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Abstract
We study Hilbert geometries admitting similar singulagtion their boundary to
those of a simplex. We show that in an adapted neighborhodhbose singularities,
two such geometries are bi-Lipschitz. As a corollary we prthat the Hilbert geom-
etry of a convex set is bi-Lipschitz equivalent to a normedtee space if and only
if the convex is a polytope.

Introduction and statement of results

A Hilbert geometry is a particularly simple metric space be tnterior of a com-
pact convex sef modeled on the construction of the Klein model of hyperbgkom-
etry inside an euclidean ball. This metric happens to be aptste Finsler metric
whose set of geodesics contains the straight lines. Sineealdfiinition of the Hilbert
geometry only uses cross-ratios, the Hilbert metric is gegtive invariant.

In addition to ellipsoids, a second family of convex setsymadistinct role among
Hilbert geometries: the simplexes. If the ellipsoids’ getip is isometric to the hyper-
bolic geometry and are the only Riemannian Hilbert georaet(see D.C. Kay [14,
Corollary 1]), at the opposite side simplexes happen to lkeeotlly ones whose geom-
etry is isometric to a normed vector space (e.g. see De laeHa2] for the existence
and Foertsch and Karlsson [11] for the unigueness).

Many of the recent works done in the context of these geonsetoieus on finding
out how close they are to the hyperbolic geometry, from dhffié viewpoints (see, e.g.,
A. Karlsson and G. Noskov [13], Y. Benoist [1, 2] férhyperbolicity, E. Socié-Méthou
[16, 17] for automorphisms and B. Colbois and C. Vernicos6]5or the spectrum). It
is now quite well understood that this is closely related égutarity properties of the
boundary of the convex set. For instance if the boundai@Zswith positive Gaussian
curvature, then B. Colbois and P. Verovic [9] have shown thatHilbert geometry is
bi-Lipschitz equivalent to the hyperbolic geometry.

The present work investigates those Hilbert geometriesecio a norm vector space.

2000 Mathematics Subject Classification. Primary 53C60p&dary 53C24, 51F99.
The author acknowledges that this material is based upoksasrpported by the Science Foun-
dation Ireland Stokes Lectureship award.
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Along that path it has been noticed than any polytopal Hilligrometry can be
isometrically embedded in a normed vector space of dimansiice the number of it
faces (see B.C. Lins [15]). Then B. Colbois and P. Verovic] [§8owed that in fact
no other Hilbert geometry could be quasi-isometrically eddred into a normed vector
space. Furthermore with B. Colbois and P. Verovic [8] we hslvewn that the Hilbert
geometries of plane polygons are bi-Lipschitz to the eeelidplane. Even though we
saw no reason for this result not to hold in higher dimensaur, point of view made
it difficult to obtain a generalisation due to the computagidt involved. The present
works aims at filling that gap by giving a slightly differentgofs which holds in all
dimension, with less computations, but at the cost of a lostiedy of simplexes.

The first main result on our paper is the following comparisgbeorem around
some specific singularity on the boundary, which we calhical flag and which can
be stated in the following rather informal way:

Theorem (Comparison Theorem 5) Let .4 and B be two Hilbert geometries with
a common extremal point x such that should one apply theidllatof ratio A centred
at x, as A goes to infinity the images of both convex sets would convergen orth-
ant. LetS be any simplex contained id as well asB3, such that x is a vertex and at
most one(n — 1)-dimensional face adjacent to x lies on the boundary of bathnl-
aries of A and . Then insideS, the Hilbert geometries ofd and B are bi-Lipschitz
equivalent.

The precise definition of those singularities can be foundSéttion 1.2. As a
corollary we then get our second main theorem.

Theorem 1. Let P ¢ RY be a convex polytopéts Hilbert geometry(P, dp) is
bi-Lipschitz to the d-dimensional euclidean geoméRy, | - ||). In other words there
exist a map F P — RY and a constant L= 1 such that for any two points x and y
in P,

1
T IFC)=FWIl s dp(x,y) < L -[[FC) = FWI.

The main idea is that a polytopal convex set can be decompiosedoyramids
with apex its barycentre and base its faces, and then to phateeach pyramid is bi-
Lipschitz to the cone it defines. However due to the multitedeavailable faces in
dimension higher than two, a reduction is needed and cenisisising the barycentric
subdivision to decompose each of these pyramids into girsitaplexes, and to prove
that each of these simplexes is bi-Lipschitz to the cone finds.

