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Abstract

This work characterizes global quotient stacks—smootlekstaassociated to a
finite group acting on a manifold—among smooth quotient kstaiVl /G], where
M is a smooth manifold equipped with a smooth proper action tyeagroup G.
The characterization is described in terms of the actiorhefdonnected component
Gp on M and is related to (stacky) fundamental group and coverimgrih This
characterization is then applied to smooth toric Delignenifard stacks, and global
quotients among toric DM stacks are then characterizedringef their associated
combinatorial data of stacky fans.

1. Introduction

This note has two parts: first, we consider topological pridge of smooth orbifolds
that describe obstructions to beingybal (resp. discretgquotient—i.e. equivalent (in
a sense made more precise below) to an orbifold associatadfitite (resp. discrete)
group action on a smooth manifold, and second, we apply onergé results on global
guotients to toric Deligne—Mumford stacks. Recall that apifold structure, considered
from the classical viewpoint (originating in the work of Sla¢ [25]), can be described
via local charts, each of which are quotietdsI” of a linear action of a finite group
I’ on an open subsal of Euclidean space. The point is that for a general orbifold,
these local charts do not necessarily ‘patch together’ angobal finite group action on
a smooth manifold, but for a global quotient, they do.

It is worth emphasizing the following few points at the outsé-irstly, in this
paper, by a ‘smooth (resp. topological) orbifold’ we measnaooth(resp. topological
stack or more precisely, atack in the categoryiff (resp. Top). (In our exposition
we have attempted to make the language of stacks accessildenbn-expert audi-
ence (more on this below), although in no way do we aim to bextboek. We
suggest [4, 17, 19] for more about stacks from a topologistismt of view; a com-
plete beginner may wish to start with [6] or [7].) In partiagl the notion of ‘equiva-
lence’ in the previous paragraph is a (weak) equivalencehefunderlying categories
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1n the literature, global quotients are also calgubd or developableorbifolds.
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of the stacks. It is important to note that such an equivadacmore restrictive than
a homeomorphism of underlying topological spaces; this ésabse such a homeo-
morphism does not retain any ‘stacky’ information relatiogthe orbifold singularities.
A basic class of examples illustrating this distinction #ne so-calledweighted pro-
jective stacksi.e. P(ay, ..., a,) = [(C"*1\ {0})/C*], where C* acts diagonally on
C"*t1\ {0} with weightsay, ..., a, € Z,. (Here we follow the convention in the liter-
ature and denote byX]/G] the stackassociated to &-action on a spac«; the topo-
logical quotient (orbit)spaceis denotedX/G.) Although the underlying orbit space
(€"*+1\ {0})/C* is homeomorphic to the orbit space of a finite group action @ammex
projective space& P" (see [15] for details), the stadk(ay, ..., a,) is not equivalenas

a stackto a global quotient (except in the trivial case when all & theights are equal
to 1 andP(1,...,1)= CP" is a smooth manifold). This follows from Theorem 4.10
below, but is also well-known—see e.g. [1].

Secondly, we emphasize that we restrict ourselves thraitghts paper to orbifolds
arising as quotient stackX[G], whereG is a Lie group acting smoothly and properly
on a smooth manifoldX. It is worth noting that allreduced or effectiveorbifolds—
orbifolds whose local isotropy groups act effectively—ar®mwn to be of this type by
a frame-bundle construction (see, for example, [1]), ss ithinot a very restrictive con-
dition in practice. Moreover, as we already mentioned, thénnagplication we have
in mind of our Theorem 4.10 is to the beautiful class of quutigacks known as toric
Deligne—Mumford stacks, which are stack analogues of smitwoit varieties.

Thirdly, we recall that in his foundational work [21], Nooteals with topological
stacks and the theory of (stacky) fundamental groups andricms in a very general
framework. We owe much to [21] for both the mathematical enhiand the exposition
in Sections 2, 3, and 4. Indeed, our Theorem 4.10, quotedvbekn be viewed as an
extension of [21, Theorem 18.24] in the special case of gubtstacks. By restricting
to quotient stacks, we are able to connect aspects of stdgiepraic topology with
a distinctly geometric (and classical) condition on a Liewgr acting on a manifold;
in particular, our proofs are our own. In our exposition werehattempted to explic-
itly preserve the classical perspective and language as rasqossible; we hope this
serves to illustrate to a broad audience the appeal of tlok grspective, and to fur-
ther elucidate the insights of [21] in a setting that is comnio differential geometry,
namely Lie groups acting on manifolds.

With these points in mind we now state our main general resulstacks arising
as global quotients (Theorem 4.10 in Section 4). We referdcti@n 2.2 for the def-
inition of the inertia homomorphism in (3), and Section 4 #odiscussion of (stacky)
covering projections appearing in (4). For now, the readay keep in mind that the
inertia groups ) mentioned below can be identified with isotropy groups Staka( G
of certain pointsp € X.

Theorem 4.10 Let X be a simply connected manifpletjuipped with a smooth
proper action of a Lie group G. Let C G denote the connected component of the
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identity element of Gand Iy the inertia group of xe [X/G]. The following statements
are equivalent.

(1) [X/G] is equivalent to a discrete quotient.

(2) Gg acts freely on X.

(3) For all x in X, the inertia homomorphismy: Iy — w1([X/G], X) is injective.

(4) The (stacky universal cover of X/G] is equivalent to a smooth manifold.

Though conditions (1), (3), and (4) are known to be equivialey [21, The-
orem 18.24], we provide a different proof of these equivaies for the case of quo-
tient stacks by showing each of these conditions is in turaoivedent to (2). The
distinctly geometric appeal of condition (2), in comparisto the topological nature
of conditions (3) and (4), also carries over in our intergtien of this result in the
setting of smooth toric DM stacks.

