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Abstract

In this paper, we will introduce a simplicial complex,{#) defined by a quiver
Q and a family’H of paths inQ. We call To(#) a path complex of{{ in Q. Let
G be a finite group, and denote by S@)(and CosefG) respectively the totality of
subgroups ofG, and that of left cosetglL € G/L of subgroupsL of G. We will
particularly focus on quiverQQs and Qcg obtained naturally from posets S@p
and CosefB) ordered by the inclusion-relation. Then various propsrtof path com-
plexes associated tQs and Qcg will be studied.
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1. Introduction

Let G be a finite group. Denote by Sdp] the totality of subgroups o6G. The
structure of the subgroup lattice (S&)( <), where< is the inclusion-relation, is quite
important for investigating the groug itself. In more general, for a famiyD C
Sgp@G) of subgroups, we are interested in the structure of a pd3et). This tells us
that how certain subgroups @& are piled up, or related each other. On the other hand,
denote by Cose®) the totality of left cosetglL € G/L of subgroupsL of G which is
regarded as a poset with respect to the inclusion-relaiohet ¢: CosetG) — SgpG)
be a surjectives-map defined by(glL) := L9 for all cosetsgL € Coset(5). Then the
subgroup lattice (SgR), <) is contained in (Cose®), €). Furthermore, (Sg&), <)
is realized by gluing, viap, some cosets in (Cos&}, €). For example, we consider
a sequence

G:=Sym(1,2,3,4) > L:=Sym(2,3,4)> H :=Sym(3, 4)

of subgroups where SymX(| is the symmetric group on a s&. The following is a
part of (CosefG), ).

G
(12)L (14)L (13)L

N N N

(142)H  (132H  (HH (HQ)H  (UDHH  (13)QHH

Then identifying some cosets via, we have the following which is a part of

(SgpG), ).
G

_— T

J) L4 JE)

>—<>—<

H(124) — H(l4) H(123) — H(l}) H(l4)(23) — H(l})(24)

From this reason, our main interests are (&)pK) and (Cosetg), <), and also
their subposets. In order to examine those posets in moegl,det consider a quiver
Qp associated to a poseP( <) whose vertex set i and an arrow § — b) for
a, b € P is defined precisely whea > b. Then we obtain quiver§s and Qcg from
posets Sgpk) and CosetG) respectively. Furthermore, we introduce a simplicial eom
plex To(#) defined by a quivelQ and a family of paths inQ. We call To(#) a
path complex of{ in Q. In this paper, we study various properties of path complexe
associated t@Q)s and Qcs. At the same time, a general theory by using arbitrary quiv-
ers instead 0fQg and Q¢g is also developed.
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The paper is organized as follows: In Section 2, we recallbthsic definitions on
quivers Q. In Section 3, some variations @ are defined. In particular, the extended
quiver QU of Q is our fundamental object in this paper, and the closQref Q is
important for defining homology of. In Section 4, we consider quivef3s and Qcg
appeared in the above. In Section 5, we establish three kihd®mologies ofQ by
using familiesP(Q), P(Q)*", EQ of paths in the closur&® of Q. A family EQ also
provides a simplicial complex which reflects the originaivgu Q. In Section 6, we
introduce a path complex g{#) mentioned above, and develop some general theory
on To(H). Moreover, we deal with those complexes associated to ttenéad quivers

qu and Qg‘é which we call subgroup complexes and coset complexes riéaglgc In
Section 7, some other properties of our subgroup and cosepleges are investigated.

2. Preliminaries

In this section, we recall some definitions related to quivand establish our no-
tations which will be used later. Throughout this paper, Rebe a commutative ring
with the identity element. For a s&t, denote by SynX) the symmetric group oiX.
For mapsf: X — Y andg: Y — Z, the composition mapg o f is read from right to
left, namely g o f)(x) := g(f(x)) € Z for any x € X.

DEFINITION 2.1. A quiverQ is a quadruple

Q = (Qo, Q1, (8: Q1 — Qq), (r: Q1 — Qo))

where Qq (# @) and Q; are sets, and their elements are called vertices and arrbws o
Q respectively. Furthermors andr are maps fromQ: to Qp. For an arrowa € Qq,

if s(o) =a andr(x) = b then denote byai> b or « = (a — b). Elementss(«) and

r (o) are called the start and range @frespectively.

DEFINITION 2.2. LetQ = (Qqg, Q1, S, r) be a quiver.
(1) A pathA in Q is either a sequenceqay,...,ax) (k> 1) of arrowse; = (g_1 —
g) € Q; satisfyingr(«;) = s(aj+1) for (1 <i <k—1), or the symbole, for a € Qg
which is called the trivial path. In this case, we also write

A=(0>a—>a— a1 — &)
or
€ = ().

Note that we identify a vertexa with e,. Denote byP(Q) and P(Q)"™" respectively
the totality of paths inQ, and that of non-trivial paths i1Q.

(2) For a non-trivial pathA = (a1,a,...,ak) € P(Q), defines(A) := s(ay) andr(A) :=
r(ag). Furthermore, defing(e,) := a andr(e,) := a for a € Q.
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(3) For a non-trivial pathA = (aq, @2, ..., ax) € P(Q), denote byl(A) the length

k of A. We setl(e,) := 0 for a € Qp. The notationP(Q); (i > 0) stands for the
totality of paths of length, namely P(Q); := {A € P(Q) | I(A) = i}. In particular,
P(Q)o = {(a) | a € Qp} is the totality of trivial paths inQ.

(4) Fora,be Qg and a subset! € P(Q), denote byH._., the totality of pathsA € H
with s(A) = a andr(A) = b.

(5) The path algebr&[Q] of Q over R is the R-free module with all paths irQ as
basis, and a multiplication oR[Q] is defined by extending bilinearly the composition

N [ 2T ag, B1, - - -, Bm) if  r(ak) = s(B),
A1fz = {O otherwise
of pathsA; = (a1, ..., ), A2 = (B1, ..., Bm) € P(Q). Then R[Q] is an associative

R-algebra.

DEFINITION 2.3. For a setX, denote byMod(X)r the R-free module with basis
X. Under this notation, we have th& Q] = Mod(P(Q))r as R-modules.

DEFINITION 2.4 (Proper paths). LeQ = (Qoq, Q1, S, r) be a quiver, andA =
(a0 — --- = &) € P(Q) (k> 0) be a path inQ.
(1) Denote byOb(A) := {ay, ..., a} € Qo the set of vertices of) which makeA.
(2) A is proper ifa # a; for all distincti, j (0 <1i, j <k). Note thatA is proper if
and only if |[Ob(A)| = k 4+ 1. In particular, a trivial path is always proper.
(3) For a subset{ < P(Q), denote byHP" the totality of proper paths irH. For
example, the notatioP(Q)™ (i > 0) means B(Q)i)P" = P(Q)i N P(Q)".

DEFINITION 2.5 (G-quivers). LetQ = (Qoq, Q1, S, ) be a quiver, ands be a
group. We callQ a G-quiver if the following conditions hold:
(1) G acts on the setQq and Q, that is, there exist group homomorphisrfis G —
Sym(Qo) and f;: G — Sym(Q1). Forg € G, a € Qp, anda € Q1, denote byg-a :=
fo(g)(@) and g- « := fi(g)(a).
(2) Forge G anda € Q1, we have thas(g-a) = g-s(e) andr(g-a) =g-r(a). In
other words, ifa = (a — b) theng-a =(g-a — g-b).
Note that for vertices, b € Qq, if g-a =b for someg € G then we writea ~¢ b.

REMARK 2.6. LetQ = (Qo, Q1,s,r) be aG-quiver. ThenG acts on bothP(Q)
andP(Q)P" in such a way thag- A := ((9-«1),...,(9 o)) for A = («q,...,a) € P(Q)
andg € G.

3. Some variations ofQ

In this section, we introduce some variations of a qui@rIn particular, the ex-
tended quiverQ" of Q is a fundamental object in this paper, and the closQref Q
will play an important role in Section 5 where a homology @fis defined.
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DEfFINITION 3.1 (Extended quivers; cf. Definition 3.9 and Remark 3.104}).[
Let Q = (Qo, Q1, S, r) be a quiver. For each arrow = (a — b) € Q1, we define the
symbolta. Set Q™ := {'a | @ € Q1} and Q\¢:= Q; U Q}*". Then

Q"= (Qo, Q1" (s: Q1" = Qu), (r: Q" ~ Qo)

forms a quiver wheres andr are extended or@‘{d ass(ta) :=r(a) =b andr () :=
s(e) = a for « = (a — b) € Q;. Thus'a = (b — a). We call'a the opposite arrow
of «. Note thatP(Q) € P(QUY).

REMARK 3.2. If Q is a G-quiver then, fora« = (a — b) € Q1 and g € G,
we define,
g-(@):="(9-0)="(g-a—g-b)=(g-b—g-a).
This makesQUd a G-quiver.
NoTATION 3.3 (Up-down paths). For arrows, 8 € Q1 such thatr (@) = r(B),
we just write A = («, B) for a pathA = («, '8) in QU wherer(«) = r(8) = s('B).
Similarly, for arrowsa, 8 € Q; such thats(«) = s(8), the notationA = («, 8) indicates
a pathA = (‘a, B) in QI wherer (‘o) = s(a) = s(8). For example, for arrows;; =
(@a—hb), ax=(c—>b), ag=(d —c), g = (d — €) in Q, the notation
A=@3bEZcEdB e
implies a path
A=@SB b B g g
in QUY. So any pathA € P(Q'Y) in QUd can be expressed as= (ag“ a; Zay —--- —

a1 = a) for somea; € Q1 (i =1,...,Kk) where— means— or <. Throughout this
paper, we frequently use this way of writing for paths withasing opposite arrows.

DEFINITION 3.4 (Restrictions). LefQ = (Qo, Q1,s,r) be a quiver. For a subset
A C Q1, we set

(Qa)o:={sl@) [ € A} U{r(e) | @ € A} S Qo.

Denote the restrictions|a: A — (Qa)o andr|a: A — (Qa)o by just the same notations
s andr. Then Qa := ((Qa)o, A, s, 1) forms a quiver which we call the restriction of
Q to A

DerINITION 3.5 (Closures). LetQ = (Qq, Q1, S, r) be a quiver. The maps
s, r: Q1 — Qp can be extended as maps
s: P(Q™"— Qp by A s(A),
r:P(Q™"— Qp by Arr(A)
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Then Q := (Qo, P(Q)™", s, r) forms a quiver which we call the closure 6.
ExAmMPLE 3.6. LetQ be a quiver defined as follows:
asbhec
This yields thatP(Q)o = Qo = {a, b, ¢}, P(Q); = {(a— b), (b £ c)}, andP(Q)z2 =
{(ai> bi ¢)}. Then by the definition of the closure &, we have that
P(Qo=(a bl P@Q:=(ap A=@—>0) PQ:2={@>b50)

where A; comes fromP(Q),. Similarly

P(Qo ={a b c}, P(Qu={p ALdAr=(a—0), PQr={a>bsc)

where A, comes fromP(Q),. Now setQP:= Q and QX := QK1 (k > 1). Then we
have that

P(Qk)o = {a, b! C}1 P(Qk)l = {O{, ‘3, Alr LR Ak}l P(QK)Z = {(ai) b i C)}

where Aj (1 <i < k) is an arrow froma to c. In Section 5.2, we will calculate a
homology of QX (k > 0).

4. Quivers from groups

Let G be a group. In this section, we introduce quivés and Qcs associated
to subgroups ofG, and to left cosets of subgroups & Later in Sections 6 and 7,
they will be investigated in more detail.

