Title	L²-ESTIMATES ON WEAKLY q-CONVEX DOMAINS
Author(s)	Ji, Qingchun; Tan, Guo; Yu, Guangsheng
Citation	Osaka Journal of Mathematics. 2015, 52(1), p. 1- 14
Version Type	VoR
URL	https://doi.org/10.18910/57665
rights	
Note	

Osaka University Knowledge Archive : OUKA
https://ir. library.osaka-u.ac.jp/

L^{2}-ESTIMATES ON WEAKLY q-CONVEX DOMAINS

Qingchun JI, Guo TAN and Guangsheng YU

(Received June 6, 2013)

Abstract

We establish an estimate on weakly q-convex domains in \mathbb{C}^{n} which provides a unified approach to various existence results for the $\bar{\partial}$-problem. We also prove a Diederich-Fornaess type result for weakly q-convex domains.

1. Introduction

Let $\Omega \subseteq \mathbb{C}^{n}$ be a pseudoconvex domain and let $\phi \in C^{2}(\Omega)$ be a strictly plurisubharmonic function. A variant of Hörmander's theorem ([10]) states that for any $\bar{\partial}$-closed (0,1)-form $f=f_{\bar{j}} d \overline{z_{j}} \in L_{0,1}^{2}(\Omega$, loc) there exists a solution of $\bar{\partial} u=f$ satisfying

$$
\int_{\Omega}|u|^{2} e^{-\phi} \leq \int_{\Omega}|f|_{\sqrt{-1} \partial \bar{\partial} \phi}^{2} e^{-\phi}
$$

where $|f|_{\sqrt{-1} \partial \bar{\partial} \phi}^{2}:=\phi^{\bar{j} k} f_{\bar{j}} \overline{f_{\bar{k}}}$ and $\left(\phi^{\bar{j} k}\right):=\left(\phi_{j \bar{k}}\right)^{-1}$. A geometric observation is that $\sqrt{-1} \partial \bar{\partial} \phi$ is the curvature form of the Hermitian metric $e^{-\phi}$ on the trivial line bundle. As proved in [9], the length of the $(0,1)$-form could be calculated w.r.t. another curvature form. The pointwise norm $|f|_{\sqrt{-1} \partial \bar{\partial} \psi}^{2}$ is used in [9] instead of $|f|_{\sqrt{-1} \partial \bar{\partial} \varphi}^{2}$ where ψ is any strictly plurisubharmonic function such that $-e^{-\psi}$ is plurisubharmonic. The latter result was then further generalized to non-plurisubharmonic weights ([7], [8], [2], [3]), i.e., the curvature of the Hermitian metric on trivial bundle is not necessarily positive. Berndtsson-Błocki-Donnelly-Fefferman type results are closely related to the Ohsawa-Takegoshi extension theorem and Bergman metric (see [4], [5], [2], [8]).

We will consider, in the present paper, the $\bar{\partial}$-problem on q-convex domains. We follow [11] in defining the notions of q-convexity and q-subharmonicity. We begin by recalling some basic notions and related preliminaries on exterior algebra. We prove a Diederich-Fornaess type result for weakly q-convex domains (Theorem 1). Let $\varphi \in$ $C^{\infty}(\bar{\Omega})$ be a q-subharmonic function and let $\psi \in C^{\infty}(\bar{\Omega})$) be a function such that the real (1, 1)-form $\delta \sqrt{-1} \partial \bar{\partial} \varphi-\sqrt{-1} \partial \psi \wedge \bar{\partial} \psi$ is q-positive semi-definite (see Definition 3)

[^0]for some constant $\delta \in[0,4)$, we will establish the following a priori estimate
\[

$$
\begin{equation*}
\left\|\bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi}^{2}+\|\bar{\partial} g\|_{\varphi}^{2} \geq \frac{(2-\sqrt{\delta})^{2}}{4} \int_{\Omega}\left\langle F_{\varphi} g, g\right\rangle e^{-\varphi} \tag{*}
\end{equation*}
$$

\]

for any (p, q)-form $g \in \operatorname{Dom}\left(\bar{\partial}^{*}\right) \cap C_{p, q}^{\infty}(\bar{\Omega})$ on weakly q-convex domains with smooth boundary. Here we have used the notation $\left.F_{\varphi}=\varphi_{j \bar{k}} d \overline{z_{k}} \wedge \partial / \partial \overline{z_{j}}\right\lrcorner$. When $\psi=0$ we can choose $\delta=0$, so (*) generalizes Hörmander's estimate to q-convex domains and q-subharmonic weight functions. Actually, $(*)$ also implies the following DonnellyFefferman type estimate.

$$
\begin{equation*}
\left\|\bar{\partial}_{\varphi+\tau \psi}^{*} g\right\|_{\varphi+\psi}^{2}+\|\bar{\partial} g\|_{\varphi+\psi}^{2} \geq \tau^{2} \int_{\Omega}\left\langle F_{\psi} g, g\right\rangle e^{-\varphi-\psi} \tag{**}
\end{equation*}
$$

for any $g \in \operatorname{Dom}\left(\bar{\partial}^{*}\right) \cap C_{p, q}^{\infty}(\bar{\Omega})$ where $\varphi \in C^{\infty}(\bar{\Omega})$ is a q-subharmonic function, $\psi \in$ $C^{\infty}(\bar{\Omega})$ with $-e^{-\psi}$ being q-subharmonic and $\tau \in(0,1 / 2]$ is a constant. This estimate implies an existence theorem of Berndtsson-Błocki-Donnelly-Fefferman type (see Corollary 2 below). This kind of theorems may help produce a desired curvature term without the contribution of the metric which has important applications (e.g., Ohsawa-Takegoshi type extension theorems). The curvature operator F_{φ} of a certain Hermitian metric will play an important role in our formulation of main results. Applications for p-convex Riemannian manifolds can be found in [12].

Here are the main results of the present paper:

Theorem 1. Let $\Omega \Subset \mathbb{C}^{n}$ be a weakly q-convex domain with smooth boundary and let $r \in C^{\infty}(\bar{\Omega})$ be a defining function for Ω. Then for any strictly q-subharmonic function $\phi \in C^{\infty}(\bar{\Omega})$, there exist constants $K>0, \eta_{0} \in(0,1)$ such that for any $\eta \in$ $\left(0, \eta_{0}\right)$ the function $\rho:=-\left(-r e^{-K \phi}\right)^{\eta}$ is strictly q-subharmonic on Ω.

