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Abstract
In this paper, we will introduce a simplicial complex TQ(H) defined by a quiver

Q and a familyH of paths in Q. We call TQ(H) a path complex ofH in Q. Let
G be a finite group, and denote by Sgp(G) and Coset(G) respectively the totality of
subgroups ofG, and that of left cosetsgL 2 G=L of subgroupsL of G. We will
particularly focus on quiversQG and QCG obtained naturally from posets Sgp(G)
and Coset(G) ordered by the inclusion-relation. Then various properties of path com-
plexes associated toQG and QCG will be studied.
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1. Introduction

Let G be a finite group. Denote by Sgp(G) the totality of subgroups ofG. The
structure of the subgroup lattice (Sgp(G),�), where� is the inclusion-relation, is quite
important for investigating the groupG itself. In more general, for a familyD �
Sgp(G) of subgroups, we are interested in the structure of a poset (D,�). This tells us
that how certain subgroups ofG are piled up, or related each other. On the other hand,
denote by Coset(G) the totality of left cosetsgL 2 G=L of subgroupsL of G which is
regarded as a poset with respect to the inclusion-relation�. Let 'W Coset(G)! Sgp(G)
be a surjectiveG-map defined by'(gL) WD Lg�1

for all cosetsgL 2 Coset(G). Then the
subgroup lattice (Sgp(G), �) is contained in (Coset(G), �). Furthermore, (Sgp(G), �)
is realized by gluing, via', some cosets in (Coset(G), �). For example, we consider
a sequence

G WD Sym({1, 2, 3, 4}) > L WD Sym({2, 3, 4}) > H WD Sym({3, 4})

of subgroups where Sym(X) is the symmetric group on a setX. The following is a
part of (Coset(G), �).

Then identifying some cosets via', we have the following which is a part of
(Sgp(G), �).

From this reason, our main interests are (Sgp(G), �) and (Coset(G), �), and also
their subposets. In order to examine those posets in more detail, we consider a quiver
QP associated to a poset (P, �) whose vertex set isP and an arrow (a ! b) for
a, b 2 P is defined precisely whena > b. Then we obtain quiversQG and QCG from
posets Sgp(G) and Coset(G) respectively. Furthermore, we introduce a simplicial com-
plex TQ(H) defined by a quiverQ and a familyH of paths in Q. We call TQ(H) a
path complex ofH in Q. In this paper, we study various properties of path complexes
associated toQG and QCG. At the same time, a general theory by using arbitrary quiv-
ers instead ofQG and QCG is also developed.
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The paper is organized as follows: In Section 2, we recall thebasic definitions on
quivers Q. In Section 3, some variations ofQ are defined. In particular, the extended
quiver Qud of Q is our fundamental object in this paper, and the closureQ of Q is
important for defining homology ofQ. In Section 4, we consider quiversQG and QCG

appeared in the above. In Section 5, we establish three kindsof homologies ofQ by
using familiesP(Q), P(Q)pr, EQ of paths in the closureQ of Q. A family EQ also
provides a simplicial complex which reflects the original quiver Q. In Section 6, we
introduce a path complex TQ(H) mentioned above, and develop some general theory
on TQ(H). Moreover, we deal with those complexes associated to the extended quivers
Qud

G and Qud
CG which we call subgroup complexes and coset complexes respectively. In

Section 7, some other properties of our subgroup and coset complexes are investigated.

2. Preliminaries

In this section, we recall some definitions related to quivers, and establish our no-
tations which will be used later. Throughout this paper, letR be a commutative ring
with the identity element. For a setX, denote by Sym(X) the symmetric group onX.
For maps f W X ! Y and gW Y! Z, the composition mapg Æ f is read from right to
left, namely (g Æ f )(x) WD g( f (x)) 2 Z for any x 2 X.

DEFINITION 2.1. A quiver Q is a quadruple

Q D (Q0, Q1, (sW Q1! Q0), (r W Q1! Q0))

where Q0 (¤ ;) and Q1 are sets, and their elements are called vertices and arrows of
Q respectively. Furthermores and r are maps fromQ1 to Q0. For an arrow� 2 Q1,

if s(�) D a and r (�) D b then denote bya
�

�! b or � D (a! b). Elementss(�) and
r (�) are called the start and range of� respectively.

DEFINITION 2.2. Let Q D (Q0, Q1, s, r ) be a quiver.
(1) A path1 in Q is either a sequence (�1,�2, : : : ,�k) (k � 1) of arrows�i D (ai�1!

ai ) 2 Q1 satisfying r (�i ) D s(�iC1) for (1 � i � k � 1), or the symbolea for a 2 Q0

which is called the trivial path. In this case, we also write

1 D (a0
�1
�! a1

�2
�! a2! � � � ! ak�1

�k
�! ak)

or

ea D (a).

Note that we identify a vertexa with ea. Denote byP(Q) and P(Q)non respectively
the totality of paths inQ, and that of non-trivial paths inQ.
(2) For a non-trivial path1D (�1,�2,:::,�k) 2 P(Q), defines(1) WD s(�1) andr (1) WD
r (�k). Furthermore, defines(ea) WD a and r (ea) WD a for a 2 Q0.
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(3) For a non-trivial path1 D (�1, �2, : : : , �k) 2 P(Q), denote byl (1) the length
k of 1. We set l (ea) WD 0 for a 2 Q0. The notationP(Q)i (i � 0) stands for the
totality of paths of lengthi , namely P(Q)i WD {1 2 P(Q) j l (1) D i }. In particular,
P(Q)0 D {(a) j a 2 Q0} is the totality of trivial paths inQ.
(4) For a,b 2 Q0 and a subsetH � P(Q), denote byHa)b the totality of paths1 2H
with s(1) D a and r (1) D b.
(5) The path algebraR[Q] of Q over R is the R-free module with all paths inQ as
basis, and a multiplication onR[Q] is defined by extending bilinearly the composition

1112 WD

�

(�1, : : : , �k, �1, : : : , �m) if r (�k) D s(�1),
0 otherwise

of paths11 D (�1, : : : , �k), 12 D (�1, : : : , �m) 2 P(Q). Then R[Q] is an associative
R-algebra.

DEFINITION 2.3. For a setX, denote byMod(X)R the R-free module with basis
X. Under this notation, we have thatR[Q] D Mod(P(Q))R as R-modules.

DEFINITION 2.4 (Proper paths). LetQ D (Q0, Q1, s, r ) be a quiver, and1 D
(a0! � � � ! ak) 2 P(Q) (k � 0) be a path inQ.
(1) Denote byOb(1) WD {a0, : : : , ak} � Q0 the set of vertices ofQ which make1.
(2) 1 is proper if ai ¤ a j for all distinct i , j (0� i , j � k). Note that1 is proper if
and only if jOb(1)j D kC 1. In particular, a trivial path is always proper.
(3) For a subsetH � P(Q), denote byHpr the totality of proper paths inH. For
example, the notationP(Q)pr

i (i � 0) means (P(Q)i )pr
D P(Q)i \ P(Q)pr.

DEFINITION 2.5 (G-quivers). Let Q D (Q0, Q1, s, r ) be a quiver, andG be a
group. We callQ a G-quiver if the following conditions hold:
(1) G acts on the setsQ0 and Q1, that is, there exist group homomorphismsf0W G!
Sym(Q0) and f1 W G! Sym(Q1). For g 2 G, a 2 Q0, and� 2 Q1, denote byg � a WD
f0(g)(a) and g � � WD f1(g)(�).
(2) For g 2 G and � 2 Q1, we have thats(g � �) D g � s(�) and r (g � �) D g � r (�). In
other words, if� D (a! b) then g � � D (g � a! g � b).
Note that for verticesa, b 2 Q0, if g � a D b for someg 2 G then we writea �G b.

REMARK 2.6. Let Q D (Q0, Q1, s, r ) be aG-quiver. ThenG acts on bothP(Q)
andP(Q)pr in such a way thatg �1 WD ((g ��1), : : : , (g ��k)) for 1D (�1, : : : ,�k) 2 P(Q)
and g 2 G.

3. Some variations ofQ

In this section, we introduce some variations of a quiverQ. In particular, the ex-
tended quiverQud of Q is a fundamental object in this paper, and the closureQ of Q
will play an important role in Section 5 where a homology ofQ is defined.
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DEFINITION 3.1 (Extended quivers; cf. Definition 3.9 and Remark 3.10 in [2]).
Let Q D (Q0, Q1, s, r ) be a quiver. For each arrow� D (a! b) 2 Q1, we define the
symbol t

�. Set Qopp
1 WD {t

� j � 2 Q1} and Qud
1 WD Q1 [ Qopp

1 . Then

Qud
WD (Q0, Qud

1 , (sW Qud
1 ! Q0), (r W Qud

1 ! Q0))

forms a quiver wheres and r are extended onQud
1 as s(t

�) WD r (�) D b and r (t
�) WD

s(�) D a for � D (a! b) 2 Q1. Thus t
� D (b! a). We call t

� the opposite arrow
of �. Note thatP(Q) � P(Qud).

REMARK 3.2. If Q is a G-quiver then, for� D (a ! b) 2 Q1 and g 2 G,
we define,

g � (t
�) WD t (g � �) D t (g � a! g � b) D (g � b! g � a).

This makesQud a G-quiver.

NOTATION 3.3 (Up-down paths). For arrows�, � 2 Q1 such thatr (�) D r (�),
we just write1 D (�, �) for a path1 D (�, t

�) in Qud where r (�) D r (�) D s(t
�).

Similarly, for arrows�,� 2 Q1 such thats(�)D s(�), the notation1D (�,�) indicates
a path1 D (t

�, �) in Qud where r (t
�) D s(�) D s(�). For example, for arrows�1 D

(a! b), �2 D (c! b), �3 D (d! c), �4 D (d! e) in Q1, the notation

1 D (a
�1
�! b

�2
 � c

�3
 � d

�4
�! e)

implies a path

1 D (a
�1
�! b

t
�2
�! c

t
�3
�! d

�4
�! e)

in Qud. So any path1 2 P(Qud) in Qud can be expressed as1D (a0
�1
� a1

�2
� a2 � � � � �

ak�1
�k
� ak) for some�i 2 Q1 (i D 1, : : : , k) where� means! or  . Throughout this

paper, we frequently use this way of writing for paths without using opposite arrows.

DEFINITION 3.4 (Restrictions). LetQ D (Q0, Q1, s, r ) be a quiver. For a subset
A � Q1, we set

(QA)0 WD {s(�) j � 2 A} [ {r (�) j � 2 A} � Q0.

Denote the restrictionssjAW A! (QA)0 and r jAW A! (QA)0 by just the same notations
s and r . Then QA WD ((QA)0, A, s, r ) forms a quiver which we call the restriction of
Q to A.

DEFINITION 3.5 (Closures). LetQ D (Q0, Q1, s, r ) be a quiver. The maps
s, r W Q1! Q0 can be extended as maps

sW P(Q)non
! Q0 by 1 7! s(1),

r W P(Q)non
! Q0 by 1 7! r (1).
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Then Q WD (Q0, P(Q)non, s, r ) forms a quiver which we call the closure ofQ.

EXAMPLE 3.6. Let Q be a quiver defined as follows:

a
�

�! b
�

�! c.

This yields thatP(Q)0 D Q0 D {a, b, c}, P(Q)1 D {(a
�

�! b), (b
�

�! c)}, and P(Q)2 D

{(a
�

�! b
�

�! c)}. Then by the definition of the closure ofQ, we have that

P(Q)0 D {a, b, c}, P(Q)1 D {�, �, 11 D (a! c)}, P(Q)2 D {(a
�

�! b
�

�! c)}

where11 comes fromP(Q)2. Similarly

P(Q)0 D {a, b, c}, P(Q)1 D {�, �, 11, 12 D (a! c)}, P(Q)2 D {(a
�

�! b
�

�! c)}

where12 comes fromP(Q)2. Now set Q0
WD Q and Qk

WD Qk�1 (k � 1). Then we
have that

P(Qk)0 D {a, b, c}, P(Qk)1 D {�, �, 11, : : : , 1k}, P(Qk)2 D {(a
�

�! b
�

�! c)}

where1i (1 � i � k) is an arrow froma to c. In Section 5.2, we will calculate a
homology of Qk (k � 0).

4. Quivers from groups

Let G be a group. In this section, we introduce quiversQG and QCG associated
to subgroups ofG, and to left cosets of subgroups ofG. Later in Sections 6 and 7,
they will be investigated in more detail.

4.1. Subgroup quiversQG . First of all, we establish a quiver associated to a
poset (partially ordered set) in general.

DEFINITION 4.1. Let (P, �) be a poset. For elementsa, b 2 P, we define an
arrow (a ! b) precisely whena > b. Put (QP )0 WD P and (QP )1 WD {(a ! b) j
a, b 2 P, a > b}. Then denote by

QP WD ((QP )0, (QP )1, (sW (QP )1! (QP )0), (r W (QP )1! (QP )0))

a quiver wheres(�) WD a and r (�) WD b for � D (a! b) 2 (QP )1.