4.1. Subgroup quiversQg. First of all, we establish a quiver associated to a
poset (partially ordered set) in general.

DEFINITION 4.1. Let (P, <) be a poset. For elements b € P, we define an
arrow @ — b) precisely whena > b. Put @Qp)o := P and Qp)1 := {(&a — b) |
a,b e P, a> b}. Then denote by

Qr := ((Qr)o, (QP)1, (5: (QP)1 — (Qr)a), (: (Qr)1 — (Qp)o))
a quiver wheres(o) := a andr(«) :=b for « = (a — b) € (Qp)1.

REMARK 4.2. Suppose thatR, <) is a G-poset, namelyG acts on the seP,
and the action ofG preserves the orderingg. Then it is clear thatQp becomes a
G-quiver.
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DEFINITION 4.3. LetG be a group, and let SgB( be the totality of subgroups
of G including the whole groupgs and the trivial subgrouge}. This can be viewed
as a poset together with the inclusion-relatisn Denote by

Qc = Q(sgpe),2)

a quiver associated to a poset (S@h(=) (see Definition 4.1). We calQs a subgroup
quiver of G.

REMARK 4.4. In this paper, the extended qui\/@lf‘Gd of Qg (see Definition 3.1)
is our interest rather than juf)g itself. Indeed, a patiA = (Lo — --- — Li) in Qg
is simply an inclusion-chainlp > --- > L) of subgroups ofG. However, in Q4
inclusion-chains l{p > -+ > Ly =My <--- < M), (Lo <---<Lyk=My>--- >
M;), and their every combinations are considered as pathss Q’gﬁ has much more
information of the subgroup lattice (Sdp), <).

4.2. Coset quiversQcg.

DEFINITION 4.5. LetG be a group, and let Cos&j := ULEsgp@) G/L be the
totality of left cosets ofL in G for all subgroupsL € Sgp@G). We regard Cose®) as
a poset together with the inclusion-relatigh Denote by

Qcc := Qcosetp).)

a quiver associated to a poset (Co88t(C) (see Definition 4.1). We calQcs a coset
quiver of G. As in Remark 4.4, the extended quin*é% of Qcc is an object for
consideration rather than juQce.

REMARK 4.6 (G-quivers Qg and Qcg). (Sgp@), <) is a G-poset together with
G-conjugate action, that is, foy € G and L € Sgp@G), g- L := gLg™? = L9 is
a member of Sgiig). FurthermoreG acts on Cose) by the left multiplicationx -
gL := x(gL) = (xg)L for x € G and gL € Coset). This makes (CoseR), €) a G-
poset. Thus by Remark 4.2, associated quiv@es and Qcg are bothG-quivers, and
so areQY and QY% by Remark 3.2. In particulaR(QY) and P(QLL) are G-invariant
by Remark 2.6.

On the other hand, for a cosetL € G/L and x € G, we have that dL)x =
(9X)(x~1Lx) = (gx)LX. This implies thaiG acts on Cose®) by the right multiplication.

Now, we introduce paths QY. obtained from paths irQ.
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DEFINITION 4.7. For a pathA = (Lo —---— Li) € P(QY) in Q¥ and a subset
D C P(QY), set
&(A) = {(Ao—---— A) € P(QER) | Aj € G/Lj (0= k),
&(D) = | J &(a) < P(QL).
AeD

In particular, we have thaB({A}) = &(A).

REMARK 4.8. LetH < K < G be subgroups o5. Suppose tha6 is finite.
(1) For each cosetyH in G/H, there exists an unique cosétin G/K containing
gH, that is, A = gK.
(2) For each cosegK in G/K, there are exactly := |K : H| cosets inG/H con-
tained ingK. Indeed, ifK =a;H U---UaH is a decomposition into left cosets of
H in K then{gaH, ..., gaH} is the set of all required cosets.
(3) For subgroupd.i, L, < G, suppose thatiL; € bL, for a,b e G. Thenbla e
(b‘la)Ll Cl,andL; = (b‘la)‘l(b‘la)Ll - (b‘la)‘le = Lo, ThusL; < Ly In
particular, ifaL; = bL, then L; = L, and this implies thatG/L; N G/L, = @ if
Ly # L. It follows that if A € P(di) is proper then so is any path iB(A).

From the observations in Remark 4.8 (1) and (2), path&(n) can be described
according to up-down information ok. We demonstrate this fact in the next example.

EXAMPLE 4.9. Suppose thaG is finite. Let A = (Lo« Ly — L, — L3 «
L) € P(QY) be a path inQY which is drawn as follows:

L/LI\L L
N S

In other words,A is an inclusion-chainl{yp < L; > L, > L3 < L4) of subgroupsL;
of G. In this case, any pathsA§ < A; — A, — Az < As) in B(A) are described as
follows: First, any cosegLy in G/Lo can be taken ag\. A cosetA; in G/L; must
contain Ag = glLo. So it is uniquely determined ad; = gL;. Since a coset\; in
G/L, is contained inA; = gLy, it is one ofgaLy, ..., gal, whereL; = a3l U
---UaL, is a decomposition into left cosets &f in L;. By the same way, for each
A, =ga L, there are exactlyL, : L3| cosetsAsz in G/L3 contained inA,. Finally, for
each such cosetz = hL3 in G/Lg3, A4 is uniquely determined a84 = hL4. Therefore
the number of paths iB(A) is

IG: Lol x 1x |Ly:La|x|La:Lg|x 1.
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Refer to Proposition 7.4 for a general result on the numbepaths inG(A).

REMARK 4.10 G-invariant 3(D)). Recall thatQ¥! and QU< are bothG-quivers,
and thatP(Q“Gd) and P(Qg%) are preserved bg-conjugate action and the left multiplica-

tion respectively (see Remark 4.6). L&t= (Lo—---—Ly) € P(di). Then®(A) is G-
invariant under the left multiplication, that is, for a pdth= (goLo—- - - —gxLi) € B(A)
andx € G, a pathx - I := (xgoLo — - - - — xgLy) is in &(A). In particular, so is5(D)

for any subseD C P(QWY).

On the other hand, for a cosetL € G/L and x € G, we have that dL)x =
(9X)(x LX) = (gx)L*. This tells us that ifD is G-invariant, then so is5(D) under
the right multiplication.

Lemma 4.11(Semi-regularity) Let A = (Log—---—Ly) € P(Q”Gd) be a path in
QY. and let G be a finite group. Suppose that there exigt (0 < i # j < k) such
that ged(L;|, |[Lj]) = 1. Then the action of G oB(A) is semi-regular. In particular
|G| divides |&(A)].

Proof. For anyl’ = (XoLo — -+ — xLk) € B(A), let S be the stabilizer inG
of T, that is, S={g e G | g-T =T} = N_o(L)%" < (L)X N (L)~ . Since
ged(Lil, |[L;[) = 1 by our assumption, we have thdt= {e}. O

5. Homology R-modules associated tdQ

Let Q = (Qo, Q1,s,1) be a quiver, and 1eQ = (Qo, P(Q)™", s, r) be the closure
of Q (see Definition 3.5). The path algebR{Q] = Mod(P(Q))r of Q over R can be
regarded as amR-complex together with a certaiR-endomorphismd of R[Q]. Then
we consider subcomplexedod(P(Q)P)r and Mod(EQ)r of R[Q] corresponding to
families P(Q)P" and EQ in P(Q), so that three kinds of homologies associatedto
are defined. Furthermore, we see tf&® provides a simplicial compleXgg which
reflects the original quiveQ. For homological algebras, we refer to [1, Chapter IV].

5.1. Families of paths andR-complexes. Recall that the seP(Q) of paths in
Q is described as follows:

P(Q) = {(Xo => X — -+ = X1 2 Xq) | k>0, Aj € P(Q)™1).

Note that a sequence\, ..., Ay) of pathsA; € P(Q)"" is a member of(Q) if and
only if the productA; --- Ax in the path algebraR[Q] of Q is non-zero. The path
algebraR[Q] of Q over R is a positive gradedR-free module (cf. [1, p.58])

RIQ] = Mod(P(Q))r = €D Cx(Q)

n>0
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where Cn(Q) := Mod(P(Q)n)r is the R-free module with all paths irQ of length n
as basis. In particulaR(Q), is the set of all trivial path®, = (X) (x € Qo) in Q, so

we haveCy(Q) = Mod((x) | X € Qo)r.
Let 9: R[Q] — R[Q] be a map defined by, forAy, ..., Ay) € P(Q)n (n > 2),

n—1

0(AL .y An)i=(Ag .., A+ D (1) (A1, .., (AiAL), - .o, Ap)
i=1

+ (_]_)n(Al, ooy Ancg).

In other words,

Aq An
9(Xg —> X3 —> +++ = Xn_1 —> Xn)

Ay An
= (Xg —> X2 =+ = Xp_1 —> Xn)
! - A AA A
+ Z(—l)'(xo S X~ Xy > e —> Xn)
i—1
Aq A=)
+ (—1)"(Xp — X1 —> +++ = Xn_2 ——> Xn_1).
Furthermore, forXo — x1) € P(Q): and &) € P(Q)o, We Setd(xo = 1) 1= (x1)—(Xo) €
Co(Q) and 3(x) := 0.

Lemma 5.1. The mapd: R[Q] — R[Q] is an R-endomorphism of [R] such
that 8 0 3 = 0 and 3(C(Q)) < C_1(Q) for n > 0 where C1(Q) := {0}. This yields
that a pair (R[Q], ) is an R-complex.

Proof. Straightforward. ]
Next we introduce two subcomplexes dR[Q], ).
DEFINITION 5.2. Take two families fronP(Q) as follows:

P(G)pr={(Xoixl—%“ﬁxk—lﬂxk)eP(@)|Xi #x if i #j},

EQ :={(x BhXy o X1 = X) € P(Q) | A1--- Ax € P(Q)P"} € P(Q)™.

Then theR-free modules
Mod(P(Q)")r = EP) Dn(Q) where Dn(Q) := Mod(P(Q)})r,
n>0

Mod(EQ)r = P En(Q) where Eq(Q) := Mod(EQy)r

n=0
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are positive gradedR-modules. HereEQ, is the set of all paths\ € EQ of length
n. Let X = P(Q)” or X = EQ. Then by the definitions of and X, it is easy to
see thato(Mod(X)gr) € Mod(X)gr, and thatd maps paths of length to those of length
n—1. Denote the restrictiofyoq(x), : Mod(X)r — Mod(X)r by just the same notation
9. Then a pair Mod(X)g, 9) is a subcomplex of R[Q], 9).

REMARK 5.3. Paths irEQ provide a geometric information of the original quiver
Q. Indeed, as in the next, we gather sets(o’) for all o € EQ which are thought of
forgetting arrows ofo. Then it will be shown in Lemma 5.5 that such collectisi 5
forms a simplicial complex.

DEFINITION 5.4. Denote byKgg a collection of setsOb(co) for all o € EQ,
that is,

Keg := {0b(e) € Qo | o € EQ).

Lemma 5.5. A pair (Qo, Kgg) forms a simplicial complex.

Proof. Take any path = (Xo 2y Xy =+ = Xko1 Y Xc) € EQ. ThenOb(o) =
{Xo, - .., X}. For a non-empty subs€k;,, ..., X} € Ob(c) with ig < --- < iy, we
define a path

Tsi1 = Ajgr1Ai 20143 - Aj,, € P(Q)™ (0<s<m-1).