Theorem 2. Let Ω be a weakly q-convex domain in $\mathbb{C}^{n}(1 \leq q \leq n)$ and let $\varphi \in$ $C^{2}(\Omega)$ be a q-subharmonic function on Ω and $\psi \in C^{1}(\Omega)$. Assume that the real $(1,1)$ form $\delta \sqrt{-1} \partial \bar{\partial} \varphi-\sqrt{-1} \partial \psi \wedge \bar{\partial} \psi$ is q-positive semi-definite for some constant $\delta \in[0,4)$. Then for any $\bar{\partial}-\operatorname{closed}(p, q)$-form $f \in L_{p, q}^{2}(\Omega, \operatorname{loc})(0 \leq p \leq n)$, if

$$
\int_{\Omega}\left\langle F_{\varphi}^{-1} f, f\right\rangle e^{-\varphi+\psi}<\infty
$$

there exists $a(p, q-1)$-form $u \in L_{p, q-1}^{2}(\Omega, \varphi-\psi)$ such that

$$
\bar{\partial} u=f, \quad\|u\|_{\varphi-\psi}^{2} \leq \frac{4}{(2-\sqrt{\delta})^{2}} \int_{\Omega}\left\langle F_{\varphi}^{-1} f, f\right\rangle e^{-\varphi+\psi}
$$

where F_{φ}^{-1} is defined by (8) and it is required implicitly that $F_{\varphi}^{-1} f$ is defined almost everywhere in Ω.

Corollary 1. Let Ω be a weakly q-convex domain in $\mathbb{C}^{n}(1 \leq q \leq n)$ and let φ be a q-subharmonic function on Ω. Then for any $\bar{\partial}$-closed (p, q)-form $f \in L_{p, q}^{2}(\Omega$, loc) ($0 \leq p \leq n$), if

$$
\int_{\Omega}\left\langle F_{\varphi}^{-1} f, f\right\rangle e^{-\varphi}<\infty
$$

there exists $a(p, q-1)$-form $u \in L_{p, q-1}^{2}(\Omega, \varphi-\psi)$ such that

$$
\bar{\partial} u=f, \quad\|u\|_{\varphi}^{2} \leq \int_{\Omega}\left\langle F_{\varphi}^{-1} f, f\right\rangle e^{-\varphi} .
$$

Corollary 2. Let Ω be a weakly q-convex domain in $\mathbb{C}^{n}(1 \leq q \leq n)$ and let φ be a q-subharmonic function on $\Omega, \psi \in C^{2}(\Omega)$ be a function such that $-e^{-\psi}$ is q-subharmonic. For any constant $\delta \in[0,1)$ and $\bar{\partial}$-closed (p, q)-form $f \in L_{p, q}^{2}(\Omega$, loc $)$ ($0 \leq p \leq n$), if

$$
\int_{\Omega}\left\langle F_{\psi}^{-1} f, f\right\rangle e^{-\varphi+\delta \psi}<\infty
$$

then there exists $a(p, q-1)$-form $u \in L_{p, q-1}^{2}(\Omega, \varphi-\delta \psi)$ such that

$$
\bar{\partial} u=f, \quad\|u\|_{\varphi-\delta \psi}^{2} \leq \frac{4}{(1-\delta)^{2}} \int_{\Omega}\left\langle F_{\psi}^{-1} f, f\right\rangle e^{-\varphi+\delta \psi} .
$$

Corollary 3. Let Ω be a weakly q-convex domain in $\mathbb{C}^{n}(1 \leq q \leq n)$ and let φ be a q-subharmonic function on $\Omega, \psi \in C^{2}(\Omega)$ be a strictly plurisubharmonic function such that $-e^{-\psi}$ is q-subharmonic. For any constant $\delta \in[0,1)$ and $\bar{\partial}$-closed (p, q)-form $f \in L_{p, q}^{2}(\Omega, \operatorname{loc})(0 \leq p \leq n)$, if

$$
\int_{\Omega} \psi^{\bar{j} k} f_{I, \overline{j K}}{\overline{f_{I, \overline{k K}}}}^{-\varphi+\delta \psi}<\infty
$$

then there exists $a(p, q-1)$-form $u \in L_{p, q-1}^{2}(\Omega, \varphi-\delta \psi)$ such that

$$
\bar{\partial} u=f, \quad\|u\|_{\varphi-\delta \psi}^{2} \leq \frac{4}{q^{2}(1-\delta)^{2}} \int_{\Omega} \psi^{\bar{j} k} f_{I, \overline{j K}} \overline{f_{I, \overline{k K}}} e^{-\varphi+\delta \psi}
$$

where $\left(\psi^{\bar{j} k}\right):=\left(\psi_{j \bar{k}}\right)^{-1}$.
Corollary 4. Let Ω be a weakly q-convex domain in $\mathbb{C}^{n}(1 \leq q \leq n)$ and let φ be a q-subharmonic function on $\Omega, \psi \in C^{2}(\Omega)$ be a q-subharmonic function such that $-e^{-\psi}$ is q-subharmonic. For any $\bar{\partial}$-closed (p, q)-form $f \in L_{p, q}^{2}(\Omega, \operatorname{loc})(0 \leq p \leq n)$, if

$$
\int_{\Omega}\left\langle F_{\psi}^{-1} f, f\right\rangle e^{-\varphi}<\infty
$$

then there exists $a(p, q-1)$-form $u \in L_{p, q-1}^{2}(\Omega, \varphi)$ such that

$$
\bar{\partial} u=f, \quad\|u\|_{\varphi}^{2} \leq 4 \int_{\Omega}\left\langle F_{\psi}^{-1} f, f\right\rangle e^{-\varphi}
$$