REMARK 4.2. Suppose that (P, �) is a G-poset, namely,G acts on the setP,
and the action ofG preserves the ordering�. Then it is clear thatQP becomes a
G-quiver.



SIMPLICAL COMPLEXES ASSOCIATED TO QUIVERS 167

DEFINITION 4.3. Let G be a group, and let Sgp(G) be the totality of subgroups
of G including the whole groupG and the trivial subgroup{e}. This can be viewed
as a poset together with the inclusion-relation�. Denote by

QG WD Q(Sgp(G),�)

a quiver associated to a poset (Sgp(G),�) (see Definition 4.1). We callQG a subgroup
quiver of G.

REMARK 4.4. In this paper, the extended quiverQud
G of QG (see Definition 3.1)

is our interest rather than justQG itself. Indeed, a path1 D (L0! � � � ! Lk) in QG

is simply an inclusion-chain (L0 > � � � > Lk) of subgroups ofG. However, in Qud
G ,

inclusion-chains (L0 > � � � > Lk D M1 < � � � < Mt ), (L0 < � � � < Lk D M1 > � � � >

Mt ), and their every combinations are considered as paths. Thus Qud
G has much more

information of the subgroup lattice (Sgp(G), �).

4.2. Coset quiversQCG.

DEFINITION 4.5. Let G be a group, and let Coset(G) WD
S

L2Sgp(G) G=L be the
totality of left cosets ofL in G for all subgroupsL 2 Sgp(G). We regard Coset(G) as
a poset together with the inclusion-relation�. Denote by

QCG WD Q(Coset(G),�)

a quiver associated to a poset (Coset(G),�) (see Definition 4.1). We callQCG a coset
quiver of G. As in Remark 4.4, the extended quiverQud

CG of QCG is an object for
consideration rather than justQCG.

REMARK 4.6 (G-quivers QG and QCG). (Sgp(G),�) is a G-poset together with
G-conjugate action, that is, forg 2 G and L 2 Sgp(G), g � L WD gLg�1

D Lg�1
is

a member of Sgp(G). FurthermoreG acts on Coset(G) by the left multiplicationx �
gL WD x(gL) D (xg)L for x 2 G and gL 2 Coset(G). This makes (Coset(G), �) a G-
poset. Thus by Remark 4.2, associated quiversQG and QCG are bothG-quivers, and
so areQud

G and Qud
CG by Remark 3.2. In particular,P(Qud

G ) and P(Qud
CG) are G-invariant

by Remark 2.6.
On the other hand, for a cosetgL 2 G=L and x 2 G, we have that (gL)x D

(gx)(x�1Lx)D (gx)Lx. This implies thatG acts on Coset(G) by the right multiplication.

Now, we introduce paths inQud
CG obtained from paths inQud

G .
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DEFINITION 4.7. For a path1 D (L0 � � � � � Lk) 2 P(Qud
G ) in Qud

G and a subset
D � P(Qud

G ), set

QG(1) WD {(A0 � � � � � Ak) 2 P(Qud
CG) j A j 2 G=L j (0� j � k)},

QG(D) WD
[

12D

QG(1) � P(Qud
CG).

In particular, we have thatQG({1}) D QG(1).

REMARK 4.8. Let H < K � G be subgroups ofG. Suppose thatG is finite.
(1) For each cosetgH in G=H , there exists an unique cosetA in G=K containing
gH, that is, AD gK.
(2) For each cosetgK in G=K , there are exactlyt WD jK W H j cosets inG=H con-
tained in gK. Indeed, if K D a1H [ � � � [ at H is a decomposition into left cosets of
H in K then {ga1H, : : : , gat H} is the set of all required cosets.
(3) For subgroupsL1, L2 � G, suppose thataL1 � bL2 for a, b 2 G. Then b�1a 2
(b�1a)L1 � L2 and L1 D (b�1a)�1(b�1a)L1 � (b�1a)�1L2 D L2. Thus L1 � L2. In
particular, if aL1 D bL2 then L1 D L2, and this implies thatG=L1 \ G=L2 D ; if
L1 ¤ L2. It follows that if 1 2 P(Qud

G ) is proper then so is any path inQG(1).

From the observations in Remark 4.8 (1) and (2), paths inQG(1) can be described
according to up-down information of1. We demonstrate this fact in the next example.

EXAMPLE 4.9. Suppose thatG is finite. Let 1 D (L0  L1 ! L2 ! L3  

L4) 2 P(Qud
G ) be a path inQud

G which is drawn as follows:

In other words,1 is an inclusion-chain (L0 < L1 > L2 > L3 < L4) of subgroupsL i

of G. In this case, any paths (A0 A1! A2! A3 A4) in QG(1) are described as
follows: First, any cosetgL0 in G=L0 can be taken asA0. A coset A1 in G=L1 must
contain A0 D gL0. So it is uniquely determined asA1 D gL1. Since a cosetA2 in
G=L2 is contained inA1 D gL1, it is one of ga1L2, : : : , gat L2 where L1 D a1L2 [

� � � [ at L2 is a decomposition into left cosets ofL2 in L1. By the same way, for each
A2D gai L2, there are exactlyjL2 W L3j cosetsA3 in G=L3 contained inA2. Finally, for
each such cosetA3D hL3 in G=L3, A4 is uniquely determined asA4D hL4. Therefore
the number of paths inQG(1) is

jG W L0j � 1� jL1 W L2j � jL2 W L3j � 1.
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Refer to Proposition 7.4 for a general result on the number ofpaths in QG(1).

REMARK 4.10 (G-invariant QG(D)). Recall thatQud
G and Qud

CG are bothG-quivers,
and thatP(Qud

G ) andP(Qud
CG) are preserved byG-conjugate action and the left multiplica-

tion respectively (see Remark 4.6). Let1 D (L0�� � �� Lk) 2 P(Qud
G ). Then QG(1) is G-

invariant under the left multiplication, that is, for a path0 D (g0L0�� � ��gkLk) 2 QG(1)
and x 2 G, a pathx � 0 WD (xg0L0 � � � � � xgkLk) is in QG(1). In particular, so isQG(D)
for any subsetD � P(Qud

G ).
On the other hand, for a cosetgL 2 G=L and x 2 G, we have that (gL)x D

(gx)(x�1Lx) D (gx)Lx. This tells us that ifD is G-invariant, then so isQG(D) under
the right multiplication.

Lemma 4.11 (Semi-regularity). Let 1 D (L0 � � � � � Lk) 2 P(Qud
G ) be a path in

Qud
G , and let G be a finite group. Suppose that there exist i, j (0 � i ¤ j � k) such

that gcd(jL i j, jL j j) D 1. Then the action of G onQG(1) is semi-regular. In particular,

jGj divides j QG(1)j.

Proof. For any0 D (x0L0 � � � � � xkLk) 2 QG(1), let S be the stabilizer inG

of 0, that is, S D {g 2 G j g � 0 D 0} D
Tk

uD0(Lu)x�1
u
� (L i )x�1

i
\ (L j )

x�1
j . Since

gcd(jL i j, jL j j) D 1 by our assumption, we have thatSD {e}.

5. Homology R-modules associated toQ

Let Q D (Q0, Q1, s, r ) be a quiver, and letQ D (Q0, P(Q)non, s, r ) be the closure
of Q (see Definition 3.5). The path algebraR[Q] D Mod(P(Q))R of Q over R can be
regarded as anR-complex together with a certainR-endomorphism� of R[Q]. Then
we consider subcomplexesMod(P(Q)pr)R and Mod(EQ)R of R[Q] corresponding to
families P(Q)pr and EQ in P(Q), so that three kinds of homologies associated toQ
are defined. Furthermore, we see thatEQ provides a simplicial complexKEQ which
reflects the original quiverQ. For homological algebras, we refer to [1, Chapter IV].

5.1. Families of paths andR-complexes. Recall that the setP(Q) of paths in
Q is described as follows:

P(Q) D {(x0
11
�! x1! � � � ! xk�1

1k
�! xk) j k � 0, 1i 2 P(Q)non}.

Note that a sequence (11, : : : ,1k) of paths1i 2 P(Q)non is a member ofP(Q) if and
only if the product11 � � �1k in the path algebraR[Q] of Q is non-zero. The path
algebraR[Q] of Q over R is a positive gradedR-free module (cf. [1, p. 58])

R[Q] D Mod(P(Q))R D
M

n�0

Cn(Q)
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where Cn(Q) WD Mod(P(Q)n)R is the R-free module with all paths inQ of length n
as basis. In particular,P(Q)0 is the set of all trivial pathsex D (x) (x 2 Q0) in Q, so
we haveC0(Q) D Mod((x) j x 2 Q0)R.

Let � W R[Q] ! R[Q] be a map defined by, for (11, : : : , 1n) 2 P(Q)n (n � 2),

�(11, : : : , 1n) WD (12, : : : , 1n)C
n�1
X

iD1

(�1)i (11, : : : , (1i1iC1), : : : , 1n)

C (�1)n(11, : : : , 1n�1).

In other words,

�(x0
11
�! x1! � � � ! xn�1

1n
�! xn)

WD (x1
12
�! x2! � � � ! xn�1

1n
�! xn)

C

n�1
X

iD1

(�1)i (x0
11
�! � � � ! xi�1

1i1iC1
����! xiC1! � � �

1n
�! xn)

C (�1)n(x0
11
�! x1! � � � ! xn�2

1n�1
���! xn�1).

Furthermore, for (x0
1

�! x1) 2 P(Q)1 and (x) 2 P(Q)0, we set�(x0
1

�! x1) WD (x1)�(x0) 2
C0(Q) and �(x) WD 0.

Lemma 5.1. The map� W R[Q] ! R[Q] is an R-endomorphism of R[Q] such
that � Æ � D 0 and �(Cn(Q)) � Cn�1(Q) for n � 0 where C

�1(Q) WD {0}. This yields
that a pair (R[Q], �) is an R-complex.

Proof. Straightforward.

Next we introduce two subcomplexes of (R[Q], �).

DEFINITION 5.2. Take two families fromP(Q) as follows:

P(Q)pr
D {(x0

11
�! x1! � � � ! xk�1

1k
�! xk) 2 P(Q) j xi ¤ x j if i ¤ j },

EQ WD {(x0
11
�! x1! � � � ! xk�1

1k
�! xk) 2 P(Q) j 11 � � �1k 2 P(Q)pr} � P(Q)pr.

Then theR-free modules

Mod(P(Q)pr)R D
M

n�0

Dn(Q) where Dn(Q) WD Mod(P(Q)pr
n )R,

Mod(EQ)R D
M

n�0

En(Q) where En(Q) WD Mod(EQn)R
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are positive gradedR-modules. HereEQn is the set of all paths1 2 EQ of length
n. Let X D P(Q)pr or X D EQ. Then by the definitions of� and X, it is easy to
see that�(Mod(X)R) � Mod(X)R, and that� maps paths of lengthn to those of length
n�1. Denote the restriction�Mod(X)R W Mod(X)R! Mod(X)R by just the same notation
�. Then a pair (Mod(X)R, �) is a subcomplex of (R[Q], �).

REMARK 5.3. Paths inEQ provide a geometric information of the original quiver
Q. Indeed, as in the next, we gather setsOb(� ) for all � 2 EQ which are thought of
forgetting arrows of� . Then it will be shown in Lemma 5.5 that such collectionKEQ

forms a simplicial complex.

DEFINITION 5.4. Denote byKEQ a collection of setsOb(� ) for all � 2 EQ,
that is,

KEQ WD {Ob(� ) � Q0 j � 2 EQ}.

Lemma 5.5. A pair (Q0, KEQ) forms a simplicial complex.

Proof. Take any path� D (x0
11
�! x1! � � � ! xk�1

1k
�! xk) 2 EQ. ThenOb(� ) D

{x0, : : : , xk}. For a non-empty subset{xi0, : : : , xim} � Ob(� ) with i0 < � � � < im, we
define a path

0sC1 WD 1isC11isC21isC3 � � �1isC1 2 P(Q)non (0� s� m� 1).

Then0sC1D (xis

0sC1
��! xisC1) 2 P(Q)1. Since11 � � �1k 2 P(Q)pr, we have that01 � � �0m 2

P(Q)pr and

(01, 02, : : : , 0m) D (xi0
01
�! xi1 ! � � � ! xim�1

0m
�! xim) 2 EQ.

Thus {xi0, : : : , xim} 2 KEQ. This completes the proof.