We now take a moment to briefly recall the context of our disimrs of toric
Deligne—Mumford(DM) stacksin Section 5. In their foundational paper [5], Borisov,
Chen, and Smith introduce the notion ofstacky fan the combinatorial data from
which one constructs a toric Deligne—Mumford (DM) stack usarganalogue of the
Cox quotient construction in algebraic geometry. In [9], @&vstract definition of a
smooth toric DM stack was given, which was shown to be corbftivith the con-
struction of Borisov, Chen, and Smith [5] (see also [14],]]420, 11] for related ap-
proaches). From the symplectic geometry perspective, aerend Malkin [18] gave a
definition of symplectic toric DM stacks (in the smooth catsgDiff), offering a mod-
ern perspective on symplectic toric orbifolds. In fact, gkl to the classical theory
of toric varieties, there is a subfamily of toric DM stacksanmely those toric DM
stacks whose underlying fan is polytopal—that admit a goesibn from symplec-
tic geometry viastacky polytopesusing an adaptation of the construction of Borisov,
Chen, and Smith (see [24]). In particular, from this cordinon, this subfamily can
be seen to give examples of symplectic toric DM stacks. (Idiezawork, Lerman
and Tolman extended the Delzant classification of (compsgthplectic toric mani-
folds to symplectic toric orbifolds; in the orbifold caseet classification is by ‘la-
belled polytopes’—i.e. polytopes with positive integebdts attached to each facet
[16].) In this manuscript, we interpret our analysis of éohis as global quotients
in this class of examples; our results are explicit and comtorial, stated in terms of
the stacky fan/polytope.

In order to state our main results for smooth toric DM stacksall that a stacky
fan is a triple (\, X, B8) consisting of a finitely generated-module N, a simplicial
fan £ in N ® R with n rays py, ..., pn, and a homomorphisrg: Z" — N satisfying
certain conditions (see Definition 5.1). By interpretingedhem 4.10 in this case, we
can characterize global quotients among toric DM stacksims of their underlying
stacky fans. LetN’ denote the image oB, and for a cones in X, let N, denote
sparif(e) | pi is a ray inc}, whereg denotes tha-th standard basis vector iA".
In this context, condition (2) of Theorem 4.10 results in fhkowing corollary, which
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characterizes the stacky fans yielding global quotients. igte that the equivalence of
condition (2) of Theorem 4.10 and the combinatorial conditstated in Corollary 5.7,
in the context of toric DM stacks, was first proved via a difer method—a combina-
torial analysis of the local isotropy groups—in joint work e authors with Goldin
and Johanssen; this approach is described in [12]. We alsotihat in [23], the authors
study quasi-toric orbifolds using techniques from toripdlmgy, and obtain similar re-
sults describing universal covers of quasi-toric orbiold that framework.

Corollary 5.7. Let(N, X, B) be a stacky fanand let X denote the correspond-
ing toric DM stack. ThenY is equivalent to a(finite) global quotient if and only if
N’ = N, for all maximal coness in X.

In addition to Corollary 5.7, we interpret the other obstimts appearing in con-
ditions (3) and (4) of Theorem 4.10 for toric DM stacks in terof stacky fans. Spe-
cifically, using results in [12], we see that the inertia homoophisms of condition (3)
can be identified with very natural homomorphisms definedeirms of the stacky fan
(Proposition 5.3). Additionally, we describe the univérsaver of a toric DM stack in
terms of its stacky fan in Proposition 5.5. It is interestifmgnote that the universal
cover of a toric DM stack is given in terms of its stacky fanajaind is hence also
a toric DM stack arising from a stacky fan. In particular, lid quotients among toric
DM stacks are quotients of torimanifoldsby finite group actions. We expect such a
nice description to be useful in computations of orbifdlaiéky invariants, particularly
for global quotients (cf. [2], [8], for example).

The contents of this paper are as follows. After a brief dis@n of stacks and
fundamental groups of stacks in Section 2, we specializeumtient stacks in Sec-
tion 3, where we describe in detail the fundamental group, iaertia homomorphism
of quotient stacks. In Section 4, we describe the universetrcof a quotient stack and
prove Theorem 4.10 stated above; analogous results forecteth but non-simply con-
nectedX are also explored in this section. In Section 5, we turn otenéibn to toric
DM stacks, where we describe the inertia homomorphism i@e&.3) and universal
cover (Section 5.4) of toric DM stacks. We also verify an extpd relation between
the symplectic volumes (in the stacky polytope case) of apdgatic toric DM stack
and its universal cover, and the corresponding volumeseitiderlying polytopes. We
conclude with some examples in Section 5.5.

2. Preliminaries

This section establishes notation and collects some fdmistastacks. We mainly
follow the notation of [21] and [4].

2.1. Stacks. We will mainly work over the base categobijff (smooth manifolds
and smooth maps), although occasionally we shall work dweer (topological spaces
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and continuous maps). To streamline some of the discus&tmwpwe useSp to de-
note eithemiff or Top, and we refer to the corresponding objects simply as spawts a
the morphisms as maps.

For a spaceM, let M denote its associated stack, with obje¢ts: E — M},

i.e. the collection of maps irsp with target M, and with morphismgg: E — E’ |
f’og= f}. Given a mapF: M — M’, we write F: M — M’ for the induced mor-
phism of stacks. Fix a terminal objegtin Sp. For a choice of poinfp in a spaceM,

let p be the corresponding point iM (i.e. by abuse of notationp also denotes the
map* > p € M and p the induced morphism of stacks). More generally, recall that
a pointx in a stackX’ is a morphismx: x — X.

A morphismF: Y — X of stacks isrepresentablef for every morphismwW — X
whose source is (the stack associated to) a space, the fibdughp) x» W is equiva-
lent to (the stack associated to) a space. In this case, Wk csitlathe induced map
Y xx W — W a representative oF. Notice that the representative of a representable
map is (induced by) a map of spaces.