The following corollary “a I” Bourbaki sums up the known chaterisations of the
polytopal Hilbert geometries
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Corollary 2. LetC € RY be an open convex set which does not contain any straight
line and(C, d¢) its Hilbert geometry. Then the following are equivalent
(1) C is a polytopal convex domain
(2) (C, de) is bi-Lipschitz equivalent to an d-dimensional vector spac
(3) (C, de¢) is quasi-isometric to the euclidean d-dimensional vecmcs
(4) (C, d¢) isometrically embeds into a normed vector space
(5) (C, d¢) quasi-isometrically embeds into a normed vector space

The author believes that Theorem 5 should help in the bidhijis classification
of Hilbert geometries.

NoTe. Theorem 1 was found and proved with a completely differgrreach
by Andreas Bernig [4]. The two approaches are somewhat duah¢ another: where
Bernig uses faces, we use vertices.

1. Definition of a Hilbert geometry and notations

1.1. Hilbert geometries. Let us recall that a Hilbert geometr¢,(d¢z) is a non-
empty bounded open convex seton RY (that we shall callconvex domanwith the
Hilbert distanced. defined as follows: for any distinct poings and g in C, the line
passing throughp andq meets the boundar§C of C at two pointsa andb, such that
one walking on the line goes consecutively &yp, q b (Fig. 1). Then we define

1
dC(p! q) = E ln[a1 p, q, b],

where B, p, g, b] is the cross ratio ofd, p, q, b), i.e.,

la—all lp—Dhj
[a, p,q,b] = X > 1,
lp—al lla—b
with || - || the canonical euclidean norm IRY.

Note that the invariance of the cross-ratio by a projectivegpnmplies the invari-
ance ofde by such a map.

These geometries are naturally endowed witE%Finsler metricF. as follows:
if peC andv e T,C =RY with v # 0, the straight line passing by and directed by
v meetsdC at two pointsp™ and p~; we then define

1 1 1
Fe(p,v) = -|lv + )
clp.v) =5l ”(np—pn TErg

and

Fe(p, 0) = 0.
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ac

Fig. 1. The Hilbert distance.

oc

Fig. 2. The Finsler structure.

The Hilbert distancel: is the length distance associatedReg.
Let us remark that by an abuse of notatiorCifis a closed convex set with non
empty interior, then we still denote by’ (d-) the Hilbert geometry associated to its

interior C.

1.2. Faces. Recall that to a closed convex st C RY we can associate an
equivalence relation, stating that two poirisand B are equivalent if they are equal or
if there exists a segmen€[D] C K containing the segment, B] such thatC # A,B
and D # A, B. The equivalent classes are calllttes A face is called &-face if
the dimension of the smallest affine space containing K.is

A O-face is usually called amxtremal pointand for a convex polytopes it is called
a vertex
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Fig. 3. Conical faces in dimension 3.

Thus defined all faces are open sets in their affine hull, hat the smallest affine
set containing them. For instance the segmanb][in R admits three faces, which are
{a}, {b} and the open segmer, (D).

Notice that if K has non-empty interior (that i€ \ 0K # 9), then itsd-dimensional
face is its interior.

In this paper a simplex iiR? is the convex closure ai + 1 projectively independ-
ent points, i.e., a triangle ilR?, a tetrahedron iR3, etc.

DEFINITION 1 (Conical faces). Let be a closed convex set. L&t< d. Sup-
pose that a simplexs containsC and that a non-empti-face f C aC, is included in
a k-face of S, Then we say thatf is a conical faceof C and thatC admits a coni-
cal face.

When a facef is in the boundary of another fade we write f < F.

DEFINITION 2 (Conical flag). LetC be a closed convex set Y. If there exist
a simplexS contained inC, with a family of facesfq, f1, ..., fg_1 such that for any
k=0,...,d-1,
Q) < fo<fi<fo< o< fygu1<S;
(2) fy is a subset of &-conical face ofC;
(3) no otherk-face of S is inside ak-conical face ofC;
then we call the sequence of faces= fop < f1 < fo <--- < f4_1 < C a conical flag
and say thaC admits aconical flag at x Furthermore we will call the simple$ a
conical flag neighborhood ofhe pointx in the convexC.