REMARK 5.6. (1) It might beOb(� )D Ob(� ) for distinct paths� ,� 2 EQ. This
is caused by ignoring arrows of� 2 EQ when we getOb(� ) 2 KEQ. From this rea-
son, we will consider in Lemma 5.8 anR-homomorphism". This map reflects such
difference betweenEQ and KEQ.
(2) Define a simplicial complex TQ(P(Q)pr) whose vertex set is

[

12P(Q)pr

Ob(1) (D Q0),

and the totality
[

12P(Q)pr

(2Ob(1)
n {;})
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of all non-empty subsets ofOb(1) for all 1 2 P(Q)pr forms the set of simplices. This
complex depends only on a subsetP(Q)pr of the setP(Q) of all paths in Q. We will
investigate such complexes in general later in Section 6. Itis clear from the definitions
that TQ(P(Q)pr) coincides with (Q0, KEQ) as simplicial complexes.
(3) For proper paths11, 12 2 P(Q)pr, we define a pre-ordering11 � 12 precisely
when Ob(11) � Ob(12). Let P(Q)pr

max be the totality of all maximal paths inP(Q)pr

with respect to�. Then a complex TQ(P(Q)pr) is the same as a complex TQ(P(Q)pr
max)

whose sets of vertices and simplices are respectivelyQ0 and the totality of all non-
empty subsets ofOb(1) for all 1 2 P(Q)pr

max. This implies that TQ(P(Q)pr) can be
realized by using fewer paths than those inP(Q)pr.

DEFINITION 5.7. For a simplexX D {x0, : : : , xn} 2 KEQ of dimensionn and a
total ordering onX, denote byhXi D hx0, : : : , xni an oriented simplex. This means
that, for X D {xi0, : : : , xin} D {x j0, : : : , x jn}, if these two orderings differ by an even
permutation thenhxi0,:::,xini D hx j0,:::,x jni, and otherwise we understandhxi0,:::,xini D

�hx j0, : : : , x jni or �hxi0, : : : , xini D hx j0, : : : , x jni. Denote byK or
EQ
WD {hXi j X 2 KEQ}

the totality of oriented simplices ofKEQ. Then theR-free module

Mod
�

K or
EQ

�

R D
M

n�0

Kn(Q)

is a positive gradedR-module where Kn(Q) is the R-free module with all
n-dimensional oriented simplices inK or

EQ
as basis. LetÆW Mod

�

K or
EQ

�

R! Mod
�

K or
EQ

�

R

be an R-endomorphism defined by

Æ(hx0, x1, : : : , xni) WD
n
X

iD0

(�1)i hx0, : : : , Oxi , : : : , xni

for hx0, x1, : : : , xni 2 K or
EQ

with n � 1, and by extending by linearity. HereOxi means

delete the vertexxi . Furthermore, we setÆ(hx0i) WD 0 for x0 2 Q0. Then it is shown
that a pair

�

Mod
�

K or
EQ

�

R, Æ
�

is an R-complex.

As mentioned in Remark 5.6, the following map" is defined by forgetting arrows
of paths inEQ.

Lemma 5.8. A surjective R-homomorphism

" W Mod(EQ)R! Mod
�

K or
EQ

�

R

defined by� 7! hOb(� )i for � 2 EQ is a map between R-complexes(Mod(EQ)R,�) and
�

Mod
�

K or
EQ

�

R, Æ
�

, that is, conditions"(En(Q)) � Kn(Q) and Æ Æ " D " Æ � are satisfied.
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Proof. Straightforward.

REMARK 5.9. Summarizing the procedure for constructingR-complexes and sim-
plicial complexes, we have the following:

R-complexes:Mod(P(Q))R � Mod(P(Q)pr)R � Mod(EQ)R
"

�! Mod
�

K or
EQ

�

R

* * *

Paths: P(Q) � P(Q)pr
� EQ

# Ob

Sim. complexes: (Q0, KEQ) D TQ(P(Q)pr)

Note that TQ(P(Q)pr) D TQ(P(Q)pr
max) (see Remark 5.6).

5.2. HomologyR-modules.

DEFINITION 5.10. ForR-complexes defined in Section 5.1, we use the following
notations for their homologyR-modules:

H (Q, R) WD H (Mod(P(Q))R, �), H (Q, R)pr
WD H (Mod(P(Q)pr)R, �),

H (EQ, R) WD H (Mod(EQ)R, �), H (KEQ, R) WD H
�

Mod
�

K or
EQ

�

R, Æ
�

.

Recall that Zn(Q) WD Cn(Q) \ Ker�, Bn(Q) WD Cn(Q) \ Im� � Zn(Q), Hn(Q) WD
Zn(Q)=Bn(Q). Then we have positive gradedR-modules

Ker� D
M

n�0

Zn(Q), Im� D
M

n�0

Bn(Q),

H (Mod(P(Q))R, �) WD Ker�=Im� �
M

n�0

Hn(Q).

The other homologyR-modules are similarly defined.

EXAMPLE 5.11. Let Q be a quiver defined as follows:

a
�

�! b
�

�! c.

Set Q0
WD Q and Qk

WD Qk�1 (k � 1). Then paths in a quiverQk (k � 0) are de-

scribed in Example 3.6, and aZ-complexZ[Qk] D Mod(P(Qk))
Z

where Qk
D QkC1 is

as follows:

{0}! Mod((a
�

�! b
�

�! c))
Z

�2
�! Mod(�, �, 11, : : : , 1kC1)

Z

�1
�! Mod(a, b, c)

Z

! {0}.
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Each1i (1 � i � k C 1) is an arrow froma to c, and we may assume that�2((a
�

�!

b
�

�! c)) D � �11C �. Then it is straightforward to calculate that

Ker�1 D Mod(� C � �11, 1i �11 (2� i � kC 1))
Z

� Mod(� C � �11)
Z

D Im�2.

It follows that

Hn(Qk, Z) D Hn(Mod(P(Qk))
Z

, �) �

8

<

:

Z n D 0,
Z� � � � � Z (k times) n D 1,
{0} n D 2.

Furthermore, sinceP(Qk) D P(Qk)pr
D EQk in this case, we have thatHn(Qk, Z) D

Hn(Qk,Z)pr
D Hn(EQk,Z) for all n � 0. On the other hand, by the definition,KEQk D

{Ob(� ) j � 2 EQk} D 2{a,b,c}
n {;}. So a complexKEQk is contractible. This implies

that H0
�

KEQk , Z
�

� Z and Hn
�

KEQk , Z
�

D {0} for all n � 1.

REMARK 5.12 (Restricting to arrows). LetQ D (Q0, Q1, s, r ) be a quiver, and
let Qud

D (Q0, Qud
1 , s, r ) be the extended quiver ofQ in Definition 3.1. For a subset

A � Qud
1 of arrows, we focus on the restriction

Qud
A WD ((Qud

A )0, A, s, r )

to A in Definition 3.4 where (Qud
A )0 WD {s(�), r (�) j � 2 A}. This quiver Qud

A allows
us to investigate paths inQud constructed by arrows inA. Then applyingQud

A to Re-
mark 5.9 on complexes, we have that

�

(Qud
A )0, K

EQud
A

�

D TQud
A
(P(Qud

A )pr) D TQud
A
(H)

whereH WD P(Qud
A )pr

max� P(Qud)pr
� P(Qud). Thus H (K

EQud
A
, R)D H (TQud

A
(H), R). This

homology R-module should contain much information on paths inQud obtained from
arrows in A.

EXAMPLE 5.13. Let QCG D ((QCG)0, (QCG)1, s, r ) be a coset quiver in Defin-
ition 4.5, andQud

CG be the extended quiver ofQCG. Let 1 2 P(Qud
G )pr be a proper path

in Qud
G of the form
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This means thatL0 > L1, L1 < L2, and L0 ¤ L2. We take a subsetA WD A(1)
[ A(2)

�

(Qud
CG)1 of arrows in Qud

CG as follows:

A(1)
WD {(aL0! bL1) 2 (Qud

CG)1 j a, b 2 G},

A(2)
WD {(cL1 dL2) 2 (Qud

CG)1 j c, d 2 G}.

Then the restrictionS WD (Qud
CG)A to A and the setP(S) of paths are given as follows:

SD (Qud
CG)A D (G=L0 [ G=L1 [ G=L2, A, s, r ),

P(S)0 D (trivial paths)D G=L0 [ G=L1 [ G=L2,

P(S)1 D AD A(1)
[ A(2),

P(S)2 D {(aL0
�

! bL1
�

 cL2) j � 2 A(1), � 2 A(2)}.

Since1 is proper, so is any path inP(S), namelyP(S)pr
D P(S) (cf. Remark 4.8 (3)).

FurthermoreP(S)pr
maxD P(S)2 D QG(1) in our notation in Definition 4.7. Thus, by Re-

mark 5.9, (S0, KE NS)D TS( QG(1)), and soH (KE NS, R)D H (TS( QG(1)), R). In Section 7.3,
we will study the top homology of this kind of a simplicial complex. As mentioned
in Remark 5.12, we may say that this homologyR-module contains much information
on particular paths in

QG(1) D {(x0L0! x1L1 x2L2) j xi L i 2 G=L i (0� i � 2)} � P(Qud
CG)pr.

Finally we note that the closureNS of S is as

NS WD (Qud
CG)A D (G=L0 [ G=L1 [ G=L2, P(S)non, s, r ),

and the setP( NS) of paths is described as follows:

P( NS)0 D (trivial paths)D G=L0 [ G=L1 [ G=L2,

P( NS)1 D P(S)non
D P(S)1 [ {(aL0

1

! cL2) j 1 2 P(S)2},

P( NS)2 D {(aL0
�

! bL1
�

 cL2) j � 2 A(1), � 2 A(2)}.

This shows thatP( NS) D P( NS)pr
D E NS.

6. Simplicial complexes associated to paths

In this section, we introduce a simplicial complex TQ(H) defined by a quiverQ
and a setH of paths in Q, which we call a path complex. First, we develop some
general theory on TQ(H). Next we apply a subgroup quiverQud

G to TQ(H). This is a
natural generalization of the usual subgroup complex ofG. The contractibility of such
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complexes is studied. Moreover, we adapt a coset quiverQud
CG to TQ(H), and exam-

ine a G-simplicial map between path complexes inQud
CG and Qud

G . Further properties
of path complexes will be devoted in Section 7. Throughout this section, letG be a
finite group.

Now, we recall the geometric realization of a simplicial complex K D (V(K ), S(K ))
whereV(K ) and S(K ) are the sets of vertices and simplices respectively. LetE

V (K ) be
the set of all mapsv D (vx)x2V(K ) from V(K ) to R such thatvx ¤ 0 for finitely many
values ofx 2 V(K ). This is called a generalized Euclidean space with topology given
by the metricjv � wj WD max{jvx � wxj j x 2 V(K )}. We identify a vertexx 2 V(K )
with a map inEV(K ) whose value is 1 onx and 0 on all other elements ofV(K ). Then
V(K ) forms a basis ofEV(K ).

DEFINITION 6.1 (cf. pp. 142, 197 in [4]). LetK D (V(K ), S(K )) be a simplicial
complex. For a simplex� D {x0, : : : , xn} 2 S(K ), define an Euclidean closedn-simplex

[� ] D [x0, x1, x2, : : : , xn] WD

(

n
X

iD0

ti xi

n
X

iD0

ti D 1, 0� ti � 1

)

� E

V(K ).

An Euclidean openn-simplex (� ) is defined by the set of all elements
Pn

iD0 ti xi in [� ]
such thatti > 0 for all 0� i � n. Set

[K ] WD
[

�2S(K )

[� ] � EV (K )

which is viewed as a topological space by topology coherent with a collection{[� ] j
� 2 K } of subspaces [� ] of EV(K ). A space [K ] is called the geometric realization of
K . We say thatK is contractible if so is [K ], and that simplicial complexesK and T
are homotopy equivalent if so are [K ] and [T ].

6.1. Path complexes TQ(H). Although the notion of TQ(H) already appeared
in Remark 5.6, we formulate its definition here.

DEFINITION 6.2. Let Q be a quiver, andH � P(Q) be a subset of paths inQ.
Define a simplicial complex TQ(H) whose vertex set is

[

12H

Ob(1) � Q0,

and the totality
[

12H

(2Ob(1)
n {;})

of all non-empty subsets ofOb(1) for all 1 2 H forms the set of simplices. We call
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TQ(H) a path complex ofH in Q. The dimension of TQ(H) is max{jOb(1)j�1 j 1 2
H}. Note thatjOb(1)j�1� l (1) in general, but if1 is proper then the equality holds.

REMARK 6.3. Let Q be aG-quiver. For aG-invariant subsetH � P(Q), a com-
plex TQ(H) becomes aG-simplicial complex, namely, the sets of vertices and simplices
of TQ(H) are preserved by the action ofG. So variousG-simplicial complexes can be
obtained fromG-quivers Qud

G and Qud
CG (see Remark 4.6).

Here we study conditions of the contractibility of TQ(H). But before doing this,
we recall some technique from poset topology. Let (P, �) be a poset. Denote by
O(P) D O(P, �) the order complex ofP, which is a simplicial complex defined by
all inclusion-chains (x0 < � � � < xk), where xi 2 P, as simplices. LetK be a sim-
plicial complex. Denote bysd(K ) the poset of all simplices inK ordered by the
inclusion-relation. This is called the barycentric subdivision of K . It is worth mention-
ing that [K ] and [O(sd(K ))] are homeomorphic each other as geometric realizations
(topological spaces) (see [3, (1.3)]).

