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Abstract
It is well-known that space-like maximal surfaces and time-like minimal surfaces

in Lorentz–Minkowski 3-spaceR3
1 have singularities in general. They are both char-

acterized as zero mean curvature surfaces. We are interested in the case where the
singular set consists of a light-like line, since this case has not been analyzed before.
As a continuation of a previous work by the authors, we give the first example of
a family of such surfaces which change type across a light-like line. As a corollary,
we also obtain a family of zero mean curvature hypersurfacesin RnC1

1 that change
type across an (n� 1)-dimensional light-like plane.

Introduction

Many examples of space-like maximal surfaces containing singular curves in the
Lorentz–Minkowski 3-space (R3

1I t, x, y) of signature (�CC) have been constructed in
[11], [1], [12], [8], [4] and [5].

In this paper, we are interested in the zero mean curvature surfaces inR3
1 changing

their causal type: Klyachin [10] showed under a sufficientlyweak regularity assumption
that a zero mean curvature surface inR3

1 changes its causal type only on the following
two subsets:
• null curves (i.e., regular curves whose velocity vector fields are light-like) which
are non-degenerate (i.e., their projections into thexy-plane are locally convex plane
curves), or
• light-like lines, which are degenerate everywhere.
Given a non-degenerate null curve
 in R3

1, there exists a zero mean curvature surface
which changes its causal type across this curve from a space-like maximal surface to
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a time-like minimal surface (cf. [6], [10], [9] and [7]). This construction can be ac-
complished using the Björling formula for the Weierstrass-type representation formula
of maximal surfaces. (The reference [3] is an expository article on this subject.) How-
ever, if 
 is a light-like line, the aforementioned construction fails, since the isothermal
coordinates break down at the light-like singular points. Locally, such a surface is the
graph of a functiont D f (x, y) satisfying

(1� f 2
y ) fxx C 2 fx fy fxyC (1� f 2

x ) fyy D 0,(�)

where fx D � f =�x, fxy D �

2 f =�y�x, etc. We call this and its graph thezero mean
curvature equationand a zero mean curvature surface, respectively. Until now, zero
mean curvature surfaces which actually change type across alight-like line were un-
known. As announced in [2], the main purpose of this paper is to construct such an
example. In Section 1, we give a formal power series solutionof the zero mean curva-
ture equation describing all zero mean curvature surfaces which contain a light-like
line. Using this, we give the precise statement of our main result and show how the
statement can be reduced to a proposition (cf. Proposition 1.3). In Section 2, we then
prove it. As a consequence, we obtain the first example of (a family of) zero mean
curvature surfaces which change type across a light-like line.

1. The main theorem

We discuss solutions of the zero mean curvature equation (�) which have the
following form

(1.1) f (x, y) D b0(y)C
1

X

kD1

bk(y)

k
xk,

where bk(y) (k D 1, 2, : : :) are C1-functions. When f contains a singular light-like
line, we may assume without loss of generality that (cf. [2])

(1.2) b0(y) D y, b1(y) D 0.

As was pointed out in [2], there exists a real constant� called thecharacteristicof f
such thatb2(y) satisfies the following equation

(1.3) b02(y)C b2(y)2
C � D 0 ( 0 D d=dy).

Now we derive the differential equations satisfied bybk(y) for k � 3 assuming
(1.2). If we set

Y WD fy � 1D
1

X

kD2

b0k(y)

k
xk
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and

P WD 2(Y fxx � fx fxy), Q WD Y2 fxx � 2 fx fxyY, R WD f 2
x fyy,

then, by straightforward calculations, we see that

P D �b2b02x2
�

4

3
b2b03x3

�

1

X

kD4

�

Pk C
2(k � 1)

k
b2b0k C (3� k)b02bk

�

xk,

Q D �
1

X

kD4

Qkxk, RD
1

X

kD4

Rkxk,

where

(1.4)

Pk WD

k�1
X

mD3

2(k � 2mC 3)

k �mC 2
bmb0k�mC2,

Qk WD

k�2
X

mD2

k�m
X

nD2

3n� kCm� 1

mn
b0mb0nbk�m�nC2,

Rk WD

k�2
X

mD2

k�m
X

nD2

bmbnb00k�m�nC2

k �m� nC 2

for k � 4, and that the zero mean curvature equation (�) reduces to

1

X

kD2

b00k
k

xk
D fyy D PC QC R.