I's — .
ThenTsy1 = (X, = Xig,,) € P(Q)1. SinceA;---Ay € P(Q), we have thal'y---T'y €
P(Q)"" and

r Tm —
(T1, T2, ..., Tm) = (X, SN Xj, = - —> X, — X,) € EQ.
Thus {Xi,, - .., Xi,,} € Kea- This completes the proof. O

REMARK 5.6. (1) It might beOb(c) = Ob(t) for distinct pathsr,z € EQ. This
is caused by ignoring arrows of € EQ when we getOb(o) Keg. From this rea-
son, we will consider in Lemma 5.8 aR-homomorphisme. This map reflects such
difference betweerEQ and Kgg.

(2) Define a simplicial complex J(P(Q)P) whose vertex set is

U oba) (= Q)

AeP(Q

and the totality
L @@\ (9}

AeP(Q)Pr
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of all non-empty subsets @b(A) for all A € P(Q)P" forms the set of simplices. This
complex depends only on a subsgiQ)P" of the setP(Q) of all paths inQ. We will
investigate such complexes in general later in Section & dtear from the definitions
that To(P(Q)P) coincides with Qo, Kgg) as simplicial complexes.

(3) For proper pathsA;, A, € P(Q)P, we define a pre-ordering\; < A, precisely
when Ob(A1) € Ob(Ay). Let P(Q)max be the totality of all maximal paths iR(Q)™"
with respect to<. Then a complex §(P(Q)P") is the same as a complexg(IP(Q)ﬁ{a
whose sets of vertices and simplices are respecti@yand the totality of all non-
empty subsets obb(A) for all A € P(Q)hax. This implies that B(P(Q)?) can be
realized by using fewer paths than thosePifQ)".

DEFINITION 5.7. For a simplexX = {Xg, ..., Xn} € Keg of dimensionn and a
total ordering onX, denote by(X) = (X, ..., X,) an oriented simplex. This means
that, for X = {Xi,, ..., Xi,} = {Xjo, - - -, X;j,}, If these two orderings differ by an even

permutation ther{x;,,...,Xi,) = (Xj,,-..,Xj,), and otherwise we understaitg,,...,x,) =
—{(Xjgs - -+ Xju) OF =(Xig, - - - Xiy) = (Xjo» - - - » Xj,). Denote byKE'6 = {{X) | X € Keg}
the totality of oriented simplices oK. Then theR-free module

Mod(K 25) g = P Ka(Q)

n>0

is a positive gradedR-module where K,(Q) is the R-free module with all
n-dimensional oriented simplices i as basis. Les: Mod(K), — Mod(KP) g
be an R-endomorphism defined by

(X0, X1, -2 Xn) i= Y (1) (X0 -+ iy, Xn)
=

for (Xo, X1, ..., Xn) € Kg6 with n > 1, and by extending by linearity. Heg means
delete the vertex;. Furthermore, we sei((xg)) := 0 for xo € Qo. Then it is shown
that a pair(Mod(KE’a)R, 8) is an R-complex.

As mentioned in Remark 5.6, the following maps defined by forgetting arrows
of paths inEQ.

Lemma 5.8. A surjective R-homomorphism
£: Mod(EQ)r — Mod(Kg%)R

defined by — (Ob(c)) for o € EQ is a map between R-complexXaétd(EQ)g,d) and

(Mod(KE%)R, 8), that is conditionse(Ex(Q)) € Kn(Q) and§ o e = £ 0 9 are satisfied.
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Proof. Straightforward. 0

REMARK 5.9. Summarizing the procedure for constructiRgomplexes and sim-
plicial complexes, we have the following:

R-complexes:Mod(P(Q))r 2 Mod(P(Q)")r 2 Mod(EQ)gr — Mod(Kg%)R

) T T

Paths: P(Q) 2 P(Q"™ 2> EQ
J ob
Sim. complexes: Qo, Keg) = To(P(Q)™)

Note that BH(P(Q)") = To(P(Q)may) (See Remark 5.6).
5.2.  Homology R-modules.

DEerFINITION 5.10. ForR-complexes defined in Section 5.1, we use the following
notations for their homologyrR-modules:

H(Q, R) := H(Mod(P(Q))r, 3), H(Q, R’":= H(Mod(P(Q)")r, 9),
H(EQ, R) := H(Mod(EQ)r, ), H(Kgg, R) := H(Mod(KgG)R, 8).

Recall that Z,(Q) := Cn(Q) N Kerd, By(Q) := Ch(Q) N IMd < Z,(Q), Hn(Q) :=
Z.(Q)/Bn(Q). Then we have positive grade®-modules

kerd = ) Z.(Q),  Imd = ) B(Q),

n=0 n=0

H(Mod(P(Q))r, 9) := Kerd/Imd = € Ha(Q).

n>=0
The other homologyR-modules are similarly defined.
ExAMPLE 5.11. LetQ be a quiver defined as follows:
asbnle
Set Q% := Q and Q% := Q%1 (k > 1). Then paths in Equivet;)k (k > 0) are de-
scribed in Example 3.6, and &-complexZ[ QK] = Mod(P(QK))z where Qk = Qk*1 js

as follows:

{0} — Mod((a=> b5 )z 5 Mod(a, B, Aw, ..., Axss)z ~> Mod(a, b, ¢) — {0}
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EachAj (1 <i <k+ 1) is an arrow froma to ¢, and we may assume thaﬁ((ai
b LA c)) = B— A1+ «. Then it is straightforward to calculate that
Kerd; = Mod(e + 8 — A1, Aj — A1 2=<i =k+ 1)
> Mod(x + 8 — A1)z = Imos.

It follows that

Z n=0,
Hn(Q¥, Z) = Ha(Mod(P(Q¥))z, 9) = {Z ®---®Z (ktimes) n=1,
(0} n=2.

Furthermore, sinc®(QK) = P(QX)P" = EQX in this case, we have that,(QX, Z) =
Ha(QX,Z)P" = H,(EQk, Z) for all n > 0. On the other hand, by the deﬁnitioK,E@ =
{Ob(c) | o € EQK} = 21abcl\ (). So a complexK g is contractible. This implies
that Ho(K ggr, Z) = Z and Hy(Kggr, Z) = (0} for all n = 1.

REMARK 5.12 (Restricting to arrows). Le® = (Qo, Q1, s, 1) be a quiver, and
let QU = (Qo, Q{4 s, 1) be the extended quiver d in Definition 3.1. For a subset
A C QU9 of arrows, we focus on the restriction

QW= ((Q%WNo, A, s,T)

to A in Definition 3.4 where QW) := {s(@), r(a) | @ € A}. This quiver QW allows
us to investigate paths i@ constructed by arrows if\. Then applyingQ4 to Re-
mark 5.9 on complexes, we have that

((Q¥0. Kgm) = Tou(P(QE) = Tou(¥)

where? := P(QY)Max S P(QUI)P' C P(Q'Y). Thus H(K g R) = H(Tqu(H). R). This

homology R-module should contain much information on pathsQH® obtained from
arrows in A.

EXAMPLE 5.13. LetQcs = ((Qca)o, (Qce)1, S, ) be a coset quiver in Defin-
ition 4.5, andQE‘j‘ﬂ3 be the extended quiver dcg. Let A € P(Q‘("{‘)pr be a proper path
in QY of the form

Ly Ly

N

Ly
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This means thato > L1, L1 < Ly, andLg # L,. We take a subset:= AO U A@ c
(Qud); of arrows in QYL as follows:

AW = {(aLo — bLy) € (Q¥); | a, b e G},
A@ = {(cL; < dLy) € (QY); | ¢, d € GJ.

Then the restrictiors := (Q‘é@'G a to A and the seP(S) of paths are given as follows:

S=(QW)a=(G/LoUG/L1UG/Ly, A, s 1),
P(S)o = (trivial paths)= G/Lo U G/L1 U G/Ly,
P(91=A=ADUA®,

P(S) = {(alo < bly L cly) |a € AD, B e A®).

Since A is proper, so is any path iR(S), namelyP(S)P" = P(S) (cf. Remark 4.8 (3)).
FurthermoreP(S)hax = P(S)2 = &(A) in our notation in Definition 4.7. Thus, by Re-
mark 5.9, &, Kgs) = Ts(6(A)), and soH (Kgs, R) = H(Ts(6(A)), R). In Section 7.3,
we will study the top homology of this kind of a simplicial cphax. As mentioned
in Remark 5.12, we may say that this homoloBymodule contains much information
on particular paths in

B(A) = {(xoLo = X1L1 < XoLp) | % Li € G/Li (0 <i <2)} C P(QUL),

Finally we note that the closurg of Sis as

S:=(QW)a = (G/LoUG/L1UG/Ly, P(9"™" s, 1),

and the seP(S) of paths is described as follows:
P(S)o = (trivial paths)= G/LoU G/L; U G/L,,
P(9)1 = P(9™" = P(S)1 U {(aLo = cLy) | A € P(S)a),

P(9o = ((@Lo > blLy £ cly) |« € AD, g e AD).
This shows thaP(S) = P(9" = ES.

6. Simplicial complexes associated to paths

In this section, we introduce a simplicial complex (#{) defined by a quiveQ
and a setH of paths inQ, which we call a path complex. First, we develop some
general theory on J(#). Next we apply a subgroup quive&D“Gd to To(H). This is a
natural generalization of the usual subgroup complexzofThe contractibility of such
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complexes is studied. Moreover, we adapt a coset qmy& to To(H), and exam-
ine a G-simplicial map between path complexes @ﬁ% and di. Further properties
of path complexes will be devoted in Section 7. Throughoig Hection, letG be a
finite group.

Now, we recall the geometric realization of a simplicial qdex K = (V (K), (K))
whereV (K) and S(K) are the sets of vertices and simplices respectively. B¥f) be
the set of all map® = (vx)xev(k) from V(K) to R such thatvy # 0 for finitely many
values ofx € V(K). This is called a generalized Euclidean space with topolgigen
by the metriclv — w| := maxX{|jvx — wx| | X € V(K)}. We identify a vertexx € V(K)
with a map inEY®) whose value is 1 ox and 0 on all other elements M(K). Then
V(K) forms a basis ofeV(K),

DEFINITION 6.1 (cf. pp.142, 197 in [4]). LeK = (V(K), SK)) be a simplicial
complex. For a simplex = {Xo, ..., X} € YK), define an Euclidean closadsimplex

n
> t=1,0<t 51} c EV®),
i=0

[0] = [Xo, X1, X2, . . ., Xn] := {Z ti X
i=0

An Euclidean opem-simplex ¢) is defined by the set of all elemen}s’ ,tix; in [o]
such thatt; > 0 for all 0<i <n. Set

[K]:= J [0] cEV®)
oeY(K)

which is viewed as a topological space by topology coherdtit ® collection{[o] |

o € K} of subspacesod]] of EVK), A space K] is called the geometric realization of
K. We say thatK is contractible if so is K], and that simplicial complexeK and T
are homotopy equivalent if so ar&] and [T].

6.1. Path complexes §(H). Although the notion of §(#) already appeared
in Remark 5.6, we formulate its definition here.

DEFINITION 6.2. LetQ be a quiver, and{ € P(Q) be a subset of paths .
Define a simplicial complex d(*) whose vertex set is

| ob(a) € Qu,

AeH
and the totality

L @™\ (9})

AeH

of all non-empty subsets ddb(A) for all A € H forms the set of simplices. We call
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To(H) a path complex of{ in Q. The dimension of §(H) is max|Ob(A)|-1]| A €
‘H}. Note that|Ob(A)|—1 <I(A) in general, but ifA is proper then the equality holds.