DEFINITION 6.4 ((1.5) in [3]). We say that a poset (P,�) is conically contract-
ible if there exist a poset mapf W P ! P and an elementx0 2 P such thatx � f (x)
and f (x) � x0 for all x 2 P. Recall that a poset mapf is defined by the property that
x � y (x, y 2 P) implies f (x) � f (y).

Lemma 6.5 ((1.5) in [3]). If a poset(P,�) is conically contractible then the or-
der complexO(P) is contractible.

Lemma 6.6 (Proposition 6.1 in [6]). Let (P, �) be a poset. For x2 P, set

P
<x WD {y 2 P j y < x}

and

P
>x WD {y 2 P j y > x}.

If O(P
<x) or O(P

>x) is contractible thenO(P) and O(P n{x}) are homotopy equivalent.

Proposition 6.7. Let Q be a quiver, and H � P(Q) be a subset of paths in Q.
Suppose that

\

12H

Ob(1) ¤ ;.

ThenTQ(H) is contractible.

Proof. LetP WD sd(TQ(H)) be the barycentric subdivision of TQ(H). It is enough
to show thatP is conically contractible by Lemma 6.5. Take any elementa 2
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T

12H Ob(1). Then {a} 2 P. Furthermore, for any� 2 P, there exists0 2 H such
that � � Ob(0) by the definition of simplices. Sincea 2 Ob(0) and � [ {a} � Ob(0),
we have that� [ {a} 2 P. This yields that a map

f W P ! P

defined by

� 7! � [ {a}

is a poset map such that� � f (� ) and f (� ) � {a} for any � 2 P. ThereforeP is
conically contractible, and this completes the proof.

DEFINITION 6.8 (Trees; cf. page 101 in [5]). LetQ D (Q0, Q1, s, r ) be a quiver
with no loops, that is,s(�) ¤ r (�) for all � 2 Q1. Thus Ob(�) is a two-points set for
all � 2 Q1.
(1) Denote byV(Q

�1) WD Q0 and S(Q
�1) WD {Ob(�) j � 2 Q1} [ Q0. Then a pair

Q
�1 WD (V(Q

�1), S(Q
�1))

forms a simplicial complex of dimension less than or equal to1.
(2) Q is a tree if the geometric realization [Q

�1] of Q
�1 is an arcwise connected, and

[Q
�1] n (Ob(�)) is disconnected for each 1-simplexOb(�) (� 2 Q1) (see Definition 6.1

for notations). Note that ifQ is a tree thenP(Q) D P(Q)pr.

DEFINITION 6.9 (End-vertices; cf. page 101 in [5]). LetQ D (Q0, Q1, s, r ) be a
quiver. A vertexx 2 Q0 is an end-vertex inQ if there exists a unique arrow
x 2 Q1

such thats(
x) ¤ r (
x), and thats(
x) D x or r (
x) D x.

DEFINITION 6.10. Let Q D (Q0, Q1, s, r ) be a quiver. Forx 2 Q0, set Q(x)0 WD

Q0 n {x}, and Q(x)1 WD {� 2 Q1 j s(�) ¤ x and r (�) ¤ x}. Then

Q(x) WD (Q(x)0, Q(x)1, sjQ(x)1, r jQ(x)1)

forms a quiver. In particular, ifx is an end-vertex inQ then we have thatQ(x)1 D

Q1 n {
x}.

Lemma 6.11. Let QD (Q0, Q1, s, r ) be a quiver. For an end-vertex x2 Q0, set
Q0

WD Q(x),

P WD sd(TQ(P(Q))),

and

P 0

WD sd(TQ0(P(Q0))).



SIMPLICAL COMPLEXES ASSOCIATED TO QUIVERS 179

(1) O(P
�{x}) is contractible, and thusO(P) and O(P n {x}) are homotopy equivalent.

(2) For any posetQ such thatP 0

� Q � (P n {x}), and for any minimal element� in
(Q n P 0), we have thatO(Q) and O(Q n {� }) are homotopy equivalent. In particular,
suppose that Q is finite, that is, Q0 and Q1 are both finite sets. Then, repeating this
process, we conclude thatO(P n {x}) and O(P 0) are homotopy equivalent.
(3) If Q is finite then TQ(P(Q)) and TQ0(P(Q0)) are homotopy equivalent.

Proof. By the definition of an end-vertexx 2 Q0, there exists a unique arrow

x 2 Q1 such thats(
x) ¤ r (
x), and thats(
x) D x or r (
x) D x. Let Ob(
x) D {x, z}
(x ¤ z).

(1) For any� 2 P
�{x}, there exists a path1 2 P(Q) such that{x} � � � Ob(1).

So1 must be of the form

1 D (x

x
�! zDW z0

�1
�! z1! � � � ! zk�1

�k
�! zk)

or

1 D (z0
�1
�! z2! � � � ! zk�1

�k
�! zk WD z


x
! x).

Note that{x, z} 2 P
�{x}. Since� [ {x, z} � Ob(1), we have that� [ {x, z} 2 P

�{x}.
This yields that a map

f W P
�{x} ! P

�{x}

defined by

� 7! � [ {x, z}

is a poset map such that� � f (� ) and f (� ) � {x, z} for any � 2 P
�{x}. ThusP

�{x} is
conically contractible. The results follow from Lemmas 6.5and 6.6.

(2) Since� � P 0, we have thatx 2 � . Furthermore, since� 2 Q � (P n {x}), we
have that� 2 P

�{x}. Then there exists a path1 2 P(Q) as in the proof of (1) such
that � � Ob(1). Set

1

0

WD (z0
�1
�! z1! � � � ! zk�1

�k
�! zk) 2 P(Q0) (k � 0).

Since; ¤ (� n{x}) � Ob(10), we have that (� n{x}) 2 P 0

��

�Q
��

. Take any� 2Q
��

.
If � � P 0 then � 2 (Q n P 0) with � � � . This contradicts the minimality of� . Thus
� 2 P 0, so thatx � � . It follows that � D (� n {x}) � (� n {x}). This implies thatQ

��

possesses the maximum element (� n {x}), and thusO(Q
��

) is contractible. Then by
Lemma 6.6,O(Q) and O(Q n {� }) are homotopy equivalent.

(3) The result follows from (1) and (2) above.

REMARK 6.12. (1) Put TWD TQ(P(Q)) and T0 WD TQ0(P(Q0)). We mention that
the result in Lemma 6.11 (3) can be also proved according to the definition of a homo-
topy equivalence. Namely, we are able to construct continuous maps f W T ! T0 and
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g W T0 ! T such that f Æ g is homotopic to IdT0 , and g Æ f is homotopic to IdT where
IdX is the identity map on a setX.
(2) Under the situation of Lemma 6.11, suppose thatQ is finite. Then by the same
way, we can prove that TQ(P(Q)pr) and TQ0(P(Q0)pr) are homotopy equivalent. Thus
applying Remark 5.9, we have aZ-module isomorphism as follows:

H (KEQ, Z) D H (TQ(P(Q)pr), Z) � H (TQ0(P(Q0)pr), Z) D H (KEQ0

, Z).

Lemma 6.13 (cf. pp. 101–102 in [5]). Let QD (Q0, Q1, s, r ) be a finite quiver
with no loops. Suppose that Q is a tree such thatjQ0j � 2. Then there exists an
end-vertex x2 Q0 in Q. Furthermore, Q(x) is again a tree.

Combining Lemma 6.13 with our Lemma 6.11, we have the following.

Proposition 6.14. Let QD (Q0,Q1,s,r ) be a finite quiver with no loops. Suppose
that Q is a tree. ThenP(Q) D P(Q)pr, and TQ(P(Q)) D TQ(P(Q)pr) is contractible.

REMARK 6.15 (Homology of trees). LetQ D (Q0, Q1, s, r ) be a finite quiver
with no loops. Suppose thatQ is a tree. Then sinceP(Q) D P(Q)pr, we have that
P(Q) D P(Q)pr

D EQ. It follows that H (Q, Z) D H (Q, Z)pr
D H (EQ, Z) (see Def-

inition 5.10). Furthermore, because ofP(Q) D P(Q)pr, we have thatH (EQ, Z) D
H (KEQ, Z) D H (TQ(P(Q)pr)) (see Remark 5.9). By Proposition 6.14, TQ(P(Q)pr) is
contractible, so thatH0(Q, Z) � Z and Hn(Q, Z) D {0} for all n � 1.

6.2. Subgroup complexes TQud
G

(D). Let QG be a subgroup quiver ofG in Def-

inition 4.3, and letQud
G be the extended quiver ofQG in Definition 3.1. In this section,

for a subsetD � P(Qud
G ), we deal with a path complex TQud

G
(D) of D in Qud

G which
we call a subgroup complex ofG.

REMARK 6.16. LetD � P(QG) (� P(Qud
G )) be a subset of paths inQG. Then

sinceD is a family of inclusion-chains (H0 > � � � > Hk) for some subgroupsHi � G, a
complex TQG (D) is nothing else but just the usual subgroup complex ofG (see [3] for
example). Therefore TQud

G
(D) for D � P(Qud

G ) can be thought of a natural generalization
of the usual.

DEFINITION 6.17. For a subsetX � Sgp(G) D (QG)0 D (Qud
G )0 of vertices, put

P(QG) \ X WD {1 2 P(QG) j Ob(1) � X },

P(Qud
G ) \ X WD {1 2 P(Qud

G ) j Ob(1) � X }.

We denote by TQG (X ), TQud
G

(X ) respectively complexes TQG (P(QG) \ X ),

TQud
G

(P(Qud
G ) \ X ).
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DEFINITION 6.18. LetG be a finite group, andp be a prime divisor of the order
of G. Denote bySp(G) the set of all non-trivialp-subgroups ofG.

The following result is well-known.

Proposition 6.19 (Lemma 2.2 in [3]). If Op(G) ¤ {e} then TQG (Sp(G)) is cont-
ractible where Op(G) is the largest normal p-subgroup of G.

The converse of the statement of Proposition 6.19 is known asQuillen’s conjecture.
The next result is an extended version of Proposition 6.19.

Proposition 6.20. If Op(G) ¤ {e} then TQud
G

(Sp(G)) is contractible.

Proof. LetP WD sd(TQud
G

(Sp(G))) be the barycentric subdivision of TQud
G

(Sp(G)),
and N WD Op(G). It is enough to show thatP is conically contractible by Lemma 6.5.
First we note that{N} 2 P. Furthermore, for any� 2 P, there exists0 D (L0� � � � �

Lk) 2 P(Qud
G ) \ Sp(G) such that� � Ob(0) by the definition of simplices. We set

0

0

WD

8

<

:

(L0 � � � � � Lk D N) D 0 if Lk D N,
(L0 � � � � � Lk � N) if Lk > N or Lk < N,
(L0 � � � � � Lk  Lk N ! N) if Lk � N and Lk � N.

Then 00 2 P(Qud
G ) \ Sp(G). Since� [ {N} � Ob(0) [ {N} � Ob(00), we have that

� [ {N} 2 P. This yields that a map

f W P ! P

defined by

� 7! � [ {N}

is a poset map such that� � f (� ) and f (� ) � {N} for any � 2 P. ThereforeP is
conically contractible. The proof is complete.

We give one more result on the contractibility in the next.

Proposition 6.21. TQG (P(QG)), TQud
G

(P(Qud
G )), and TQud

G
(P(Qud

G )pr) are all
contractible.

Proof. LetP WD sd
�

TQud
G

(P(Qud
G ))

�

be the barycentric subdivision of TQud
G

(P(Qud
G )).

It is enough to show thatP is conically contractible by Lemma 6.5. First we note that
{G} 2 P. Furthermore, for any� 2 P, there exists0 D (L0� � � � � Lk) 2 P(Qud

G ) such
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that � � Ob(0) by the definition of simplices. We set

0

0

WD

�

0 if L i D G for some 0� i � k,
(L0 � � � � � Lk  G) if L i ¤ G for any 0� i � k.

Then00 2 P(Qud
G ), and since� [{G} � Ob(0)[{G} D Ob(00), we have that� [{G} 2

P. This yields that a map

f W P ! P

defined by

� 7! � [ {G}

is a poset map such that� � f (� ) and f (� ) � {G} for any � 2 P. ThereforeP is
conically contractible. The proof is complete. The same argument can be applied to
TQG (P(QG)) and TQud

G
(P(Qud

G )pr).

6.3. Coset complexes TQud
CG

(H) and G-simplicial maps. Let QCG be a coset

quiver of G in Definition 4.5, and letQud
CG be the extended quiver ofQCG in Defin-

ition 3.1. For a subsetH � P(Qud
CG), a path complex TQud

CG
(H) of H in Qud

CG is called

a coset complex ofG. In this section, we focus on a subsetQG(D) � P(Qud
CG) of paths

in Qud
CG obtained fromD � P(Qud

G ) (see Definition 4.7), and deal with a coset complex

TQud
CG

( QG(D)).