1.3. Prismatic neighborhoods and cones.

DEFINITION 3 (Prismatic neighborhoods). L& be a simplex inRY and let x,
be a point in ak-face of S. Let A¢ be thek-dimensional affine space containing
and itsk-face. Let €1, e, ...,&) be an orthonormal basis of the vector spage— Xy.
We complete it into an orthonormal basis Rf with vy, ..., v4_k chosen as follows:
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Fig. 4. Prismatic neighborhoods of a point in a 1-face and a
2-face in dimension 3.

€1

[T

Fig. 5. Prismatic cone of a 1-face in dimension 3.

each of these vectors is parallel to one of tket(1)-faces ofS which containx in
their boundary.

e An (g,a)-prismatic neighborhood witk-dimensional apex ofy is the convex clos-
ure of ak-cube of diameter 2ke centred atx, in A and its translates byv;, i =
1,...,d—k.

e An g-prismatic cone withk-dimensional apex centred ai is the union of all
(¢, a)-prismatic neighborhoods witk-dimensional apex ok for o € R*.

The following lemma, which compares the Hilbert geometdésa prismatic neigh-
borhood of a poink and its corresponding cone around that poinwill play a critical
role in the sequel.

Lemma 3. LetS be a simplex inRY and let % be a point in a k-face of. For
any pair of positive numbers, « > 0 let Px be an(e, )-prismatic neighborhood with
k-dimensional apex ofyx and PCy the corresponding prismatic cone. Then for any
sequencey,, wn)nen Such that for all ne N, y, is in the interior of P; wy € RY; the
sequencdyn)nen tends to x, one has

im AOh wn)
n—o0 FPCk(ynv wn)



POLYGONAL HILBERT GEOMETRIES 221

Ao = By

Fig. 6. lllustration of Example 1.

This lemma is a straightforward consequence of Propos&i6is proof in [3] which
can be restated in the following way

Proposition 4. Let K, K’ be closed convex sets with non-empty interior and not
containing any straight line. For any point x in the interiof K N K’, let || [Ix, |- I}
be their respective Finsler norm induced by the their refigedHilbert geometries. Let
p € 0K, let Eg be a supporting hyperplane of K at p and let Be a hyperplane
parallel to Ey intersecting the interior of K. Lef be the strip obtained as the convex
closure of i and E. Suppose that K and 'Khave the same intersection with the
strip &, that is € N K = €N K’. Then as functions oRP"1, the ratio | - |x/| - Il,
uniformly converge td as x goes to p.

2. Metric comparison around a conical flag

Theorem 5. Let .4 and B be two convex sets with a common conical flag neigh-
borhood S then there exists a constant C such that for any x in the ioteof the
simplexS and v € R one has

@ é -Fu(X, v) < F4(X, v) < C- Fg(x, v).

ExamMPLE 1. In the two-dimensional case the condition is thatand B contain
a triangleS, one of its edges on their boundaries, a vertex of which, arg one, is
an extremal point of both of them which is a conical point.(Deconical face), that is
to say that it admits two supporting lines.



222 C. VERNICOS

Fig. 7. The simplexes of Lemma 6.

To prove Theorem 5 we will reduce to the case where hdtland B are sim-
plexes andA C B (see Fig. 7). This is the intermediate Lemma 6 whose statemen
and illustration follow.

Lemma 6. Suppose thatS, Ci, and Coy are three n-simplexes such thé&t C
Cin C Cout @and S is a conical flag neighborhood of bot), and Coy. Then there exists
a constant M such that for any x in the interior Sfand any vectow € RY one has

Fcout(xl U) $ Fcin(x’ U) s M . Fcout(X’ U)'
We can now present Theorem 5’s proof as a corollary.

Proof of Theorem 5. We are going to build a simpléx in AN B containingS
and a simplexCyy: containing. A U BB satisfying the assumptions required by Lemma 6.
Let us suppose these two simplexes exist. The inclusighs ANB and AUB C

Cout give the following sets of inequalities

Fe,.(X, v) < Fa(x, v) < Fe, (X, v),
and
Fcout(x’ U) $ FB(X! U) $ Fcin(x! U).

We combine these inequalities to obtain

Fcout(x’ U) < F.A(Xl U) < FCin(X! U)
I:Cin(x’ U) h FB(X! U) h Fcout(x’ U),
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and the conclusion follows from Lemma 6.

Let us now make the construction 6f, and Co, precise. To do so, let us con-
sider the conical flagfp < f; <--- < f4_1 < S. Then we will denote th&-face of A
containing fx by Ax and similarly by By the corresponding face d.