REMARK 6.3. LetQ be aG-quiver. For aG-invariant subse# € P(Q), a com-
plex To(#H) becomes &-simplicial complex, namely, the sets of vertices and siogsl
of To(#) are preserved by the action Gf. So variousG-simplicial complexes can be
obtained fromG-quivers Q& and QY<, (see Remark 4.6).

Here we study conditions of the contractibility ofy{#). But before doing this,
we recall some technique from poset topology. L& €) be a poset. Denote by
O(P) = O(P, =) the order complex ofP, which is a simplicial complex defined by
all inclusion-chains Xp < --- < Xx), wherex; € P, as simplices. Letk be a sim-
plicial complex. Denote bysd(K) the poset of all simplices irK ordered by the
inclusion-relation. This is called the barycentric sulslin of K. It is worth mention-
ing that [K] and [O(sd(K))] are homeomorphic each other as geometric realizations
(topological spaces) (see [3, (1.3)]).

DEFINITION 6.4 ((1.5) in [3]). We say that a poseP (<) is conically contract-
ible if there exist a poset map: P — P and an elemenky € P such thatx < f(x)
and f(x) > xo for all x € P. Recall that a poset map is defined by the property that
X <y (X,y € P) implies f(x) < f(y).

Lemma 6.5 ((1.5) in [3]). If a poset(P, <) is conically contractible then the or-
der complexO(P) is contractible.

Lemma 6.6 (Proposition 6.1 in [6]) Let (P, <) be a poset. For > P, set

73<x3={y€7’|y<x}
and

Pox:={yeP|y>x}.
If O(P-x) or O(P-y) is contractible therD(P) and O(P \ {x}) are homotopy equivalent.

Proposition 6.7. Let Q be a quiverand H € P(Q) be a subset of paths in Q.
Suppose that

(] ob(a) # 0.

AeH

ThenTg(#) is contractible.

Proof. LetP :=sd(Tq(#)) be the barycentric subdivision ofg[#). It is enough
to show thatP is conically contractible by Lemma 6.5. Take any elemant
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(\acx Ob(A). Then{a} € P. Furthermore, for any € P, there existsI" € H such
that o € Ob(I") by the definition of simplices. Sinca € Ob(I") ando U {a} € Ob(I"),
we have thaitr U {a} € P. This yields that a map

f:P—>P
defined by

o+ o U{a}

is a poset map such that € f(o) and f(o) 2 {a} for any o € P. ThereforeP is
conically contractible, and this completes the proof. O

DEFINITION 6.8 (Trees; cf. page 101 in [5]). L&D = (Qo, Q1,S,r) be a quiver
with no loops, that iss(«) # r(«) for all @ € Q1. ThusOb(x) is a two-points set for
al a € Q1.

(1) Denote byV(Q<1) := Qo and §(Q<3) := {Ob(x) | @ € Q1} U Qo. Then a pair

Q<1 := (V(Q=<1), S(Q=<1))

forms a simplicial complex of dimension less than or equal to

(2) Q is a tree if the geometric realizatio®[k;] of Q<; is an arcwise connected, and
[Q<1]\ (Ob(w)) is disconnected for each 1-simpl&b(x) (¢ € Q1) (see Definition 6.1
for notations). Note that ifQ is a tree therP(Q) = P(Q)™.

DEFINITION 6.9 (End-vertices; cf. page 101 in [5]). L& = (Qo, Q1,S,r) be a
quiver. A vertexx € Qg is an end-vertex imQ if there exists a unique arrogy € Q3
such thats(yx) # r(yx), and thats(yx) = x or r(yx) = X.

DEFINITION 6.10. LetQ = (Qq, Q1,S,r) be a quiver. Foix € Qq, setQ(x)o :=
Qo \ {x}, and Q(x)1 := {B € Q1| s(B) # x andr(B) # x}. Then

Q(X) = (Q(X)Or Q(X)L S|Q(X)1’ r |Q(X)1)

forms a quiver. In particular, ik is an end-vertex inQ then we have thaQ(x); =
Q1 \ {w}-

Lemma 6.11. Let Q= (Qg, Q1,S,r) be a quiver. For an end-vertex € Qo, set
Q = Q(x),
P = sd(To(P(Q))),
and
P = sd(To (P(Q))).
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(1) O(P-ix) is contractible and thusO(P) and O(P \ {x}) are homotopy equivalent.
(2) For any posetQ such thatP’ € Q € (P \ {x}), and for any minimal elemernt in
(@ \ P)), we have thato(Q) and O(Q \ {¢}) are homotopy equivalent. In particular
suppose that Q is finitehat is Qo and @, are both finite sets. Themepeating this
process we conclude thaD(P \ {x}) and O(P’) are homotopy equivalent.

(3) If Q is finite then {(P(Q)) and To(P(Q’)) are homotopy equivalent.

Proof. By the definition of an end-vertex € Qq, there exists a unique arrow
yx € Q1 such thats(yx) # r(yx), and thats(yx) = x or r(yx) = X. Let Ob(yx) = {X, z}
(X # 2).

(1) For anyr e Py, there exists a pathh € P(Q) such that{x} C = € Ob(A).
So A must be of the form

Vx ay oK
A=X—>2=120—>21 > —> Z1— Z)
or

o1 [&7% Yx
A=(Z—>2—> > Z1— Z:=2Z>X).

Note that{x, z} € P~x. Sincetr U {X, z} € Ob(A), we have thatr U {Xx, z} € P5x;.
This yields that a map

f: P>y = Pox
defined by

T TtU{X 2z}

is a poset map such thatC f(r) and f(r) 2 {x, z} for any r € P5x;. ThusPx is
conically contractible. The results follow from Lemmas @ud 6.6.

(2) Sinceo ¢ P’, we have thai € o. Furthermore, since € Q € (P \ {x}), we
have thato € P5x;. Then there exists a path € P(Q) as in the proof of (1) such
thato C Ob(A). Set

Ai=(20S21—— 21— 2) € P(Q) (k> 0).

Since® # (o \ {x}) € Ob(A’), we have thatd \ {x}) € P, S Qc,. Take anyr € Q,.
If 7 ¢ P thent € (Q\ P) with t C . This contradicts the minimality of. Thus
T € P, so thatx ¢ 7. It follows thatt = (z \ {X}) € (¢ \ {X}). This implies thatQ.,
possesses the maximum elememt\({x}), and thusO(Q.,) is contractible. Then by
Lemma 6.6,0(Q) and O(Q \ {o}) are homotopy equivalent.

(3) The result follows from (1) and (2) above. ]

REMARK 6.12. (1) Put T:= To(P(Q)) and T := To(P(Q')). We mention that
the result in Lemma 6.11 (3) can be also proved accordingealdéiinition of a homo-
topy equivalence. Namely, we are able to construct contisumapsf: T — T and
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g: T — T such thatf o g is homotopic to lg, andgo f is homotopic to l¢ where
Idx is the identity map on a seX.

(2) Under the situation of Lemma 6.11, suppose tQais finite. Then by the same
way, we can prove that J(P(Q)") and Ty (P(Q’)?") are homotopy equivalent. Thus
applying Remark 5.9, we have Zmodule isomorphism as follows:

H(Keg, Z) = H(To(P(Q)™), Z) = H(To(P(Q)"), Z) = H(Keg 2).

Lemma 6.13(cf. pp.101-102 in [5]) Let Q = (Qoq, Q1, S, r) be a finite quiver
with no loops. Suppose that Q is a tree such th@y| > 2. Then there exists an
end-vertex xe Qp in Q. Furthermore Q(x) is again a tree.

Combining Lemma 6.13 with our Lemma 6.11, we have the folimui

Proposition 6.14. Let Q= (Qo, Q1,s,r) be a finite quiver with no loops. Suppose
that Q is a tree. TherP(Q) = P(Q)"', and To(P(Q)) = To(P(Q)P) is contractible.

REMARK 6.15 (Homology of trees). LeQ = (Qo, Q1, S, r) be a finite quiver
with no loops. Suppose thdD is a tree. Then sinc®(Q) = P(Q)P", we have that
P(Q) = P(Q)" = EQ. It follows that H(Q, Z) = H(Q, Z)*" = H(EQ, Z) (see Def-
inition 5.10). Furthermore, because B{Q) = P(Q)", we have thatH(EQ, Z) =
H(Kgg, Z) = H(To(P(Q)™)) (see Remark 5.9). By Proposition 6.14¢(P(Q)") is
contractible, so thatHy(Q, Z) = Z and Hy(Q, Z) = {0} for all n > 1.

6.2. Subgroup complexes gued(D). Let Qg be a subgroup quiver d& in Def-

inition 4.3, and IetQ“Gd be the extended quiver &g in Definition 3.1. In this section,
for a subsetD < P(QY), we deal with a path complex (D) of D in Q¥ which
we call a subgroup complex db.

REMARK 6.16. LetD € P(Qg) (S P(Q“Gd)) be a subset of paths i®s. Then
sinceD is a family of inclusion-chainsHgp > - - - > Hy) for some subgroupsil < G, a
complex To, (D) is nothing else but just the usual subgroup complexofsee [3] for
example). Therefore du(D) for D < P(QY can be thought of a natural generalization
of the usual.

DEFINITION 6.17. For a subsel C SgpG) = (Qg)o = (Qéd)o of vertices, put
P(Qe) N X :={A € P(Qg) | Ob(A) € X7},

P(Q N X := {A € P(QY) | Ob(A) C ).

We denote by §, (&), TQuGu(X) respectively complexes gL(P(Qg) N X),
TQ%d(P(Q“Gd) N X).
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DEFINITION 6.18. LetG be a finite group, ang) be a prime divisor of the order
of G. Denote byS,(G) the set of all non-trivialp-subgroups ofG.

The following result is well-known.

Proposition 6.19 (Lemma 2.2 in [3]) If Op(G) # {e} then Tg,(Sp(G)) is cont-
ractible where Q(G) is the largest normal p-subgroup of G.

The converse of the statement of Proposition 6.19 is knowQuiben’s conjecture.
The next result is an extended version of Proposition 6.19.

Proposition 6.20. If Oy(G) # {e} then Tqu(Sp(G)) is contractible.

Proof. LetP := sd(Tqu(Sp(G))) be the barycentric subdivision ofgli(Sp(G)),
and N := Op(G). It is enough to show th&P is conically contractible by Lemma 6.5.
First we note thafN} € P. Furthermore, for any € P, there existd” = (Lo —---—
Ly) € P(Q“Gd) N Sp(G) such thato € Ob(I") by the definition of simplices. We set

(Lo—+—Lg=N)=T if Lg=N,
I":={(Lo—++-—Lg—N) if Ly>N or Lg<N,
(Lo—++—Lg<«< LKN—>N) if L¢# N and Lk #N.

ThenI’ e P(Q‘éd) N Sp(G). Sinceo U {N} € Ob(I") U {N} € Ob(I'""), we have that
o U{N} e P. This yields that a map
f:P—>7P
defined by
oo U{N}

is a poset map such that € f(o) and f(o) 2 {N} for any o € P. ThereforeP is
conically contractible. The proof is complete. ]

We give one more result on the contractibility in the next.

Proposition 6.21. Tq,(P(Qc)), Tqu(P(QE)), and Tquw(P(QE)™) are all
contractible.

Proof. LetP :=sd(Tqu(P(QY))) be the barycentric subdivision ofJi(P(QY).
It is enough to show thaP is conically contractible by Lemma 6.5. First we note that
{G} € P. Furthermore, for any € P, there existd" = (Lo—---—Ly) € P(di) such
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that o € Ob(I") by the definition of simplices. We set

e r if Li=G forsome O0<i <k,
" (Lo—---—Lg <« G) ifLi #G forany 0<i <k.