Recall thatQud
G and Qud

CG are bothG-quivers, and thatP(Qud
G ) andP(Qud

CG) are pre-
served byG-conjugate action and the left multiplication respectively (see Remark 4.6).
Since QG(D) is G-invariant for anyD � P(Qud

G ) (see Remark 4.10), we have that

TQud
CG

( QG(D)) is a G-simplicial complex (see Remark 6.3). Then we will introduce a G-

simplicial map'G,D betweenG-simplicial complexes TQud
CG

( QG(D)) and TQud
G

(P(Qud
G )).

This G-map is suggested in Introduction.

REMARK 6.22. LetD � P(Qud
G )pr be a subset of proper paths inQud

G . Since a

path1 2D is proper, so is any path inQG(1) (see Remark 4.8 (3)). ThusjOb(0)j�1D
l (0) D l (1) D jOb(1)j � 1 for all 0 2 QG(1). It follows that complexes TQud

G
(D) and

TQud
CG

( QG(D)) have the same dimensions.

In order to define our simplicial map, we first prepare a covering C
1

of a path
1 2 P(Qud) in general.

DEFINITION 6.23. Let Q be a G-quiver, and1 D (a0 � a1 � � � � � ak) 2 P(Qud)
be a path inQud.
(1) For 0� i � j � k, define1[i , j ] WD (ai � aiC1 � � � � � a j ) 2 P(Qud) which we call
an interval of1. For intervals1[i , j ] and1[s,t ] of 1, define an ordering1[i , j ] � 1[s,t ]

precisely whens� i � j � t .
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(2) Put

C
1

WD

8

<

:

0 W interval of1
0 is maximal w.r.t.� among intervals
3 of 1 such thata�G b for all distinct
a, b 2 Ob(3)

9

=

;

� P(Qud).

We call C
1

a covering of1. ThenC
1

has the following properties.
(a) Ob(1) D

S

02C
1

Ob(0).

(b) Any 0 2 C
1

is proper, so thatC
1

� P(Qud)pr.
(c) If a �G b for all distinct a, b 2 Ob(1) then C

1

D {1}.

DEFINITION 6.24. Let1 D (L0 � � � � � Lk) 2 P(Qud
G ) be a path inQud

G , and let
C
1

� P(Qud
G ) be a covering of1 (see Definition 6.23). Recall that the vertex setsV1

and V2 of simplicial complexes TQud
CG

( QG(C
1

)) and TQud
G

(P(Qud
G )) are respectively

V1 D
[

02

QG(C
1

)

Ob(0) D
k
[

iD0

G=L i

and

V2 D Sgp(G).

Denote by'G,1 W V1! V2 a map defined by'G,1(gL) WD Lg�1
D gLg�1 for all cosets

gL 2 V1.

Proposition 6.25. Under the above situation, 'G,1 induces a G-simplicial map

'G,1 W TQud
CG

( QG(C
1

))! TQud
G

(P(Qud
G )).

Furthermore'G,1 preserves the dimensions of simplices.

Proof. Take anyq-simplex � D {gi0 L i0, : : : , giq L iq } of TQud
CG

( QG(C
1

)). Then by
the definition of simplices, for a certain interval1[s,t ] D (Ls � LsC1 � � � � � L t ) 2 C

1

(0� s� t � k), there exists a path

0 D (gsLs � gsC1LsC1 � � � � � gt L t ) 2 QG(1[s,t ]) � QG(C
1

)

such that� � Ob(0) D {gsLs, gsC1LsC1, : : : , gt L t }. Suppose thatg j L j < g jC1L jC1

for some s � j � t � 1. Then sinceL j g�1
j < L jC1g�1

jC1, we have thatg j L j g�1
j <

g jC1L jC1g�1
jC1. Similarly g j L j > g jC1L jC1 forcesg j L j g�1

j > g jC1L jC1g�1
jC1. Thus we

obtain a path

3 WD

�

L
g�1

s
s � L

g�1
sC1

sC1 � � � � � L
g�1

t
t

�

2 P(Qud
G ).
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Therefore

'G,1(� ) WD {'G,1(gi0 L i0), : : : , 'G,1(giq L iq )} D
{

L
g�1

i0
i0

, : : : , L
g�1

iq

iq

}

is a subset ofOb(3), this is, a simplex of TQud
G

(P(Qud
G )). This shows that'G,1 is a

simplicial map. Furthermore, by Definition 6.23 of a covering C
1

, gi L i g�1
i ¤ g j L j g�1

j

for any s � i ¤ j � t . Thus 'G,1 preserves the dimensions of simplices. Finally we
will show that'G,1 commutes with theG-action. However it is clear from the fact that

the G-action onQud
G and Qud

CG are respectively defined byG-conjugationx � L WD Lx�1

for x 2 G and L � G, and defined by the left multiplicationx �gL WD (xg)L for x 2 G
and gL 2 G=L (see Remark 4.6). The proof is complete.

In Section 7.6, we will describe the preimage under'G,1.

REMARK 6.26. Let1 D (L0 � � � � � Lk) 2 P(Qud
G ) be a path inQud

G .
(1) Suppose thatL i �G L j for any 0� i ¤ j � k thenC

1

D {1} (see Definition 6.23).
Thus in this case, we have aG-simplicial map

'G,1 W TQud
CG

( QG(1))! TQud
G

(P(Qud
G )).

(2) Let D � P(Qud
G ) be a subset of paths inQud

G . Suppose thatL �G L 0 for all distinct
L , L 0 2 Ob(0) for any 0 2 D. Then aG-simplicial map

'G,D W TQud
CG

( QG(D))! TQud
G

(P(Qud
G )),

can be also defined by the same way as in the case of Proposition6.25.

7. Some properties of subgroup and coset complexes

In this section, we provide some properties of subgroup and coset complexes in-
troduced in Section 6. In particular, the Euler characteristic and the top homology of a
coset complex are calculated. Furthermore, we show that theautomorphism group of a
coset geometry is realized as the intersection of those of certain coset complexes. The
connectedness of subgroup and coset complexes is also examined. Finally, we describe
the preimage of aG-simplicial map defined in Proposition 6.25. Throughout this sec-
tion, let G be a finite group, and letQG and QCG be respectively a subgroup quiver
and a coset quiver ofG defined in Section 4.

7.1. Ranges of paths inQG(�). Let 1 be a path inQud
G . First of all, we explic-

itly describe rangesr (0) of paths0 2 QG(1) � P(Qud
CG) although the proofs are some-

what tedious (see Definition 4.7 forQG(1)). The results in this section will be used
later in various places.
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NOTATION 7.1. For a path1 D (L0 � � � � � Lk) 2 P(Qud
G ) in Qud

G and g0L0 2

G=L0, denote by

QG(1)g0L0 WD {0 2 QG(1) j s(0) D g0L0}

the set of all paths inQG(1) � P(Qud
CG) with start g0L0. The notationr ( QG(1)g0L0) im-

plies a subset{r (0) j 0 2 QG(1)g0L0} of G=Lk.

Lemma 7.2. Let 1 D (L0 � � � � � Lk) 2 P(Qud
G ) be a path in Qud

G .

(1) j QG(1)x L0j D j
QG(1)yL0j for any x L0, yL0 2 G=L0.

(2) j QG(1)j D jG W L0j � j QG(1)x L0j for any x L0 2 G=L0.
(3) For any sequence(0DW i0 < i1 < � � � < iq�1 < iq WD k) of indices, we have that

j

QG(1)j D jG W L0j �

q�1
Y

sD0

j

QG(1[is,isC1])j

jG W L isj

where1[is,isC1] is an interval of1 (seeDefinition 6.23).

Proof. (1) A set QG(1) is G-invariant under the left multiplication (see
Remark 4.10). Then, for any cosetsx L0, yL0 2 G=L0, a map f W QG(1)x L0 !

QG(1)yL0

defined by0 7! yx�1
� 0 is bijective. Thus the numberj QG(1)x L0j is independent of a

choice of x L0.
(2) The intersection ofQG(1)x L0 and QG(1)yL0 is empty if and only ifx L0 ¤ yL0.

Thus the result follows from the previous (1).
(3) Take any path0 D (A0

�1
� A1

�2
� A2�� � �� Ak�1

�k
� Ak) 2 QG(1) where Ai 2 G=L i

(0 � i � k). Then we divide0 according to a partition (0D i0 < i1 < � � � < iq�1 <

iq D k) of indices. In other words, we identify0 with a path in the closureQud
CG (see

Definition 3.5) as follows:

(Ai0
01
�! Ai1

02
�! Ai2 ! � � � ! Aiq�1

0q

�! Aiq )

where0sC1 D (�isC1, �isC2, �isC3, : : : , �isC1) 2 QG(1[is,isC1]) (0 � s � q � 1). Any coset
gL0 2 G=L0 can be taken asAi0 D A0. Furthermore

01 2 QG(1[i0,i1])Ai0

and

0sC1 2 QG(1[is,isC1])r (0s) (1� s� q � 1).

Therefore, using the previous results, we have that

j

QG(1)j D jG W L0j �

q�1
Y

sD0

j

QG(1[is,isC1])L is
j D jG W L0j �

q�1
Y

sD0

j

QG(1[is,isC1])j

jG W L isj
.
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The proof is complete.

NOTATION 7.3. For a path1 D (L0 � � � � � Lk) 2 P(Qud
G ) in Qud

G , let I (1) WD
{0, 1, : : : , k} and

I 0(1)max
WD {u 2 I (1) j Lu�1 < Lu > LuC1},

I 0(1)min
WD {v 2 I (1) j L

v�1 > L
v

< L
vC1},

I (1)max
WD

8

�

�

<

�

�

:

I 0(1)max if L0 < L1 and Lk�1 > Lk,
I 0(1)max

[ {0} if L0 > L1 and Lk�1 > Lk,
I 0(1)max

[ {k} if L0 < L1 and Lk�1 < Lk,
I 0(1)max

[ {0, k} if L0 > L1 and Lk�1 < Lk,

I (1)min
WD

8

�

�

<

�

�

:

I 0(1)min if L0 > L1 and Lk�1 < Lk,
I 0(1)min

[ {0} if L0 < L1 and Lk�1 < Lk,
I 0(1)min

[ {k} if L0 > L1 and Lk�1 > Lk,
I 0(1)min

[ {0, k} if L0 < L1 and Lk�1 > Lk.

Another expression ofj QG(1)j different from that in Lemma 7.2 is given in
the next.

Proposition 7.4 (cf. Lemma 4.10 in [2]). For a path 1 D (L0 � � � � � Lk) 2
P(Qud

G ) in Qud
G , we have that

j

QG(1)j D jG W L0j �

Q

u2I (1)maxjLuj
Q

v2I (1)minjL
v

j

�m
1

(�)

where

m
1

WD

8

�

�

�

�

�

�

�

<

�

�

�

�

�

�

�

:

1 if 0 2 I (1)max and k2 I (1)min,
1

jLkj
if 0 2 I (1)max and k2 I (1)max,

jL0j if 0 2 I (1)min and k2 I (1)min,

jL0j

jLkj
if 0 2 I (1)min and k2 I (1)max.

Proof. We proceed by induction on the lengthk of 1. Suppose thatk D 1, that
is, 1 D (L0 � L1). If L0 < L1 then I (1)max

D {1} and I (1)min
D {0}, so thatm

1

D

jL0j=jL1j. For eachg0L0 2 G=L0, there exists an unique cosetA 2 G=L1 containing
g0L0, that is, AD g0L1. Thus

j

QG(1)j D jG W L0j � 1D jG W L0j �
jL1j

jL0j
�m

1

.
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On the other hand, ifL0 > L1 then I (1)max
D {0} and I (1)min

D {1}, so thatm
1

D 1.
Let L0=L1 D {z1L1, : : : , zsL1}. For eachg0L0 2 G=L0, there are exactlysD jL0 W L1j

cosetsg0zi L1 2 G=L1 (1� i � s) contained ing0L0. Thus

j

QG(1)j D jG W L0j � jL0 W L1j D jG W L0j �
jL0j

jL1j
�m

1

.

Suppose next thatk � 1. Take any11 WD (Lk � LkC1) 2 P(Qud
G ), and set0 WD

111 2 P(Qud
G ). Then we will examinej QG(0)j. By induction, we have an equality (�).

Moreover, applying Lemma 7.2 to a path0 and a sequence (0DW i0 < k DW i2 < kC
1DW i3) of indices, we have that

j

QG(0)j D j QG(1)j �

�

1

jG W Lkj
� j

QG(11)j

�

.

CASE 1: Lk < LkC1.
In this casej QG(11)j D jG W Lkj andj QG(0)j D j QG(1)j. If k 2 I (1)min then I (0)max

D

I (1)max
[ {kC 1} and I (0)min

D I (1)min, so thatm
0

D m
1

� 1=jLkC1j. Thus

j

QG(0)j D j QG(1)j D jG W L0j �

Q

u2I (1)maxjLuj
Q

v2I (1)minjL
v

j

� (jLkC1j �m
0

)

D jG W L0j �

Q

u2I (0)maxjLuj
Q

v2I (0)minjL
v

j

�m
0

.