Forn >k = 0, let us denote byy the vertex ofS in Ay N By, but not in A_; N
Bx_1 and by px the barycentre of the vertexeg, ..., vo. Then aspx and vk belong to
the same face, there exists a poipt € Ax N Bk and v 1 # vk such that the segment
[pP«, vka] containsvx. We take forCi, the convex hull ofvg s, ..., vo1.

For Cout, we will actually build its convex dual (i.e. the convex dos of the set
of supporting hyperplanes in the dual vector space). Inddede take convex sets
that are dual ta4, B and S with respect to some point in the interior 6f we obtain
respectively three convex sefs, A* and §* such that both3* and . A4* are subsets of
S*. In the sequel, fok =0,...,d—1, let us denote by the k-face ofS* correspond-
ing to the hyperplanes tangent fg_x_1. Then asS is a conical flag neighborhood of
both A and B, S contains the hyperplanes tangentAg_,_; and to By__1 but not
to Ag_k or By_k.

Let us also remark thafy_x_1 is in the intersection ofd4_x_1 and By_x_1, which
are both conical faces afl and B respectively. Therefore the intersection of the hy-
perplanes containing both these faces but no other faceghefr ed or B, and simul-
taneously tangent tol and B is an open and nonempty subset&jf, which we shall
denote byO;.

In particular the vertexS§ = Oy corresponds to the common supporting hyper-
plane containing the three facek_1, Bq—1 and fy_;.

Now, let wo be the vertexS}, and fork =1,...,d — 1 take a pointwy in Ok.
Let also take a pointwg in the intersection of the convex set* and B*. Then by
construction, if we leCj, be the convex hull ofwg, ..., wq, it is a simplex, which is a
common conical flag of4*, B* and S*. Thus its dual will contain bott4 and 5, and
admitsS as a conical flag neighborhood. Therefore we can take it asioylex Coyt.

0

2.1. Proof of Lemma 6.

2.1.1. Notation needed along the proof. Recall thatS, Ci, and Coy are three
d-dimensional simplexes such th&tC Ci, C Coyt. By assumption the closure of one
of the d — 1)-dimensional faces of is the intersection of the closure of these three
simplexes. In fact, for everk < d — 1, there is a uniqu& dimensional face ofS,
denoted byfy, which is also a subset of la dimensional face o€, and Cq,, denoted
respectively bygink and goutk. The assumptions of Lemma 6 imply

fk C @ink C Poutk-
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We will denote byAy the k-dimensional affine space containing the three fafigs
¢ink and pouik for 0 < k < d. Hence Ay is a common vertex to the three simplexes
and Ay the whole spac®.

2.1.2. Step 0: Ignition. The left inequality of Lemma 6 is a straightforward
consequence of the fact thét, C Cout-

For the right inequality, by homogeneity we can restrict grtorsv in the unit
euclidean spherdy. Hence we will focus on the following ratio, where is in the
interior of S and v a unit vector

Fcin (X1 U)
FCDU[(X, v) '

Q(Xv U) =

We want to show that) remains bounded 0150 x By
HYPOTHESIS Let us suppose by contradiction th@tis not bounded.

Thanks to that hypothesis we can find a sequenge ujn)neny Such that for all
n €N, X, is in the interior ofS, w, € By and most importantly

) Q(Xn, wn) = +00.

Due to the compactness 6fx By, at the cost of taking a sub-sequence, we can assume
that this sequence converges 1Q.( ws)

REMARK 1. If the sequencexf)nen remains in a compact séi contained in
the interior ofCj,, then @ remains bounded as a continuous function of two variables
over the compact sal x By.

2.1.3. Step 1. Focusing on faces.Following the above Remark 1, ifX{)nen
were to converge toward a point @,, we would get a contradiction. Henocg, has
to be on the boundary ofi,, which implies thatx,, is on a common face of the
three simplexes.

We will suppose thatx,, belongs to thek-dimensional facefy of S and obtain
a contradiction.

To do so we will make two simplifications:

(1) We first replace the three simplexes by three prismatightrhoods ofx.,, in
such a way that the sequenc@(kn, wn))neny remains bounded if the quotient defined
in the same way for these prismatic neighborhoods does {Segnd 3).

(2) We then replace the three prismatic neighborhoods bir theee corresponding
prismatic cones centred at, and then we prove that the corresponding quotient re-
mains bounded (Step 4, Lemmata 3 and 8).
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Pnui‘.l

Fig. 8. Prismatic neighborhoods of a 1-face in dimension 3.

