di@nfareserving isometry
group ofHi;, which is isometric tcHg, into PSU(2,2). Secondly, we do a similar thing
with automorphisms of anti de Sitter space.

5.2. Isometries of complex hyperbolic space %l Let (-, -) be a Hermitian
form of signature (3, 1) orC*. Recall from Section 2.1 the definitions (2.3) and (2.2)
of V_, the negative vectors, ard,, the null vectors. Le be the canonical projection
map fromC* — {0} to CP? then Recall that ifv is in V_ or Vg then so isiv for any
non-zero complex scalar. Thus it makes sense to speak®¥_  and PV, as subsets
of CP3. Complex hyperbolicS—spaceH% is defined to bePV_ and its boundary is
defined to bePVp; see [8] for many more details.

Let v and w be points inH% = PV_ corresponding to vectorg andw in V_.
Then theBergman distance(v, w) between then is defined in terms of the Hermitian
form as follows (see Section 3.1.7 of [8] for example):

cosit (p(vz, w)) AR

(v, V) (w, w)’

The holomorphic isometry group of complex hyperbolic 36510!81% is the project-
ive unitary group PSU(3, 13+ SU(3, 1y{+l, £il }. In this group all loxodromic maps
are simple, that is they have a single pair of eigenvalueand i, = Xfl with abso-
lute value different from 1, as described in Section 4.6. Thessification of elements
of SU(3, 1) via their resultant is simply the cape= 3 of Corollary 3.2:

Proposition 5.1. Let Ae SU(3,1) Let R(xa, x,) denotes the resultant of the char-
acteristic polynomialya(X) and its first derivativey ,(X). Then we have the following.
(i) A is regular elliptic if and only if Rxa, xa) > O.
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(if) A is regular loxodromic if and only if &a, xa) <O.
(i) A has a repeated eigenvalue if and only i{xR, x») = 0.

Furthermore, using Proposition 4.13 we can say slightlyenadyout the case when
A has a repeated eigenvalue.

Proposition 5.2. Suppose that A& SU(3, 1) has a repeated eigenvalue. If A is
diagonalisable then it is either elliptic or loxodromigand both possibilities arige
Otherwise it is parabolicand the possible minimal polynomials of A are
() mx) = (x—e?)2(x — &9t1?)(x — e ?+1?) whered # 0,7, +2¢ (mod 2r);

(i) m(x) = (x—e?)’(x —€?) whereg # 0,7 (mod 2r);

(i) m(x) = (x —e?)?(x —e¥?) where¢ # 0,7/2, 7, 37/2 (mod 2r);
(iv) m(x) = (x —e?)3(x — e¥?) where¢ # 0,7/2, 7, 37/2 (mod 2r);
(v) mx) =(x—e*22fork=0,1,2,3;

(vi) m(x) = (x —e k723 for k =0, 1, 2, 3

For a detailed classification of elements of SU(3, 1) witheatpd eigenvalues see
[12]. With respect to the Hermitian form

(5.1) H=

= O O O
o oOopr o
o OO
O OO

we can find representatives of cases (i) to (vi) with one offtilewing two forms:

gie 0 0 ie i gl 0 —2eit _2gio
a_| O go+io 0 0 a_| O gde 0 0
171 o 0 eite o ' 27| 0o o0 el* 2ei¢
0 0 0 el 0 0 0 g i?

In (i) we have A;; in (i) we have A; with 6 = 0; in (iii) we have A; with 6 = 2¢;
in (iv) we have Ay; in (v) we haveA; with 6 = 0 and¢ = kz/2; in (vi) we haveA;
with ¢ = kr /2.

Our goal in remainder of this section is to relate our paramsefor loxodromic
maps in SU(3, 1) with the geometry of their action H@. This generalises the work
in Parker [18] where the geometry of loxodromic maps in SUj2was considered.

We now recall the notation of Section 4.6. Suppose that SU(3, 1) has
eigenvalues

(5.2) M= =t =gV Ay =eTVTY

The eigenspace¥; and V, in C3! corresponding tok; and A, are both null. After
projectivisation, they correspond to fixed poiggsandq, of A on 8H(3:. Also, V; & V,
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is indefinite. Its projectivisation is a complex line, whosgersectionL with H%is a
copy of the Poincaré disc model of the hyperbolic plane edathecomplex axisof A.

