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Abstract
We introduce generalized almost contact structures which admit the B-field trans-

formations on odd dimensional manifolds. We provide the notion of generalized
Sasakian structures from the view point of the generalized almost contact structures.
We obtain a generalized Sasakian structure on a non-compactmanifold which does
not arise as a pair of ordinary Sasakian structures. Howeverwe show that a general-
ized Sasakian structure on a compact 3-dimensional manifold is equivalent to a pair
of Sasakian structures with the same metric.

1. Introduction

Both generalized complex structures and generalized Kähler structures are geomet-
ric structures on even dimensional manifolds which have been extensively studied in
differential geometry and mathematical physics [5, 7]. It is natural to ask what is an
analog of generalized geometry on odd dimensional manifolds. Vaisman introduced
generalized F-structures and generalized almost contact structures [9, 10]. He also de-
fined generalized Sasakian structures from the view point ofgeneralized Kähler struc-
tures. Poon and Wade studied integrability conditions of generalized almost contact
structures and gave nontrivial examples on the three-dimensional Heisenberg group and
its cocompact quotients [8]. Vaisman showed that a generalized Sasakian structure ap-
pears as a pair of almost contact structures [9]. However, examples of generalized
Sasakian structures which do not arise as a pair of Sasakian structures were not known.

The purpose of this paper is to investigate generalized geometry on odd dimen-
sional manifolds. We introduce the new notion of generalized almost contact structures
which includes the one in [9], [8] as special cases. We use twosectionsE

C

and E
�

of
T M� T�M to define generalized almost contact structures which admitB-field trans-
formations naturally. An almost contact structure is a triple (', � , �), where' is an
endomorphism ofT M, � 2 T M and � 2 T�M which satisfies

�(� ) D 1, ' Æ ' D �id C �
 � ,

where id denotes the identity map ofT M. An almost contact structure gives rises to
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44 K. SEKIYA

an almost complex structureI on the coneC(M) D M � R
>0,

I D ' C �
 r
�

�r
�

1

r
dr 
 � ,

wherer denotes the coordinate onR
>0. We define a generalized almost contact struc-

ture to be a triple (8, E
C

, E
�

) by replacing' with an endomorphism8 of T M�T�M
and � , � with sectionsE

C

, E
�

of T M � T�M, respectively which satisfy

8C8

�

D 0,

2hE
C

, E
�

i D 1, hE
�

, E
�

i D 0,

8 Æ8 D �idC E
C


 E
�

C E
�


 E
C

(see Definition 3.1 for more detail). By an analogue to the case of almost contact
structures, we define bundle endomorphisms to construct generalized complex struc-
tures on the coneC(M). We define a bundle endomorphism9(E

C

, E
�

) of T C(M)�
T�C(M) by

9(E
C

, E
�

) D E
�


 r
�

�r
� r

�

�r

 E

�

C E
C




1

r
dr �

1

r
dr 
 E

C

,

then it follows that

8C9(E
C

, E
�

)

is a generalized almost complex structure onC(M). In Sasakian geometry, the
Riemannian cone metricQg D dr2

C r 2g on C(M) is, by definition, a Kähler metric.
This suggests that

R(8C9(E
C

, E
�

))R�1

is more important generalized almost complex structures rather than8 C 9(E
C

, E
�

)
when we pursue an analogy of Sasakian geometry, whereR denotes an element of the
special orthogonal group SO(T M � T�M) given by

R(X C �) D r �1X C r�, X 2 T M, � 2 T�M.

From the view point of generalized almost contact structures, we define a general-
ized Sasakian structure. We show that on a compact connected3-dimensional mani-
fold a generalized Sasakian structure is equivalent to a pair of Sasakian structures with
the same metric (Theorem 4.6). We obtain a non-compact example of a generalized
Sasakian structure which does not arise as a pair of Sasakianstructures (Theorem 4.2).

2. Generalized complex structures

In this section we give a brief explanation of generalized complex structures. Let
M be an even dimensional smooth manifold. The space of sections of the vector bundle
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T M � T�M ! M is endowed with the followingR-bilinear operations.
• A symmetric bilinear formh–, –i is defined by

hX C �, Y C �i D
1

2
(�X� C �Y�).