2.1.4. Step 2. The prismatic neighborhoods. For the following constructions
we fix k and we suppose that the limit poirt, belongs to thek-dimensional face of
S, i.e., Xy € fi.

If k # 0, choose O< @ < 8 < y such that
(i) the (x, a)-prismatic neighborhood of,, with respect taS is a subset ofS;

(i) the (8, B)-prismatic neighborhood of,, with respect toCi, is a subset ofj;
(iii) the (y, y)-prismatic neighborhood of,, with respect toCy,; containsCoy;

(iv) the (8, B)-prismatic neighborhood ok,, with respect toCj, contains the ¢, «)-
prismatic neighborhood of,, with respect toS.

Then we will denote by
(i) Psk the @/2, a/2)-prismatic neighborhood of,, with respect toS;

(i) Pk the (B/2, B/2)-prismatic neighborhood of,, with respect toCi;
(iii) Poutk the (2, 2y)-prismatic neighborhood of,, with respect toCoyg
For k = 0, we takePso =S, Pino = Cin and Poyt.0 = Cout-
Now, for any pointx in the interior of Psx and any unit vectop in By we define

Fpin,k (X’ U)

(3 R«(x, v) = S

We introduce this ratio because for any pointin the interior of Psy and any
vector v it bounds from aboved(x, v), i.e.,

) Q(x, v) < Re(x, v).
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Fig. 9. Prismatic cones of a 1-face in dimension 3.

2.1.5. Step 3: The prismatic cones. Let us denote by
(i) PCsxk the a/2-prismatic cone centred at, with respect toS;
(i) PCink the g/2-prismatic cone centred at, with respect toCi,;
(iii) PCoutk the 2-prismatic cone centred at,, with respect toCoyt.
by construction we hav®Csk C PCink C PCoutk-

Finally we associate the following ratio with these prisimatones.

FPCin,k (Xl U)

(5) Ri(x, v) = Fre (X, 1)’

wherex is in the interior of PCsx andv € By.

2.1.6. Step 4: Comparisons. First notice that there exist an integr such that
for all n > N, x, is in the interior of Psy. Hence, applying Lemma 3 we get the
following equivalence.

Lemma 7. Let us fix0 < k <d and let(yn, Un)nen b€ a sequence with,yin the
interior of the prismatic coné”Cs converging to(X., Us) With Uy € By; then

lim Ri(Yn, Un) -1
n—o00 Rk(yn, un)

The previous Lemma 7 allows us to focus on the prismatic cotiesefore the
heart of our proof now lies in the following key lemma.

Lemma 8. Let us fix0 < k <d and let(yn, Un)nen be a sequence withyyin the
interior of the prismatic conéPCs k converging to(Xe, Us) With Uy € By; then there

is a constant ¢ such that for all a8 N one has

(6) Ri(Yn, Un) < C.
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Proof of Lemma 8. We suppose that is the origin thus the affink-dimensional
subspaceAy containing fx is actually a sub-vector space. We then consider the
decomposition

RdZAKGBAé,

and theinhomogeneous scalihgv A ; which is defined as the identity oA, and as
the dilation of ratior on A}-. Whenk = 0 this is just a dilation centred at the origin.

The three prismatic cones are invariant by these inhomagenscalings, hence
V A, is an isometry with respect to their Hilbert geometries.

Now consider a supporting hyperplaf® to these prismatic cones at the origin,
and an affine hyperplan&; parallel to Ey intersecting the prismatic cones and the
face fyr1. Then for anyn € N, there is a\ such thaty, is is pushed away from the
origin onto the hyperplaneg; while staying in the interior of the inside prismatic cone
PCsk, i.e.

A, V A(Yn) € Ex

and

V Aci(Yn) € PCsk-
This gives a new sequencey,( Upnen, With y) = VA(Ya) and u, =
V A (Un)/IIV A (un)|l, which stays in the hyperplang;, and such thaRRy(yn, un) =
Rk(yr/n UI,‘])

By descending induction, suppose that for any triple of masc cones with
k’-dimensional apex of typéC. . which can occur in a construction in step 3, with
k' > k, our conclusion holds.

Case k = d: In that situation, the new sequence remains in the inteseof
E1 with the interior of the prismatic con®Cs 4, which is a common compact set of
the prismatic cone$, 4 and Pyuq, and thus we conclude following Remark 1, that
the ratioRq4(yn, Un) remains bounded.