If k 2 I (1)max then I (0)max
D (I (1)max

n {k})[ {kC 1} and I (0)min
D I (1)min, so

that m
0

D m
1

� jLkj=jLkC1j. Thus

j

QG(0)j D j QG(1)j D jG W L0j �

Q

u2I (1)maxjLuj
Q

v2I (1)minjL
v

j

�

�

jLkC1j

jLkj
�m

0

�

.

CASE 2: Lk > LkC1.
In this casej QG(11)j D jG W Lkj � jLk W LkC1j and j QG(0)j D j QG(1)j � jLkj=jLkC1j.

If k 2 I (1)min then I (0)max
D I (1)max and I (0)min

D (I (1)min
n {k})[ {kC 1}, so that

m
0

D m
1

. Thus

j

QG(0)j D j QG(1)j �
jLkj

jLkC1j
D jG W L0j �

Q

u2I (1)maxjLuj
Q

v2I (1)minjL
v

j

�m
0

�

jLkj

jLkC1j
.

If k 2 I (1)max then I (0)max
D I (1)max and I (0)min

D I (1)min
[ {k C 1}, so that

m
0

D m
1

� jLkj. Thus

j

QG(0)j D j QG(1)j �
jLkj

jLkC1j
D jG W L0j �

Q

u2I (1)maxjLuj
Q

v2I (1)minjL
v

j

�

�

1

jLkj
�m

0

�

�

jLkj

jLkC1j
.

This completes the proof.
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Proposition 7.5. For a path1 D (L0 � � � � � Lk) 2 P(Qud
G ) in Qud

G and g0L0 2

G=L0, we have that

r ( QG(1)g0L0) D g0Lu1 Lu2 � � � Lur =Lk � G=Lk

where I(1)max
D {u1, u2, : : : , ur } (ui < uiC1). Note that Lur � Lk always.

Proof. Recall that

r ( QG(1)g0L0) D

�

Ak 2 G=Lk
9A j 2 G=L j (0� j � k � 1) such that

(g0L0 DW A0� A1�� � �� Ak�1� Ak) 2 QG(1)

�

.

We proceed by induction on the lengthk of 1. Suppose thatk D 1, that is,1 D
(L0 � L1). If L0 < L1 then I (1)max

D {1}. There exists an unique cosetA 2 G=L1

containingg0L0, that is, AD g0L1. Thus

r ( QG(1)g0L0) D {g0L1} D g0L1=L1.

On the other hand, ifL0 > L1 then I (1)max
D {0}. Let L0=L1D {z1L1, : : : ,zsL1}. There

are exactlysD jL0 W L1j cosetsg0zi L1 2 G=L1 (1� i � s) contained ing0L0. Thus

r ( QG(1)g0L0) D {g0zi L1 j 1� i � s} D g0L0=L1.

Suppose next thatk � 1. Take any11 WD (Lk � LkC1) 2 P(Qud
G ), and set0 WD

111 2 P(Qud
G ). Then we will examiner ( QG(0)g0L0). Note that by induction we have that

r ( QG(1)g0L0) D g0Lu1 Lu2 � � � Lur =Lk DW {y1Lk, : : : , yt Lk} (Lur � Lk).

CASE 1: Lk > LkC1.
In this caseI (0)max

D I (1)max. Let Lk=LkC1 DW {w1LkC1, : : : ,wd LkC1}. Thus we
have that

r ( QG(0)g0L0) D {yiw j LkC1 j 1� i � t, 1� j � d},

yiw j LkC1 2 (g0Lu1 Lu2 � � � Lur )Lk=LkC1 D g0Lu1 Lu2 � � � Lur =LkC1.

CASE 2: Lk < LkC1.
In this caser ( QG(0)g0L0) D {y1LkC1, : : : , yt LkC1}. If k 2 I (1)min then I (0)max

D

I (1)max
[ {urC1 WD kC 1}. Thus we have that

yi LkC1 2 (g0Lu1 Lu2 � � � Lur )LkC1=LkC1 D g0Lu1 Lu2 � � � Lur LurC1=LkC1.

On the other hand, ifk 2 I (1)max (i.e. ur D k) then I (0)max
D (I (1)max

n {k}) [
{urC1 WD kC 1}. Thus, using the fact thatLkLkC1 D LkC1, we have that

yi LkC1 2 (g0Lu1 Lu2 � � � Lur )LkC1=LkC1 D g0Lu1 Lu2 � � � Lur�1 LurC1=LkC1.
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This completes the proof.

Next, we count the number of ranges inr ( QG(1)g0L0) by using a way different from
that in Proposition 7.5. The following integerM1

v

is kind of a multiplicity which plays
an important role in Proposition 7.8.

DEFINITION 7.6. For a path1D (L0�� � ��Lk) 2 P(Qud
G ) in Qud

G , let I (1)max
WD

{u1, u2, : : : , ur } (ui < uiC1). Then for anyv 2 I 0(1)min, there exists an integerl (1�
l � r � 1) such that (Lul ! � � � ! L

v

 � � �  LulC1) is involved in1.

In this case, denote by

M1

v

WD j(LulC1 \ (Lul Lul�1 � � � Lu1)(Lu1 Lu2 � � � Lul ))=L
v

j.

REMARK 7.7. Let A� G be a subset, andB � G be a subgroup such thatA�
B and AB D A. Then the number of cosets inA=B D AB=B D {aB j a 2 A} is
jAj=jBj. In particular,jAj is divisible by jBj. This situation can be applied toM1

v

in
Definition 7.6.

Proposition 7.8. For a path1 D (L0 � � � � � Lk) 2 P(Qud
G ) in Qud

G and g0L0 2

G=L0, we have that

jr ( QG(1)g0L0)j D
j

QG(1)j

jG W L0j
�

Y

v2I 0(1)min

1

M1

v

.(��)

In particular, this value is independent of a choice of g0L0 2 G=L0.

Proof. The proof is similar to that of Proposition 7.5. We proceed by induction
on the lengthk of 1. Suppose thatk D 1, that is,1 D (L0 � L1). If L0 < L1 then
as in the proof of Proposition 7.5,r ( QG(1)g0L0) D {g0L1}. Furthermore sincej QG(1)j D
jG W L0j and I 0(1)min

D ;, we have the result. On the other hand, ifL0 > L1 then as
in the proof of Proposition 7.5,jr ( QG(1)g0L0)j D jL0 W L1j. Furthermore sincej QG(1)j D
jG W L0j � jL0 W L1j and I 0(1)min

D ;, we obtain the result.
Suppose next thatk � 1. Take any11 WD (Lk � LkC1) 2 P(Qud

G ), and set0 WD

111 2 P(Qud
G ). Then we will examinejr ( QG(0)g0L0)j. Note that by induction, we have

an equality (��).
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CASE 1: Lk > LkC1.
In this case,j QG(0)j D j QG(1)j�jLk W LkC1j as in the proof of Proposition 7.4. Since

I 0(0)min
D I 0(1)min and M0

v

D M1

v

for any v 2 I 0(0)min, we have that

jr ( QG(0)g0L0)j D jr ( QG(1)g0L0)j � jLk W LkC1j

D

1

jG W L0j
�

�

j

QG(0)j

jLk W LkC1j

�

�

Y

v2I 0(1)min

1

M1

v

� jLk W LkC1j

D

j

QG(0)j

jG W L0j
�

Y

v2I 0(0)min

1

M0

v

.

CASE 2: Lk < LkC1.
In this case,j QG(0)j D j QG(1)j as in the proof of Proposition 7.4. Furthermore by

Proposition 7.5, we have that

r ( QG(1)g0L0) D g0Lu1 � � � Lur =Lk DW {y1Lk, : : : , yt Lk}

where I (1)max
D {u1, : : : , ur } (ui < uiC1) and yi 2 g0Lu1 � � � Lur (1� i � t). It follows

that r ( QG(0)g0L0) D {y1LkC1, : : : , yt LkC1} whose cardinality is less than or equal tot .
Assume thatk 2 I (1)min.

Then I 0(0)min
D I 0(1)min

[ {k} and I (0)max
D I (1)max

[ {urC1 WD kC1}. Suppose that
yi LkC1 D y j LkC1 then

y�1
i y j 2 LkC1 \ (g0Lu1 � � � Lur )

�1(g0Lu1 � � � Lur ) D LkC1 \ (Lur � � � Lu1)(Lu1 � � � Lur ).

Thus jr ( QG(0)g0L0)j D t=M0

k where M0

k D j(LkC1 \ (Lur � � � Lu1)(Lu1 � � � Lur ))=Lkj. Fur-
thermoreM1

v

D M0

v

for any v 2 I 0(1)min, and hence

jr ( QG(0)g0L0)j D
j

QG(1)j

jG W L0j
�

Y

v2I 0(1)min

1

M1

v

�

1

M0

k

D

j

QG(0)j

jG W L0j
�

Y

v2I 0(0)min

1

M0

v

.
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On the other hand, assume thatk 2 I (1)max.

Then I 0(0)min
D I 0(1)min and I (0)max

D (I (1)max
n{k})[{kC1}. Let 10

D (L0�� � �  

Lur�1 ! � � � ! L
w

) involved in1. Then by Proposition 7.5, we have that

r ( QG(10)g0L0) D g0Lu1 � � � Lur�1=L
w

DW {z1L
w

, : : : , zsL
w

}

wherezi 2 g0Lu1 � � � Lur�1 (1� i � s). By the same argument as above, the cardinalities

of r ( QG(1)g0L0) and r ( QG(0)g0L0) can be calculated as follows:

jr ( QG(1)g0L0)j D
s

j(Lk \ (Lur�1 � � � Lu1)(Lu1 � � � Lur�1))=L
w

j

D

s

M1

w

,

jr ( QG(0)g0L0)j D
s

j(LkC1 \ (Lur�1 � � � Lu1)(Lu1 � � � Lur�1))=L
w

j

D

s

M0

w

.

Thus jr ( QG(0)g0L0)j D jr ( QG(1)g0L0)j � (M1

w

=M0

w

). Note that M1

v

D M0

v

for any v 2
I 0(1)min

n {w}. This yields that

jr ( QG(0)g0L0)j D
j

QG(1)j

jG W L0j
�

Y

v2I 0(1)min

1

M1

v

�

M1

w

M0

w

D

j

QG(0)j

jG W L0j
�

Y

v2I 0(0)min

1

M0

v

.

The proof is complete.

7.2. The Euler characteristic of TQud
CG

( QG(�)). In this section, for a special

proper path1 in Qud
G , the Euler characteristic of a coset complex ofQG(1) in Qud

CG is
calculated. Since1 D (L0�� � �� Lk) is proper, we have thatG=L i \G=L j D ; for all

0� i ¤ j � k (see Remark 4.8 (3)). This helps us to count simplices of TQud
CG

( QG(1)).
In the next, we recall the concept of types.

DEFINITION 7.9. For a proper path1 D (L0 � � � � � Lk) 2 P(Qud
G )pr in Qud

G , let

T WD TQud
CG

( QG(1)) be a coset complex ofQG(1) in Qud
CG.

(1) We say that aq-simplex � of T is of type (i0, : : : , iq) where 0� i0 < � � � < iq �
k, if � D {Ai0, : : : , Aiq } for some Ais 2 G=L is (0 � s � q). For a subset; ¤ J D
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{ j0, : : : , jq} � I (1), we identify J with the totally ordered sequence (0� j0 < � � � <
jq � k) of elements inJ. Then we also use a term typeJ instead of type (j0, : : : , jq).
(2) Denote by Tq (0 � q � k) the set of allq-simplices of T. For a sequence (0�
i0 < � � � < iq � k), set J WD {i0, : : : , iq}. Notations T(i0,:::,iq) and TJ stand for the set of
all q-simplices of typeJ. In particular, we have that

jTq
j D

X

J�I ,jJjDqC1

jTJ j.

Proposition 7.10. For a proper path1 D (L0 � � � � � Lk) 2 P(Qud
G )pr in Qud

G , let

T WD TQud
CG

( QG(1)) be a coset complex ofQG(1) in Qud
CG. For a sequence(0� i0 < � � � <

iq � k), we have that

�

�T(i0,:::,iq)

�

�

D j

QG(1[i0,iq ])j �
q�1
Y

sD0

Y

v2I 0(1[is,isC1] )min

1

M
1[is,isC1]
v

where M0
v

is an integer defined inDefinition 7.6.

Proof. We countq-simplices� D {Ai0,:::Aiq } of T of type (i0,:::,iq) where Ais 2

G=L is (0 � s � q). By the definition of simplices, there exists a path0 2 QG(1[i0,iq ])
such that� � Ob(0). Then by the same argument as in the proof of Lemma 7.2,0 is

identified with a path in the closureQud
CG (see Definition 3.5) as follows:

(Ai0
01
�! Ai1

02
�! Ai2 ! � � � ! Aiq�1

0q

�! Aiq )

where0sC1 2 QG(1[is,isC1]) (0 � s � q � 1). Any cosetgLi0 2 G=L i0 can be taken as
Ai0. Furthermore

AisC1 D r (0sC1) 2 r ( QG(1[is,isC1])Ais
) (0� s� q � 1).