DEFINITION 2.1 ([19, Definition 66]). A stack¥ overSp is locally representable
if there exists a representable epimorphism of stguk¥X — X. In this casep is called
a presentationof X.

REMARK 2.2. WhenSp = Top, a locally representable stack ovesp is called
a pretopological stacif21].

Many properties of representable morphisms of stacks araedkfy the corres-
ponding properties of their representatives, which aresnpspaces. For example we
have the following (cf. [21]).

DEFINITION 2.3. A morphism) — X of pretopological stacks imop is acover-
ing projectionif it is representable and if every representative is a dogeprojection.

Several other properties of maps3p can be defined similarly as properties of rep-
resentable maps of stacks (e.g. proper, closed, submeetimnsee [19, Section 3.3]).
For now, we simply recall that an important necessary camdifor a property of maps
to be defined in this manner (i.e. analogous to Definition &B3hat this property be
stable under taking pullbacks. (#p = Diff, it is additionally required that the property
be stable under pullbacks via submersions.) We record thewiag definition from
[19], which connects our point of view with that of orbifoldsd orbifold charts.

DEFINITION 2.4. A locally representable stack over Diff is called anorbifold
or a Deligne—Mumford stackf it admits a presentatiop: X — X that is étale and if
the diagonal mapA: X — X x X is proper.
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In the literature, the term orbifold is at times reserveddiorooth Deligne—Mumford
stacks with trivial global (generic) stabilizer (inertiaogp), what is elsewhere called an
effectiveor reducedorbifold. The above definition allows for non-trivial gldbstabilizer.

An important instance of the above definition is the follogirLet X be a mani-
fold equipped with a smooth action by a compact Lie gr@uplf the action is locally
free (i.e. with finite isotropy groups), then the associatgmtient stack X/G] (see
Section 3) is an orbifold. This will be our main source of exdes.

We shall at times wish to view geometricstack ovemiff—a locally representable
stack whose presentation is a surjective submersion—aach stverTop. To say this
more precisely, recall that given a geometric stack withsgngationXo — &', there
is a Lie groupoidG = (X; = Xg) whose associated stadG (see [17, Section 4])
is equivalent toX'. (In this case, we say thak is a groupoid presentatiorfor X'.)
Considering the Lie groupoig as a groupoid object iffop, we view BG, and hence
X, as a stack ovefop.

2.2. Fundamental group of topological stacks. Following the work of Noohi
[21], we now recall some of the main definitions surroundihg fundamental group
of a topological stack that we later interpret more exgiicfor quotient stackst =
[X/G] as above.

In this subsection, we work ovelfop. Let X and ) be stacks anc, y points in
X, respectively. Recall that a pointed maf ¢): (), y) — (X, x) of stacks consists
of a morphismf: Y — X and a 2-isomorphisna: x ~ f(y) = f oy, where as in
[21] we sometimes use the symbe} for a 2-isomorphism of points. (When we do
not wish to emphasize that a 2-isomorphism is between twatpoive shall instead
use the symbok.)

More generally, one may consider the more general situatfoa pair of stacks
(X, A), consisting of stackst’ and .A together with a given morphisin: A — X. A
morphism {,B) — (X, .A) between such pairs consists of a pair of morphidmg’ —
X, f': B — A together with a 2-isomorphism:i o f’ = f o j. Such a morphism
(f, ) is often represented by a 2-cell,

>
R

f
—_
&,

f

In this paper, we shall work only with pairst( .4) where the second factod is a
topological space (often simply a point). In this case, tltiom of 2-isomorphism
simplifies, as we recall next.

For maps €, '), (9, 9): (W, B) = (X, A) of pairs, a 2-isomorphism consists of
a pair of 2-isomorphismg: f = g and¢’: f’ = ¢, such that the following 2-cell
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(with 2-isomorphismsx:io f’= foj andB:iog = go j suppressed) commutes.

.
B/ﬂFA
| |
Y

j i

- Q

/E>
\3/

X

If both B and A are topological spaces, this forcd$ = g’ and ¢’ = id. Moreover, if
B = A = x, then f' = ¢ = id; therefore, for pointed maps.f(«), (g, 8): (I, y) —
(X, x), a (pointed) 2-isomorphisma: (f, @) = (g, B) is a 2-isomorphisme: f = ¢
such the following 2-cell (again, witk and 8 suppressed) commutes:

€ X
Y

9

In other words, the induced 2-isomorphisafy): f(y) ~ g(y) satisfiese(y)a = B.
(Heree(y) = e xidy, the ‘horizontal’ composition of 2-morphisms, whitgy)a denotes
the ‘vertical’ composition of 2-morphisms as in [17].)

Let M be a topological space with a chosen pomtand (M, p) its associated
pointed stack. We begin with a remark regarding morphismsp(rpcﬁnted morphisms)
from M (resp. M, p)) to a stackX’ (resp. (¢, x)).

REMARK 2.5. LetM be an object inTop. A morphism f: M — X determines
an objectE; in X (over M) given by evaluation at the identit; ;= f(idy: M —
M). In fact, evaluation at the identity defines a functog;erom HOM(M, X) to Xy
which is surjective on objects and fully faithful (Propaait 2.20 in [4]). That is, given
an objectE in X over M there is a morphisng: M — X such thatEy; = E. Moreover,
given an isomorphisnp: Eg — E; in Xy, there exists a unique 2-isomorphism, which
we will also denotep: g = f, whose evaluation at the identity is. Thus, up to
canonical 2-isomorphism a ma@ — X is determined by the data of an objdgtin
X over M.