ThenI” € P(Q“Gd), and sincer U{G} € Ob(I")U{G} = Ob(I'"), we have that U{G} €
‘P. This yields that a map
f:P->"P
defined by
oo U{G}

is a poset map such that € f(o) and f(o) 2 {G} for any o € P. ThereforeP is
conically contractible. The proof is complete. The sameuargnt can be applied to
Tas (P(Qa)) and Tou(P(QEY™). [

6.3. Coset complexes Ju (#) and G-simplicial maps. Let Qcg be a coset
quiver of G in Definition 4.5, and Ieth‘é3 be the extended quiver dQcg in Defin-
ition 3.1. For a subset! C P(QLY), a path complex g (#) of H in QY is called
a coset complex of5. In this section, we focus on a subsB(D) C P(Qg%) of paths
in ngg obtained fromD C P(Qg“) (see Definition 4.7), and deal with a coset complex
Tqu (6(D)).

Recall thatQ¥ and QY% are bothG-quivers, and thaP(QY) and P(QYL) are pre-
served byG-conjugate action and the left multiplication respectivédee Remark 4.6).
Since Q~§(D) is G-invariant for anyD C P(di) (see Remark 4.10), we have that
TQE%(Q%(D)) is a G-simplicial complex (see Remark 6.3). Then we will introdueG-
simplicial map g p betweenG-simplicial complexes 5(%(@5(7))) and TQqu(P(Q“Gd)).
This G-map is suggested in Introduction.

REMARK 6.22. LetD C P(Q“Gd)pr be a subset of proper paths (ng. Since a
path A € D is proper, so is any path i6(A) (see Remark 4.8 (3)). Thu®b(I')|—1 =
() = 1(A) = |Ob(A)| — 1 for all T € &(A). It follows that complexes @(D) and
TQ&(QS(D)) have the same dimensions.

In order to define our simplicial map, we first prepare a coxe@, of a path
A € P(QUY) in general.

DEFINITION 6.23. LetQ be aG-quiver, andA = (ag —a; — - - - — &) € P(QUY)
be a path inQq.
(1) For 0<i =j =Kk, defineAj =@ —a41—+—a)) € P(QUY which we call

an interval of A. For intervalsAj j; and Ay of A, define an ordering\[i jj = Arsy
precisely whers <i < j <t.
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(2) Put

A of A such thai £ b for all distincty < P(Q'Y).

Ca := {TI':interval of A
a, b e Ob(A)

I is maximal w.r.t.< among interval}

We callC, a covering ofA. ThenC, has the following properties.
(@) 0b(A) = Urec, Ob(T).
(b) Any T € C, is proper, so thax € P(QUY)P,
(c) If a g b for all distincta, b € Ob(A) thenCx = {A}.

DEFINITION 6.24. LetA = (Lg—---— Ly) € P(QY) be a path inQY, and let
Ca C P(di) be a covering ofA (see Definition 6.23). Recall that the vertex s&fs
and V, of simplicial complexes &ua. (5(Cy)) and TQuGu(P(di)) are respectively

k

vi= [(J obr)=[JG/L
re®(Ca) i=0

and

V2 = SgpE).

Denote bypg a: Vi — Vo a map defined byg A(gl) := LY = gLg™ for all cosets
gL € V;.

Proposition 6.25. Under the above situationpg o induces a G-simplicial map

06.a: Tqu (B(Ca)) = Tou(P(QE)).

Furthermoregg » preserves the dimensions of simplices.

Proof. Take anyg-simplex o = {gj,Li,, ..., G,Li,} of TQE%(@(CA))- Then by
the definition of simplices, for a certain intervaljsyy = (Ls — Lsy1 — -+ — Lt) € Ca
(0 <s =<t <Kk), there exists a path

I = (gsks — Gs+1bssr =~ = GiLe) € 8(Ay) € B(Ca)
such thato € Ob(T") = {gsLs, Os+1lst1, ..., OtLt}. Suppose thag;L; < gj+1lji1
for somes < j <t —1. Then sincelL;gi* < Lj;10j7,, we have thatg;L;g;* <
9j+1Lj11071,. Similarly gjL; > gj41Lj41 forcesgjLjgit > gj41lj107},. Thus we

obtain a path

1 -1 —1
A= (LE —LET - L) e QY.
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Therefore

95

06.4(0) = (062 (GL10). - voa@,Li)) = [Li s L]

is a subset ofOb(A), this is, a simplex of Bqu(P(Qqu)). This shows thaips A is a
simplicial map. Furthermore, by Definition 6.23 of a coveritw, giLig ™ # g; L,—gj—1

for anys <i # j <t. Thusgg,a preserves the dimensions of simplices. Finally we
will show thatps » commutes with the&s-action. However it is clear from the fact that
the G-action on Q¥ and QY. are respectively defined b@-conjugationx - L := Lx

for x e G andL < G, and defined by the left multiplicatior- gL := (xg)L for x € G
andglL € G/L (see Remark 4.6). The proof is complete. O

In Section 7.6, we will describe the preimage ungera.

REMARK 6.26. LetA = (Lo—---— Lk) € P(QY) be a path inQY.
(1) Suppose that; g Lj for any 0<i # j <k thenC, = {A} (see Definition 6.23).
Thus in this case, we have @-simplicial map

96.a: Tou (B(A)) — Tou(P(QLY).

(2) LetD C P(QW) be a subset of paths QY. Suppose that g L’ for all distinct
L, L € Ob(l") for any ' € D. Then aG-simplicial map

96D Tou (B(D)) - Tau(P(QE)),
can be also defined by the same way as in the case of Propo8iién

7. Some properties of subgroup and coset complexes

In this section, we provide some properties of subgroup asktccomplexes in-
troduced in Section 6. In particular, the Euler charadierisnd the top homology of a
coset complex are calculated. Furthermore, we show thaadb@morphism group of a
coset geometry is realized as the intersection of those néinecoset complexes. The
connectedness of subgroup and coset complexes is alsoredntinally, we describe
the preimage of a-simplicial map defined in Proposition 6.25. Throughousthéc-
tion, let G be a finite group, and leQg and Qcg be respectively a subgroup quiver
and a coset quiver o5 defined in Section 4.

7.1. Ranges of paths ir1’~5(A). Let A be a path inQ”Gd. First of all, we explic-
itly describe ranges(I") of pathsT € &(A) C P(Q%"G) although the proofs are some-
what tedious (see Definition 4.7 faB(A)). The results in this section will be used
later in various places.
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NOTATION 7.1. For a pathA = (Lo —--- — Lx) € P(QY) in Q¥ and goLo €
G/Lo, denote by

&(A)gL, := (I € B(A) | S(I') = goLo}

the set of all paths iB(A) C P(QL,) with start goLo. The notationr (&(A)g,L,) im-
plies a subsefr(T') | T € B(A)gL,} Of G/Lk.

Lemma 7.2. Let A = (Lo—---— Lk) € P(QY¥) be a path in Q.
Q) |Q~3(A)XLD| = |Q3(A)yL0~| for any xLlg, yLo € G/Lo.
(2) |8(A)] = |G : Lo| x |&(A)xL,| for any xLo € G/Lo.
(3) For any sequencg0 =:ip < i1 <--- <ig_1 <iq:=K) of indices we have that

q-1 =

< |S(Afig,is,a))]

|&(A) = |G: Lol x | | —=—
g) |G : Lil

where A i.,,] is an interval of A (seeDefinition 6.23)

Proof. (1) A set &(A) is G-invariant under the left multiplication (see
Remark 4.10). Then, for any cosetd, yLo € G/Lo, @ map f: &(A)xi, — G(A)yL,
defined byl — yx 1T is bijective. Thus the numbdé(A)xL0| is independent of a
choice ofxLy.

(2) The intersection oB(A)x., and &(A)y., is empty if and only ifxLo # yLo.
Thus the result follows from the previous (1).

(3) Take any path” = (Ag2 Ay 2 Ap—---— A1 % Ay) € B(A) where A € G/L;

(0 <i <Kk). Then we divideI" according to a partition (6= ip < i1 < -+ <ig-1 <
ig = k) of indices. In other words, we identiff with a path in the closuré)_“c‘ﬂ3 (see
Definition 3.5) as follows:

(Ao =5 AL D5 A= A =5 A

wheresq = (ig+1, ®ig+2, Xig43, - - -, Aig,y) € @i(A[iS,isﬂ]) (0<s<q-—1). Any coset
gLo € G/Lo can be taken ag\, = A. Furthermore

Ty € B(Afigin)a,
and
Fsi1 € B(Af i)y (L<s<g-1).

Therefore, using the previous results, we have that

q-1 q-1

1B(A) =G : Lol x [ [I8(Apa eI | = 1G - Lol x [ |
s=0 s=0

| (Atiais, )l
|G : Lis|
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The proof is complete. 0

NOTATION 7.3. For a pathA = (Lo —--- — Lx) € P(QY) in QU, let 1(A) :=
{0,1,...,k} and
'(A)™:={ue 1(A) | Lu1 < Lu > Ly},
'(A)™ := (v e 1(A) | Lyey > Ly < Lyga),

|/(A)max if Lo <Ly and Lx_1 > Ly,

|(A)max — |/(A)maXU {0} if Lo>L; and Lyg_1> Ly,
Y1)y Uk if Lo<Ll; and Lii < Lg
1'(A)™ U {0,k} if Lo>L; and Lii < Lg

|/(A)min if Lo>Ly and Lyg.1 < Ly,

|(A)min — |/(A)m?n U {0} if Lo<L; and Lg_1 < Ly,
) |/(A)m|n @] {k} if Lo>L; and Lg_1> Ly,

I/(A)™ U {0,K} if Lo<L; and Lyg> L

Another expression of&(A)| different from that in Lemma 7.2 is given in
the next.