• The Courant bracket [[–, –]] is a skew-symmetric bracket,

[[ X C �, Y C �]] D [X, Y] C LX� � LY� �
1

2
d(�X� � �Y�),

where X, Y 2 T M and �, � 2 T�M.
A subbundle is Courant involutive if the space of sections ofthe subbundle is

closed under the Courant bracket.

DEFINITION 2.1 ([5]). A generalized almost complex structure onM is an endo-
morphism of the direct sumT M � T�M which satisfies two conditions,

J C J �

D 0, J 2
D �id,

whereJ � is defined byhJ A, Bi D hA, J �Bi for any A, B 2 0(T M� T�M). Let L
be theC

p

�1-eigenspace ofJ in T M � T�M. If L is Courant involutive, thenJ is
called a generalized complex structure.

The following are well known.

Lemma 2.1 ([5]). L is a maximal isotropic subspace.

Proposition 2.2 ([5]). Let L be a maximal isotropic subbundle of T M� T�M.
Then the following three conditions are equivalent:
• L is Courant involutive,
• Nij jL D 0,
• JacjL D 0,
whereNij and Jacare given by

Nij( A, B, C) D
1

3
(h[[ A, B]], Ci C h[[ B, C]], Ai C h[[C, A]], Bi),

Jac(A, B, C) D [[[[ A, B]], C]] C [[[[ B, C]], A]] C [[[[ C, A]], B]],

for any A, B, C 2 0(T M � T�M).

Let B be a smooth 2-form. Then the invertible bundle map given by,

eB
D

�

1 0
B 1

�

W X C � 7! X C � C �X B

is orthogonal.
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Lemma 2.3 ([5]). A map eB is an automorphism of the Courant bracket if and
only if B is closed, i.e. d BD 0.

DEFINITION 2.2 ([5]). A generalized Kähler structure is a pair (J1, J2) of com-
muting generalized complex structures such thatG D �J1J2 gives a positive definite
metric on T M � T�M.

Lemma 2.4 ([5]). A generalized Kähler metric is uniquely determined by a
Riemannian metric g together with a2-form b as follows,

G(g, b) D

�

�g�1b g�1

g� bg�1b bg�1

�

D

�

1 0
b 1

��

0 g�1

g 0

��

1 0
�b 1

�

.

Let C
C

be a positive definite subbundle ofT M�T�M and C
�

a negative definite
subbundle with respect to the inner product which are given by

C
�

D {X � g(X, � )C b(X, � )I X 2 T M}.

By the projection fromC
�

to T M, J1 induces two almost complex structuresJ
�

on
T M. If both (g, J

C

) and (g, J
�

) are Hermitian structures, (g, J
�

) is called a bi-Hermitian
structure.

Theorem 2.5 ([5]). A generalized Kähler structure(J1,J2) is equivalent to a bi-
Hermitian structure(g, b, J

�

) which satisfies the following condition.
• For all vector fields X, Y, Z,

db(X, Y, Z) D d!
C

(J
C

X, J
C

Y, J
C

Z) D �d!
�

(J
�

X, J
�

Y, J
�

Z),

where!
�

(X, Y) D g(X, J
�

Y).

3. Generalized almost contact structures

An almost contact structure on an odd dimensional manifoldM is a triple (',� ,�),
where ' is an endomorphism ofT M, � is a vector field and� is a 1-form which
satisfies

�(� ) D 1, ' Æ ' D �idC �
 � .

We replace' by an endomorphism8 of T M � T�M and � , � by sectionsE
�

of
T M � T�M respectively. We define a generalized almost contact structure:

DEFINITION 3.1. A generalized almost contact structure on a smooth manifold
M is a triple (8, E

C

, E
�

), where8 is an endomorphism ofT M � T�M and E
�

are
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sections ofT M � T�M which satisfy

8C8

�

D 0,

2hE
C

, E
�

i D 1, hE
�

, E
�

i D 0,

8 Æ8 D �idC E
C


 E
�

C E
�


 E
C

.

Let E
�

D �

�

C �

�

where�
�

are vector fields and�
�

are 1-forms. Then we have

8 Æ8 D �idC

�

�

C


 �

�

C �

�


 �

C

�

C


 �

�

C �

�


 �

C

�

C


 �

�

C �

�


 �

C

�

C


 �

�

C �

�


 �

C

�

.