It is now immediate, by comparing the coefficients ofxk from both sides, to see that
eachbk (k � 3) satisfies the following ordinary differential equation

(1.5) b00k(y)C 2(k � 1)b2(y)b0k(y)C k(3� k)b02(y)bk(y) D �k(Pk C Qk � Rk),

where P3 D Q3 D R3 D 0 and Pk, Qk and Rk are as in (1.4) fork � 4. Note thatPk,
Qk and Rk are written in terms ofb j ( j D 1, : : : , k � 1) and their derivatives.

Now, we consider the case that 1� f 2
x � f 2

y changes sign across the light-like
line {t D y, x D 0}. This case occurs only when the characteristic� as in (1.3) of f
vanishes [2]. If we set

b2(y) D 0 (y 2 R),

then (1.3) holds for� D 0. So we assume

(1.6) b0(y) D y, b1(y) D 0, b2(y) D 0, b3(y) D 3cy,
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wherec is a non-zero constant. Thenf (x, y) in (1.1) can be rewritten as

(1.7) f (x, y) D yC cyx3
C

1

X

kD4

bk(y)

k
xk.

In this situation, we will find a solution satisfying

(1.8) bk(0)D b0k(0)D 0 (k � 4).

Then (1.5) reduces to

b00k(y) D �k(Pk C Qk � Rk), bk(0)D b0k(0)D 0, (k � 4),(1.9)

Pk D

k�1
X

mD3

2(k � 2mC 3)

k �mC 2
bm(y)b0k�mC2(y) (k � 4),(1.10)

Qk D

k�4
X

mD3

k�m�1
X

nD3

3n� kCm� 1

mn
b0m(y)b0n(y)bk�m�nC2(y) (k � 7),(1.11)

Rk D

k�4
X

mD3

k�m�1
X

nD3

bm(y)bn(y)b00k�m�nC2(y)

k �m� nC 2
(k � 7),(1.12)

and Qk D Rk D 0 for 4� k � 6, where the fact thatb2(y) D 0 has been extensively
used. For example,

b0 D y, b1 D b2 D 0, b3 D 3cy, b4 D �4c2y3, b5 D 9c3y5,

b6 D �24c2y7, b7 D 70c5y9
� 14c3y3, : : : .

In this article, we show the following assertion:

Theorem 1.1. For each positive number c, the formal power series solution f(x,y)
uniquely determined by(1.9), (1.10), (1.11)and (1.12) gives a real analytic zero mean
curvature surface on a neighborhood of(x, y) D (0, 0). In particular, there exists a non-
trivial 1-parameter family of real analytic zero mean curvature surfaces each of which
changes type across a light-like line(seeFig. 1).

As a consequence, we get the following:

Corollary 1.2. There exists a family of zero-mean curvature hypersurfacesin
Lorentz–Minkowski spaceRnC1

1 each of which changes type across an(n � 1)-
dimensional light-like plane.

Proof. Let f be as in the theorem. The graph of the function defined by

Rn
3 (x1, : : : , xn) 7! f (x1, x2) 2 R
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Fig. 1. The graph oft D f (x, y) for c D 1=2 and jxj, jyj < 0.8
(The range of the graph is wider than the range used in our math-
ematical estimation. However, this figure still has a sufficiently
small numerical error term in the Taylor expansion.)

gives the desired hypersurface. In this case, the zero mean curvature equation

0

�1�
n
X

jD1

f 2
x j

1

A

n
X

iD1

fxi xi C

n
X

i , jD1

fxi x j fxi fx j D 0 ( fxi WD � f =�xi , fxi x j WD �
2 f =�x j �xi )

reduces to (�) in the introduction.