Proposition 7.4 (cf. Lemma 4.10 in [2]) For a path A = (Lo — --- — Ly) €

P(QY) in QUW, we have that

< [Tuciaymel Lul
(*) |6(A) =[Gt Lo| X m———— X Ma
[Toei aymn Lol
where
1 if 0el(A)™ and ke I(a)™",
1
o if 0el(A)™ and ke |(A)™
k
A= Lol if 0el(A)™ and ke I(A)™,
Lol . .
H if 0el(A)™ and ke l(A)™
k

Proof. We proceed by induction on the lendttof A. Suppose thak = 1, that
is, A = (Lo— Lq). If Lo < L1 then1(A)™ = {1} and | (A)™" = {0}, so thatm, =
|Lo|/|L1|. For eachgolo € G/Lo, there exists an unique coséte G/L; containing

OoLo, that is, A= goL1. Thus

|B(A) = |G: Lol x1= |G:L0|xMxmA.
|Lol
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On the other hand, if.o > L; then | (A)™ = {0} and | (A)™" = {1}, so thatm, = 1.
Let Lo/L1 ={zzL1,...,2sL1}. For eachgoLo € G/Lo, there are exactlg = |Lo: L]
cosetsgoziL; € G/L1 (1 <i <s) contained inggLo. Thus

Lo
6(A) = |G : Lol x |Lo: Ly = |G L|x:L—|xmA

Suppose next thak > 1. Take anyA; := (Lx — Lk41) € P(QY), and setl :
AA; € P(di). Then we will examind&(I")|. By induction, we have an equal|ty<X.
Moreover, applying Lemma 7.2 to a pathand a sequence @:ip <k =:i, < k+

1 =:1i3) of indices, we have that

B0 = 181 g7 *18(a))

CAaseE 1: Lk < Lgy1.
In this casdQS(Al)| =|G: Lyl and|®(1“)| = |05(A)| If ke | (A)™n then | ()™ =

(A)maxu {k+ 1} and| (]")m'“ = I(A)m'n so thatmp = my x 1/{Lksal Thus

. . [Tuer (aymee| Lul
1B(T)| = [B(A)] = |G : Lo| x = O™ L s (|Liya] x mp)
TToerayml Lol

max L
Z1G - Lo| x Hueryedbel
Hvel(l‘)mi"||-v|
If k & 1(A)™ then | (T)™@ = (I (A)™\ {K}) U {k + 1} and | (T)™" = | (A)™", so

that mr = my x |Lk|/|Lk+1|. Thus

~ ~ max L L
1&()| = |&(A)| = |G : Lo| x Hoerapedbol (' 1| xmr).
[Toeraymnl Lol |Ll

CASE 2: Lk > Lgy1.
Lital and [&(T)| = [&(A)[ x [Ll/|Lksal-

In this case|G(A1)| = |G : Li| x |Lg:
If ke 1(A)™ then | (C)™ = | (A)™ and | (T)™" = (1 (A)™"\ {k}) U {k + 1}, so that

mr = ma. Thus

- - L [Tuer (ayren Lul Ll
B(T)| = |B(A)] x — |G : Lo x vt zul .
ILi+al [Toeraymnl Lol ILk+al

If k € 1(A)™ then | (T)™ = | (A)™ and | (I)™" = | (A)™" U {k + 1}, so that

mr = mu x |Lg|. Thus

~ ~ max L 1 L
|&()] = [&(A)] x I —HUEI(A) l X (— X mp) X Lkl )
k+1

= |G H Lo| X
Hvel(A)mi"|Lv| |Lk| |Lk+l|

This completes the proof.
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Proposition 7.5. For a path A = (Lo —---— L) € P(Q¥) in QY and gL, €
G/Lo, we have that

F(B(A)gLo) = GoLu, Ly, -+ Ly /Lk € G/Lk
where I(A)™® = {ug, Uz, ..., U} (Ui <Uj4+1). Note that L, > Ly always.

Proof. Recall that

r(B(A)gLo) = {Ak € G/Lk

JA; e G/L; (0= j =k—1) such that }
(Golo=: Ao—Ar1—---—Ac1—A) € 6(A))

We proceed by induction on the lengkhof A. Suppose thak = 1, that is, A =
(Lo—Lg). If Lo < Ly then I(A)™* = {1}. There exists an unique coséte G/L;
containinggoLg, that is, A= ggL1. Thus

r(B(A)goLs) = {GoL1} = goL1/L1.

On the other hand, iEo > L; thenl (A)™* = {0}. Let Lo/Ly = {z1L1,...,ZsL1}. There
are exactlys = |Lg : L1| cosetsgoziL1 € G/L; (1 <i <'s) contained ingyLo. Thus

r(B(A)gLo) = {GoziL1 | 1=<i < s} = golo/L1.
Suppose next that > 1. Take anyA; := (Lx — Lk+1) € P(QY), and setl :=
AA; € P(Qg“). Then we will examine(@(F)QoLo). Note that by induction we have that

r(é(A)QOLo) =goLlu, Ly, - Ly /Lk = {yik, ..., YLk} (Lu, = Ly).

Case 1. Lk > Lyga.
In this casel (I')"® = | (A)™® Let Ly/Lki1 =: {wilyy1, ..., wglks1}. Thus we
have that

MB(MgLo) = (Vwjlipa [1<i <t, 1<) <d},
YiwjLksr € (Qolu, Lu, -+ - Ly )Lk/Lkes = GoLu, Ly, - -+ Ly, /L1

CAsE 2: Ly < Lgqa.
In this caser (é(F)goLo) = {yilks1s . .» Vilksa). If k€ 1(A)™N then | (M)™ =
[(A)™ U {ur 41 := k + 1}. Thus we have that

Vilk+1 € (QoLlu, Lo, - Lo )Lksa/Lisr = Goluy Ly, =+ Ly Luys /Lis1-

On the other hand, ik € [ (A)™ (i.e. uy = k) then I (I")™® = (1 (A)™&\ {k}) U
{Ury1 := k+ 1}. Thus, using the fact thdtxLx,; = Lky1, we have that

Yilks1 € (QoLu, L, -+ Lu)bksr/Lisr = QoL Ly, - Loy Ly / Lkt
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This completes the proof. 0

Next, we count the number of rangesri(@(A)goLo) by using a way different from
that in Proposition 7.5. The following integé® is kind of a multiplicity which plays
an important role in Proposition 7.8.

DEFINITION 7.6. For a pati = (Lo—---— L) € P(Q) in QUW, let | (A)M:=
{uy, Uz, ..., U} (Ui <Uj41). Then for anyv € I’/(A)™", there exists an integér(1 <
| <r—1)such thatli{,, —---— L, < --- < Ly,,) is involved in A.

u Uit

SN SN
, o A_

L,
In this case, denote by
MUA = |(LU|+1 n (LU| Loy oo LU1)(LU1LU2 U LU|))/LU|-

REMARK 7.7. LetA C G be a subset, an®8 < G be a subgroup such th# >
B and AB = A. Then the number of cosets iA/B = AB/B = {aB | a € A} is
|Al/|BJ. In particular,|A| is divisible by |B|. This situation can be applied tdl> in
Definition 7.6.

Proposition 7.8. For a path A = (Lo —---— Lx) € P(QY) in QY and gL, €
G/Lo, we have that
% 16()| 1
() Ir (&(A)goLo) = G Lo X H A

vel/(Aymin Y

In particular, this value is independent of a choice afLg € G/Lo.

Proof. The proof is similar to that of Proposition 7.5. We gwed by induction
on the lengthk of A. Suppose thak = 1, that is,A = (L — L1). If Lo < L; then
as in the proof of Proposition 7.5(®(A)QOLO) = {goL1}. Furthermore sincé®(A)| =
|G : Lo| and 1'(A)™" = @, we have the result. On the other handL§ > L, then as
in the proof of Proposition 7.5y (G(A)g,L,)| = |Lo : L1|. Furthermore sincé®(A)| =
|G : Lo| x |Lo: L1 and I'(A)™" = @, we obtain the result.

Suppose next thak > 1. Take anyA; := (Lx — Lxs1) € P(Q”Gd), and setl” :=
AA; € P(di). Then we will examin<e|r(®(F)gOL0)|. Note that by induction, we have
an equality ).
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Case 1. Lk > Lyga.
In this case|B(I")| = [&(A)| x|Lk : Lk+1| @s in the proof of Proposition 7.4. Since

1/(C)™" = 1"/(A)™" and M = M2 for any v € I’(I')™", we have that

|r(®(r)go|-o)| = |r(é(A)go|—o)| X |Lk : Lk+1|

1 ( EI] ) 1
— : X - X 1_[ A X |Lk : Lk+1|
|G . L0| |Lk . Lk+1| vel’(A)min MU

1

|&(D)| I
= X .
MI‘

|G Lol vel/(rymn v

CASE 20 Ly < Lgga.
In this case,|&(I')| = |&(A)| as in the proof of Proposition 7.4. Furthermore by

Proposition 7.5, we have that
l'(Q~5(A)goLo) =0goluy, - Ly /Lk = {Y1lks - .., YLk}
where | (A)™ = {ug,..., U} (U <Uit1) andy; € goly, --- Ly, (1 <i <t). It follows
thatr(@j(I‘)gDLO) = {y1ilk+1, - - -+ YiLk+1} whose cardinality is less than or equal tto

Assume thak e | (A)™".

/ ur\.". Lyt
| NS

Then 1'(I)™" = I/(A)™" U {k} and | ()™ = | (A)™U {u, 11 := k + 1}. Suppose that

YiLk+1 = YjLky1 then
o Lul)(Lul Tt LUr)'

Y'Y € Lk N (GoLu, -+ Lu) QoL -+ Ly) = Liya N (Ly,
Thus |I’(€~3(F)go|_0)| = t/le where MIE = |(Lk+a N (Ly, -+ Lo (Ly, -+ - Ly, ))/ Lkl Fur-
thermoreM2 = M for any v € 1'(A)™", and hence
1 |6(T)| 1

< 1 o

- [SIEN] 1
r(er = -
Ir (&( )goLo)l |G : Lo x l_[ v |\/|vA x M{ |G : Lol i
pel(aymn vel’(rymn
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On the other hand, assume thag | (A)™&.

Lit1

s

Lu, 1 Lk = Lu,

SN S
"

Then I/(0)™" = 1"(A)™" and | (T)™& = (1 (A)™*\ {k})U{k+1}. Let A’ = (Lo—--- <
Ly,_, = ---— Ly) involved in A. Then by Proposition 7.5, we have that

M(B(A)goLo) = GoLuy -+ Ly /Lw =: {Zalw, - ., ZsLu)

wherez € goLy, - -Ly,_, (1 =i <s). By the same argument as above, the cardinalities
of 1(B(A)gL,) andr(B(IM)gL,) can be calculated as follows:

~ S S
I (B(A)goLo)| = [(Lx N (Ly,_, - L)Ly, - - Luy))/Lwl - M_,ﬁy
I (B(MgoLo)| = ° =

|(Lier N (Lo - Lu)(Lyy =<+ Ly 0))/Lwl ML

Thus |1 (B(D)goLo)| = Ir(B(A)goLo)| x (M2/ML). Note thatM2 = M! for any v €
I'(A)™\ {w}. This yields that

; 8(8)l 1 My _ 8 1
(& =7 —w = .
I (&(I)gyLo)l G Lol val/(;[)ﬂﬂ M5 M = G Lol UEIl;[)min T
The proof is complete. O

7.2. The Euler characteristic of TQ&(@(A)). In this section, for a special
proper pathA in Q‘éd, the Euler characteristic of a coset complex@fA) in Qg% is
calculated. Since\ = (Lo—---— L) is proper, we have tha/L; NG/L; = @ for all
0<i # j <k (see Remark 4.8 (3)). This helps us to count simplices @éﬁG(ﬁs(A)).
In the next, we recall the concept of types.

DEFINITION 7.9. For a proper patih = (Lo —---— Li) € P(QE)P" in QU, let
T := Tqu (6(A)) be a coset complex ab(A) in QUL
(1) We say that a&y-simplexo of T is of type {o,...,iq) where 0<ip <--- <ig <

k, if o = {Ai, ..., A,} for someA;, € G/L;, (0 <s=q). For a subset) # J =
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{jo,-- -, iq} € 1(A), we identify J with the totally ordered sequence f0jp < --: <
jqg < k) of elements inJ. Then we also use a term typkinstead of type [o, ..., jq).
(2) Denote by T (0 < q < k) the set of allg-simplices of T. For a sequence {0
ip <+ <iq=Kk), setd = {ip,...,iq}. Notations T, i, and Ty stand for the set of
all g-simplices of typeJ. In particular, we have that

= > Tl

Jcl |J|=q+1

Proposition 7.10. For a proper pathA = (Lg—---— Lk) € P(QP" in QY let
T:=Tqu (6(A)) be a coset complex @(A) in QL. For a sequenc0 <ip<--- <
ig < k), we have that

1

Alisisy1]
s=0 pel ’(A[is,is+1])min Mv

where M is an integer defined ilefinition 7.6

Proof. We coung-simpliceso = {A;,... A} of T of type (o,...,iq) where A €
G/Li, (0 < s =< q). By the definition of simplices, there exists a pdthe é(A[ioyiq])
such thato € Ob(T"). Then by the same argument as in the proof of Lemmal7.i

identified with a path in the closur®Yd (see Definition 3.5) as follows:

(A 5 A 5 A, = AL TS A

wherel'g;; € ii(A[iS,iSH]) (0 <s=<qg-1). Any cosetgl;, € G/L;, can be taken as
A;,. Furthermore

Ais+1 = r(FS+1) € r(é(A[istu])Acs) (0 =s= q- 1)

By Proposition 7.8, the number of those ranges is indepénderm choice of A;.
Therefore, applying Lemma 7.2 and Proposition 7.8, we cédculzde as follows:

q-1

s=0

a-1/ =
el |S(Afigisea) 1
= |G : Lijy| x H(—IG T N —=—

s=0 Uel'(A[is,is+1])min Mv

1
MvA[iSvisH] ’

q-1
=16 <[] ]

s=0 vel "(Afisjigy )™
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The proof is complete. 0

REMARK 7.11. For a proper patlh = (Lo —--- — L) € P(QY)P" in Q, let
T := Tqu (6(A)) be a coset complex ab(A) in QUL It is clear that the numbers of O-
simplices (vertices) ankl-simplices (those of maximal dimension) ﬁfareZ:‘ZO |G/Li|
and|®(A)| respectively.