The (Poincaré) geodesic in with endpointsg; and g, is called theaxis of A and is
denotedx(A). The eigenspaceg; andV, in C31 corresponding td.; and A, are each
positive. They are orthogonal td; ® V., whose projectivisation intersectd;% in L.

Proposition 5.3. Let A inSU(3,1)be a loxodromic map with axie and complex
axis L. Let| ¢ and v be the parameters associated to A given(By2). Then A
translates a Bergman distan@ along o and rotates the complex lines orthogonal to
L by angles—2¢ + ¢ and —2¢ — .

Proof. We use the diagonal Hermitian forn, ) given by the matrixH from
(5.1) and we follow the ideas of Parker [18, Proposition B.10 this case we may
represent pointg in H3 by (z1, 2, z3) € C3 with 2%(z;) + |22/ + |z3> < 0. If the
eigenvalues ofA are given by (5.2) then, up to conjugacy, we may suppose

A = diag(e'+‘¢, eix//—iqb, —il/f—i¢, e—|+i¢)_
Thus A fixeso= (0,0, 0, 1) andoo = (1, 0, 0, 0). The action ofA on Hf: is given by

A: (21, 22, 23) > (2 7y, H1V 207, d=1V=202),

The axis of A is the geodesie joining the fixed points and the complex axis Afis
the unique complex line containing. They are given by

a={(-x,0,00e H3: x> 0}, L ={(=x+iy,0,0)e H3: x> 0}.
Suppose thap = (—x, 0, 0) is a point of the axiz of A. Let p denote the lift ofp to

C* given byp = (=x, 0,0, 1J. Then the translation length ok alonga is p(A(p), p).
We have

= cosh().

(Ap, p) ‘ _ ‘—xé+i¢ _xe e
(p.p) | —2x

This implies p(A(p), p) = 21 as claimed.

The tangent vectors tbif: spanning the complex lines orthogonal ltoare given
by £ = (0, 1,05 andn = (0, 0, 1J. Clearly the (projective) action oA sends¢ in
Tp(H2) to €+1¥-29¢ in Tapp(HZ) andn to €1¥-2%;. The rest of the result follows.

O

coshp(A(p), p)/2) = ‘

5.3. Isometries of H; = Hg. Quaternionic hyperbolic 1-spadt); may be iden-
tified with hyperbolic 4-spac¢1§. The isometries of quaternionic hyperbolic 1-space
are contained in the projective symplectic group PSp(% Bp(1, 1Y(+1). The group
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Sp(1, 1) is the group of 2 quaternionic matrices preserving a quaternionic Hermit-
ian form of signature (1, 1); see Parker [17] for example. r&his a canonical way
to identify a quaternion with a 2 2 complex matrix and therefore to identify ax22
guaternionic matrix with a 4 4 complex matrix; see Gongopadhyay [11] for example.
When we do this, the quaternionic Hermitian form of signat(t, 1) becomes a com-
plex Hermitian form of signature (2, 2). The upshot of thimstouction is that it is
possible to embed (the double cover of) the group of ori@rtgbreserving isometries
of hyperbolic 4-space into SU(2, 2). In this section we shaw Ithe classification
given in the previous sections relate to the well known digssion of four dimen-
sional hyperbolic isometries. Our construction followsngopadhyay [11], where arbi-
trary invertible 2x 2 quaternionic matrices were considered. See also ParkkeGhart
[19] for an alternative method of classifying quaternioMébius transformations.