REMARK 3.1. Vaisman, Poon and Wade discussed the restrictive case of �
�

D

�

C

D 0 [8, 9, 10]. However, their definition is not compatible withthe B-field trans-
formations. Note that a generalized almost contact structure of Definition 3.1 satisfies
the condition of generalizedF-structure [10].

EXAMPLE 3.1 ([8]). Let (', � , �) be an almost contact structure. Then we have
a generalized almost contact structure by setting

8 D

�

' 0
0 �'

�

�

, E
C

D � , E
�

D �,

where ('��)(X) D �('X), X 2 T M, � 2 T�M.

EXAMPLE 3.2 ([8]). A (2n C 1)-dimensional manifoldM is a contact manifold
if there exists a 1-form� such that

� ^ (d�)n
¤ 0

everywhere onM. A 1-form � is called a contact 1-form. Then there is a unique
vector field� satisfying the two conditions

�

�

d� D 0, �(� ) D 1.

This vector field is called the Reeb field of the contact form�. Since� is a contact
1-form, the map

�(X) WD �Xd� � �(X)�

is an isomorphism from the tangent bundle to the cotangent bundle. We define a bivec-
tor field � by

�(�, �) WD d�(��1(�), ��1(�)).
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Then we have a generalized almost contact structure by setting

8 D

�

0 �

d� 0

�

, E
C

D �, E
�

D � .

Lemma 3.1. Let (8, E
�

) be a generalized almost contact structure. Then we
have the following identities,

8(E
�

) D 0.

Proof. Since8C8�

D 0, we have

h8E
C

, E
C

i D hE
C

, �8E
C

i D �h8E
C

, E
C

i.

Thus it follows that we have

h8E
C

, E
C

i D 0.

From (8 Æ8)(E
C

) D 0, we obtain

(3.1)

0D 8 Æ (8 Æ8)(E
C

) D (8 Æ8) Æ8(E
C

)

D �8E
C

C 2hE
C

, 8E
C

iE
�

C 2hE
�

, 8E
C

iE
C

D �8E
C

C 2hE
�

, 8E
C

iE
C

.

We also obtain

(3.2) 0D 8 Æ (8 Æ8) Æ8(E
C

) D 2hE
�

, 8E
C

i8E
C

.

From (3.1) and (3.2), we have

8E
C

D 0.

Similarly, we have

8E
�

D 0.

By a simple calculation, we have

Lemma 3.2. Let (8, E
�

) be a generalized almost contact structure and B a
smooth2-form. Then(eB

8e�B, eB E
�

) is a generalized almost contact structure.

By Definition 3.1, we have

8

3
C8 D 0.



GENERALIZED ALMOST CONTACT AND SASAKIAN STRUCTURES 49

Thus8 has three eigenvalues, namely 0,C
p

�1, �
p

�1. The kernel of8 is given by

L E
C

� L E
�

,

where L E
�

are line bundles generated byE
�

D �

�

C �

�

, respectively. We define

E(1,0)
D {X C � �

p

�18(X C �)I X 2 T M, � 2 T�M, hX C �, E
�

i D 0},

E(0,1)
D {X C � C

p

�18(X C �)I X 2 T M, � 2 T�M, hX C �, E
�

i D 0}.

Then E(1,0) is C
p

�1-eigenbundle andE(0,1) is �
p

�1-eigenbundle. We consider the
following four different complex vector bundles,

(3.3)
LC D L E

C

� E(1,0), LC D L E
C

� E(0,1),

L� D L E
�

� E(1,0), L� D L E
�

� E(0,1).

Lemma 3.3. Bundles E(1,0), E(0,1), L�, L� are isotropic.

Proof. Let A, B are sections ofE(1,0). By our definition, we havehA, E
�

i D 0.
It follows from 8C8

�

D 0 that

h8A, 8Bi D h
p

�1A,
p

�1Bi D �hA, Bi,

h8A, 8Bi D hA, �82Bi D hA, Bi.

ThereforeE(1,0) is isotropic. Similarly,E(0,1), L�, L� are isotropic sincehE
�

,E
�

i D 0.

According to [8], we define

DEFINITION 3.2. Let (8, E
�

) be a generalized almost contact structure. If either
of L� is Courant involutive, it is called a generalized contact structure. If bothL� are
Courant involutive, it is called a strong generalized contact structure.

