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Abstract
Let a, b, c be distinct positive integers. SetM D a C b C c and N D abc.

We give an explicit description of the Mordell–Weil group of the elliptic curve
E(M,N)W y2

�Mxy�N yD x3 overQ. In particular we determine the torsion subgroup
of E(M,N)(Q) and show that its rank is positive. Furthermore there are infinitely many
positive integersM that can be written inn different ways,n 2 {2, 3}, as the sum
of three distinct positive integers with the same productN and E(M,N)(Q) has rank
at leastn.

1. Introduction

The subject of partitioning integers has been used to construct infinite families of
elliptic curves with positive rank. Many authors attack questions linking partitioning
integers and elliptic curves arising from these integers. For example in [1] the elliptic
curve En W y2

D x3
� nx where n D a4

C b4 is proved to be of rank at least 2 over
Q(a, b). If n can be written as a sum of two biquadrates in two different ways, then
[4] indicates the existence of an infinite number of integersn such thatEn(Q) is of
rank at least 3, and this lower bound is improved in [1] to be 4.

In this note we study the partitions of a positive integer into three positive integers
with the same product. A triple of positive integers (x, y, z) is said to be apartition
of a positive integerM if M D x C y C z. The integersx, y, z are theparts of the
partition. We setN D xyz. If we are looking for all integer triples (x, y, z) with sum
M and productN, then we are trying to solve two Diophantine equations. Eliminating
z will yield the elliptic curve

E(M,N) W y2
� Mxy� N yD x3.

In [5], the elliptic curve E(M,N) was shown to be of positive rank overQ under the
mild condition that if M D d1C d2C d3, N D d1d2d3 whered1 > d2 > d3 then d1(d2�

d3)3
¤ d3(d1�d2)3. We reprove this fact and give an explicit description of thetorsion

part Etor
(M,N)(Q) of the Mordell–Weil groupE(M,N)(Q). More precisely we show that

Etor
(M,N)(Q) is one of the following subgroupsZ=3Z, Z=6Z, or Z=2Z � Z=6Z.

2010 Mathematics Subject Classification. 14H52, 11P81.
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If the curveE(M,N) has positive rank overQ, then this means that there is an infin-
ite number of triples of nonzero rational numbers adding up to M and having product
N. We investigate the rank of this elliptic curve ifM can be written as a sum of three
nonzero positive integers with productN in at least two different ways.

We parametrize positive integersM that have two different partitions into triples
with product N. The parametrization ofM is given in terms of four parametersp, q,
r , s. Consequently we show thatE(M,N) has rank at least 2 overQ(p, q, r, s). Thus
there exists an infinite number of pairs of integers (M, N) such thatE(M,N)(Q) has rank
at least 2.

A weaker result is presented whenM has three different partitions into triples with
product N. An infinite parametric family of such pairs (M, N) is constructed. The
parametrization depends on three parametersp, q, r . We prove thatE(M,N) has rank
at least 3 overQ(p, q, r ), and hence the existence of an infinite number of pairs of
integers (M, N) for which E(M,N)(Q) has rank at least 3.

In this note, a partitioning question is used to exhibit infinite families of elliptic
curves with positive rank. This partitioning question corresponds to an interesting geo-
metric problem. Namely, if (M, N) is a pair of positive integers such that 4M is the
perimeter of a rectangular boxR with integer side lengthes, andN is the volume ofR,
then how many different rectangular boxes with integer sides have the same perimeter
and volume? Indeed, that rankE(M,N)(Q) � 1 means that there are an infinite num-
ber of rectangular boxes with rational sides, and the same perimeter and volume. We
parametrize the pairs (M, N) for which there exist two rectangular boxes with inte-
ger sides, perimeter 4M, and volumeN. Moreover we give infinite parametric pairs
(M, N) for which there exists three rectangular boxes with integer sides, perimeter 4M,
and volumeN. These pairs (M, N) give rise to elliptic curves of rank at least 2 and
3 respectively.

All calculations throughout this note were performed usingSage [8], and Math-
ematica [6]. We would like to thank the anonymous referee for severalcomments
and suggestions.

2. Partitions

In this section we collect elementary properties about partitions with equal products.

Lemma 2.1. Let M be a positive integer that has at least two distinct partitions
into triples with equal product N. The following statementsare true:
a) There is no common entry between any of the triples. In particular, N � {p, pq}

where p, q are primes.
b) N is not a prime power.
c) N is a product of at least four(not necessarily distinct) primes.