Corollary 5. Let Ω be a bounded weakly q-convex domain in $\mathbb{C}^{n}(1 \leq q \leq n)$ and let φ be a q-subharmonic function on Ω. For any $\bar{\partial}$-closed (p, q)-form $f \in$ $L_{p, q}^{2}(\Omega, \varphi)(0 \leq p \leq n)$, there exists a $(p, q-1)$-form $u \in L_{p, q-1}^{2}(\Omega, \varphi)$ such that

$$
\bar{\partial} u=f, \quad\|u\|_{\varphi} \leq \frac{2 d}{q}\|f\|_{\varphi}
$$

where d is the diameter of Ω.
Since there are plenty of q-subharmonic functions which are not plurisubharmonic when $q \geq 2$, our results provide more flexibility in choosing weights for L^{2}-estimates. Such flexibility may help us make generalizations and improvements on existence results for the $\bar{\partial}$-problem. Let ρ be the function in Theorem 1 above, then it is easy to see that $-e^{-\psi}$ is strictly q-subharmonic on Ω where $\psi:=-\log (-\rho)$, as a consequence, we obtain Theorem 2.4 in [11]. Theorem 1 was originally proved by Diederich and Fornæss ([6]) for pseudoconvex domains, i.e. the case of $q=1$. Theorem 2 was obtained by Błocki ([5]) for (0,1)-forms on pseudoconvex domains. Corollary 1 is a strengthen version of Theorem 3.1 in [11]. In the case of $q=1$, Corollary 2 recovers a result due to Błocki ([3]). The arguments used in [3] and [5] do not indicate the estimates $(*),(* *)$. Corollary 3 above improves the main result in [1] and our Corollary 5 improves slightly a result due to Hörmander (Theorem 2.2.3 in [10]) when $q \geq 2$.

2. Weakly \boldsymbol{q}-convex domains

We begin by establishing the basic notation.
We will adhere to the summation convention that sum is performed over strictly increasing multi-indices. The coordinates of \mathbb{C}^{n} are chosen such that the standard Kähler form of \mathbb{C}^{n} is given by $\sqrt{-1} d z_{j} \wedge d \overline{z_{j}}$. Let Ω be a domain in \mathbb{C}^{n} and let $\phi \in C^{\infty}(\Omega)$, we denote by $\nabla^{0,1} \phi$ the (0,1)-part of the gradient $\nabla \phi$ of ϕ w.r.t. the standard Kähler metric, i.e. $\nabla^{0,1} \phi=\phi_{j} \partial / \partial \overline{z_{j}}$. We use $\langle\cdot, \cdot\rangle$ to denote the induced (pointwise) Hermitian inner product of (p, q)-forms on Ω. Following [10], the weighted L^{2} Hermitian inner product of (p, q)-forms will be denoted by $(\cdot, \cdot)_{\phi}$ and the corresponding Hilbert space will be denoted by $L_{p, q}^{2}(\Omega, \phi)$.

Let Ω be a domain in $\mathbb{C}^{n}, 1 \leq q \leq n$, we recall the notion of q-subharmonicity ([11], [14] and [13]).

DEFINITION 1. Let φ be an upper semi-continuous function on Ω, we say φ is q-subharmonic on Ω if the restriction of φ to any q dimensional complex submanifold of Ω is subharmonic w.r.t. the induced metric.

Remark 1. It is easy to show (see [1], [14]) that for any $\varphi \in C^{2}(\Omega), \varphi$ is q-subharmonic if and only if any sum of q eigenvalues of the complex Hessian

$$
\varphi_{i \bar{j}} d z_{i} \otimes d \overline{z_{j}}
$$

of φ is nonnegative. If any sum of q eigenvalues of the complex Hessian is positive, ϕ is then called strictly q-subharmonic. Moreover, every q-subharmonic function could be approximated by a decreasing sequence of smooth q-subharmonic functions. It is easy to see that 1 -subharmonicity is equivalent to plurisubharmonicity.

Following [11] and [13], we introduce the notion of q-convexity.
Definition 2. Assume Ω is a smooth domain, and r a defining function for Ω, then we say that Ω is weakly q-convex if at every point $b \in \partial \Omega$ we have

$$
r_{i \bar{j}}(b) g_{\overline{i K}} \overline{g_{\overline{j K}}} \geq 0
$$

for every $(0, q)$-form $g=g_{\bar{J}} d \overline{z_{J}}$ such that

$$
r_{i} g_{\overline{i K}}=0
$$

for all multi-indices K with $|K|=q-1$. For a general domain $\Omega \subseteq \mathbb{C}^{n}$, we call it weakly q-convex if it could be exhausted by smooth weakly q-convex domains.

Remark 2. It is easy to see that q-subharmonicity (convexity) implies $(q+1)$ subharmonicity (convexity). The notions of q-subharmonicity and q-convexity are both invariant under a unitary change of coordinates, but not preserved by biholomorphic transformations.

Assume $\Omega \subseteq \mathbb{C}^{n}$ is a smooth domain, and $r \in C^{\infty}(\bar{\Omega})$ is a defining function for Ω. Let $\phi \in C^{\infty}(\bar{\Omega})$ and $g \in C_{p, q}^{\infty}(\bar{\Omega})$ satisfy

$$
r_{i} g_{I, \overline{i K}}=0
$$

for all multi-indices K with $|I|=p,|K|=q-1$, then we have the standard Kohn-Morrey-Hörmander identity

$$
\begin{aligned}
\|\bar{\partial} g\|_{\phi}^{2}+\left\|\bar{\partial}_{\phi}^{*} g\right\|_{\phi}^{2}= & \int_{\Omega} \partial_{j} \partial_{\bar{k}} \phi g_{I, \overline{j K}} \overline{g_{I, \overline{k K}}} e^{-\phi} \\
& +\int_{\partial \Omega} \partial_{j} \partial_{\bar{k}} r g_{I, \overline{j K}} \overline{g_{I, \overline{k K}}} \frac{1}{|\nabla r|} e^{-\phi} \\
& +\int_{\Omega}\left|\partial_{\bar{j}} g_{I, \bar{J}}\right|^{2} e^{-\phi} .
\end{aligned}
$$

When Ω is q-convex, we obtain the following inequality

$$
\begin{equation*}
\|\bar{\partial} g\|_{\phi}^{2}+\left\|\bar{\partial}_{\phi}^{*} g\right\|_{\phi}^{2} \geq \int_{\Omega} \partial_{j} \partial_{\bar{k}} \phi g_{I, \overline{j K}} \overline{g_{I, \overline{k K}}} e^{-\phi} \tag{1}
\end{equation*}
$$