An almost contact metric structure onM is (g,',� ,�), where (',� ,�) is an almost
contact structure andg is a Riemannian metric which satisfies

g('X, 'Y) D g(X, Y) � �(X)�(Y), 8X, Y 2 T M.

We define a generalized almost contact metric structure:

DEFINITION 3.3. Let (8, E
�

) be a generalized almost contact structure. If
G W T M � T�M ! T M � T�M is a generalized Riemannian metric which satisfies

�8G8 D G � E
C


 E
C

� E
�


 E
�

,
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then (G, 8, E
�

) is a generalized almost contact metric structure.

This definition satisfies the condition of generalized metric F-structure without a
signature [10].

From Definition 3.3, it follows thatG8 D 8G, G(E
�

) D E
�

and we have that
(G, G8 D 8G, GE

�

D E
�

) is also a generalized almost contact metric structure.

4. Generalized Sasakian structure

There is the intriguing correspondence between the geometry on the coneC(M) D
M�R

>0 and the geometry onM [3]. In fact, an almost contact structure (',� ,�) gives
rises to an almost complex structureI on C(M);

I D ' C �

�

�t
� dt 
 � ,

whereet
D r denotes the coordinate onR

>0. If I is integrable, an almost contact struc-
ture is called a normal almost contact structure. Let (8, E

�

D �

�

C �

�

) be a general-
ized almost contact structure onM. we recall a bundle map9 W T C(M)� T�C(M)!
T C(M)� T�C(M) by

9(E
C

, E
�

) D E
�




�

�t
�

�

�t

 E

�

C E
C


 dt � dt 
 E
C

D

0

B

B

�

�

�




�

�t
� dt 
 �

C

�

�




�

�t
�

�

�t

 �

�

�

C


 dt � dt 
 �
C

�

C


 dt �
�

�t

 �

�

1

C

C

A

.

Then it follows that

8C9(E
C

, E
�

)

is a generalized almost complex structures onC(M).

Proposition 4.1. There is a one-to-one correspondence between generalized al-
most contact structures(8, E

�

) on M and generalized almost complex structuresJ

on C(M) such that

L
�=�tJ D 0,

J
�

�t
2 T M � T�M, J dt 2 T M � T�M.

Proof. Let J be a generalized almost complex structure which satisfies above
conditions. SinceJ D �J �, if L

�=�tJ D 0 then we can write

J D JM C A

�

�t
�

�

�t

 AC B
 dt � dt 
 BC h

�

�t

 dt � h dt


�

�t
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whereJM W T M � T�M ! T M � T�M, A, B 2 T M � T�M and h 2 C1(M). From
J dt 2 T M�T�M, we havehD 0. J 2

D �id implies that (JM , B, A) is a generalized
almost contact structure.

8 C 9(E
C

, E
�

) is clearly a generalized almost complex structure which satisfies
above conditions.

The integrability condition of8C9(E
C

,E
�

) is given by the following proposition.

Proposition 4.2. A generalized almost complex structure8C9(E
C

,E
�

) on C(M)
is integrable if and only if a generalized almost contact structure is a strong generalized
almost contact structure and[[ E

C

, E
�

]] D 0.

Proof. Since E(1,0) is C
p

�1-eigenbundle of8, C
p

�1-eigenbundle of8 C
9(E

C

, E
�

) is generated by

E(1,0), E
C

�

p

�1
�

�t
, E

�

�

p

�1 dt.

By simple calculations, we have
��

X C �, E
C

�

p

�1
�

�t

��

D [[ X C �, E
C

]],

��

X C �, E
�

�

p

�1 dt

��

D [[ X C �, E
�

]],

��

E
C

�

p

�1
�

�t
, E

�

�

p

�1 dt

��

D [[ E
C

, E
�

]],

where X C � 2 0(E(1,0)). Since [[E
C

, E
�

]] is a real section,C
p

�1-eigenbundle of
8 C 9(E

C

, E
�

) is Courant involutive if and only if bothL� are Courant involutive
and [[E

C

, E
�

]] D 0.

Let R be an endomorphism ofT M � T�M given by

RD

�

r �1 0
0 r

�

D

�

e�t 0
0 et

�

.