PARTITIONS AND ELLIPTIC CURVES 517

Proof. a) Assume thatM D aC bC c D aC d C e and abcD ade. One has
bC c D d C (bc=d), i.e., bdC cd D d2

C bc or b(d � c) D d(d � c), in other words,
bD d or d D c. In both cases, this contradicts the fact that the partitions are distinct.

b) If N D pr , then M D pr1
C pr2

C pr3
D ps1

C ps2
C ps3 where r1 � r2 � r3,

s1 � s2 � s3. Dividing by min(pr3, ps3), one sum will be divisible byp while the other
is not.

c) Using parts a) and b), it is enough to show thatN cannot be a product of
exactly three primes. So we assume on the contrary thatN D pqr where p � q � r
are primes. According to a) the only possible partitions forM are given byM D 1C
1C pqr D pCqC r . The contradiction follows frompqr � p3

> 3p> pCqC r .

Let M, N, x, y, z be nonzero integers satisfying the following relations:

x C yC zD M and xyzD N.

These two equations are equivalent to the following cubic equation Mxy�x2y�xy2
D

N. We homogenize the above cubic equation to obtain the following equation

N Z3
C XY2

C X2Y � M XY ZD 0

describing a planar curveC(M,N) in P

2
Q

with (X W Y W Z) D (0 W 1 W 0) 2 C(M,N)(Q).

Therefore given that1D N3(M3
�27N)¤ 0, the JacobianE(M,N) WD Jac(C(M,N)) of the

planar curveC(M,N) is an elliptic curve defined by the following Weierstrass equation.

E(M,N) W Y
2
� M XY� NY D X3.

In fact, C(M,N) is isomorphic toE(M,N) via the following transformation:

�(M,N) W C(M,N)
�

�! E(M,N),

(X W Y W Z) 7! (�N Z W �NY W X).

An ordered triple of nonzero integers (d1, d2, d3) such thatd1 C d2 C d3 D M and
d1d2d3 D N is sent to a point inC(M,N)(Q) and hence a point inE(M,N)(Q).

We will not treat triples of the form (d, d, d). The reason is that the correspond-
ing cubic curvey2

� 3dxy� d3y D x3 is singular. Therefore we are going to assume
throughout that the pairs (M, N) D (3d, d3) are excluded.

From now on we will assume that ifN D d3a, where a is cube-free, then
gcd(M, d) D 1. Otherwise the Weierstrass equation describingE(M,N) is not minimal.
Moreover this allows us to assume that the parts of each partition of M with product
N are coprime.
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Corollary 2.2. Let M, N be nonzero integers such that N3(M3
� 27N) ¤ 0.

There is a one-to-one correspondence between the set of ordered triples

0(M,N)(Q) D {(d1, d2, d3) W d1C d2C d3 D M, d1d2d3 D N, di 2 Q}

and

E(M,N)(Q) D {(x W y W z) 2 P2(Q) W y2z� Mxyz� N yz2
D x3, xyz¤ 0}.

Proof. The bijection map is as follows:

0(M,N)(Q)! C(M,N)(Q) ! E(M,N)(Q),

(d1, d2, d3) 7! (d1 W d2 W 1) 7! (�N W �Nd2 W d1),

(�Nc=a, b=a, �a2
=bc) 7!(Nc W �b W �a) 7!(a W b W c).

We restrictx, y, z to be non-zero since we divide by them in the inverse map.

Before we proceed with investigating the torsion subgroup of the Mordell–Weil
group of E(M,N)(Q), we need to recall the classification of torsion points of elliptic
curves overQ, see (Chapter VIII, §8, Theorem 7.5) in [7].

Lemma 2.3. Let E be an elliptic curve overQ. Then the torsion subgroup of
E(Q) is one of the following fifteen groups:

Z=NZ, 1� N � 10 or N D 12I Z=2Z � Z=2NZ, 1� N � 4.

Lemma 2.4. Let E(M,N) be the elliptic curve described above. One hasZ=3Z �
Etor

(M,N)(Q).

Proof. The point (0W 0 W 1) is a rational point on

E(M,N) W y2z� Mxyz� N yz2
D x3.

Indeed the subgroup generated by (0W 0 W 1) is {(0 W 0 W 1), (0 W N W 1), O}.

We define the following setS(M,N) of classes of triples of nonzero rational numbers
as follows:

S(M,N) D {(a, a, b) W a ¤ b, 2aC bD M, a2bD N}=�

where (x1, x2, x3) � (y1, y2, y3) if and only if xi D y j for somei , j .