We denote by $\bigwedge^{p, q}$ the linear space of (p, q)-forms, i.e. $\bigwedge^{p, q}=\operatorname{span}_{\mathbb{C}}\left\{d z_{I} \wedge d \overline{z_{J}} \mid\right.$ $|I|=p,|J|=q\}$. For any real $(1,1)$-form $\theta=\sqrt{-1} \theta_{j \bar{k}} d z_{j} \wedge d \overline{z_{k}}$, we introduce a self-adjoint linear operator on $\bigwedge^{p, q}$ by setting

$$
\begin{equation*}
\left.F_{\theta}=\theta_{j \bar{k}} d \overline{z_{k}} \wedge \frac{\partial}{\partial \overline{z_{j}}}\right\lrcorner \tag{2}
\end{equation*}
$$

where \lrcorner means the interior product. We also set the notation $F_{\phi}:=F_{\sqrt{-1} \partial \bar{\partial} \phi}$ for a smooth function ϕ.

With the linear operator F_{ϕ}, we can rewrite the integrand on the right hand side of (1) as follows

$$
\begin{align*}
\partial_{j} \partial_{\bar{k}} \phi g_{I, \overline{j K}} \overline{g_{I, \overline{k K}}} & \left.=\left(\phi_{j \bar{k}} \frac{\partial}{\partial \overline{z_{j}}}\right\lrcorner g\right)_{I, \bar{K}} \cdot \overline{\left.\left(\frac{\partial}{\partial \overline{z_{k}}}\right\lrcorner g\right)_{I, \bar{K}}} \\
& \left.\left.=\left\langle\phi_{j \bar{k}} \frac{\partial}{\partial \overline{z_{j}}}\right\lrcorner g, \frac{\partial}{\partial \overline{z_{k}}}\right\lrcorner g\right\rangle \tag{3}\\
& =\left\langle F_{\phi} g, g\right\rangle .
\end{align*}
$$

Consequently, we obtain by the Kohn-Morrey-Hörmander identity and (3)

$$
\begin{equation*}
\|\bar{\partial} g\|_{\phi}^{2}+\left\|\bar{\partial}_{\phi}^{*} g\right\|_{\phi}^{2} \geq \int_{\Omega}\left\langle F_{\phi} g, g\right\rangle e^{-\phi}:=\left(F_{\phi} g, g\right)_{\phi} . \tag{4}
\end{equation*}
$$

Denote the eigenvalues of the matrix $\left(\theta_{j \bar{k}}\right)$ by

$$
\lambda_{1} \leq \cdots \leq \lambda_{n}
$$

after a unitary change of coordinates, we have $\left.F_{\theta}=\lambda_{j} d \overline{z_{j}} \wedge \partial / \partial \overline{z_{j}}\right\lrcorner$. For any multiindices I, J with $|I|=p,|J|=q$, set

$$
\begin{equation*}
\lambda_{I, J}:=\sum_{j \in J} \lambda_{j} \tag{5}
\end{equation*}
$$

it holds that

$$
\begin{aligned}
F_{\theta} d z_{I} \wedge d \overline{z_{J}} & \left.=\lambda_{j} d z_{I} \wedge d \overline{z_{j}} \wedge \frac{\partial}{\partial \overline{z_{j}}}\right\lrcorner d \overline{z_{J}} \\
& =\lambda_{j} d z_{I} \wedge d \overline{z_{j}} \wedge \sum_{a=1}^{q}(-1)^{a-1} \delta_{j j_{a}} d \overline{z_{j_{1}}} \wedge \cdots \wedge \widehat{d \overline{z_{j_{a}}}} \wedge \cdots \wedge d \overline{z_{j_{q}}} \\
& =\sum_{j \in J} \lambda_{j} d z_{I} \wedge d \overline{z_{J}}=\lambda_{I, J} d z_{I} \wedge d \overline{z_{J}}
\end{aligned}
$$

where the circumflex over a term means that it is to be omitted. Hence eigenvalues of the map F_{θ} are given by

$$
\begin{equation*}
\lambda_{I, J}, \quad|I|=p,|J|=q . \tag{6}
\end{equation*}
$$

DEFINITION 3. Let $\theta=\sqrt{-1} \theta_{j \bar{k}} d z_{j} \wedge d \overline{z_{k}}$ be a real (1,1)-form on $\mathbb{C}^{n}, 1 \leq q \leq n$. θ is said to be q-positive semi-definite (q-positive) if $\lambda_{1}+\cdots+\lambda_{q} \geq 0$ (>0) where $\lambda_{1} \leq \cdots \leq \lambda_{n}$ are the eigenvalues of the matrix $\left(\theta_{j \bar{k}}\right)$.

REmARK 3. By formula (6), θ is q-positive semi-definite if and only if the operator $F_{\theta}: \bigwedge^{p, q} \rightarrow \bigwedge^{p, q}$ is a positive semi-definite for any $0 \leq p \leq n$. We have the following criterion for q-subharmonicity of a smooth function ϕ.
ϕ is q-subharmonic (strictly q-subharmonic) on Ω if and only if F_{ϕ} is q-positive semi-definite (definite) at each point of Ω.

Since $F_{\theta}: \bigwedge^{p, q} \rightarrow \bigwedge^{p, q}$ is self-adjoint, we have the following orthogonal decomposition

$$
\begin{equation*}
\bigwedge^{p, q}=\operatorname{Ker} F_{\theta} \oplus \operatorname{Im} F_{\theta}, \tag{7}
\end{equation*}
$$

which implies that F_{θ} induces an isomorphism $\left.F_{\theta}\right|_{\operatorname{Im} F_{\theta}}: \operatorname{Im} F_{\theta} \rightarrow \operatorname{Im} F_{\theta}$. We can therefore define

$$
\begin{equation*}
F_{\theta}^{-1}:=\left(\left.F_{\theta}\right|_{\operatorname{Im} F_{\theta}}\right)^{-1}: \operatorname{Im} F_{\theta} \rightarrow \operatorname{Im} F_{\theta} \tag{8}
\end{equation*}
$$

for any real $(1,1)$-form θ. Notice that F_{θ} itself is not required to be invertible in the above definition.