Let Ay be a 2x 2 matrix of quaternions acting on a column vectgr of quater-

nions as
P a b z\ (az+bw
HE =\ c d)\w) \cz+dw )
If Aisin Sp(1,1) thenal = |d|, |b| =|c|, |a]>—|c|> = 1, @b =Cd andaC = bd; see

Lemma 1.1 of [4] or Proposition 6.3.1 of [17] for example.alfis a quaternion we can
write it asa = a; + ja, whereag,a, € C. Thena corresponds to the following matrix:

aa —a
ay a '
It is not hard to show that this identification is a group horogpmism fromH with

guaternionic multiplication to M(2C) with matrix multiplication. Using this identifi-
cation, the matrixAg corresponds to a % 4 complex matrixA given by:

aq —-a by —b
& a b, b
cg —C d —d
Cc C d» dg

Likewise zg corresponds to a2 matrix and we only consider its first column, which
is a vectorz in C4. The action of Ay on zy induces the standard action &f on z €
C* by matrix multiplication. Using this identification, we séfat if Ay is in Sp(1, 1)
then A € SU(2, 2).

Suppose thaky € H is a right eigenvalue forAg. This means that there is a
guaternionic vectov so thatAgv = viy. It is always possible to find a unit quaternion
w so thath = p*agp is in C; see Parker and Short [19] or Gongopadhyay [11] for
example. (That is, writingh = A3 + jA2 with A1, A, € C gives A, = 0.) In this case

Au(Vu) = Vigp = (Vi)A.
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Hencel € C is also a right eigenvalue ofy. (In the language of quaternions, right
eigenvalues of quaternionic matrices are defined up to aiityll) It is easy to show
that A is also an eigenvalue oh. Since we can also find € H so thati = vtigv,

a similar argument shows thatis also an eigenvalue of. Hence, if|A| # 1, using
Lemma 2.1 the eigenvalues &f are

This implies thatr is real (which could have been seen by inspection) and so the
characteristic polynomiaka(X) of A has real coefficients. Hence the coefficientsxof
and X2 in xa(X) are the same. This rules out case (i) of [11] Theorem 1.1;aés®
Corollary 6.2 of Parker and Short [19]. Puttinge R in the expression foR(xa, x4)
in terms ofo and r in Section 4.3 gives.

R(xa, xa) = (02 + 4o + 4 — 4t?)(z? — 4o + 8)?

= (0 +2—21)(0 4+ 2+ 21)(r? — 4o + 8)".

We can now state our classification theorem, which shouldobgpared to Theorem 1.1
of Gongopadhyay [11].

Proposition 5.4. Let A€ SU(2, 2)correspond to a map irsp(1, 1) Then A has
characteristic polynomial

xa(X) =X —X34oX?2—1tX +1

wheretr(A) = 7 € R and o € R. Moreover

(i) A is regular 2-loxodromic if and only ift? — 40 + 8 < 0.

(i) A is regular elliptic if and only ift? — 40 + 8 > 0 and (o + 2)? # 472

(i) A has a repeated eigenvalue if and onlycff— 40 +8 = 0 or (o + 2)* = 472

We note that the connection between our notation and thatafj@adhyay is that
¢, = C3 = t2/4 andc, = o. The main difference between our result and Theorem 1.1
of Gongopadhyay [11] is that his result does not involwe-Q)?>—4z2. We now explain
this. Using our expression for the eigenvaluesfofwe see that whem| # 1 then

(c+2-2t)oc +24+2t) = A +21 =222 +21+ 22> 0.
Otherwiser = 2 cos@) + 2 cosf/) and o = 4 cos@) cosfy) + 2 and

(0 +2—21t)(o + 2+ 2t) = 16(1— cosp))(1 — cos@))(1 + cosP))(1 + cos@))
> 0.
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Hence ¢ +2—2t)(oc +2+2r) =0 if and only if € = +1 or €¥ = +1. If both of
these are true then® — 40 + 8 = 0. Otherwise, the eigenvalues &f are

e’ el +1, +1,

where€? # +1. In this caser?—40 +8 = 4(1F cos9)? > 0. Furthermore, the repeated
eigenvaluer = +1 corresponds to the same quaternionic eigenvegioe= +1. Thus
there is a two dimensional complex eigenspace associatéd dod soA is elliptic.