A similar reasoning applies to pointed maps. Fix poiptsn M and x in X. Let
Ex = x(id,: * — %) in X,. A pointed map {, «): (M, p) — (X, X) determines objects
E+ and E¢(y (over M andx, respectively), a morphis_rEf(p) — E¢ (over p: x > M)
and an isomorphisma: Ex — E¢(p). Conversely, as in the proof of Proposition 2.20 in
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[4], given objectskE in Xy and Eq in X, and a morphismEy — E over p: x —> M,
there is a morphismf: M — & such thatE; = E, Ef) = Ep and the induced
morphism E¢;) — E; is the given one. Since gus fully faithful, a choice of iso-
morphisma: Ex — Eg then determines a unique 2-isomorphism, which we will also
denotea: x ~ f(p), and hence a pointed mag, () whose evaluation at the identity
yields the dataEy — E with the isomorphisn.

Moreover, given pointed mapsf,(e) and @, 8) and isomorphismsg: Eq — E¢
and v : Eg) = Ef(p such that the diagram

Egpp — Eg

a

= J# J

Ef(p) e Ef

commutes, there is a unique 2-isomorphism(g, 8) = (f, @) with ew(¢) = ¢ and
eV,(e(p)) = ¥. Asin the unpointed case above, we conclude that a pointed khap) —
(X, x) is determined up to unigue 2-isomorphism by objdétin Xy, and Eq in X, a
morphismEy; — E over p: * — M, and a choice of 2-isomorphisan. Eq — Ey.

Let | denote the unit interval [0, 1]. Recall that komotopyof pointed maps
(f,a),(9,8): (M, p) = (X,Xx) is triple (H, €p,€1), whereH is a map ( x M, | x *) —
(X,x), which in this case is a morphist: | x M =~ | xM — X with a 2-isomorphism
for the diagram,

I

D
Iz

—_
H

«— %
x

X *
N
| x

=
=

together with a pair of pointed 2-isomorphisnag. f = Hg ande;: H; = g. Here
i; =(id, p): | — | x M is the inclusion into the first factor, andy and H; denote the
pointed maps induced by restriction {6} x M and {1} x M respectively. When such
a homotopy exists, we shall sometimes say th‘a@is homotopic to @, g) or that
(H, €q, €1) is a homotopy from {, @) to (g, 8). This induces an equivalence relation
on the set of pointed mapdM( p) — (X, x) and we denote by M, p), (X, x)] the
resulting set of equivalence classes (i.e. the set of hgmgottasses of_pointed maps).
That the relation above is reflexive and symmetric is easélgified. To show it is
also transitive, we must be able to ‘compose’ homotopiesat-it, given a homotopy
(H,€0,€1) from (f,«) to (9,8) and a homotopyH',e;,¢;) from (g,8) to (h,y), construct
a homotopy H”,¢j,€7) from (f,«) to (h,y). This is proved in Lemma 17.4 in [21] in
greater generality. (In the case of pointed maps whose doirahe associated stack
of a spaceM, we may observe the composition of homotopies more readilight of
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Remark 2.5. Indeed, the objecE; and Ey in Xy can be glued together to form
the required objecEy- that yields the desired composition of homotopies.)

As in [21, Remark 17.3]), observe that a 2-isomorphiem(f, «) = (g, B) of

pr. f
pointed maps induces a homotopy. Indeed,Hebe the compositiod x M = M —

X, with 2-isomorphism as indicated by the diagram

*

2\
y
7

(i.e. the 2-isomorphism (id« id)(« *id,)), o = id ande; = €. This observation proves
the following lemma.

Lemma 2.6. Let p be a point in a space M and Iét’, x) be a pointed stack. Let
(f, @) and (g, B) be pointed map$M, p) — (X, x). If there exists &-isomorphism of
pointed mapg f, «) = (g, 8), then the homotopy classes (df «) and (g, 8) are equal.

REMARK 2.7. It follows from Remark 2.5 that the homotopy class of afenl
map M, p) — (&, X) is determined by specifying object& in Xy and Eq in &,
along with a morphisnEy — E over p: x — M and an isomorphisnx: E, — Eo.

Let 1€ St, the unit circle inC.

DEFINITION 2.8. Letx be a point in the stack’. Define thefundamental group
of X to be the set of homotopy classes of pointed map's ) — (X, x), denoted
7[1(‘)(1 X) = [(§11 1—)! (X! X)]

The reader may wish to consult [21] for details concerning ginoup structure of
7'[1(.)(, X).

In Section 4, we shall consider covering projections of (mated) quotient stacks.
Making use of [21, Corollary 18.20], we say that a coveringjgotion ) — X is the
universal covering projectioif 1(), y) is trivial.

An interesting feature of the fundamental group of a stacthésfollowing natural
homomorphismwy: 1y — m1(X, X), where I, := {a: X ~ X} is the inertia group of
X at x. The homomorphismwy is defined as follows (cf. [21, Remark 17.3]). Given
a € ly, let Hy: | — X be defined by the composition — x X, x and consider the
pair of 2-isomorphismgg = id ande; = « in the following diagrams.

Iy %){ I/_%X

*
- HO’ - Hﬂ’
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This data glues together to give a pointed m&p, 1) — (X', x) whose homotopy class
is denotedwy(«).

3. The fundamental group of X = [X/G]

We now specialize to our case of interest, stagks- [ X/G], where X is a smooth
manifold equipped with a (right) action of a Lie gro@. In this case, recall that the
objects of X are pairs of mapsR < E — X) consisting of a (right) principalG-
bundle E — B and aG-equivariant mapE — X and that the morphisms ot are
pairs E — E’, B — B’), with E — E’ a G-equivariant map, such that in the diagram,

7

E— F

I

B—— B

X

the square is Cartesian and the triangle commutes. Fix & gdim X', and write & <
Ex — X) to denote the object(id,) in X,. By choosing a base poim) € Ex we shall
further identify Ex =~ G, in which case theG-equivariant mapx: Ex — X is realized
by the mapx,: G — X, g p-g where p := x(e). Thusx, parameterizes th&-orbit
through p.

An elementa € I, induces a gauge transformation Ex — E, such that the dia-
gram below commutes.