CASE k < d: Regarding the sequency,( u;)nen: either it stays away from the
common hyperpland\, 1, which means that the sequence remains in a common compact
set in the interior of the prismatic con@%, x and Pouik, and thus again by Remark 1 we
conclude that there is a constansuch that

Ri(Yn, Un) = Ri(¥n, Up) < C,

or the sequence admits a sub-sequence converging to the aorhyperplaneA,_;
while remaining in the hyperplang;, hence away fromd,. Without loss of generality
we thus can suppose that the whole sequegfeu()nen converges to Y, Us), With
Voo IN sOoMe commork’-dimensional, withk’ > k face of the three prismatic cones.

1Known as “Affinité vectorielle” in French.
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We remark that from a projective point of view, the prismatimes are actually
prismatic polytopes, having another common face, the ptioge hyperplane at infinity.
In other words, up to a change of affine charts, which is an &nnfor the respective
Hilbert geometries, we can suppose that the prismatic canegprismatic polytopes.

Once we remarked this, we can now build three new prismatigtques of type
P.x and their corresponding prismatic cones of typeer containingy..,, obtaining a
new ratio of typeRy which bounds from above our ratiRx. Now the induction as-
sumption allows us to conclude that this new ratio is bounfilech above, and there-
fore the sequenc®y(yn, Un) also stays bounded from above mgjoes to infinity and
our proof is complete. ]

2.1.7. Step 5: Conclusion. Letus consider a converging sub-sequengauf,)nen
satisfying the divergence property (2). Then for some R < d, the limit X, belongs to
the facefy.

Therefore Lemmata 7 and 8 imply th&(x,, w,) remains bounded as — oo,
and by the inequality (4) tha®(x,, w,) as well, which is absurd.

Hence our initial hypothesis, tha® is not bounded is violated, which concludes
our proof.

3. Polytopal Hilbert geometries are bi-Lipschitz to euclicean vector spaces

The barycentre of a polytope and its faces induce a decotigosif the polytope
into pyramids with apex the barycentre and base the facesselpyramids also give
rise to cones with summit their apex which in turn decompdee ambient space. In
this section we built a map which sends these pyramids to tteresponding cones
and which is a bi-Lipschitz map between the Hilbert geomefryhe polytope and the
Euclidean geometry of the ambient space.

The proof of Theorem 1 consists in building a bi-Lipschitzmnzand take the follow-
ing steps:

(1) Using the barycentric subdivision, in Section 3.1 we atepose a polytopal do-
main of RY into a finite number of simplexe§, which we callbarycentric simplexes
(2) In Section 3.2 we prove that each barycentric simpgof a polytope admits a
bi-Lipschitz embedding onto a barycentric simpl&x of the d-simplex.

(3) We show that we can send isometrically the barycentmigpkx of ad-simplex
onto a cone of a vector spa®;, using a known isometric map between thaimplex
and Wy (see Section 3.3). This cone is then sent isometrically éocibne associated
to a barycentric simplex of a polytope.

(4) Finally this allows us in Section 3.4 to define a map frore pholytopal domain
to RY by patching the bi-Lipschitz embeddings associated to exichs barycentric
simplexes.

3.1. Cell decomposition of the polytope. ConsiderP a polytope inRY. We
will denote by fj thei'" face of dimensionj, 1< j <d.
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Fig. 10. The last three steps of the decomposition in dinoen3i

Let ps be the barycentre oP, and p;; be the barycentre of the fack;. Let us
denote byD;; the half line frompg to p;j.
We recall the following well known property, emphasizing aspect we need.

PROPERTY 9. A polytopal domain? in RY can be uniquely decomposed as a
union of d-dimensional simplexes, calldgarycentric simplexesr cells such that the
vertices are barycentres of the faces and each cell is aadtag neighborhood of the
polytope P.

In the sequel let us adopt the following notations and cotwes: If P is a poly-
tope inRY, we will suppose that its barycentre is the origin and dermteS, for
i =1,..., N, its barycentric simplexes.

REMARK 2. The intersection of two barycentric simplexes is a lodienensional
simplex: it is the closure of a common face containing theydetre of the polytope.

S is the simplex whose vertexes are the pairy, . .., vi g, wherev; g = pq is the
barycentre ofP, and fork =d —1,..., 0, v« is the barycentre of &-dimensional
face, always on the boundary of the face to whigh,; belongs (see Fig. 11).
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V3,0 = V2,0

Fig. 11. Barycentric simplexes of a polygon.