Proposition 2.5. Let a, b be nonzero rational numbers such that2aCbD M and
a2b D N. Then the point(�N W �Na W a) is a torsion point of order6 in E(M,N)(Q).
In particular, if #S(M,N) D 2, then Etor

(M,N)(Q) D Z=2Z � Z=6Z.
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Proof. This is direct calculation using the formulas for addition on elliptic curves,
see p. 58 in [7]. More precisely, the subgroup generated by thepoint (�ab, �a2b) is:

h(�ab, �a2b)i D {(�ab, �a2b), (0, 0), (�a2, �a3), (0, a2b), (�ab, �ab2), O}.

We observe that (�a2, �a3) is the image of the partition (b, a, a) and (�ab, �ab2) is
the image of the partition (a, b, a) in E(M,N)(Q).

REMARK 2.6. In Proposition 2.5, the case #S(M,N) > 2 cannot occur, since this
will contradict the fact that the number of torsion points onE(M,N) must be less than
16, see Lemma 2.3. This implies that no positive integerM can be written in more
than two different ways asM D x1C 2x2 where x1x2

2 D N and x1, x2 > 0.

Proposition 2.7. Let M, N be integers such that M can be written as a sum of
three distinct positive rational numbers d1 > d2 > d3 whose product is N. We assume
that N3(M3

� 27N) ¤ 0. Assume moreover that d1(d2 � d3)3
¤ d3(d1 � d2)3. Then

rankE(M,N)(Q) � 1.

Proof. We recall that1 D N3(M3
� 27N) is the discriminant ofE(M,N). Hence

1 ¤ 0 implies thatE(M,N) is an elliptic curve.
We observe that the six rational points

Pi j D (�di d j , �di d
2
j ) 2 E(M,N)(Q), i ¤ j ,

satisfy the following identities:

Pi j C Pj i D O, Pi j C Pik D (0, 0), j ¤ k,

Pi j C Pk j D (0, N), i ¤ k, 2Pi j D

�

di d j (di � dk)(d j � dk)

(di � d j )2
,

di d2
j (di � dk)3

(di � d j )3

�

.

We claim thatPi j is of infinite order for everyi , j . Assume on the contrary thatPi j

is of finite order. First of all we see thatPi j is not a 2-torsion, since otherwisePi j D

�Pi j D Pj i and di d2
j D d2

i d j which implies di D d j , a contradiction. Therefore we
have 12 points of finite orderPi j , 2Pi j , i ¤ j . Moreover, the pointsPi j and 2Pi j are
distinct. For the latter statement, it is easy to show that the six pointsPi j are distinct.
However, if Pi j 2 2S whereSD {Pi j , 1� i , j � 3}, then we have one of the following
possibilities: if Pi j D 2Pki then Pki D (0, 0); if Pi j D 2Pjk then Pjk D (0, N); if Pi j D

2Pj i then 3Pi j D (0, 0); if Pi j D 2Pik then�d j D dk(di � d j )(dk � d j )=(di � dk)2 and
observing the signs of both sides of the equality implies (i , j , k) 2 {(1, 2, 3), (3, 2, 1)},
moreover�d2

j D d2
k (di � d j )3

=(di � dk)3 but this implies (i , j , k) 2 {(2, 1, 3), (2, 3, 1)}, a

contradiction; if Pi j D 2Pk j , then�di D dk(dk � di )(d j � di )=(dk � d j )2 hence (i , j , k) 2
{(2, 3, 1), (2, 1, 3)}, moreover�di D dk(dk � di )3

=(dk � d j )3 but this implies (i , j , k) 2
{(3, 1, 2), (1, 3, 2)}, a contradiction.
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Now if 2Pi j D 2Pki then 2(Pi j C Pik) D O, a contradiction; if 2Pi j D 2Pjk then
2(Pi j C Pk j ) D O; if 2 Pi j 2 {2Pj i , 2Pik , 2Pk j } then d1(d2 � d3)3

D d3(d1 � d2)3 which
is ruled out by our assumption. None of these 12 points is a point of the subgroup
{O, (0, 0), (0,N)}. Therefore we have fifteen points of finite order, three of them make
up a subgroup of order three. According to the classificationof torsion points on el-
liptic curves, Lemma 2.3, this is a contradiction.

Proposition 2.7 provides an easy method to construct elliptic curves with posi-
tive rank.