Then the adjoints

R(8C9(E
C

, E
�

))R�1

is also a generalized almost complex structures onC(M). Let g be a Riemannian met-
ric on M. In Sasakian geometry, the Riemannian cone metric onC(M) is

Qg D dr2
C r 2g.
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Since R(8 C 9(E
C

, E
�

))R�1 correspond to the cone metric,R(8 C 9(E
C

, E
�

))R�1

is more important than8C9(E
C

, E
�

) when we consider about Sasakian structures.
The integrability condition ofR(8 C 9(E

C

, E
�

))R�1 is given by the following
theorem.

Theorem 4.3. A generalized almost complex structure R(8C9(E
C

, E
�

))R�1 on
C(M) is integrable if and only if the Nijenhuis operator on M satisfies

Nij M (A, B, C)

D 2
p

�1(hE
�

, AihB, Ci
�

C hE
�

, BihC, Ai
�

C hE
�

, CihA, Bi
�

)

for any A, B, C 2 0(E(1,0)
� L E

C

� L E
�

), where

hX C �, Y C �i
�

D

1

2
(�(Y) � �(X)).

Proof. Let L be C
p

�1-eigenbundle of R(8 C 9(E
C

, E
�

))R�1. R(8 C
9(E

C

,E
�

)R�1 is integrable if and only if NijC(M)jL D 0. Since theC
p

�1-eigenbundle
L is isotropic, NijC(M)jL is a trilinear operator. Thus we only need to consider elem-

ents in E(1,0), E
C

and E
�

. Let X C �, Y C �, Z C 
 be elements ofE(1,0). Then we
have from Definition 3.1

[[ R(X C �), R(Y C �)]]

D e�t R[[ X C �, Y C �]] C (�(Y) � �(X)) dt.

Similarly, we have
��

R(X C �), R

�

E
C

�

p

�1
�

�t

���

D e�t R[[ X C �, E
C

]] �
p

�1e�2t X C
p

�1� C (�(�
C

) � �
C

(X)) dt,

[[ R(X C �), R(E
�

�

p

�1dt)]]

D e�t R[[ X C �, E
�

]] C (�(�
�

) � �
�

(X)) dt,
��

R

�

E
C

�

p

�1
�

�t

�

, R(E
�

�

p

�1 dt)

��

D e�t R[[ E
C

, E
�

]] C
p

�1e�2t
�

�

�

p

�1�
�

C (�
C

(�
�

) � �
�

(�
C

)) dt.

Then it follows that

NijC(M)(R(X C �), R(Y C �), R(Z C 
 ))

D e�tNij M (X C �, Y C �, Z C 
 ).
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Similarly, we have

NijC(M)

�

R(X C �), R(Y C �), R

�

E
C

�

p

�1
�

�t

��

D e�tNij M (X C �, Y C �, E
C

)C
1

2

p

�1e�t (�(X) � �(Y)),

NijC(M)

�

R(X C �), R(Y C �), R(E
�

�

p

�1dt)
�

D e�tNij M (X C �, Y C �, E
�

),

NijC(M)

�

R(X C �), R

�

E
C

�

p

�1
�

�t

�

, R(E
�

�

p

�1dt)

�

D e�tNij M (X C �, E
C

, E
�

) �
1

2

p

�1e�t (�
�

(X) � �(�
�

)).

Thus we obtain

NijC(M)(A, B, C)

D e�tNij M (A, B, C) � 2
p

�1e�t
hE

�

, AihB, Ci
�

� 2
p

�1e�t
hE

�

, BihC, Ai
�

� 2
p

�1e�t
hE

�

, CihA, Bi
�

for any A, B, C 2 0(E(1,0)
� L E

C

� L E
�

). Therefore the integrability condition is
given by

Nij M (A, B, C)

D 2
p

�1(hE
�

, AihB, Ci
�

C hE
�

, BihC, Ai
�

C hE
�

, CihA, Bi
�

)

for any A, B, C 2 0(E(1,0)
� L E

C

� L E
�

).

An immediate corollary of Theorem 4.3 is

Corollary 4.4. Let (8, E
�

) be a generalized almost contact structure. If R(8C
9(E

C

, E
�

))R�1 is a generalized complex structure on C(M), then E(1,0)
� L E

�

is
Courant involutive. Therefore(8, E

�

) is a generalized contact structure.