To eachi =1,..., N we will also associate the positive coflg based onpy and
defined by the vectorso; x = vix —vig for k=d —-1,...,0. We will call them the
barycentric conesassociated to the polytope (see Fig. 12).

The convex hull inR%+! of the d +1 points (1,0,..,0),(0,1,..,0),...,(0,0,...,1)
will be denoted bySy and calledstandard d-simplex

We will call standard barycentric d-simpleaf the standardi-simplex, and denote
it by Sq, the convex hull of following the points (see Fig. 13):

1 1
7 Uk = ,0,...,0] f d=>k=>=0.
@ ke (k+1 K+1 ) or
k+ 1 times d—k times

We will denote byW; the d-dimensional hyperplane iR%** defined by the equation
Xy + -+ X441 = 0.

3.2. Embedding into the standard simplex. We keep the notations of the pre-
vious subsection. Lek; be the linear map sending the barycentric simponto the
standard barycentrid-simplex Sq C &, by mapping each point; x to .

Let B = L;(P) the image of the convex polytope by this linear mdp. is an
isometry between the Hilbert geometries B&f and P, in other words for any in the
interior of P we have (identifyingL; with its differential)

Fr(Li(¥), Li(v)) = Fp(x, v).
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\
\
\

\

Fig. 12. Barycentric cones of a polygon.

This way, Sq4 is a common flag conical neighborhood of bd®th and &4 and by
Theorem 5 we obtain:

PROPERTY 10. There exists a constakt such that for any poink in the interior
of the standard barycentric simple€sy and any vectow one has

i -Fp X, v) < Fed(X, v) <Kk - Fp (X, v).

ki

3.3. From the standard simplex toWy. Let &4: &g — Wy ~ RY ¢ R+ de-
fined by

Dg(Xa, - -, Xa41) = (Xa, - -+, Xa41)

=(In(%),...,ln(%)) With g = (xq - Xgs2) YO+,
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Fig. 13. The standard barycentric 3-simplex of the 3-simple

Thanks to P. de la Harpe [12] we know thd{y is an isometry from the sim-
plex &4 into Wy endowed with a norm whose unit ball is a centrally symmetdo-c
vex polytope.

For our purpose, let us remark that the image of the standargbéntric simplex
Sy by @y is the positive cone ofVy of summit at the origin and defined by the vectors

8) D= -k ..., d—k —(k+1),...,~(k+1) for d>kz=0.

k+1 times d—k times

We denote b)ﬁd = ®y(Sq) and call itstandard d-cone
Now for any polytopal convex seP € RY, consider the magM; which maps the

standardd-cone(y into the barycentric con€; based onpg, by sending the origin to
ps and the vectotiy to the vectorm; y.

3.4. Conclusion. We can now define our bi-Lipschitz map

F: (P! dp) g (Rd! ” : ”)
in the following way.
©) Yx €8, F(x) = M(®qy(Li(x)))

Following Remark 2, ifx € P is a common point of§ and S, then necessarily
Li(x) = Lj(X) thus,

Dq4(Li(x)) = @a(Lj(X)) =y

andy is on boundary of the conéy. Now M;(y) = M;(y), becauseM; and M; send
the corresponding boundary cone®f to the respective common boundary cone of the
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x z *Tm, &,V
Fig. 14. The applicatiorF in dimension 2 illustrated.

cell-conesC; and C; in the same way. In other words,

VXGSﬂSj, Li(X)ZLj(X)
and
VzeCincCj, M '(2=M 2

thus F is well defined and it is a bijection.

To prove that it is bi-Lipschitz, we use the fact that line reegits are geodesic
and that both spaces are metric spaces.

Hence letp and q be two points in the polytopé. Then there areM points
(pj)j=1,..m on the segmentd, q] such thatp = p;, g = pu, and each segments
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[pj, Pj+1], for j =1,..., M —1, belongs to a single simple%; of the simplex de-
composition ofP.

Because of the key Property 10, and the fact that all normR%rare equivalent,
we know that for eachj, there is a constark’j such that, forx, y € §;, one has

IF(X) — FWII < kj - dp(X, y).
Applying this to pj, pj+1 for j =1,..., M —1, we obtain

M-1

Y IF(P) = F(psa)l < (SiUpK')-dP(p. Q),

j=1

where the supremum is taken over all cells of the decomposithen from the triangle
inequality one concludes that

IF(P) - F@) < (siupk() dp(p. 9.