Theorem 2.8. Let M, N be integers such that M can be written as a sum of
three positive rational numbers d1 > d2 > d3 whose product is N. Assume moreover
that N3(M3

� 27N) ¤ 0 and d1(d2 � d3)3
¤ d3(d1 � d2)3. The Mordell–Weil group of

the elliptic curve E(M,N) W y2
� Mxy� N yD x3 satisfies E(M,N)(Q) � Zr

� Etor
(M,N)(Q),

r � 1, where

Etor
(M,N)(Q) �

8

<

:

Z=3Z if #S(M,N) D 0,
Z=6Z if #S(M,N) D 1,
Z=2Z � Z=6Z if #S(M,N) D 2.

Proof. We recall that there is a bijection between ordered triples of nonzero ra-
tional numbers adding up toM and having productN, and rational points onE(M,N),
see Corollary 2.2. Moreover Proposition 2.7 implies that ifd1 C d2 C d3 D M and
d1d2d3 D N whered1, d2, d3 are distinct nonzero rational numbers, then (�di d j ,�di d2

j )
is a point of infinite order inE(M,N)(Q). Therefore according to Corollary 2.2 and
Proposition 2.7, the only points of finite order (x W y W z) are the ones corresponding
to triples of the form (a, a, b), a ¤ b, where 2aC b D M and a2b D N, or the ones
with at least one of the entries being zero. In other words, the finite points are lying
either in S(M,N) or the subgroup{O, (0, 0), (0,N)} respectively. Now the statement of
the theorem follows from Lemma 2.4 and Proposition 2.5.

3. A family of elliptic curves with rank at least 2

In Theorem 2.8, we proved that if an integerM is the sum of three distinct posi-
tive rational numbers whose product isN, then there is a corresponding elliptic curve
E(M,N) of positive rank. In what follows, we study the arithmetic ofthese elliptic
curves and introduce further conditions on the given integers to increase the rank of
the corresponding elliptic curves. For this purpose, we usepositive integers which have
more than one partition into three distinct parts such that the product of these parts are
equal in each partition.
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We consider the following system of Diophantine equations:

(1)
X C Y C Z D U C V CW,

XY ZD UV W.

In §2 of [2], a complete solution of the following system is found.

(2)
x C yC zD uC v C w,

x3
C y3

C z3
D u3

C v

3
C w

3.

Using the following transformations

x D �X C Y C Z, u D �U C V CW, X D
yC z

2
, U D

v C w

2
,

y D X � Y C Z, v D U � V CW, Y D
x C z

2
, V D

uC w

2
,

zD X C Y � Z, w D U C V �W, Z D
x C y

2
, W D

uC v

2
,

we transform the latter system (2) of equations into the following system

X C Y C Z D U C V CW,(3)

(X C Y C Z)3
� 24XY ZD (U C V CW)3

� 24UV W.(4)

Therefore, equation (3) reduces equation (4) toXY ZD UV W.
We obtain a complete solution of system (1) using the transformations above and

the complete solution of (2) found in Theorem 1 of [2]. The solution is given in terms
of quadratic polynomials in four parameters such that each parameter appearing in the
solution is of first degree, more explicitly, the solution of(1) is

(5)
X D p(r C s), Y D q(pC s), Z D r (qC s),

U D q(r C s), V D r (pC s), W D p(qC s)

where p, q, r , s are parameters.

Theorem 3.1. Let M and N be given by parametrization(5). Then the points
P D (�N W �N X W Y) and QD (�N W �NU W V) are two independent points in E(M,N)

overQ(p, q, r, s). In particular, E(M,N) has rank at least2 overQ(p, q, r, s).

Proof. To show thatE(M,N) has rank at least 2, we need to specializep, q, r , s
in the above parametrization so that the specialization ofP, Q are independent over
Q. This holds because the specialization map is a homomorphism. Putting p D 1,
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q D 2, r D 3, s D 4 yields x D 7, y D 10, z D 18, u D 14, v D 15, w D 6, and
the pointsP, Q are specialized to (�126,�882) and (�84,�1176) on the elliptic curve
E(35,1260). The height-pairing matrix associated to these points has non-zero determinant
1.70464760105805� � �. This means thatP,Q are independent inE(M,N) overQ(p,q,r,s).

In the following example a different family of parametric pairs (M, N) given in
terms of one parameterq is introduced such thatE(M,N) has rank at least 2 overQ(q).

EXAMPLE 3.2. Let k � 2 be an integer. We definep as follows:

p D
q2k�1

C 1

qC 1
.