When θ is q-positive, we know by (6)

$$
\begin{equation*}
\left(F_{\theta}^{-1} g\right)_{I, \bar{J}}=\lambda_{I, J}^{-1} g_{I, \bar{J}} \tag{9}
\end{equation*}
$$

holds for any $g=g_{I, \bar{J}} d z_{I} \wedge d \overline{z_{J}} \in \bigwedge^{p, q}$ and any given multi-indices I, J satisfying $|I|=p,|J|=q$.

If the function ϕ is further assumed to be strictly plurisubharmonic, we denote by $\left(\phi^{\bar{j} k}\right)$ the inverse matrix of the complex Hessian matrix $\left(\phi_{j \bar{k}}\right)$, then we have

$$
\begin{align*}
\left\langle F_{\phi}^{-1} g, g\right\rangle & =\lambda_{I, J}^{-1}\left|g_{I, \bar{J}}\right|^{2} \\
& =\left(\sum_{j \in J} \lambda_{j}\right)^{-1}\left|g_{I, \bar{J}}\right|^{2} \\
& \leq \frac{1}{q^{2}} \sum_{j \in J} \lambda_{j}^{-1}\left|g_{I, \bar{J}}\right|^{2} \tag{10}\\
& \stackrel{(3)(5)}{=} \frac{1}{q^{2}} \phi^{\bar{j} k} g_{I, \overline{\bar{j}}} \overline{I_{I, \overline{k K}}}
\end{align*}
$$

for arbitrary $g=g_{I, \bar{J}} d z_{I} \wedge d \overline{z_{J}} \in \bigwedge^{p, q}$.
We conclude this section by proving a Diederich-Fornaess type result for smooth bounded weakly q-convex domains.

Proof of Theorem 1. By Remark 3, it suffices to show that $\left\langle F_{\rho} g, g\right\rangle>0$ for any $0 \neq g \in \bigwedge^{0, q}$. A direct computation gives

$$
\begin{align*}
\left\langle F_{\rho} g, g\right\rangle=\eta(-r)^{\eta-2} e^{-\eta K \phi} \cdot & {\left[\left.K r^{2}\left(\left\langle F_{\phi} g, g\right\rangle-\eta K \mid \nabla^{0,1} \phi\right\lrcorner g\right|^{2}\right) } \\
& \left.\left.-r\left(\left\langle F_{r} g, g\right\rangle-2 \eta K \Re\left\langle\nabla^{0,1} \phi\right\lrcorner g, \nabla^{0,1} r\right\lrcorner g\right\rangle\right) \tag{11}\\
& \left.\left.+(1-\eta) \mid \nabla^{0,1} r\right\lrcorner\left.g\right|^{2}\right] .
\end{align*}
$$

Throughout the proof, we denote by A_{1}, A_{2}, \ldots various constants which are independent of η, K.

Since the boundary of Ω is assumed to be smooth, for any sufficiently small $\varepsilon>0$ there is a smooth map $\pi: N_{\varepsilon} \rightarrow \partial \Omega$ such that

$$
\begin{equation*}
\operatorname{dist}(z, \partial \Omega)=|z-\pi(z)|, \quad z \in N_{\varepsilon} \tag{12}
\end{equation*}
$$

where $N_{\varepsilon}:=\{z \in \Omega \mid r(z)>-\varepsilon\}$. As the function $r \in C^{\infty}(\bar{\Omega})$ is a defining function for Ω, there exists a constant $A_{1}>0$ which only depends on ε such that

$$
\begin{equation*}
\operatorname{dist}(z, \partial \Omega) \leq-A_{1} r(z), \quad A_{1} \leq|\nabla r(z)|, z \in N_{\varepsilon} \tag{13}
\end{equation*}
$$

For any $g \in \bigwedge^{0, q}, z \in N_{\varepsilon}$, set

$$
\left.\left.g_{1}(z)=\frac{1}{\left|\nabla^{0,1} r(z)\right|^{2}} \nabla^{0,1} r(z)\right\lrcorner \bar{\partial} r(z) \wedge g, \quad g_{2}(z)=\frac{1}{\left|\nabla^{0,1} r(z)\right|^{2}} \bar{\partial} r(z) \wedge \nabla^{0,1} r(z)\right\lrcorner g
$$

then we have $g=g_{1}(z)+g_{2}(z),|g|^{2}=\left|g_{1}(z)\right|^{2}+\left|g_{2}(z)\right|^{2}$ and

$$
\begin{equation*}
\left.\left.\nabla^{0,1} r(z)\right\lrcorner g_{1}(z)=0, \left.\quad\left|g_{2}(z)\right| \leq \frac{1}{\left|\nabla^{0,1} r(z)\right|} \right\rvert\, \nabla^{0,1} r(z)\right\lrcorner g \mid \tag{14}
\end{equation*}
$$

for every $z \in N_{\varepsilon}$. From (12) and the first inequality in (13), there is a constant $A_{2}>0$ such that

$$
\begin{align*}
\left|\left\langle F_{r} g_{1}, g_{1}\right\rangle(z)-\left\langle F_{r} g_{1}, g_{1}\right\rangle(\pi(z))\right| & =\left|\int_{0}^{1} \frac{d}{d t}\left\langle F_{r} g_{1}, g_{1}\right\rangle(t z+(1-t) \pi(z)) d t\right| \tag{15}\\
& \leq-A_{2} r(z)|g|^{2}
\end{align*}
$$

holds for any $z \in N_{\varepsilon}$. By (3), the identity in (14) and Definition 2, we get

$$
\left\langle F_{r} g_{1}, g_{1}\right\rangle(\pi(z)) \geq 0, \quad z \in N_{\varepsilon}
$$