To prove Theorem 1.1, it is sufficient to show that for arbitrary positive constants
c > 0 andÆ > 0 there exist positive constantsn0, �0, and C such that

(1.13) jbk(y)j � �0Ck (jyj � Æ)

holds fork � n0. In fact, if (1.13) holds, then the series (1.7) converges uniformly over
the rectangle [�C�1, C�1] � [�Æ, Æ].

The key assertion to prove (1.13) is the following
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Proposition 1.3. For each c> 0 and Æ > 0, we set

(1.14) M WD 3 max{144c� jÆj3=2,
4
p

192c2
� },

where� is the positive constant given by(A.3) in the appendix, such that

(1.15) t
Z 1�t

t

du

u2(1� u)2
� � (0< t < 1=2).

Then the function{bl (y)}l�3 formally determined by the recursive formulas(1.9)–
(1.12) satisfies the inequalities

jb00l (y)j � cjyjl
�

M l�3,(1.16)

jb0l (y)j �
3cjyjl

�

C1

l � C 2
M l�3,(1.17)

jbl (y)j �
3cjyjl

�

C2

(l � C 2)2
M l�3(1.18)

for any

(1.19) y 2 [�Æ, Æ],

where

(1.20) l � WD
1

2
(l � 1)� 2 (l � 3).

Once this proposition is proven, (1.13) follows immediately. In fact, if we set

�0 D
3

c
(ÆM)3, C WD ÆM

and n0 � 7, then 1� l � C 2< l � 3 and (1.13) follows from

3cjyjl
�

C2

(l � C 2)2
M l�3

� �0Cl .

2. Proof of Proposition 1.3

We prove the proposition using induction on the numberl � 3. If l D 3, then

jb003(y)j D 0�
c

jyj
D cjyj3

�

M0,

jb03(y)j D 3cD
3cjyj3

�

C1

3� C 2
M0,

jb3(y)j D 3cjyj D
3cjyj3

�

C2

(3� C 2)2
M0
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hold, using thatb3(y) D 3cy, M0
D 1 and 3� D �1. So we prove the assertion for

l � 4. Since (1.17), (1.18) follow from (1.16) by integration, it is sufficient to show
that (1.16) holds for eachl � 4. (In fact, the most delicate case isl D 4. In this case
l � D �1=2 and we can use the fact that

R y0

0 1=
p

y dy for y0 > 0 converges.)
The inequality (1.16) follows if one shows that, for eachk � 4

(2.1) jk Pk(y)j, jkQk(y)j, jk Rk(y)j �
c

3
jyjk

�

Mk�3 (jyj � Æ)

under the assumption that (1.16), (1.17) and (1.18) hold forall 3� l � k � 1. In fact,
if (2.1) holds, (1.16) forl D k follows immediately. Then by the initial condition (1.9)
(cf. (1.8)), we have (1.17) and (1.18) forl D k by integration.

The estimation of jkPkj for k � 4. By (1.10) and using the fact that (1.17),
(1.18) hold for l � k � 1, we have for eachjyj < Æ that

jk Pkj �

k�1
X

mD3

2kjk � 2mC 3j

k �mC 2
jbm(y)j jb0k�mC2(y)j

�

k�1
X

mD3

2kjk � 2mC 3j

k �mC 2

�

3cMm�3
jyjm

�

C2

(m�

C 2)2

��

3cMk�mC2�3
jyj(k�mC2)�C1

(k �mC 2)� C 2

�

D cMk�3
jyjk

�

144cjyj3=2

M

k�1
X

mD3

kjk � 2mC 3j

(m� 1)2(k �mC 1)(k �mC 2)

� cMk�3
jyjk

�

144cjÆj3=2

M

k�1
X

mD3

kjk � 2mC 3j

(m� 1)2(k �mC 1)(k �mC 2)

�

c

3�
Mk�3

jyjk
�

k�1
X

mD3

kjk � 2mC 3j

(m� 1)2(k �mC 1)2
.