Proof. It follows from Theorem 4.3 that

Nij M (A, B, C) D 0, A, B, C 2 E(1,0)
� L E

�

.

ThereforeE(1,0)
� L E

�

is Courant involutive.

DEFINITION 4.1. Let (8,E
�

) be a generalized almost contact structure. If a gen-
eralized almost complex structureR(8 C 9(E

C

, E
�

))R�1 is integrable, a generalized
almost contact structure is a called normal generalized almost contact structure.
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Note that this definition differs from a Vaisman’s definition[9]. We define a gen-
eralized Sasakian structure in terms of a generalized almost contact metric structure.

DEFINITION 4.2. A generalized Sasakian structure onM is a generalized almost
contact metric structure (G, 8, E

�

) such thatR(8 C 9(E
C

, E
�

))R�1 and R(G8 C
9(GE

C

, GE
�

))R�1 are generalized complex structures onC(M).

A generalized Sasakian structure (G, 8, E
�

) on M induces a generalized Kähler
structure (R(8C9(E

C

, E
�

))R�1, R(G8C9(GE
C

, GE
�

)R�1) on C(M).

REMARK 4.1. Definition 4.2 coincides with Vaisman’s definition in the case of
� D 0 under a modification of degreer [9, 10] (also see Proposition 4.1). The Sasakian
structure due to Vaisman allows transformations by 2-forms2r dr ^ � (� 2 T�M), how-
ever the one by our definition does not admit such aB-field transformation. General-
ized almost contact structures admitB-field transformations by 2-forms onM. However,
Lemma 2.3 and

d(r 2
�) ¤ 0, 8� 2 32T�M

show that our definition of generalized Sasakian structuresdoes not admit anyB-field
transformation. If h�, E

�

i D 0, there exists a generalized almost contact structure
(8� , E�

�

) such that

0

�

1 0
2

r
dr ^ � 1

1

A(8C9(E
C

, E
�

))

0

�

1 0

�

2

r
dr ^ � 1

1

A

D 8

�

C9(E�

C

, E�

�

).

However (G, 8� , E�

�

) is not a generalized almost contact metric structure.

EXAMPLE 4.1. Let (g, ', � , �) be a Sasakian structure. If we set

G D

�

0 g�1

g 0

�

, 8 D

�

' 0
0 �'

�

�

, E
C

D � , E
�

D �

then (G, 8, E
�

) becomes a generalized Sasakian structure.

The next theorem corresponds to Theorem 2.5.

Theorem 4.5 ([9]). A generalized Sasakian structure on a manifold M is equiva-
lent to a pair ('

�

, �
�

, �
�

, g) of normal almost contact metric structures with the same
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metric g which satisfies the following conditions

L
�

C

�

C

D �L
�

�

�

�

,(4.1)

�

�

� d�
�

C

1

4
L
�

�

L
�

�

�

�

D 0,(4.2)

d�
�

� �

�

^ L
�

�

�

�

�

1

2
(dL

�

�

�

�

)c
�

D 0,(4.3)

where� D g( � , ') and the upper indices c
�

denote

�

c
�(X1, : : : , Xk) D �('

�

X1, : : : , '
�

Xk), 8� 2 �k(M).

Note that a pair of Sasakian structures with the same metric satisfies these con-
ditions. In the case of a compact connected 3-dimensional manifold, a generalized
Sasakian structure is equivalent to a pair of Sasakian structures with the same metric.
In fact, we have

Theorem 4.6. Let M be a compact connected3-dimensional manifold. Then a
pair ('

�

, �
�

, �
�

, g) of normal almost contact metric structures corresponds to agen-
eralized Sasakian structure if and only if both structures are Sasakian.

Proof. A normal almost contact metric structure (',� ,�,g) is a Sasakian structure
if and only if � D d�, where� D g( � , ') (cf. Definition 6.4.4 and Definition 6.5.13 in
[3]). Thus it is sufficient to show that�

�

D d�
�

. Since M is 3-dimensional, we have

�

C

^ dL
�

C

�

C

D 0.

The inner product by�
C

yields

�

C

^ L
�

C

L
�

C

�

C

D dL
�

C

�

C

.

From (4.2) and Stokes’ theorem, we have

0¤
Z

�

C

^ �

C

D

Z

�

C

^

�

d�
C

�

1

4
L
�

C

L
�

C

�

C

�

D

Z

�

C

^ d�
C

.