By Proposition 7.8, the number of those ranges is independent of a choice of Ais.
Therefore, applying Lemma 7.2 and Proposition 7.8, we can calculate as follows:

jT(i0,:::,iq)j D jG W L i0j �

q�1
Y

sD0

jr ( QG(1[is,isC1])L is
)j

D jG W L i0j �

q�1
Y

sD0

 

j

QG(1[is,isC1])j

jG W L isj
�

Y

v2I 0(1[is,isC1] )min

1

M
1[is,isC1]
v

!

D j

QG(1[i0,iq ])j �
q�1
Y

sD0

Y

v2I 0(1[is,isC1] )min

1

M
1[is,isC1]
v

.



SIMPLICAL COMPLEXES ASSOCIATED TO QUIVERS 193

The proof is complete.

REMARK 7.11. For a proper path1 D (L0 � � � � � Lk) 2 P(Qud
G )pr in Qud

G , let

T WD TQud
CG

( QG(1)) be a coset complex ofQG(1) in Qud
CG. It is clear that the numbers of 0-

simplices (vertices) andk-simplices (those of maximal dimension) ofT are
Pk

iD0 jG=L i j

and j QG(1)j respectively.

Proposition 7.12. Let 1 2 P(Qud
G )pr be one of the following four proper paths

in Qud
G :

• 01

• 02

• 03

• 04

Let T WD TQud
CG

( QG(1)) be a coset complex ofQG(1) in Qud
CG. Then we have the Euler

characteristic ofT as follows:

�(T) D
X

;¤J�I (1)max

(�1)jJj�1
jTJ j.

Proof. Recall that the definition of the Euler characteristic is

�(T) D
X

;¤J�I (1)

(�1)jJj�1
jTJ j.

Suppose that1 D 02 or 1 D 03, namely,1 D (� � � ! Lk�2  Lk�1 ! Lk). For any
x Lk 2 G=Lk, there exists a unique cosetA 2 G=Lk�1 containingx Lk (i.e. A! x Lk),
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that is, AD x Lk�1. Let

J1 WD {J � I (1) j k 2 J, k � 1 � J},

J2 WD {J � I (1) j k 2 J, k � 1 2 J}.

Then there is a bijectionf W J1! J2 defined byJ 7! f (J) WD J [ {k � 1}. For any
J 2 J1, we have thatj f (J)j D jJj C 1. Furthermore, a map

 J W TJ ! T f (J)

defined by

{: : : , x Lk} 7! {: : : , x Lk�1, x Lk},

just insertingx Lk�1, is bijective. SojTJ j D jT f (J)j holds. It follows that the numbers
of simplices of typeJ with k 2 J are cancelled out in the alternating sum. Thus we
may suppose that1 D 01 or 1 D 04, namely,1 D (� � �  Lk�2! Lk�1 Lk).

For anyx Lk�1 2 G=Lk�1, there exists a unique cosetB 2 G=Lk containingx Lk�1

(i.e. x Lk�1 B), that is, BD x Lk. Then by the same argument as above, the numbers
of simplices of typeJ with k � 1 2 J are cancelled out in the alternating sum. Let
J WD {; ¤ J � I (1) j k � 1 � J}. Then we have that

�(T) D
X

J2J

(�1)jJj�1
jTJ j D XCY

where

X D
X

k�J2J

(�1)jJj�1
jTJ j

and

Y D
X

k2J2J

(�1)jJj�1
jTJ j.

By induction, we getX D
P

;¤J�I (1)max
n{k}(�1)jJj�1

jTJ j. Thus it is enough to consider
Y. But we can apply the same argument as above again. Indeed, for any x Lk�3 2

G=Lk�3, there exists a unique cosetC 2 G=Lk�2 containingx Lk�3 (i.e. x Lk�3  C),
that is, C D x Lk�2. Let

J(1) WD {J 2 J j k 2 J, k � 3 2 J, k � 2 � J},

J(2) WD {J 2 J j k 2 J, k � 3 2 J, k � 2 2 J}.

Then there is a bijectiongW J(1)! J(2) defined byJ 7! g(J) WD J [ {k� 2}. For any
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J 2 J(1), we have thatjg(J)j D jJj C 1. Furthermore, a map

�J W TJ ! Tg(J)

defined by

{: : : , x Lk�3, yLk} 7! {: : : , x Lk�3, x Lk�2, yLk},

just insertingx Lk�2, is bijective. SojTJ j D jTg(J)j holds. It follows that the numbers
of simplices of typek 2 J 2 J with k�3 2 J are cancelled out in the alternating sum.
Repeating this process, we eventually conclude that

Y D
X

k2J�I (1)max

(�1)jJj�1
jTJ j.

This completes the proof.

EXAMPLE 7.13. Let1 2 P(Qud
G )pr be a proper path inQud

G of the form

Then I (1)max
D {1, 3}. Set TWD TQud

CG
( QG(1)). By Proposition 7.12, we have that

�(T) D jT{1}j C jT{3}j � jT{1,3}j.

Furthermore, by Proposition 7.10,jT{1}j D jG W L1j, jT{3}j D jG W L3j, and

jT{1,3}j D j QG(1[1,3])j �
1

M
1[1,3]

2

D jG W L2j �
1

jL1 \ L3 W L2j
D jG W L1 \ L3j.

It follows that �(T) D jG W L1j C jG W L3j � jG W L1 \ L3j.
Now, let G WD J1 be the first Janko group of order 23

� 3 � 5 � 7 � 11 � 19. There is a
unique class of involutions, say a representativez, with the centralizerCG(z) � hzi� A
where A is isomorphic to the alternating group of degree 5. Take Sylow subgroups
C5 � hhi 2 Syl5(A) and C2 � C2 � C2 � S2 Syl2(G) with z 2 S. Then the following
proper path1 in Qud

G is defined.

Note thathh, zi \ SD hzi. From the above result, the Euler characteristic�(T) of T
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is calculated as follows:

�(T) D jG W hh, zij C jG W Sj � jG W hzij D 83, 391D 3� 7� 11� 192,

�(T) � 1D 83, 390D 2� 5� 31� 269.

7.3. The top homology of TQud
CG

( QG(�)) is trivial. Let 1 be a proper path in

Qud
G . In this section, it is shown that the top homology of a coset complex of QG(1)

in Qud
CG is trivial. This homologyR-module can be realized as a homology of a quiver

(see Section 5 and Example 5.13).

Proposition 7.14. Let 1 D (L0 � � � � � Lk) 2 P(Qud
G )pr be a proper path in Qud

G .

Then the homology R-module ofTQud
CG

( QG(1)) of degree k is trivial.

Proof. Put TWD TQud
CG

( QG(1)), then dim TD k (see Remark 6.22). LetI (1)min
WD

{v1,:::,vr }. Let Cn(T) (0� n� k) be theR-free module with alln-dimensional oriented
simplicesh� i of � in T as basis, and letÆn W Cn(T)! Cn�1(T) (1 � n � k) be an R-
homomorphism defined by

Æn(hx0, x1, : : : , xni) WD
n
X

iD0

(�1)i hx0, : : : , Oxi , : : : , xni

for hx0, x1, : : : , xni 2 Cn(T) (see Definition 5.7). It is enough to show that KerÆk is
trivial. Note that paths0 2 QG(1) can be identified with simplices of T of maximal
dimension (see Remark 4.8 (3)).

First we recall that, for subgroupsH < K � G and a cosetx H 2 G=H , there
exists a unique cosetA 2 G=K containing x H, that is, A D x K. This implies that
a path0 2 QG(1) is uniquely determined by cosetsxi Lvi 2 G=L

vi (0 � i � r ) with
the property that, in the following situation for1, xi Lu D xiC1Lu namely x�1

i xiC1 2

Lu holds.

It follows that paths (x0L0� � � � � xkLk) and (y0L0� � � � � ykLk) in QG(1) are the same
if and only if x

v

L
v

D y
v

L
v

for all v 2 I (1)min.
Take anyX D

P

02

QG(1) c
0

h0i 2 KerÆk � Ck(T). Then

0D Æk(X) D
X

02

QG(1)

c
0

Æk(h0i) 2 Ck�1(T).
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From the previous paragraph, we can see that, for a path3 D (y0L0 � � � � � ykLk) 2
QG(1), (k � 1)-simpliceshy0L0, : : : , byi L i , : : : ykLki in Æk(h3i) which containy

v

L
v

for
all v 2 I (1)min must lie only inc

3

Æk(h3i) in the sum
P

02

QG(1) c
0

Æk(h0i). This forces

that c
0

D 0 for all 0 2 QG(1). Thus KerÆk is trivial. The proof is complete.

7.4. A relation with coset geometries. Let F WD {L0, : : : , Lk} be a family of
subgroups ofG, and let I WD {0, : : : , k}. A systemG(G, F ) WD (G=L0, : : : , G=LkI � )
is a coset geometry overI where � is a binary reflective and symmetric relation on
V WD G=L0 [ � � � [ G=Lk defined by the non-empty intersection, namely, cosetsx Li

and yL j are incident ifx Li \ yL j ¤ ;. Note that cosetsx Li , yLi 2 G=L i are incident
if and only if x Li D yLi . In this section, we show that the automorphism group of
G(G, F ) is the intersection of those of our coset complexes TQud

CG
( QG(0)) for certain

paths0 2 P(Qud
G ).

An automorphism ofG(G,F ) is an element 2 Sym(V) which preserves type and
incidence, that is, (G=L i ) D G=L i for all 0� i � k and if x Li � yL j then (x Li ) �
 (yL j ). Denote by Aut(G(G, F )) the group of all automorphisms ofG(G, F ). By the
definition, we have that

Aut(G(G, F )) �
k
Y

iD0

Sym(G=L i ).

Let 1 2 P(Qud
G ) be a path of the form

Furthermore, for a permutation� 2 Sym(I ), denote by1(�) a path

where i � WD �(i ) 2 I for all i 2 I . For � 2 Sym(I ), set

T
�

WD TQud
CG

( QG(1(�)))

and

W
�

WD

[

H2Ob(1(� ))

G=H .
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Then W
�

is the vertex set of T
�

. Denote by Aut(T
�

) the group of all elements of
Sym(W

�

) which preservesG=H for all H 2 Ob(1(�)), and preserves the set of sim-
plices of T

�

. In particular, we have that

Aut(T
�

) �
Y

H2Ob(1(� ))

Sym(G=H )

,!

 

k
Y

iD0

Sym(G=L i )

!

�

 

Y

0�i< j�k

Sym(G=L i \ L j )

!

.

In this situation, we have the following.

Proposition 7.15. The groupAut(G(G, F )) is isomorphic to
T

�2Sym(I ) Aut(T
�

).

Proof. Take any 2 Aut(G(G, F )) and � 2 Sym(I ). For z(L i � \ L (iC1)� ) 2
G=(L i � \ L (iC1)� ), elementszLi � and zL(iC1)� are incident inG(G, F ). So by the def-
inition of  ,  (zLi � ) DW hLi � and (zL(iC1)� ) DW kL(iC1)� are incident. We set

Q

 (z(L i � \ L (iC1)� )) WD hLi � \ kL(iC1)� D u(L i � \ L (iC1)� ) 2 W
�

whereu 2 hLi � \ kL(iC1)� ¤ ;.

Then a map Q W W
�

! W
�

, where Q jV WD  , induces a bijection onW
�

which pre-
servesG=H for any H 2 Ob(1(�)). Furthermore, it is clear from the definition thatQ 
acts on a setQG(1(�)) of paths, and on the set of simplices of T

�

. Thus we have that
Q

 2 Aut(T
�

).
Conversely, take any� 2

T

�2Sym(I ) Aut(T
�

). Then, by the definition,�jV 2
Qk

iD0 Sym(G=L i ). For x Li , yL j 2 V , suppose thatx Li � yL j in G(G, F ), that is,
; ¤ x Li \yL j D u(L i \L j ) for u 2 x Li \yL j . Then a path (x Li ! u(L i \L j )! yL j )

is defined which is an interval of a path inQG(1(�)) for some� 2 Sym(I ). Thus, by
the definition of� 2 Aut(T

�

), we have a path

(�(x Li )! �(u(L i \ L j )) �(yL j )),

namely, the intersection of�(x Li ) and�(yL j ) contains�(u(L i \ L j )). So they are inci-
dent. It follows that�jV 2 Aut(G(G,F )). Then the process given in the above provides
the desired isomorphism as groups.
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7.5. Connectedness. In this section, we examine the connectedness of our sub-
group and coset complexes. But before doing this, we recall its definition.