Now we defineMk as follows:

Mk D 1C pq2
C q2k�1

D pC qC q2k

where the product of the parts in each of the above partitionsof Mk is Nk D pq2kC1. A
specialization argument yields that the points (�pq2kC1, �p2q2kC3), (�q2kC1, �q2kC2)
are independent inE(Mk ,Nk) over Q(q), and the curvesE(Mk,Nk) have rank at least 2
overQ(q).

4. A family of elliptic curves with rank at least 3

As it has been illustrated, there is an infinite number of pairs of positive integers
(M, N), whereM can be written in two different ways as a sum of three distinctposi-
tive integers with the same productN, and such that for each such pair the corres-
ponding elliptic curve has rank at least two overQ. The latter statement holds due to
the fact that the specialization homomorphism is injectiveat infinitely many families
of parameters. This suggests that if the number of partitions with the same product
increases, then the rank of the corresponding elliptic curve might get larger.

We start by finding infinite number of integer solutions to thefollowing Diophan-
tine system:

x1C y1C z1 D x2C y2C z2 D x3C y3C z3,

x1y1z1 D x2y2z2 D x3y3z3.
(6)

Given positive integersp, q, r , s, we are looking for pairs of positive integers
(M, N) such thatM has at least three partitions into three parts with equal product
N and pqrs j N. More accurately we findw, z which make the triples (pw, qs, rz),
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(pqrw, s, z) and (w, qrs, pz) solutions to the system. It is an elementary linear algebra
exercise to show that

w D

qr2
� qp� qr C pC q � r

pqr2
� p2qr C p2

� p� r C 1
s,

zD �
p(1� qr )w C (q � 1)s

r � 1
.

Thus we can generate infinite number of integer solutions to the system (6) by clearing
denominators. More precisely the following parametrizations solve system (6):

(7)

p, q, r,

sD pqr2
� p2qr C p2

� p� r C 1,

w D qr2
� qp� qr C pC q � r,

zD pq2r 2
� pq2r � pqr C pC q � 1.

Theorem 4.1. Let M and N be given by parametrization(7). The points P1 D
(�prwz,�p2rw2z), P2 D (�sz,�s2z) and P3 D (�pwz,�pw2z) are three independent
points in E(M,N) overQ(p,q,r ). In particular, E(M,N) has rank at least3 overQ(p,q,r ).

Proof. By specializingp D 2, q D 2, r D 3, sD 12, w D 9, zD 39, we get the
following partition of 159:

159D 18C 24C 117D 108C 12C 39D 9C 72C 78.

The pointsPi are specialized to (�2106,�37908), (�468,�5616) and (�702,�6318)
on the elliptic curvey2

� 159xy � 50544y D x3. The determinant of the height ma-
trix associated to these points is 4.55758994382846� � � . This means thatP1, P2, P3

are independent.

We can obtain parametric solutions to the system (6) by solving two homogeneous
linear equations, and consequently we reach an infinite family of positive integers that
have three distinct partitions with the same product. Theseintegers provide us with a
family of elliptic curves of rank at least 3.

5. Elliptic curves with higher rank

The task of finding positive integers with large number of partitions into triples
whose parts have equal products seems a hard problem. In factthe largest number of
such partitions of a given integer up to the knowledge of the authors is 13. The integer
17116 has 13 different partitions with product 21033527211.13.19, see D16 in [3].

We showed that positive integers that have two or three partitions with equal prod-
ucts can yield elliptic curves with rank at least two or threerespectively. We may ex-
pect that the higher the number of partitions we can produce with equal products, the
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higher the rank of the corresponding elliptic curve that we can construct. Therefore if
we manage to find integers with arbitrary number of such partitions, then we should
predict that the corresponding elliptic curves will have arbitrary large ranks.

For example the partitions (xi , yi , zi ) of M D 17116 with product N D

210.33.2.52.72.11.13.19 are:

(1512, 7700, 7904), (1520, 7280, 8316), (1540, 6840, 8736),

(1596, 6160, 9360), (1716, 5320, 10080), (1755, 5120, 10241),

(1760, 5096, 10260), (1792, 4950, 10374), (2016, 4180, 10920),

(2128, 3900, 11088), (2200, 3744, 11172), (2548, 3168, 11400),

(2736, 2940, 11440).

The elliptic curve

E W y2
� 17116xy� 21033527211.13.19y D x3

has Mordell–Weil groupE(Q)� Z=3Z�Zn, n � 6, where the points (�N W �N xi W yi ),
i � 6, are independent.
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