Let U be the open set given by

U D {x 2 M I (�
C

^ d�
C

)x ¤ 0}.

Then U is not empty. It follows from Darboux’s theorem that we have local coordi-
nates (x, y, z) such that

�

C

D dz� y dx, �

C

D

�

�z
.
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Since �
�

C

�

C

D 0, there exits a functionf ¤ 0 such that

�

C

D f dx^ dyD f d�
C

.

From (4.1), we have

0D ��
�

�

L
�

�

�

�

D �

�

�

L
�

C

�

C

D �

�

�

�

� f

�z
dx^ dy

�

.

Let V be the open set given by

V D

�

x 2 U I
� f

�z
¤ 0

�

We assume thatV is not empty. Then we have�
C

D ��

�

on V . Since �
�

�

�

�

D 0,
we obtain

�

�

D h d�
�

D �h d�
C

,

whereh is a function. From (4.1), we have

� f

�z
d�

C

D �

�h

�z
d�

C

.

Then, from (4.2), we have
�

f � 1C
1

4

�

2 f

�z2

�

d�
C

D 0,

�

�

h � 1�
1

4

�

2 f

�z2

�

d�
C

D 0.

Thus it follows that

f � 1D �(h � 1).

Thus, for X, Y 2 T M, we obtain

g(Y, '
�

X) D �
�

(Y, X) D �

�

2

f
� 1

�

�

C

(Y, X) D g

�

Y, �

�

2

f
� 1

�

'

C

X

�

.

Thus it follows that

'

�

D �

�

2

f
� 1

�

'

C

.

Since'2
�

D �id C �
�


 �

�

, we have f D 1. However this is a contradiction because
� f =�z ¤ 0. Therefore� f =�z D 0 on U , we haveL

�

C

�

C

D 0 and �
�

D d�
�

on U .

Since�
C

^ �

C

¤ 0 on M, we haveU � U . SinceM is connected andU is not empty,
we haveU D M and �

�

D d�
�

on M.
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On a compact 3-dimensional manifold, a generalized Sasakian structure is equiva-
lent to a pair of Sasakian structures. However, there existsa non-compact example
which is not a pair of Sasakian structures.

EXAMPLE 4.2. Let (M 0, g0, J 0,!0) be a Kähler manifold andM D M 0

� (0,�=2).
To construct normal almost contact metric structures, we define

' D J 0, � D

�

�z
, � D dz,

g D sin(2z)g0 C dz
 dz,

wherez denotes the coordinate on (0,�=2). Then (g,�',� ,�) are normal almost contact
metric structures but not Sasakian structures.

On C(M) D M 0

� (0, �=2)� R
>0, we define complex structures and a metric by

J
�

D �' �

1

r
dr 


�

�z
C dz
 r

�

�r
,

Qg D r 2gC dr 
 dr .

Then (Qg, J
�

) is a bi-Hermitian structure and

!

�

D Qg( � , J
�

� ) D �r 2 sin(2z)!0 C 2r dr ^ dz,

d!
�

D �2r sin(2z) dr ^ !0 � 2r 2 cos(2z) dz^ !0.

Thus

d!
�

(J
�

� , J
�

� , J
�

� )

D �2r sin(2z)(r dz) ^ !0 � 2r 2 cos(2z)

�

�

1

r
dr

�

^ !

0

D �2r 2 sin(2z) dz^ !0 � 2r cos(2z) dr ^ !0

D �d(�r 2 cos(2z)!0).

Therefore (Qg,�r 2 cos(2z)!0, J
�

) is a generalized Kähler structure and induces a gener-
alized Sasakian structure. If we set� D (!0)�1 on M 0, we have

G D

�

1 0
� cos(2z)!0 1

��

0 g�1

g 0

��

1 0
cos(2z)!0 1

�

,

8 D

�

1 0
� cos(2z)!0 1

�

0

�

0
1

sin(2z)
�

� sin(2z)!0 0

1

A

�

1 0
cos(2z)!0 1

�

,

E
C

D

�

1 0
� cos(2z)!0 1

�

0

�

�

�z
0

1

A, E
�

D

�

1 0
� cos(2z)!0 1

��

0
dz

�

.
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