X

X

o

E, —— E,

Moreover, any such gauge transformation determines an ateimé,. Under the iden-
tification Ex =~ G determined byey <> 1, anya € Iy is determined byg, = (1), which
must lie in Stabp) since the above diagram commutes. Thatds,G — G is sim-
ply left multiplication by g,. In what follows, we will implicitly use the isomorphism
a — g, to identify Iy =~ Stab().

In this setting, the homomorphisms, discussed at the end of Section 2.2 may
be described explicitly. The data determined Hy: | — X yields the trivial bundle
| x G — | with G equivariant mapl x G — X given by ¢, 9) — p-g. The 2-
isomorphismsecg = id and ¢; = « yield the identifications of fibers

{0} xG—>G, (0,9)~g,
G—->{1}xG, g~ (1,9.0).
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This assembles to give a bundle ov8f and an equivariant map representing(c)
(cf. Remark 2.7). Namely, we take

(3 1) E(goc) = (l X G)/"’:
' where the equivalence relation is (0,g) ~ (1, g,0) for g € G,

and the equivariant map is given B/(g,) — X, [(t, )] — p- Q.
Let BG:=[*/G] and letx: x — BG be the choice of point whose value &t x
is the trivial bundleSx G — S.

Lemma 3.1 (Cf. [20, Example 4.2]) Let G be a Lie group and let g&denote
the component of the identity element in G. The(BG, *) =~ G/Gy.

Proof. We define a magp: G/Gg — m1(BG, *) and show that is an isomorphism.
Forg e G let E(g) — S! be theG-bundleE(g) = (I xG)/(0,h) ~ (1,gh). Leto (gGo) =
[(f,a)] where (f,«) is a morphism determined by the bundiEgy) — S' andE(g)|(1; —

*, the inclusion of the fibeE(g)|;1; — E(g) over 1: x — S', and the 2-isomorphism
determined by the identificatioB — E(g)|{1), h + [(0,h)]. Here the brackets [ ] denotes
equivalence classes with respect to the relation in (3Rgcéll that by Remark 2.7, any
other pointed map determined by this data differs frdipw] by a unique 2-isomorphism
of pointed maps, which by Lemma 2.6 lies in the same homotdgssg To see that

is well-defined, observe that jf: | — G is any path fromg to g’, we may construct a
bundle isomorphisng, : E(g) — E(g’) by the formula [{, h)] — [(t, y(t)g~th)] that fits
in the diagram

E(@ly — E(9)

(3.2) G y lwlm l‘ﬂ
T~
E(@)y — E(9)

where « and «’ are the resulting isomorphisms over Let us call such a bundle
isomorphism (i.e. one which respects the given trivialma overx) a pointed iso-
morphism By Lemma 2.6, we see that the mapis well-defined.

Since everyG-bundle overS! is isomorphic toE(g) for someg, it is easy to see
that o is surjective. It remains to show that is injective. To that end, suppose that
[(f, ®)] = 0(gGp) = 0(9'Gp) = [(f'a’)]. Let (H, €, €1) be a homotopy from f, «)
to (f’, &’). We claim that this results in a pointed isomorphism of Besdas in the
diagram (3.2) above, which will complete the proof. Indeetite the resulting bundle
isomorphismE(g) — E(g') as [t,h)] — [(t,¢(t)h)], where¢: | — G is continuous and
satisfiesg'¢(0) = ¢(1)g. That the isomorphism is pointed (i.e. must fit in the diagram
(3.2)) forces¢(0) = 1 and we may construct a path(t) = ¢(t)g joining g and ¢/,
whencegGq = ¢'Go.
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We shall now verify the claim that the homotopy produces #wiired pointed iso-
morphism of bundle€(g) — E(g'). Let E — | x S! be the bundle given by (id: | x
St — 1 x S and letE; — St (j = 0, 1) denote the bundles given By(s;: St =
{j} x St = I x S). Note that the 2-isomorphisms of pointed magpsyield pointed
isomorphisms of bundleg(g) — Eo and E; — E(g’). Therefore, it suffices to find a
pointed isomorphisniEy — E;.

Let n denote the 2-isomorphism for the diagram

1 *
W oa |
IxSlT>BG

that in turn induces a trivialization: | x G — E,, where E, denotes the bundle over
| corresponding taH (i1: | — | x SY). We therefore seek a pointed isomorphism

o E0|{1} e Eo
/ lwlm l‘p

n

G

Eilgy — E1

where the identificationg; of the fibers over & S! are induced from the trivialization
n. By Theorem 9.8 in [13, Chapter 4], there is a bundle isomsmh/: E — | x E’
where E’ is a G-bundle overS!, inducing an isomorphisny’: E; — | x E’|(1y. Notice
that the composition)’on: 1 xG — | x E'|{y; defines an identification’: G — E'|{y;.
Consider the composition of bundle maps given by

-1
p:E0—>E1>IxE/—>{1}xE/—>IxE’w—>E

and observe that it fits in the commutative square below.

Eo—p>E

o

(ST IV

By the universal property of Cartesian squares, this inslugeunique isomorphism
¢: Eg — E1, which is the desired pointed isomorphism. O

REMARK 3.2. It is well-known that for a compact Lie group, (unpointed) iso-
morphism classes of princip&@-bundles over the circle are in bijective correspondence
with the set of conjugacy classes Gf/Go.
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Lemma 3.3. Let X be a topological space and p a point in X. Then

771(11 E) = 7T1(X, p)

where the right hand side is the classical fundamental grofi@ topological space
with chosen basepoint.

Proof. A pointed map of stackst, 1) — (X, p) is determined uniquely by a
pointed map &', 1) — (X, p) of topological spaces. Since there are no non-trivial
2-morphisms in stacks of the forrul, classical homotopies are in one-to-one corres-
pondence with stack homotopies, and the claim follows. ]

There is a natural morphism: X — [X/G], defined on objects as

S5 X5 (S SxG = XxG 23 X).