Therefore, for any $z \in N_{\varepsilon}$, the following estimate follows from (15)

$$
\left\langle F_{r} g_{1}, g_{1}\right\rangle(z) \geq A_{2} r(z)|g|^{2}
$$

Taking into account of the inequality in (14) and $\left|g_{1}(z)\right| \leq|g|$, the above estimate implies that

$$
\begin{equation*}
\left.\left.\left\langle F_{r} g, g\right\rangle(z) \geq A_{2} r(z)|g|^{2}-\frac{A_{3}}{\left|\nabla^{0,1} r(z)\right|} \right\rvert\, \nabla^{0,1} r(z)\right\lrcorner g||g| \tag{16}
\end{equation*}
$$

holds for any $z \in N_{\varepsilon}$ where $A_{3}>0$ is another constant.
Since ϕ is strictly q-subharmonic on $\bar{\Omega}$, there is a constant $\sigma>0$ such that

$$
\begin{equation*}
\left.\left\langle F_{\phi} g, g\right\rangle(z)-\eta K \mid \nabla^{0,1} \phi(z)\right\lrcorner\left. g\right|^{2} \geq\left(\sigma-A_{4} \eta K\right)|g|^{2} \tag{17}
\end{equation*}
$$

holds for any $z \in \Omega$ where $A_{4}:=\sup _{\Omega}\left|\nabla^{0,1} \phi\right|^{2}$. From (11) and (17), there exists a constant $A_{5}>0$ such that

$$
\begin{equation*}
\left\langle F_{\rho} g, g\right\rangle(z) \geq \eta(-r)^{\eta-2} e^{-\eta K \phi}\left[K r^{2}(z)\left(\sigma-\frac{\eta}{1-\eta} A_{4} K\right)-A_{5}\right]|g|^{2} \tag{18}
\end{equation*}
$$

holds for any $z \in \Omega$.
When $K>4 A_{5} /\left(\sigma \varepsilon^{2}\right)$ and $\eta \in\left(0, \sigma /\left(2 A_{4} K+\sigma\right)\right)$, (18) implies that

$$
\begin{equation*}
\left\langle F_{\rho} g, g\right\rangle \geq \frac{1}{4} \eta(-r)^{\eta-2} e^{-\eta K \phi} K \varepsilon^{2} \sigma|g|^{2} \tag{19}
\end{equation*}
$$

holds on $\Omega \backslash N_{\varepsilon}$.
Similarly, for any constants $\eta \in\left(0, \sigma /\left(2 A_{4} K\right)\right)$ and $K>(4 / \sigma)\left(A_{2}+\left(\sigma^{2} /\left(4 A_{4}\right)\right)+\right.$ $\left.2 A_{6}^{2}+\sigma^{2}\right), A_{6}:=A_{3} /\left(2 A_{1}\right)$, from (11), (16) and (17) it follows that the following inequality holds on N_{ε}

$$
\begin{align*}
\left\langle F_{\rho} g, g\right\rangle \geq & \eta(-r)^{\eta-2} e^{-\eta K \phi}\left[K\left(\sigma-A_{4} \eta K\right)-A_{2}\right] r^{2}|g|^{2} \\
& \left.+2\left(A_{6}+A_{4} \eta K\right) \mid \nabla^{0,1} r\right\lrcorner g|r| g \mid \\
& \left.+(1-\eta) \mid \nabla^{0,1} r\right\lrcorner\left. g\right|^{2} \\
\geq & \eta(-r)^{\eta-2} e^{-\eta K \phi}\left[K\left(\sigma-A_{4} \eta K\right)-A_{2}-\frac{2 A_{6}^{2}+2 A_{4}^{2} \eta^{2} K^{2}}{1-\eta}\right] r^{2}|g|^{2} \tag{20}\\
\geq & \eta(-r)^{\eta-2} e^{-\eta K \phi}\left(\frac{K \sigma}{2}-A_{2}-4 A_{6}^{2}-\sigma^{2}\right) r^{2}|g|^{2} \\
\geq & \frac{1}{4} \eta(-r)^{\eta-2} e^{-\eta K \phi} K r^{2} \sigma|g|^{2}
\end{align*}
$$

By combining (19) and (20), we know Theorem 1 is true for any constant $K>$ $(4 / \sigma)\left(A_{2}+\sigma^{2} /\left(4 A_{4}\right)+A_{5} / \varepsilon^{2}+2 A_{6}^{2}+\sigma^{2}\right)$ and $\eta_{0}:=\sigma /\left(2 A_{4} K+\sigma\right)$.

3. Donnelly-Fefferman type estimate

We will prove, in this section, the existence results in the present paper. The key for our proofs is to establish an a priori estimate of Donnelly-Fefferman type from which we get the existence theorem 1 . Since the constant δ involved in this estimate would be allowed to have value zero, we also obtain an existence result of DonnellyFefferman type and Hömander type (with one weight function). We first recall a basic lemma from functional analysis which is due to Hörmander (see [10]).

Lemma. Let $H_{1} \xrightarrow{T} H_{2} \xrightarrow{S} H_{3}$ be a complex of closed and densely defined operators between Hilbert spaces. For any $f \in \operatorname{Ker} S$ and any constant $C>0$, the following conditions are equivalent.

1. There exists some $u \in H_{1}$ such that $T u=f$ and $\|u\|_{H_{1}} \leq C$.
2. $\left|(f, g)_{H_{2}}\right|^{2} \leq C^{2}\left(\left\|T^{*} g\right\|_{H_{1}}^{2}+\|S g\|_{H_{3}}^{2}\right)$ holds for each $g \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)$.

Proof of Theorem 2. We consider first the case where Ω is a bounded domain in \mathbb{C}^{n} with smooth boundary and $\varphi, \psi \in C^{\infty}(\bar{\Omega})$

We will apply the above lemma to following weighted L^{2}-spaces of differential forms

$$
H_{1}=L_{p, q-1}^{2}\left(\Omega, \varphi-\frac{1}{2} \psi\right), \quad H_{2}=L_{p, q}^{2}\left(\Omega, \varphi-\frac{1}{2} \psi\right), \quad H_{3}=L_{p, q+1}^{2}\left(\Omega, \varphi-\frac{1}{2} \psi\right)
$$

and the operators

$$
T=\bar{\partial} \circ e^{-(1 / 4) \psi}, \quad S=e^{-(1 / 4) \psi} \circ \bar{\partial}
$$