Proposition 7.12. Let A € P(QL‘G")pr be one of the following four proper paths

i ud-
in Qg
o I'g
Lo L, Ly Ly

L, L; Lis L

o I,
L, L

Ly L, Ly Ly

o I3
Lo L, Ly
L, Lj Ly Ly

o Iy

Ly Ly Ly
Lo L, Ly Ly

Let T := T (6(A)) be a coset complex @(A) in QUL. Then we have the Euler
characteristic of T as follows

xM= Y ()T,

G#£IC| (A)max
Proof. Recall that the definition of the Euler characterissi

xM= > 1T,

G£JICI(A)

Suppose that =T, or A = TI'3, namely,A = (--- = Lx_» < L1 — Lg). For any
XLk € G/Lg, there exists a unique coséte G/Lk_; containingxLy (i.e. A — xLy),
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that is, A = xLg_1. Let

J1:={JCI(A)| keI, k=1¢J},
Joi={JC1(A) | ked k—1¢€J}.

Then there is a bijectiorf : /3 — J> defined byJ — f(J) := J U {k—1}. For any
J € J1, we have that f (J)| = |J| + 1. Furthermore, a map

Ya: Ty = Te
defined by

{..., XLk} = {..., XLk_1, XLk},

just insertingx Li_1, is bijective. So|T;| = |T¢(| holds. It follows that the numbers
of simplices of typeJ with k € J are cancelled out in the alternating sum. Thus we
may suppose thah = I'; or A = Ty, namely,A = (--- < Lyx_2 —> Lx_1 < Lg).

For anyxLyx 1 € G/Lk_1, there exists a unique cosBte G/Ly containingx Ly 1
(i.e. xLx_1 < B), that is, B = xLk. Then by the same argument as above, the numbers
of simplices of typeJ with k — 1 € J are cancelled out in the alternating sum. Let
J={0#JCI1(A)|k—1¢ J}. Then we have that

XM=Y DTy =x+9

JeJ
where
X= ) (1P
k¢deJ
and

Y=Y (1T,

kedeg

By induction, we getX = Y jc; ayman g (—1)?I7HT,|. Thus it is enough to consider
2). But we can apply the same argument as above again. Indee@nyoxLy_3 €
G/Lk_3, there exists a unique cos€te G/Ly_, containingxLy_3 (i.e. XxLx_3 < C),
that is,C = xLy_». Let

Jy={JeJ|keJ k-8eJ, k-2¢1J},

Jo={JeJ kel k-3eJ, k-2€J}.

Then there is a bijectiog: Ju) — J) defined byJ — g(J) := J U {k—2}. For any
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J € Ju), we have thaig(J)| = |J| + 1. Furthermore, a map

9_]2 TJ — Tg(J)
defined by
{- . XLis, YLi} = {. .., XLk—3, XLk—2, YLk},
just insertingx Li_», is bijective. So|T;| = |Tgy)| holds. It follows that the numbers

of simplices of typek € J € J with k—3 € J are cancelled out in the alternating sum.
Repeating this process, we eventually conclude that

V=D (DTl

keJCI (A)max
This completes the proof. ]

EXAMPLE 7.13. LetA € P(QY)P" be a proper path QY of the form

L Ly

N

Ly L,

Then | (A)™ = {1, 3}. Set T:= TQ&(Q%(A)). By Proposition 7.12, we have that

x(M) =Tyl + Tyl = Tzl

Furthermore, by Proposition 7.10Ty,| = |G : L1}, |Tiz| = |G : L3|, and

- 1
Taal = le(Apa)lx “rm =16 L2l x =|G:LiNLsl|.

) 13 [Ly N Lz: Ly

It follows that x(T) = |G : Li|+ |G : L3 —|G:LiNLsl

Now, let G := J; be the first Janko group of ordef 23-5-7-11-19. There is a
unique class of involutions, say a representativevith the centralizelCg(2) = (z) x A
where A is isomorphic to the alternating group of degree 5. Take Bysobgroups
Cs = (h) € Syls(A) and C, x C; x C; = S e Syl,(G) with z e S. Then the following
proper pathA in Q“Gd is defined.

Note that(h, z) N S= (z). From the above result, the Euler characterigt{d@) of T
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is calculated as follows:

x(M=|G:(h,2)|+|G:9—|G:(z)| =83, 391=3x7x11x1%,
x(T) —1 =83, 390= 2 x 5x 31 x 269.

7.3. The top homology of -ng(é(A)) is trivial. Let A be a proper path in

ud. In this section, it is shown that the top homology of a coshplex of B(A)
in Qg;g; is trivial. This homologyR-module can be realized as a homology of a quiver
(see Section 5 and Example 5.13).

Proposition 7.14. Let A = (Lo —--- — L) € P(Q)"" be a proper path in @
Then the homology R-module Bg&(@(A)) of degree k is trivial.

Proof. Put T:= TdiG(QS(A)), then dim T= k (see Remark 6.22). Ldt(A)™" :=
{v1,...,ur}. Let Cy(T) (0 = n <Kk) be theR-free module with alin-dimensional oriented
simplices{o) of o in T as basis, and le},: C,(T) —» C,_1(T) (1 < n <Kk) be anR-
homomorphism defined by

Sn((X0, X1, -2 X)) i= Y (1) (X0, -+, Riy -2 Xn)
i=0

for (Xg, X1, ..., Xn) € Cn(T) (see Definition 5.7). It is enough to show that Beis
trivial. Note that paths” € &(A) can be identified with simplices of T of maximal
dimension (see Remark 4.8 (3)).

First we recall that, for subgroupdl < K < G and a cosexH € G/H, there
exists a unique cosef € G/K containingxH, that is, A = xK. This implies that
a pathT" € &(A) is uniquely determined by coseigL,, € G/L,, (0 <i =<r) with
the property that, in the following situation fok, XLy, = X;11L, namely x 1x 41 €
Ly holds.

NSNS

Vit1

It follows that paths XgLo —- - - —XkLk) and §oLo—---— ykLk) in é(A) are the same
if and only if x,L, = y,L, for all v e I(A)™"
Take anyX = 1 gs) Cr(l') € Kerd € Ci(T). Then

0 =68k(X) = Z crék({T)) € Cr-1(T).

Te®(A)
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From the previous paragraph, we can see that, for a path (YoLo — - - - — YkLk) €
&(A), (k— 1)-simplices(yoLo, ..., ¥iLi. .- . YLk) in 8((A)) which containy,L, for
all v € 1(A)™ must lie only incadk({A)) in the suM} 1. g4 Crok((')). This forces
thatcr = O for all T € &(A). Thus Kes, is trivial. The proof is complete. ]

7.4. A relation with coset geometries. Let F := {Lo, ..., Lk} be a family of
subgroups ofG, and letl := {0, ...,k}. A systemG(G, F) := (G/Lo, ..., G/Lk; *)
is a coset geometry ovdr where x is a binary reflective and symmetric relation on
V :=G/LoU---U G/Lg defined by the non-empty intersection, namely, cosdis
andyL; are incident ifxL; NyL; # . Note that cosetgL;, yL; € G/L; are incident
if and only if xLj = yL;. In this section, we show that the automorphism group of
G(G, F) is the intersection of those of our coset complexqg%(ré(l“)) for certain
pathsT" € P(QY

An automorphism of7(G, ) is an elementy € Sym(V) which preserves type and
incidence, that isy/(G/L;) = G/L; for all 0 <i <k and if xL; * yL; theny(xL;) *
¥ (yL;). Denote by AutG(G, F)) the group of all automorphisms &f(G, F). By the
definition, we have that

k
AUt(G(G, F)) < [ | SymG/L1).
i=0

Let A € P(QY) be a path of the form

Ly

NAN A/

LoNL, LiNL, Li_i N Ly

Furthermore, for a permutatiom € Sym( ), denote byA®™ a path
.. L(k T K
Lor N L= Lz N Ly« L(k * N L=
wherei” :=mn(i) el foralli € l. Forz € Sym(), set

Ty = Tou (B(AM))
and

W,:= |J G/H.

HeOb(A™)
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Then W, is the vertex set of J. Denote by Aut(T,) the group of all elements of
Sym(W,) which preserves/H for all H € Ob(A(™), and preserves the set of sim-
plices of T,. In particular, we have that

Aut(T)< [] SymG/H)

HeOb(A (M)

k
N (]‘[ Sym(G/Li)> x ( [ symG/Lin L,—)).

i=0 O=i<j=k
In this situation, we have the following.
Proposition 7.15. The groupAut(G(G, F)) is isomorphic toﬂnesym(,) Aut(T,).

Proof. Take anyy € Aut(G(G, F)) and = € Sym(l). For z(Li~ N Lgy1y) €
G/(Li= N L(4+1y), elementszLi- and zL; 1y are incident inG(G, F). So by the def-
inition of v, ¥(zLi-) =: hLj= and ¢ (zL;1y) =: KL¢4+1- are incident. We set

Ip(Z(Lin N Lg+1y)) :=hLi= NkLgy1y = u(Li= N Litay) € Wy

whereu € hLi- NkLjy1y # 0.

v
ZLjx * ZL(lur[)rr —— hLi= == Y(zLi=) * w(ZL(l'+l)ﬂ’) = kL(l'+l)3\’

N/ \/

Z(Li= N L) =: Q hLix NkLGy1y =: ¥(2)

Then a mapy: W, — W,, wherey |y := v, induces a bijection oW, which pre-
servesG/H for any H € Ob(A™). Furthermore, it is clear from the definition that
acts on a set3(A™) of paths, and on the set of simplices of.TThus we have that
¥ € Aut(T,).

Conversely, take any; € ﬂnesyma)Aut(T”). Then, by the definition,n|y €
1., SymG/Li). For xL;, yL; € V, suppose thakL; % yL; in G(G, F), that is,
0 #xLinyL; =u(LiNL;) forue xLinyL;. Then a pathXL; — u(LiNL;) = yL;)
is defined which is an interval of a path i(A™) for somesx € Sym(l). Thus, by
the definition ofn € Aut(T;), we have a path

(n(xLi) = n(u(Li N Lj)) < n(yL))),

namely, the intersection of(xL;) andn(yL;) containsp(u(L; NLj)). So they are inci-
dent. It follows thatn|y € Aut(G(G, F)). Then the process given in the above provides
the desired isomorphism as groups. ]
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7.5. Connectedness. In this section, we examine the connectedness of our sub-
group and coset complexes. But before doing this, we retalliéfinition.