Similarly there is a natural morphism fronXJG] to BG which simply forgets the
equivariant map toX. By choosing identifications of the trividb-bundle over a point,
these may each be considered as pointed maps. Finallyl teeglointed map: Gy —
X given by parametrizing the orbit of the base point> p-g. Applying the funda-
mental group functor to each of these maps and using the igdrnse in the previous
Lemma results in the following.

Proposition 3.4. Let G be a Lie group acting smoothly on a connected manifold
X. The following sequence is exact

(33) 7T1(GQ, 1) — 711(X, p) — ﬂl([X/G], X) —- G/Gy — 1.

Proof. The verification is straightforward. We prove exast atmi(X, p) and
exactness aB /Gy, leaving the rest for the reader. Recall first that the triglament in
m1([X/G], x) may be represented by the pair (as in Remark 25F){ Stx G — X),
whereo(z,9) = p- 0.

We show that the composition of the first two maps in the secpiés trivial. Let
a: St — Gg represent an element af,(Go, 1), whence its image via the composition

of the first two maps in the sequence is represented by the(§ai- St x G — X)
wherea(z,g) = p-(«(2)g). The mapa determines a gauge transformatipnS* x G —
S' x G defined by¢(z, g) = (z, «(2)g). Sinces o ¢ = a we see thatp determines a
2-isomorphism of the mapg o ¢ o« and the constant map tXJG]. By Lemma 2.6
this induces a homotopy, verifying that the compositiontdd first two maps is trivial.
Next, suppose thaf : S* — X is a pointed map representing a classti{X, p)
whose image viag, in w1([X/G], X) is trivial. We will show that f is homotopic
to a composition: o g for some pointed mag: St — Go. Suppose thatj o f is



250 M. HARADA AND D. KREPSKI

homotopic to the constant maft — * — [X/G]. Let (I x St < Ej LY X) be a
pair of maps representing the homotoply: | x St — [X/G]. That Ey represents a
homotopy implies that there exists a trivializatieft St x G — En, = Enloxs fitting
in the commutative diagram,

@9~ 129 X
A

S'x G — Ey, En
\ Sl

(o
25 1 xg

where wy(z) = (0, z) Note that by Theorem 9.8 in [13, Chapter 4], the bunBig —
| x St is trivializable. Moreover, we may choose a sect®Bo that the composition

-1
Swo o
St~ Ep, — Stx G

is simply inclusionz — (z, 1).

Since Ey represents a homotopy, there exists a trivializadgnEn, = Ep|1xst —
S' x G. Note thate; o so w1(2) = (z, B(2)) for some loops: St — G, and thatg(1) €
Stab(p) because the homotopil is a homotopy of pointed maps. By replacing the
2-isomorphisme;: Epy, — St x G (that is part of the data of the homotopy) with
the composition of 2-isomorphisms below if necessary,

(where L, denotes the gauge transformatian @) — (z, ug)) we may assume that
B = 1.

The mapt = hos: | x St — X is the desired homotopy. It is readily verified that
7(0,2) = f(2), and thatz(1,2) = p- B(2) = (1 o B)(2), as required.

Finally, supposeE(g) — S' represents an element af(BG, *) = G/Gy. It suf-
fices to construct an equivariant m&(g) — X. Choose a poinz € X and a path
y: 1 = X with y(0)=z andy(1) = z-g L. The mapl x G — X given by ¢, h) —
y(t) - h descends td(g) and is G-equivariant. ]
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Corollary 3.5. Let G be a Lie group acting smoothly on a simply connected
manifold X. The fundamental group.([X/G], X) =~ G/Gy. In particular, if in add-
ition G is connectedthen m1([X/G], x) is trivial.

Proposition 3.6. Under the identifications«lz Stab(p) and 71(BG, *) = G/Gg
given abovethe compositionStabp) =~ I 2 m1([X/G], X) - G/Gg is the natural
homomorphismp: Stabp) — G — G/Go.

Proof. Forg € Stab(p), the image ofwy(g) in 71(BG, %) is represented by the
bundle E(g) (in the notation above), which by the proof of Lemma 3.1 ipresented
by the coseigGy. L]

4. Global quotients and universal coverings

A main purpose of this paper is to determine conditions undaich a Deligne—
Mumford stack is a global quotient in the sense of the follgidefinition.

DEerFINITION 4.1. A Deligne—Mumford stackt’ is a discrete(resp.global) quo-
tient if X is equivalent to a quotient stack'JT'], where I is a discrete (resp. finite)
group acting on a smooth manifold.

Recall that a morphism of representable stagks> ) is an equivalencef it is
an equivalence of categories. An equivalence may also hegepted in terms of the
corresponding representing groupoids as a principal hdleu(e.g. see Definition 3.25
and Remark 3.33 in [17]).

We shall deal only with the special case of quotient stagks= [X/G] arising
from a smooth proper action of a Lie gro@ on a connected manifolX. Note that
an equivalence of such a pair of quotient stackgG] — [Y/H] may then be repre-
sented as a bi-bundle of the action groupakis G = X andYxH =Y, which in this
case amounts to & x H-spaceP that is simultaneously a princip&-bundle P — Y
(with H-equivariant projection) and a princip&l-bundle P — X (with G-equivariant
projection).

REMARK 4.2. The properness assumption does not appear in evety ireshis
section, though our main interest remains the case of pigpegroup actions on mani-
folds (giving rise to Deligne—Mumford stacks). When propssm is stated as a hypoth-
esis, the reader will note that its main use is to ensure tlwatrt@in quotient (appearing
in the proof of that statement) is a smooth manifold.

4.1. Global quotients and the fundamental group. The following Lemma pro-
vides a natural setting to discuss a class of examples ofequiaitacks that are equiva-
lent to global quotients.
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Lemma 4.3. Letl—> H - G — I' — 1 be an exact sequence of topological
(respectivelyLie) groups. Suppose that G acts on a topological spé&esp. smooth
manifold X and that the restriction of this action to H is fréeesp. free and prop@r
Then[X/G] and [(X/H)/T'] are equivalent as stacks ov&op (resp. Diff).