In order to use the above lemma, we need to show that the following estimate

$$
\begin{align*}
& \left|(f, g)_{\varphi-(1 / 2) \psi}\right|^{2} \\
& \leq \frac{4\left(F_{\varphi}^{-1} f, f\right)_{\varphi-\psi}}{(2-\sqrt{\delta})^{2}}\left(\left\|e^{(-1 / 4) \psi} \bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi-(1 / 2) \psi}^{2}+\left\|e^{-(1 / 4) \psi} \bar{\partial} g\right\|_{\varphi-(1 / 2) \psi}^{2}\right) \tag{21}
\end{align*}
$$

holds for arbitrary $g \in \operatorname{Dom}\left(\bar{\partial}^{*}\right) \cap C_{p, q}^{\infty}(\bar{\Omega})$.
Let $g \in \operatorname{Dom} \bar{\partial}^{*} \cap C_{p, q}^{\infty}(\bar{\Omega})$, from

$$
\left.\bar{\partial}_{\varphi}^{*} g=\bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g+\frac{1}{2} \nabla^{0,1} \psi\right\lrcorner g
$$

by using Cauchy's inequality with ε, it follows that

$$
\left.\left\|\bar{\partial}_{\varphi}^{*} g\right\|_{\varphi}^{2} \leq \frac{1+\epsilon}{\epsilon}\left\|\bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi}^{2}+\frac{1+\epsilon}{4} \| \nabla^{0,1} \psi\right\lrcorner g \|_{\varphi}^{2}
$$

for any positive constant ϵ. For any $\varepsilon \in[0,4)$, let

$$
\epsilon=\frac{2}{\sqrt{\delta}}-1,
$$

then the above inequality becomes

$$
\begin{equation*}
\left.\left\|\bar{\partial}_{\varphi}^{*} g\right\|_{\varphi}^{2} \leq \frac{2}{2-\sqrt{\delta}}\left\|\bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi}^{2}+\frac{1}{2 \sqrt{\delta}} \| \nabla^{0,1} \psi\right\lrcorner g \|_{\varphi}^{2} . \tag{22}
\end{equation*}
$$

Since $\delta \sqrt{-1} \partial \bar{\partial} \varphi-\sqrt{-1} \partial \psi \wedge \bar{\partial} \psi$ is q-positive semi-definite, we get the following inequality

$$
\begin{equation*}
\left.\delta\left\langle F_{\varphi} g, g\right\rangle \geq \mid \nabla^{0,1} \psi\right\lrcorner\left. g\right|^{2} . \tag{23}
\end{equation*}
$$

Substituting (22) and (23) into Hörmander's estimate (4), the q-subharmonicity of φ gives

$$
\begin{aligned}
\frac{2}{2-\sqrt{\delta}}\left\|\bar{\partial}_{\varphi-\frac{1}{2} \psi}^{*} g\right\|_{\varphi}^{2}+\|\bar{\partial} g\|_{\varphi}^{2} & \left.\geq\left\|\bar{\partial}_{\varphi}^{*} g\right\|_{\varphi}^{2}+\|\bar{\partial} g\|_{\varphi}^{2}-\frac{1}{2 \sqrt{\delta}} \| \nabla^{0,1} \psi\right\lrcorner g \|_{\varphi}^{2} \\
& \geq \frac{2-\sqrt{\delta}}{2} \int_{\Omega}\left\langle F_{\psi} g, g\right\rangle e^{-\varphi}
\end{aligned}
$$

which further implies the desired estimate ($*$) as follows

$$
\begin{aligned}
\left\|e^{-(1 / 4) \psi} \bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi-(1 / 2) \psi}^{2}+\left\|e^{-(1 / 4) \psi} \bar{\partial} g\right\|_{\varphi-(1 / 2) \psi}^{2} & =\left\|\bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi}^{2}+\|\bar{\partial} g\|_{\varphi}^{2} \\
& \geq\left\|\bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi}^{2}+\frac{2-\sqrt{\delta}}{2}\|\bar{\partial} g\|_{\varphi}^{2} \\
& \geq \frac{(2-\sqrt{\delta})^{2}}{4} \int_{\Omega}\left\langle F_{\varphi} g, g\right\rangle e^{-\varphi} .
\end{aligned}
$$

Since φ is q-subharmonic, the Cauchy-Schwarz inequality applied to the positive semidefinite Hermitian form $\left(F_{\varphi} \cdot, \cdot\right)_{\varphi}$ gives

$$
\begin{aligned}
\left|(f, g)_{\varphi-\frac{1}{2} \psi}\right|^{2} & =\left|\left(F_{\varphi} \circ F_{\varphi}^{-1} e^{(1 / 2) \psi} f, g\right)_{\varphi}\right|^{2} \\
& \leq\left(e^{(1 / 2) \psi} f, e^{(1 / 2) \psi} F_{\varphi}^{-1} f\right)_{\varphi}\left(F_{\varphi} g, g\right)_{\varphi} \\
& \leq \frac{4\left(F_{\varphi}^{-1} f, f\right)_{\varphi-\psi}}{(2-\sqrt{\delta})^{2}}\left(\left\|e^{-(1 / 4) \psi} \bar{\partial}_{\varphi-(1 / 2) \psi}^{*} g\right\|_{\varphi-\frac{1}{2} \psi}^{2}+\left\|e^{-(1 / 4) \psi} \bar{\partial} g\right\|_{\varphi-(1 / 2) \psi}^{2}\right)
\end{aligned}
$$

where F_{φ}^{-1} is defined by (8). Thus the estimate (21) has been proved for $g \in \operatorname{Dom} \bar{\partial}^{*} \cap$ $C_{p, q}^{\infty}(\bar{\Omega})$. By using the density lemma (Proposition 1.2.4 in [10]), we know that (22) holds for any $g \in \operatorname{Dom}\left(T^{*}\right) \cap \operatorname{Dom}(S)$. Consequently, by the lemma we mentioned at
the beginning of this section, there exists some $v \in L_{p, q-1}^{2}(\Omega, \varphi-(1 / 2) \psi)$ such that

$$
T v=f, \quad\|v\|_{\varphi-(1 / 2) \psi}^{2} \leq \frac{4}{(2-\sqrt{\delta})^{2}}\left(F_{\varphi}^{-1} f, f\right)_{\varphi-\psi}
$$

Set $u=e^{-(1 / 4) \psi} v$, then we get $u \in L_{p, q-1}^{2}(\Omega, \varphi-\psi)$ and

$$
\begin{equation*}
\bar{\partial} u=f, \quad\|u\|_{\varphi-\psi}^{2}=\|v\|_{\varphi-(1 / 2) \psi}^{2} \leq \frac{4}{(2-\sqrt{\delta})^{2}}\left(F_{\varphi}^{-1} f, f\right)_{\varphi-\psi} \tag{24}
\end{equation*}
$$

Theorem 2 now follows, in its full generality, from (24), the standard argument of smooth approximation and taking weak limit (see e.g. [10]).