Starting from a line fromF(p) to F(q) and taking its inverse image after decom-
posing it in segments each of which is in a single barycewite, we obtain in the
same way the other inequality

dp(p. ) < (syplq’) IF () = F@.

4. Hilbert geometries bi-Lipschitz to a normed vector space

Let us make two remarks and give references on the recipaiciheorem 1.

Colbois and Verovic in [10] prove that a Hilbert geometry wlhiquasi-isometrically
embeds into a normed vector space is the Hilbert geometry puflygope. Notice that
in their paper they state a weaker result but actually prbisedtronger statement.

In our paper [19] we prove that the asymptotic volume of a éfillbgeometry is
finite if and only if it is the geometry of a polytope. Thereforthis allows us to con-
clude, without referring to the stronger result of Colborsdaverovic, that a Hilbert
geometry bi-Lipschitz to a normed vector space comes fronolgtgpe.

ACKNOWLEDGEMENT. The first draft of this work was accomplished during the
author’s stay at the National University of Ireland, Mayrfoats a Stokes Lecturer.



POLYGONAL HILBERT GEOMETRIES 235
References

[1] Y. Benoist: Convexes hyperboliques et fonctions quasisymétrjgBebl. Math. Inst. Hautes
Etudes Sci97 (2003), 181-237.

[2] Y. Benoist: Convexes hyperboliques et quasiisoméfridsom. Dedicatd 22 (2006), 109-134.

[3] G. Berck, A. Bernig and C. Vernicosvolume entropy of Hilbert geometrieRacific J. Math.
245 (2010), 201-225.

[4] A. Bernig: Hilbert geometry of polytope#rch. Math. (Basel®2 (2009), 314-324.

[5] B. Colbois and C. VernicosBas du spectre et delta-hyperbolicité en géométrie de Hifane
Bull. Soc. Math. Francd 34 (2006), 357—381.

[6] B. Colbois and C. VernicostLes géométries de Hilbert sont a géométrie locale bormée.
Inst. Fourier (Grenobley7 (2007), 1359-1375.

[7] B. Colbois, C. Vernicos and P. Verovidrea of ideal triangles and Gromov hyperbolicity in
Hilbert geometry Illinois J. Math.52 (2008), 319-343.

[8] B. Colbois, C. Vernicos and P. VerovicHilbert geometry for convex polygonal domains
to appear in J. Geom., arX804. 1620v1 [math.DG].

[9] B. Colbois and P. VerovicHilbert geometry for strictly convex domain&eom. Dedicatd 05
(2004), 29-42.

[10] B. Colbois and P. VerovicHilbert domains quasi-isometric to normed vector spageeprint
(2008), arxiv0804. 1619v1 [math.MG].

[11] T. Foertsch and A. Karlssomilbert metrics and Minkowski normgd. Geom83 (2005), 22—-31.

[12] P. de la HarpeOn Hilberts metric for simplicesin Geometric Group Theory, | (Sussex, 1991),
Cambridge Univ. Press, Cambridge, 1993, 97-119.

[13] A. Karlsson and G.A. NoskovThe Hilbert metric and Gromov hyperbolicjitfEnseign. Math.
(2) 48 (2002), 73-89.

[14] D.C. Kay: The ptolemaic inequality in Hilbert geometrjeRacific J. Math21 (1967), 293-301.

[15] B.C. Lins: Asymptotic behavior and Denjoy-Wolff theorems for Hilbmstric nonexpansive
maps PhD dissertation, Rutgers University (2007).

[16] E. Socié-Méthou:Caractérisation des ellipsoides par leurs groupéautbmorphismesAnn.
Sci. Ecole Norm. Sup. (435 (2002), 537-548.

[17] E. Socié-Méthou: Behaviour of distance functions in Hilbert—Finsler georpgetDifferential
Geom. Appl.20 (2004), 1-10.

[18] C. Vernicos:Spectral radius and amenability in Hilbert geometriétouston J. Math35 (2009),
1143-1169.

[19] C. Vernicos: Asymptotic volume in Hilbert geometrijetndiana Univ. Math. J.62 (2013),
1431-1441.

Institut de mathématique et de modélisation de Montpellier
Université Montpellier 2

Case Courrier 051

Place Eugéne Bataillon

F-34395 Montpellier Cedex

France

e-mail: Constantin.\Vernicos@math.univ-montp2.fr