Proof. We shall work ovebiff, noting that the proof is the same ovep. Since
the H-action is free and proper, the orbit spa¥gH is indeed a smooth manifold.
Define F: [X/G] — [(X/H)/I'] to be the functor defined by the assignment

(B« E— X)—~ (B<« E/H — X/H)
on objects, and

//X //WH

E— F = E/H — E'/H

B—— B B— + B
on arrows. By constructior; commutes with the projections to the base cateduifly
We wish to show thafF is an equivalence of categories. To see this, we define a func-
tor K: [(X/H)/T'] — [X/G] as follows. Suppose given a paiB(« P — X/H) con-
sisting of aI'-bundle P — B and al-equivariant mapP — X/H. Let E := P xx,ny X

be the fiber product, and defineGraction onE by setting ©,2)-g = (p- 0(9), z-9),
wherep: G — I denotes the given map in the exact sequence. We claim thaothe

position E Mp LBisa principalG-bundle. Indeed suppos®,)-g = (pe(Q),z0) =
(p, 2. Then sinceP is a principal I'-bundle, p(g) is the identity element il and
henceg € H. On the other hand, by assumptidh acts freely onX so zg= z im-
pliesg =id in G. HenceG acts freely onE. Next supposeq, z) € E, (p/,Z) € E
map to the same poirtt in B. Then sinceP is a principalI'-bundle overB, there
existsg € G such thatp’ = pp(g). By definition of the fiber producE = P xx,4 X,
the equivariance of the maP — X/H, and normality ofH, we conclude there exists
h € H such thatz = zhg Sincep(hg) = p(g) € I' we conclude p, 2hg = (p’, Z) and
that G acts transitively on fibers ot — B. HenceE — B is a principalG-bundle, as
desired. The projection malp — X is G-equivariant by construction s@B(+ E — X)
is an object in K/G]. Given an arrow

E/H — E//H

| !

B— B



GLOBAL QUOTIENTS AMONG TORIC DELIGNE-MUMFORD STACKS 253

in [(X/H)/T], it induces a unique arrow

/_—)X
E/H XX/H X —— E//H XX/H X /

| !

B— > B

which defines the functoK on morphisms. Again by constructiod commutes with
projection to the base category.

Finally, we sketch the constructions of the natural tramsfdgions betweerk o K
(resp.K o F) and the identity functor on /H)/T"] (resp. [X/G]). For K o F, observe
that for any object B < E — X) in [X/G], there is a unique isomorphism

/)X

E~——— E/Hxyn X

N

B

in [X/G]. For F o K, observe that® xx,n X)/H is isomorphic toP via the map
[(p, 2] — p. From here it is straightforward to check that these yielis tlesired
natural transformations. 0

Observe that the requirement in Lemma 4.3 that @action restricted toH be
a free H-action is necessary over bobiff and Top. (Compare with Proposition 4.6.)
For example, consider the exact sequence

1—>Z2—>813>81—>1

where 2 S' — S' denotes the squaring map. Lee G = S' act onX = S® C C?
according tot - (z, w) = (t%z,t?w). The quotient stackX/G] is the weighted projective
spaceP(2, 2). The restriction of thé&s-action toH = Z, = {£1} is trivial, and the
resulting residual action of = St on X/H = X = S® is the standard action d8' on
S® giving the quotient [K/H)/I'] = P(1, 1), the complex projective plane. As a stack,
P(2, 2) has a non-trivial inertia group isomorphic Z3 at each point and is thus not
equivalent to the smooth manifol(1, 1).

If G is compact, applying the above Lemma to the cbhkse= Gy, the connected
component of the identity element, provides a natural adgxamples of stacks equiva-
lent to global quotients. (Sinc& is compact, the quotiens/Gq is automatically a
finite group.)
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Corollary 4.4. Suppose a Lie group G acts smoothly and properly on a con-
nected smooth manifold X. L&t denote the(discret§ group G/Gg of G. If the re-
striction of the G-action to @ is freg then[X/G] and [( X/Gy)/I'] are equivalent as
stacks ovemDiff and henceg X/G] is a discrete quotient. If in addition G is compact
then[X/G] is a global quotient.

If in addition X is simply connected, then we shall see in Theorem 4.10 theat th
above examples characterize global quotients among auicttacks. Proposition 4.5
below illustrates how the freeness of tl-action on X relates to the fundamental
group 71 ([X/G], X).

Proposition 4.5. Suppose a Lie group G acts smoothly on a connected smooth
manifold X. |If the restriction of the G-action to (GC G is free then the homo-
morphismawy is injective for all points x i X/G]. Moreoveyif X is simply connected
the converse holds as well.

Proof. From Proposition 3.6 we know that the compositionhaf homomorphism
wx With the second arrow in (3.3) is the natural homomorphigg Stab(p) — G/Gg
obtained as the composition of the natural inclusion Sipb{ G with the canonical
quotient mapG — G/G,. If the restriction of theG-action to Go is free, theng,
is injective for all p and hencewy is injective for all x in [X/G]. This proves the
first claim.

For the second claim, X is simply connected then by Corollary 37%([ X/G], X) =
m1(BG, *¥) = G/Gq and kewy = Stabp) N Go. Therefore, ifwy is injective for allx in
[X/G] then Gq acts freely onX. ]

4.2. On covers of quotient stacks. Lemma 4.3 may be generalized to the con-
text of group actions on stacks, which then fits nicely witlvering theory. In prepara-
tion for the statement of Proposition 4.6, we begin with a suary of some ideas found
in the work of Lerman and Malkin [18], which the reader shoutthgult for details.