Here, we used (1.14). Since

max
mD3,:::,k�1

jk � 2mC 3j D max
mD3,k�1

jk � 2mC 3j D max{jk � 3j, j�kC 5j},

by settingq D m� 1, we have that

jk Pkj �
c

3�
Mk�3

jyjk
�

k�1
X

mD3

k2

(m� 1)2(k �mC 1)2
D

c

3�
Mk�3

jyjk
�

1

k

k�2
X

qD2

k3

q2(k � q)2

�

c

3�
Mk�3

jyjk
�

1

k

Z 1�1=k

1=k

du

u2(1� u)2
�

c

3
Mk�3

jyjk
�

,

where we applied Lemma A.1 and (1.15) at the last step of the estimations. Hence,
we get (2.1) fork Pk.
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The estimation of jkQkj for k � 7. By (1.11) and the induction assumption, we
have that

jkQkj �

k�4
X

mD3

k�m�1
X

nD3

kj3n� kCm� 1j

mn
jb0m(y)j jb0n(y)j jbk�m�nC2(y)j

�

k�4
X

mD3

k�m�1
X

nD3

kj3n� kCm� 1j

mn

�

3cMm�3
jyjm

�

C1

m�

C 2

�

�

�

3cMn�3
jyjn

�

C1

n� C 2

��

3cMk�m�nC2�3
jyj(k�m�nC2)�C2

((k �m� nC 2)� C 2)2

�

D cMk�3
jyjk

�

432c2

M4

k�4
X

mD3

k�m�1
X

nD3

kj3n� kCm� 1j

(m� 1)2(n� 1)2(k �m� nC 2)2
.

Now we apply the inequalities

max
3�m�k�4

3�n�k�m�1

j3n� kCm� 1j D max
(m,n)D(3,3),(3,k�4),(k�4,3)

j3n� kCm� 1j

D max{j�kC 11j, 4, j2k � 10j} � 2k,

and also

432c2

M4
�

1

36�
,

which follows from (1.14). Settingp WD m� 1, q D n� 1, we have that

jkQkj �
c

36�
Mk�3

jyjk
�

k�4
X

mD3

k�m�1
X

nD3

2k2

(m� 1)2(n� 1)2(k �m� nC 2)2

D

c

18�
Mk�3

jyjk
�

k�5
X

pD2

k�p�2
X

qD2

k2

p2q2(k � p� q)2
.

Now applying Lemma A.2, we have that

jkQkj �
c

18�
Mk�3

jyjk
�

� 6� �
c

3
Mk�3

jyjk
�

,

which proves (2.1) forkQk.
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The estimation of jkRkj for k � 7. As in the case ofjkQkj, we have that

jk Rkj �

k�4
X

mD3

k�m�1
X

nD3

kjbm(y)j jbn(y)j jb00k�m�nC2(y)j

k �m� nC 2

�

k�4
X

mD3

k�m�1
X

nD3

k

k �m� nC 2

�

3cMm�3
jyjm

�

C2

(m�

C 2)2

�

�

�

3cMn�3
jyjn

�

C2

(n� C 2)2

�

(cMk�m�nC2�3
jyj(k�m�nC2)�)

D 144c3Mk�7
jyjk

�

k�4
X

mD3

k�m�1
X

nD3

k

(k �m� nC 2)(m� 1)2(n� 1)2

D cMk�3
jyjk

�

144c2

M4

k�4
X

mD3

k�m�1
X

nD3

k2

(k �m� nC 2)2(m� 1)2(n� 1)2
.

Now we setp D m� 1, q D n� 1, and using the inequality

34
� 144c2

� � 34
� 192c2

� < M4,

we have that

jk Rkj �
c

34
�

Mk�3
jyjk

�

k�5
X

pD2

k�p�2
X

qD2

k2

p2q2(k � p� q)2
.

By applying Lemma A.2, we have that

jk Rkj �
c

34
�

Mk�3
jyjk

�

� 6� <
c

3
Mk�3

jyjk
�

,

which proves (2.1) fork Rk. This completes the proof of Proposition 1.3.