Proof of Corollary 1. Corollary 1 follows from Theorem 2 by choosing $\delta=0$ and $\psi=0$.

Proof of Corollary 2. Let $\varphi_{1}=\varphi+\psi$ and $\psi_{1}=(1+\delta) \psi$, then φ_{1} is q-subharmonic. Since

$$
(1+\delta)^{2} \sqrt{-1} \partial \bar{\partial} \varphi_{1}-\sqrt{-1} \partial \psi_{1} \wedge \bar{\partial} \psi_{1}=(1+\delta)^{2}\left[\sqrt{-1} \partial \bar{\partial} \varphi+\sqrt{-1} e^{\psi} \partial \bar{\partial}\left(-e^{-\psi}\right)\right]
$$

the assumption that φ and $-e^{-\psi}$ are both q-subharmonic functions implies that $(1+\delta)^{2} \sqrt{-1} \partial \bar{\partial} \varphi_{1}-\sqrt{-1} \partial \psi_{1} \wedge \bar{\partial} \psi_{1}$ is q-positive semi-definite. Applying Theorem 2 to the weights φ_{1} and ψ_{1}, we obtain Corollary 2.

Proof of Corollary 3. Corollary 3 follows directly from Corollary 2 and the pointwise inequality (10).

Proof of Corollary 4. Corollary 4 follows directly from Corollary 2 by choosing the constant δ to be 0 .

Proof of Corollary 5. Without loss of generality, we assume that Ω contains the origin of \mathbb{C}^{n}. Let $\psi=q|z|^{2} / d^{2}$, then (9) implies that $F_{\psi}^{-1}=\left(d^{2} / q^{2}\right)$ Id on (p, q)-forms. Since the complex Hessian of $-e^{-\psi}$ is given by

$$
\frac{q}{d^{2}} e^{-\psi}\left(d z_{i} \otimes d \overline{z_{i}}-\frac{q}{d^{2}} z_{i} d z_{i} \otimes z_{j} d \overline{z_{j}}\right)
$$

we know that any sum of q eigenvalues of the complex Hessian of $-e^{-\psi}$ is no less than

$$
\frac{q}{d^{2}} e^{-\psi}\left[\left(1-\frac{q}{d^{2}}|z|^{2}\right)+q-1\right]=\frac{q^{2}}{d^{2}} e^{-\psi}\left(1-\frac{|z|^{2}}{d^{2}}\right) \geq 0
$$

So $-e^{-\psi}$ is, by definition, a q-subharmonic function on Ω (but not plurisubharmonic). Applying Corollary 4 with the weight $\psi=q|z|^{2} / d^{2}$, we obtain the following estimate for the solution u

$$
\|u\|_{\varphi}^{2} \leq \frac{4 d^{2}}{q^{2}}\|f\|_{\varphi}^{2}
$$

This completes the proof of Corollary 5.

References

[1] H. Ahn and N.Q. Dieu: The Donnelly-Fefferman theorem on q-pseudoconvex domains, Osaka J. Math. 46 (2009), 599-610.
[2] B. Berndtsson: The extension theorem of Ohsawa-Takegoshi and the theorem of DonnellyFefferman, Ann. Inst. Fourier (Grenoble) 46 (1996), 1083-1094.
[3] Z. Błocki: A note on the Hörmander, Donnelly-Fefferman, and Berndtsson L^{2}-estimates for the $\bar{\partial}$-operator, Ann. Polon. Math. 84 (2004), 87-91.
[4] Z. Błocki: The Bergman metric and the pluricomplex Green function, Trans. Amer. Math. Soc. 357 (2005), 2613-2625.
[5] Z. Błocki: Suita conjecture and the Ohsawa-Takegoshi extension theorem, to appear in Invent. Math.
[6] K. Diederich and J.E. Fornaess: Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions, Invent. Math. 39 (1977), 129-141.
[7] K. Diederich and G. Herbort: Extension of holomorphic L^{2}-functions with weighted growth conditions, Nagoya Math. J. 126 (1992), 141-157.
[8] K. Diederich and T. Ohsawa: An estimate for the Bergman distance on pseudoconvex domains, Ann. of Math. (2) 141 (1995), 181-190.
[9] H. Donnelly and C. Fefferman: L^{2}-cohomology and index theorem for the Bergman metric, Ann. of Math. (2) 118 (1983), 593-618.
[10] L. Hörmander: L^{2} estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89-152.
[11] L.-H. Ho: $\bar{\partial}$-problem on weakly q-convex domains, Math. Ann. 290 (1991), 3-18.
[12] Q. Ji, X. Liu and G. Yu: L'estimates on p-convex Riemannian manifolds, Adv. Math. 253 (2014), 234-280.
[13] T. Napier and M. Ramachandran: The Bochner-Hartogs dichotomy for weakly 1-complete Kähler manifolds, Ann. Inst. Fourier (Grenoble) 47 (1997), 1345-1365.
[14] H. Wu: On certain Kähler manifolds which are q-complete; in Complex Analysis of Several Variables (Madison, Wis., 1982), Proc. Sympos. Pure Math. 41, Amer. Math. Soc., Providence, RI, 1984, 253-276.

Qingchun Ji
School of Mathematics
Key Laboratory of Mathematics for Nonlinear Sciences Fudan University
Shanghai 200433
China
e-mail: qingchunji@fudan.edu.cn
Guo Tan
School of Mathematics
Key Laboratory of Mathematics for Nonlinear Sciences
Fudan University
Shanghai 200433
China
e-mail: 10210180016@fudan.edu.cn
Guangsheng Yu
School of Mathematics
Key Laboratory of Mathematics for Nonlinear Sciences
Fudan University
Shanghai 200433
China
e-mail: 12110180009@fudan.edu.cn

[^0]: 2000 Mathematics Subject Classification. 32A38, 32W05.
 Partially supported by NSFC (11171069, 11322103).