DEFINITION 7.16 (cf. pp. 164–165 in [4]). LetK D (V(K ), S(K )) be a simpli-
cial complex whereV(K ) and S(K ) are respectively the sets of vertices and simplices
of K. An edge inK is just an ordered paireD (a,b) of verticesa,b 2 V(K ) such thata
andb lie in a simplex� 2 S(K ). Denote by ori(e) WD a and end(e) WD b. An edge path
in K is a finite sequence� D (e1, : : : ,en) of edgesei in K such that end(ei )D ori(eiC1)
for all i D 1, : : : , n�1. Denote byo(�) WD ori(e1) and e(�) WD end(en). K is connected
if, for any a, b 2 V(K ), there exists an edge path� in K such thato(�) D a and
e(�) D b.

Recall that a subgroup quiverQud
G is a G-quiver, and thatP(Qud

G ) is preserved by
G-conjugate action (see Remark 4.6). For aG-invariant subsetD � P(Qud

G ) of paths in
Qud

G , denote byD=
�G a complete set of representatives ofG-conjugate classes ofD.

Proposition 7.17. Let D � P(Qud
G ) be a G-invariant subset of paths in Qud

G . Sup-
pose thatTQud

G
(D) is connected then so isTQud

G
(D=

�G ) for someD=
�G .

Proof. Let D D 1

G
1 [ 1

G
2 [ � � � [ 1

G
m be a decomposition intoG-orbits where

1

G
i WD {x � 1i j x 2 G} and x � 1i WD (Lx�1

0 � � � � � Lx�1

k ) for 1i D (L0 � � � � � Lk).
We proceed by induction onm D jD=

�G j. Suppose thatm D 1. ThenD=
�G D {11},

so TQud
G

(D=
�G ) D TQud

G
(11) is clearly connected. Thus we may assume thatm� 2. Put

D1 WD 1
G
2 [ � � � [1

G
m, soD D 1G

1 [D1. Then by induction, we may assume that, for
a complete setD1=�G D {12, : : : , 1m} of representatives, TQud

G
(D1=�G ) is connected.

Furthermore by our assumption that TQud
G

(D) is connected, we have that

 

[

021

G
1

Ob(0)

!

\

 

[

32D1

Ob(3)

!

¤ ;.

Thus we may assume thatOb(x � 11) \ Ob(y � 12) ¤ ; for some x, y 2 G, namely
Ob(y�1x � 11) \ Ob(12) ¤ ;. It follows that, for a complete setD=

�G D {y�1x � 11,
12, : : : , 1m} of representatives, TQud

G
(D=

�G ) is connected. The proof is complete.

Proposition 7.18. Let D � P(Qud
G ) be a subset of paths in Qud

G . The followings
are equivalent.
(1) TQud

CG
( QG(D)) is connected.

(2) TQud
G

(D) is connected, and



S

12D Ob(1)
�

D G holds.



200 N. IIYORI AND M. SAWABE

Proof. (1)) (2): Take any verticesL and L 0 of TQud
G

(D). SinceD � QG(D), we
have that

[

12D

Ob(1) �
[

02

QG(D)

Ob(0).

This shows thatL and L 0 are vertices of TQud
CG

( QG(D)) which is connected by our as-

sumption. So there exists in TQud
CG

( QG(D)) an edge path

((x0L0, x1L1), (x1L1, x2L2), : : : , (xt�1L t�1, xt L t ))

where x0L0 D L, xt L t D L 0, and L1, : : : L t�1 2
S

12D Ob(1). Since (xi L i , xiC1L iC1)
is an edge, bothxi L i and xiC1L iC1 lie in Ob(0) for some path0 D (y0H0 � � � � �

yd Hd) 2 QG(1) � QG(D) where1 D (H0 � � � � � Hd) 2 D. Thus L i and L iC1 lie in
Ob(1) D {H0, : : : , Hd} (see Remark 4.8 (3)). It follows that (L i , L iC1) is an edge in
TQud

G
(D), and that ((L , L1), (L1, L2), : : : , (L t�1, L 0)) forms an edge path in TQud

G
(D).

Therefore TQud
G

(D) is connected.

Set V WD
S

12D Ob(1) and N WD hVi � G. We will show that N D G. First

we claim that, for a path (x0L0 � � � � � xkLk) 2 QG(D), if xi L i � N for some i then
x j L j � N for all 0 � j � k. Indeed suppose thatxi L i  xiC1L iC1. Then since
xi L i � xiC1L iC1, we have thatxiC1L iC1 D xi L iC1 � N. On the other hand, suppose
that xi L i ! xiC1L iC1. Then xiC1L iC1 � xi L i � N as required. Next we claim that, for
a connected componentC of TQud

CG
( QG(D)) with C \ V ¤ ;, any element inC is con-

tained inN. Indeed takeL 2 C\V. For any path (L�x1L1�� � ��xt L t ) in QG(D), since
L � hVi D N, we have from the previous claim thatx j L j � N for all 1� j � t . Fur-

thermore any elementA 2 C is connected withL along an edge path in TQud
CG

( QG(D)).
So A � N as wanted.

Now assume thatN < G, and takey 2 G such thatyN¤ N. Let C be a connected
component of TQud

CG
( QG(D)) with C \ V ¤ ;. Then from the previous claim,A� N for

any A 2 C. Thus y A� yN. SinceN\ yN D ;, we have thatC\ yC D ; where yC WD
{y A j A 2 C} is a connected component. This yields that TQud

CG
( QG(D)) is disconnected,

a contradiction.
(2) ) (1): Note that KWD TQud

G
(D) is a subcomplex of TWD TQud

CG
( QG(D)). Since

K is connected by our assumption, the vertex setV WD
S

12D Ob(1) of K is contained
in a connected componentC of T. For any L 2 V and x 2 L, we have thatL D x L 2
C \ xC where xC WD {x A j A 2 C} is a connected component of T, so thatxC D C.
This implies thathVi � StabG(C) WD {g 2 G j gC D C}. But sinceG D hVi by our
assumption, StabG(C) D G holds. ThusC contains the set

S

L2V G=L of all vertices of
T. So T is connected. The proof is complete.

REMARK 7.19. Let H < G be a proper subgroup ofG. SetD WD {(L0 � � � � �

Lk) 2 P(Qud
G ) j L i � H} � P(Qud

G ). Then it is easy to see that, for a path3 D
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(g0L0� � � � � gkLk) 2 QG(D), if gi L i � H for somei then g j L j � H for all 0� j � k,
so thatOb(3) \ 2H

D ; where 2H is the power set of a setH . In other words, if
gi L i � H for some i then g j L j � H for all 0 � j � k, so thatOb(3) � 2H . This

implies that a complex TQud
CG

( QG(D)) is disconnected.

As in the following, the number of connected components of a coset complex of
QG(1) in Qud

CG is completely determined by a certain subgroupH of G. This result can
be applied when we calculate the zero homology of the complex.

Theorem 7.20. For a path1 D (L0 � � � � � Lk) 2 P(Qud
G ) in Qud

G , the number of

the connected components ofTQud
CG

( QG(1)) is given by the indexjG W H j where H WD
hL j j j 2 I (1)max

i D hOb(1)i � G.

Proof. Any L i and L j (0� i < j � k) are connected along1. So there exists a

connected componentC of T WD TQud
CG

( QG(1)) containingOb(1) D {L0, : : : , Lk}. Since
G acts transitively on the set of all connected components of T, it suffices to show
that H D StabG(C) WD {g 2 G j gC D C} where gC WD {gA j A 2 C} is a connected
component of T.

For any L i 2 Ob(1) � C and u 2 L i , we have thatL i D uLi 2 C \ uC. Thus
uC D C and L i � StabG(C). Since each element ofOb(1) is contained inL j for some
j 2 I (1)max, we have that

H D hL j j j 2 I (1)max
i D hL i j 0� i � ki � StabG(C).

On the other hand, for anyz 2 StabG(C), we have thatC D zC 3 zL0. Then there
exists an edge path

((z0L i0, z1L i1), (z1L i1, z2L i2), : : : , (zt�1L i t�1, zt L i t ))

wherez0L i0 D L0, zt L i t D zL0, and L i1,:::L i t�1 2 Ob(1). For an edge (zsL is,zsC1L isC1),
we may assume thatis < isC1. Since bothzsL is and zsC1L isC1 lie in a simplex of T,

there exists a path3 2 QG(1[is,isC1]) such thats(3) D zsL is and r (3) D zsC1L isC1. Then
by Proposition 7.5,

zsC1L isC1 D r (3) 2 r ( QG(1[is,isC1])zsL is
) D zsLu1 � � � Lur =L isC1

where {u1, : : : , ur } D I (1[is,isC1])max. Thus zsC1 2 zsLu1 � � � Lur � zsH . Note that if
is > isC1 then by the same way, we obtainzs 2 zsC1H , namely z�1

sC1 2 Hz�1
s . Since

z0 2 L0 � H , we have thatzs 2 H (0 � s � t). In particular,zD zt 2 H . It follows
that StabG(C) � H . This completes the proof.
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7.6. Preimages under'G,�. Let 1 D (L0 � � � � � Lk) 2 P(Qud
G ) be a path in

Qud
G , and let

'G,1 W TQud
CG

( QG(C
1

))! TQud
G

(P(Qud
G ))

be a G-simplicial map defined in Section 6.3. In this section, we describe the preim-
age under'G,1. We expect that this result will be applied to homotopy theory like
Quillen’s fiber theorem on homotopy equivalences (see [3, Proposition 1.6]), and so on.

Proposition 7.21. Let 1 D (L0 � � � � � Lk) 2 P(Qud
G ) be a path in Qud

G , and let
'G,1 be a G-simplicial map stated in the above. Let

� D {L
a j0
j0

, : : : , L
a jq

jq
} � Im('G,1) D

k
[

jD0

{La
j j a 2 G} (0� j0 < � � � < jq � k)

be a q-simplex ofTQud
G

(P(Qud
G )) which is in the image of'G,1.

(1) Any simplex in'�1
G,1(� ) is of dimension q.

(2) Any simplex� in '

�1
G,1(� ) is of the form� D {g j0 L j0, : : : g jq L jq} for some gjd 2

a�1
jd

NG(L jd ) (0� d � q). Furthermore, there exists1[s,t ] 2 C1 such that1[ j0, jq] �1[s,t ] .

(3) The preimage'�1
G,1(� ) is given as follows:

8

<

:

{g j0 L j0, : : : g jq L jq}

g jd 2 a�1
jd

NG(L jd ) (0� d � q)
g jdC1 2 g jd Lud,1 Lud,2 � � � Lud,rd

(0� d � q � 1)
where I(1[ jd, jdC1])max

D {ud,1, : : : , ud,rd} (ud,i < ud,iC1)

9

=

;

.

Proof. (1) This is due to Proposition 6.25.
(2) By the definition of a simplex� in '

�1
G,1(� ) � TQud

CG
( QG(C

1

)), there exists
1[s,t ] 2 C

1

such that� � Ob(0) for a path

0 D (gsLs � gsC1LsC1 � gsC2LsC2 � � � � � gt�1L t�1 � gt L t )

in QG(1[s,t ]) � QG(C
1

) � P(Qud
CG). Set� D {gi0 L i0, : : : , giq L iq } (s� i0, : : : , iq � t). Then

{L
a j0
j0

, : : : , L
a jq

jq
} D � D 'G,1(� ) � 'G,1(0) D {L

g�1
s

s , : : : , L
g�1

t
t }.

We may assume that

L
a jd
jd
D 'G,1(gid L id ) D L

g�1
id

id
(0� d � q).

Then byG-conjugate condition in Definition 6.23 of1[s,t ] 2 C
1

, we have thatid D jd
for all 0 � d � q. It follows that g jd 2 a�1

jd
NG(L jd ) (0 � d � q), and thats � j0 <

� � � < jq � t , namely1[ j0, jq] � 1[s,t ] .
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(3) Note that since1[ j0, jq] � 1[s,t ] 2 C
1

by the previous claim (2), we have that
s � j0 < � � � < jq � t . Now a set� D {g j0 L j0, : : : g jq L jq} of cosets is a simplex in

TQud
CG

( QG(C
1

)) if and only if there exists0dC1 2 QG(1[ jd, jdC1]) � P(Qud
CG) (0� d � q� 1)

such thats(0dC1) D g jd L jd and r (0dC1) D g jdC1 L jdC1. Then we obtain a path

3 WD (g j0 L j0
01
�! g j1 L j1

02
�! g j2 L j2 ! � � � ! g jq�1 L jq�1

0q
�! g jq L jq )

in the closureQud
CG such thatOb(3) D � (see also the proof of Lemma 7.2). By Prop-

osition 7.5, we have that

g jdC1 L jdC1 D r (0dC1) 2 r ( QG(1[ jd , jdC1])g jd L jd
)

D g jd Lud,1 Lud,2 � � � Lud,rd
=L jdC1 � G=L jdC1

where I (1[ jd, jdC1])max
D {ud,1, ud,2, : : : , ud,rd} (ud,i < ud,iC1). Thus

g jdC1 2 g jd Lud,1 Lud,2 � � � Lud,rd
.

The proof is complete.
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