DEFINITION 7.16 (cf. pp.164-165 in [4]). LeK = (V(K), SK)) be a simpli-
cial complex whereV (K) and S(K) are respectively the sets of vertices and simplices
of K. An edge inK is just an ordered pak = (a,b) of verticesa,b € V(K) such thata
andb lie in a simplexo € §(K). Denote by ori¢) := a and end§) := b. An edge path
in K is a finite sequence = (e, ...,€,) of edgesg in K such that end{) = ori(g 1)
foralli =1,...,n—1. Denote byo(«) := ori(e;) and e(«) := endg,). K is connected
if, for any a, b € V(K), there exists an edge path in K such thato(e) = a and
elw) = b.

Recall that a subgroup quive(@”Gd is a G-quiver, and thaP(di) is preserved by
G-conjugate action (see Remark 4.6). FoGdnvariant subseD C P(QY) of paths in
Q“Gd, denote byD/.. a complete set of representatives @fconjugate classes dp.

Proposition 7.17. LetD < P(QY) be a G-invariant subset of paths in® Sup-
pose thatTdi(D) is connected then so FEQEU(D/NG) for someD/._.

Proof. LetD = A$ U AS U---U AS be a decomposition int&-orbits where
A8 = {x A |xeG}andx: A= (LY —- = LX) for A = (Lo— -+ — Lg).
We proceed by induction om = |D/..|. Suppose tham = 1. ThenD/., = {A1},
SO Tdi(D/NG) = Tdi(Al) is clearly connected. Thus we may assume that 2. Put
Dy :=AJU---UAE, soD = A§ UD;. Then by induction, we may assume that, for
a complete seD;/., = {Az, ..., Ay} of representatives, agd(Dl/NG) is connected.
Furthermore by our assumption thaé@'(D) is connected, we have that

( g Ob(F)) N ( g Ob(A)) £ 0.

reaf AeDy

Thus we may assume th&tb(x - A;) N Ob(y - Ap) # @ for somex, y € G, namely
Ob(y 1x - Aj) N Ob(Az) # @. It follows that, for a complete seb/. .. = {y 1x- Ay,
Az, ..., Am} of representatives, Ju(D/ ) is connected. The proof is completel]

Proposition 7.18. Let D C P(Q”Gd) be a subset of paths in @ The followings
are equivalent.
(1) Tqu(&(D)) is connected.
(2) Tqu(D) is connectedand ((J,.p Ob(A)) = G holds.
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Proof. (1)= (2): Take any vertices andL’ of TQqu(D). SinceD C &(D), we
have that

| oba)c | ob(r).

AeD re®(D)

This shows thatL and L’ are vertices of 5&(@5(7))) which is connected by our as-
sumption. So there exists inQ&(é(D)) an edge path

((xoLo, x1L1), (X1L1, X2L2), ..., (Xe—1Lt—1, XtLt))

wherexglo = L, XLt = L', andLy, ... Li_1 € Jpep Ob(A). Since & Li, Xi+1Lit1)
is an edge, bothL; and X 1Ljy1 lie in Ob(") for some pathl’ = (ygHo — -+ —
yaHq) € &(A) € B(D) where A = (Hg — --- — Hg) € D. ThusL; and L;,; lie in
Ob(A) = {Ho, ..., Hg} (see Remark 4.8 (3)). It follows that{, Li;1) is an edge in
Tqu(D), and that (L, L1), (L1, L2), ..., (Li—1, L)) forms an edge path in Ju(D).
Therefore B%d(D) is connected.

SetV := (J,.p Ob(A) and N := (V) < G. We will show thatN = G. First
we claim that, for a pathxgLo — --- — xcLy) € &(D), if xL; C N for somei then
XjL; € N for all 0 < j < k. Indeed suppose thatL; < x1Li;1. Then since
X Li C Xi+1Liyr1, we have thatiLi 1 = XiLi 1 € N. On the other hand, suppose
thatxLi = Xi;1Liy1. Thenxi1Liz1 C xLj € N as required. Next we claim that, for
a connected componegt of TQ&(QS(D)) with C NV # @, any element irC is con-

tained inN. Indeed takel € CNV. For any path il —x;L;—---—x;L{) in &(D), since
L = (V) = N, we have from the previous claim thafL; € N for all 1 < j <t. Fur-
thermore any elemeni € C is connected withL along an edge path in Q‘E%(@S(D)).
So AC N as wanted.

Now assume thalN < G, and takey € G such thatyN # N. Let C be a connected
component of 5&(@5(7))) with CNV # @. Then from the previous claimA € N for
any AeC. ThusyAC yN. SinceNNyN = @, we have that NyC = @ whereyC :=
{yA] A e} is a connected component. This yields thaj@(é(l))) is disconnected,
a contradiction.

(2) = (1): Note that K:= Tqu(D) is a subcomplex of T= T (6(D)). Since
K is connected by our assumption, the vertex Bet= | . Ob(A) of K is contained
in a connected componegtof T. For anyL € V andx € L, we have thal. = xL €
C N xC wherexC := {XA| A e C} is a connected component of T, so that = C.
This implies that(V) < Staks(C) := {g € G | gC = C}. But sinceG = (V) by our
assumption, Sta}{C) = G holds. ThusC contains the sefJ, ., G/L of all vertices of
T. So T is connected. The proof is complete. ]

REMARK 7.19. LetH < G be a proper subgroup @&. SetD := {(Lo —--- —
L) € P(QY) | Li < H} € P(QY). Then it is easy to see that, for a path =
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(GoLo—---—akLy) € (D), if giL; € H for somei then giL; £ H forall 0<j <k,
so thatOb(A) N 2" = @ where 3! is the power set of a setl. In other words, if
gLi € H for somei theng;L; € H for all 0 < j <k, so thatOb(A) € 2". This
implies that a complex a'&(éi(D)) is disconnected.

As in the following, the number of connected components obset complex of
B(A) in ngg is completely determined by a certain subgrddpof G. This result can
be applied when we calculate the zero homology of the complex

Theorem 7.20. For a path A = (Lo — -+ — Lx) € P(Q¥) in QY, the number of
the connected components b@‘gg%(é(A)) is given by the indexG : H| where H:=
(Lj ] €l(A)™) =(0b(A)) =<G.

Proof. AnyL; andL; (0<i < j <Kk) are connected along. So there exists a
connected componeigt of T := TQE%(ES(A)) containingOb(A) = {Lo, ..., Lx}. Since
G acts transitively on the set of all connected components ,oit Buffices to show
that H = Stals(C) := {g € G | gC = C} wheregC := {gA| A € C} is a connected
component of T.

For any L;j € Ob(A) C C andu € L;, we have thatL; = ulL; € C N uC. Thus
uC =C andL; < Stalks(C). Since each element @b(A) is contained inL; for some
j € 1(A)™ we have that

H=(Lj|jel(a)™)=(Li|0=i=<k) =< Stag(C).

On the other hand, for any € Stals(C), we have thaC = zC > zLy. Then there
exists an edge path

((ZOLi01 ZlLil)! (ZlLi]_1 ZZLiz)! s e (ZI—lLi‘,p ZtLit))

wherezol, = Lo, zLi, = zLo, andL;,,...L;j_, € Ob(A). For an edgezL,;,,zs;1Li,,,),
we may assume that < is;1. Since bothzsl;, and zs;1Li,,, lie in a simplex of T,
there exists a path € é(A[isyisﬂl) such thats(A) = zL;, andr(A) = zs+1Li,,. Then
by Proposition 7.5,

ZS+1Lis+1 = r(A) € r(é(A[iSviHl])ZsLis) = ZSLUl U LUr/Lis+1

where {ug, ..., U} = (A, )™ Thuszsiq € zLy, - Ly, € zsH. Note that if
is > isy1 then by the same way, we obtam € z,1H, namelyz;!, € Hz;®. Since

Zo € Lo < H, we have thatzs € H (0 < s <t). In particular,z =z € H. It follows
that Stalg(C) < H. This completes the proof. ]
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7.6. Preimages undergga. Let A =(Lo—---— L)€ P(Q”Gd) be a path in
QW, and let

e.at Tou (B(Ca)) > Touw(P(QEY)

be aG-simplicial map defined in Section 6.3. In this section, wealibe the preim-
age underpg a. We expect that this result will be applied to homotopy tlyelke
Quillen’s fiber theorem on homotopy equivalences (see [Bp&sition 1.6]), and so on.

Proposition 7.21. Let A = (Lo —--- — Lx) € P(QY) be a path in ¢, and let
vc,a be a G-simplicial map stated in the above. Let

k
T={L, ... L] Cim(gea) = JIL? |a€G} (0<jo<-<jqg=K)
j=0

be a g-simplex Oﬂ—Qqu(P(QUGd)) which is in the image ofg a.

(1) Any simplex inp(g}A(r) is of dimension q.

(2) Any simplexo in wé,lA(f) is of the formo = {gj,Lj,, ... Qgj,Lj,} for some g, €
aLlNG(LJ‘d) (0 =d =q). Furthermore there existsA[sy) € Ca such thatAj, j.1 = Arsy-
(3) The preimagepg}A(r) is given as follows

9is € aj;"No(Lj,) (0=d =q)
{gioLJO' B ngLJq} Gjgs1 € gjdLUd.lLUd,Z te LUu,rd (0 =d= q- 1)
where I(Afjg, o)™ = {Ud,1, - - -, Udyrg} (Ui < Ud,i+1)

Proof. (1) This is due to Proposition 6.25.
(2) By the definition of a simplex in <pg’1A(r) c TQ%(QNS(CA)), there exists
A[st] € Ca such thato € Ob(I") for a path

I' = (gsks — Us+1lsy1 — Osyolsi2 — - — Q11— Gt L)
in &(Ajs) € G(Ca) S P(QYY). Seto = {Gi,Lig, .- - G, Li,} (S<io,...,ig =t). Then

ajo

-1 —1
(Lo, L =1 =¢cal0) Spea(l) ={LE ..., LE ).
We may assume that

. o
LJa:id = (vaA(gid Lid) = Lidd (0 S d S q)

Then by G-conjugate condition in Definition 6.23 ok € Ca, we have thaig = |q

for all 0<d <gq. It follows that gj, € 3 "Ns(Lj,) (0 < d < g), and thats < jo <

e < jq =< ty namerA[jO‘jq] < A[S,t]-
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(3) Note that sinceA(j, ] = Asyy € Ca by the previous claim (2), we have that
S<jo<-'-<]qg=t. Now a seto = {gjlLj,...0gjLj} of cosets is a simplex in
Tou (6(Ca)) if and only if there existS g1 € G(Ajj, j,.1) S P(QEL) (0<d <q-1)
such thats(I'q+1) = gj,Lj, andr(I'q+1) = Gju..Lj...- Then we obtain a path

I I Fq
A= (gjoLio - glejl - gszjz o gjq—lLiq—l - giqLiq)

in the closureQ¥, such thatob(A) = o (see also the proof of Lemma 7.2). By Prop-
osition 7.5, we have that

Ojasa Ljars = M (Ca+1) € MB(Afjg, jural)gjy L)
= Gj LUd,lLUd,z te Lud,rd/Ljd+1 = G/Ljd+1

where | (Afj, jo,)™ = {Ud,1, Ud,2, - - -, Udry} (Udi < Udi+1)- Thus
Qjus1 € Gig LUd,lLUd.Z T LUd,rd .
The proof is complete. O
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