Appendix A. Inequalities used in the proof of Theorem 1.1

For a > 0, it holds that

(A.1)
1

u2(a� u)2
D

1

a3

�

a

u2
C

2

u
C

a

(a� u)2
C

2

a� u

�

.

Therefore,

(A.2)
Z a�t

t

du

u2(a� u)2
D

2

a3

�

a(a � 2t)

t(a� t)
C 2 log

a� t

t

�

(0< t < a=2).
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In particular, one can show that there exists a positive constant � such that

(A.3) t
Z 1�t

t

du

u2(1� u)2
� � (0< t < 1=2).

The following assertion is needed to prove (2.1) fork Pk(y):

Lemma A.1. Let p be a non-negative integer and k an integer satisfying k�
pC 4. Then the inequality

k�p�2
X

qD2

k3

q2(k � p� q)2
�

Z a�1=k

1=k

du

u2(a� u)2
(a WD 1� p=k)

holds.

Proof. In fact, if we seta WD 1� p=k, then (A.1) yields that

k3

q2(k � p� q)2
D

1

k

1

(q=k)2(a� q=k)2

D

1

a3

�

1

k

�

a

(q=k)2
C

2

q=k

�

C

1

k

�

a

(a� q=k)2
C

2

a� q=k

��

.

Since x 7! (aC 2x)=x2 is a monotone decreasing function and the functionx 7! (aC
2(a� x))=(a� x)2 is monotone increasing on the interval (0,a=2), we have that

k3

q2(k � p� q)2
�

1

a3

�

Z q=k

(q�1)=k

�

a

u2
C

2

u

�

duC
Z (qC1)=k

q=k

�

a

(a� u)2
C

2

a� u

�

du

�

,

which yields that

k�p�2
X

qD2

a3k3

q2(k � p� q)2
�

Z a�2=k

1=k

�

a

u2
C

2

u

�

duC
Z a�1=k

2=k

�

a

(a� u)2
C

2

a� u

�

du

�

Z a�1=k

1=k

�

a

u2
C

2

u

�

duC
Z a�1=k

1=k

�

a

(a� u)2
C

2

a� u

�

du

�

Z a�1=k

1=k

�

a

u2
C

2

u
C

a

(a� u)2
C

2

a� u

�

du

D

Z a�1=k

1=k

du

u2(a� u)2
.

This proves the assertion.

The following assertion is needed to prove (2.1) forkQk(y) and k Rk(y):



ZERO MEAN CURVATURE SURFACES 295

Lemma A.2. For any integer k� 7, the following inequalities holds:

k�5
X

pD2

k�p�2
X

qD2

k2

p2q2(k � p� q)2
�

6

k

Z 1�1=k

1=k

du

u2(1� u)2
� 6� ,

where� is a constant satisfying(A.3).

Proof. We seta D a(p) WD 1 � (p=k). Applying Lemma A.1 and the identity
(A.2), we have that

k�5
X

pD2

k�p�2
X

qD2

k2

p2q2(k � p� q)2
D

k�5
X

pD2

"

1

kp2

k�p�2
X

qD2

k3

q2(k � p� q)2

#

�

k�5
X

pD2

�

1

kp2

Z a�1=k

1=k

du

u2(a� u)2

�

D

k�5
X

pD2

�

1

p2

2

a2

�

a� 2=k

a� 1=k
C 2

log(ka� 1)

ka

��

�

k�5
X

pD2

�

2

p2a2

�

1C 2
log ka

ka

��

�

k�5
X

pD2

6

p2a2
,

where we used the fact that (logka)=(ka) < 1. By applying Lemma A.1 and by using
the property (A.3) of the constant� , it holds that

k�5
X

pD2

k�p�2
X

qD2

k2

p2q2(k � p� q)2
� 6

k�5
X

pD2

1

p2(1� p=k)2
D

6

k

k�5
X

pD2

k3

p2(k � p)2

�

6

k

k�2
X

pD2

k3

p2(k � p)2
�

6

k

Z 1�1=k

1=k

du

u2(1� u)2
< 6� ,

which proves the assertion.
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