5.4. Automorphisms of anti de Sitter space. There is a canonical identification
betweenR* and M(2]R), the collection of X 2 real matrices. Under this identification,
the determinant map deM(2, R) — R corresponds to a quadratic form of signature
(2, 2) onR*. Anti de Sitter spacds the projectivisation of the positive vectors with
respect to this quadratic form. It may be canonically iderdi with PSL(2R) by con-
sidering the section where this quadratic form takes theevall; see Section 7 of
Mess [15] or Section 2 of Goldman [9]. The automorphism grofiamti de Sitter
space with its Lorentz structure is PSLR®) x PSL(2,R). Using the identification of
anti de Sitter space witlR* gives an isomorphism between PSLIE,x PSL(2,R) and
PSQ(2, 2) = SOy(2, 2)/(£1), where SQ(2, 2) is the identity component of SO(2, 2);
again see Mess [15] or Goldman [9].

Let us make this explicit. IdentifiR* and M(2,R) by the map:

X1

F:x= X2 »—>X=(Xl XZ).
X3 X3 X4
Xa

The determinant map det] corresponds to the quadratic for@(X) = X1X4 — XoX3.
This is associated to the symmetric matkik of signature (2, 2) where

00 0 1
h_1fo o 10
2{0 -1 0 o0
10 0 0

Let A, A2 € SL(2,R). Then the pair A;, A) acts on SL(2R) and this action corres-
ponds toA € SO(2, 2) as follows:

F(AX) = AiF(x)A ™.

(Note we invert the matrix on the right so that the map from ZK) x SL(2,R) to
SO(2, 2) is a homomorphism.) If

(& by (& b
Al_(Cl dl)’ Az_(Cz dz)'
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Then it is easy to see that

ady —aic; dy e
by aa by bia

cidy  —CiC;  didy  —diC
—Cihy  claz  —diby dia

A=

Clearly T = tr(A) = (ay + di)(az + dp) = tr(Ag) tr(Az). It is not hard to see that
o= %(trz(A) — tr(A?))
1
= S(r*(An) tr(Ag) — tr(A] tr(A)

= %(trz(Al) tr¥(Ag) — (tr*(Aa) — 2)(tr(A2) — 2))

tr’(Ag) + tr’(Ag) — 2.

Theorem 5.5. Let (A1, Ay) € PSL(2,R) x PSL(2,R) be an automorphism of anti
de Sitter space. Then
(i) (Ag, Ap) is regular 2-loxodromic if either A or A, is loxodromic and alsa} #
tr?(Ar) # tri(Ag) # 4
(i) (Ag, Ay) is regular elliptic if A, and A are both elliptic andtr?(A;) # tr’(Ay).
(i) (Ag, A2) is not regular iftr’(A;) = 4 or tr’(Az) = 4 or tr’(Ay) = tr3(Ay).

Proof. Consider the parametexs y andt defined in (4.5). Since t¥) is real,
we havet = 2, that is¢p = 0 or ¢ = 7. Moreover

(X +y)* = [z]> = tr*(A) trP(Ay),
Xy +2 =0 = tr’(A)) + tr’(Ar) — 2.

A consequence of this is that

(X2 = 4)(y? — 4) = (xy)* — 4(x* + y?) + 16 = (tr’(A7) — tr(Ay)?,
X2+ y?2 —4—xyt+t2 = (X + y)? — 4xy = (tr3(AL) — 4)(t2(Ay) — 4).

Therefore, using the identity from Proposition 4.6, we have

R(xas xa) = (X2 — 4)(Y2 — (X% + y* — 4 — xyt + t?)?
= (tr®(A1) — tr2(A2))(tr®(Ar) — 4)(tr3(Ag) — 4Y.

Then A has a repeated eigenvalue if and only if one of the followingditions hold:

tr(A) = £tr(A), tr(A) = £2, tr(Ay) = 2.
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Otherwise A is 2-loxodromic or elliptic. Furthermore, we have

R(r)* — 4o + 8 = (r(Ar) — 4)(tr*(A2) — 4),
S(2)? + 4o + 8 = 4tP(Ay) + 41P(A),
6—0 = 8—tri(A) — tr’(Ay).

Then using Theorem 4.9 we sedy( Ay) is elliptic if and only if A; and A, are both
elliptic with tr2(A;) # tr’(Ay). O

Note that takingA; to be loxodromic andA; to be parabolic gives an example of
a matrix in SU(2, 2) lying on one of the whiskers and whose dordormal form has
two blocks of size 2; see Proposition 4.16.
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