For a Lie groupA, recall that aA-action on a stackt’ can be encoded using a
A-presentation a groupoid presentatiof = G; = Go of X equipped with smooth
and free A-actions on both the manifold of arrowg and the manifold of object§y
that is compatible with the structure maps of the grouppid

Towards generalizing Lemma 4.3, suppose that

1> H—>G->TI—>1

is an exact sequence of Lie groups and Baacts smoothly on a manifolX. The ex-
act sequence above naturally define&-action onX x I' and the translation groupoid

(4.1) Gx(XxIN= XxT
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is then a groupoid presentation for the quotient stack X(I")/G]. As in [18, Sec-
tion 4.1], since translation by commutes with the abov&-actions, we see that (4.1)
is a '-presentation. By [18, Proposition 4.2] (4.1) is als® gresentation for the quo-
tient stack X/H]. This gives al-action on [X/H], which (see [18, Section 3.3])
shows that the translation groupoi@lx X = X is a groupoid presentation of the stack
quotient [X/H]/T. This verifies the following generalization of Lemma 4.3.

Proposition 4.6. Letl—- H — G — I — 1 be an exact sequence of Lie groups.
Suppose that G acts smoothly on a smooth manifold X. Thenutiteeqt stac{ X/H]
inherits aI-actiort moreover [X/G] and [X/H]/I" are equivalent as stacks ovéiff.

As in previous discussions, we wish to interpret the abowgp®sition in the case
H = Ggq. This interpretation may be placed in the context of cowgtimeory for stacks
[21]. In particular, we shall see in Proposition 4.8 that ttegural mapp: [X/Go] —
[X/G]is a covering projection. (More generally, there is a ndtorap [X/H] — [ X/G],
given by the associated bundle construction, which is ssprable by Lemma 4.7 below.)
In other words, we may viewp as a quotient map, for{/G] =~ [X/Gg]/T" whereTl is
the discrete grougs/Go.

Parallel to classical covering space theory, one may defieersal covering pro-
jections. For simplicity, we shall defineumiversal covering projectioi,X) — (X', x),
as a covering projection withr, (X, X) = {1} (cf. [21, Corollary 18.20]).

Lemma 4.7. Let H be a closed subgroup of a Lie group G that acts smoothly
on a manifold X. The natural mapX/H] — [X/G] given by the associated bundle
construction is representable.

Proof. Letp: W — [X/G] and let W < E, — X) denotep(idw). Recall that the
fiber productZ = [X/H] x[x,) W has objects given by triple8(«~ E - X, f: B —
W, o) whereo € [X/G]g is an isomorphism of5-bundlesa: E xy G — f*E, (com-
patible with the maps toX). An arrow in Z between two such objects is an arrow
(E - E’,B— B’) in [X/H] such thatB — B’ is compatible with the maps té/ and
that the resulting (vertical) induced maps in the diagradowecommute.

Exy G —— f*E,

I |

E'xy G — (f)*E,

Since E, — W is a principal G-bundle, theG-action onE, is free and proper;
therefore, the restriction of this action té C G is also free and proper, whenég,/H
is a manifold in Diff. Define F: Z — E,/H as follows. Using the sectioB —
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(E xu G)/H, which sends € B to the H-orbit of [(e, 1)] wheree € E is any element
in the fiber overb, and composing with the induced composition

(E xy G)/H % £*E,/H — E,/H

we obtain a mapB — E,/H. Hence, on objects, we defife(B <~ E — X, f: B —
W, a) = (B — E,/H). (The effect ofF on arrows is the natural one.)

To show thatF is an equivalence, we next define a morphism E,/H — Z as
follows. Given aB — E,/H, let P denote the pullbacki-bundle

P—— E,

|

B —— E,/H

let f denote the compositiorf: B — E,/H — W. Since the mapP x4 G — E,
given by [0, e, g)] — e- g covers f, there is a unique isomorphis xy G — f*E,
which we denote byr. Hence, on objects, we defift€(B — E,/H) to be the triple
(B<~P—E,— X, f: B— W,a). (The effect ofK on an arrowB — B’ in E,/H
is hence determined.) o

It is straightforward to verify that- o K is the identity. To realize the natural
transformation betweelK o F and the identity, we simply note that pulling back an
H-bundle via a composition yields a canonical bundle isomismp, so that the first
factor in the triple forK oF(B < E — X, f: B — W, «) is thus canonically isomorphic
to B < E — X, which results in the desired natural transformation. O

Proposition 4.8. Suppose a Lie group G acts on a smooth manifold X and let
Gp denote the identity component of G. The natural map[X/Go] — [X/G] is
a covering projection. Moreoveif X is simply connectedp is the universal cover-
ing projection.

Proof. From Lemma 4.7, the natural mapis representable, and the proof of the
Lemma shows that givelV — [X/G], that the inducedG/Go-bundle E,/Gg — W
(a covering projection) is a representative for If X is simply connected, by Corol-
lary 3.5, p is the universal covering projection. ]

REMARK 4.9. The above proposition identifies the universal covethaf quo-
tient stack K/G] in the setting whenX is simply connected. In Proposition 4.14
below, we identify the universal cover oK|/G] when X is not simply connected.
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4.3. Characterizations of global quotients among quotientstacks of simply
connected manifoldsX. We now state the main result of this section, which in a
sense also summarizes the previous subsections. Theoténbdow characterizes dis-
crete (resp. global) quotients among quotient stacks oplgimonnected manifolds.
(The reader may wish to compare with [21, Theorem 18.24]clwidiscusses a more
general setting.)

Theorem 4.10. Let X be a simply connected manifplelquipped with a smooth
proper action of a Lie group G. Let $C G denote the connected component of the
identity, and I the inertia group of xe [ X/G]. The following statements are equivalent.
(1) [X/G] is equivalent to a discrete quotient.

(2) Go acts freely on X.
(B) wx: Ix = m([X/G], x) is injective for all x in[X/G].
(4) The universal cover ofX/G] is equivalent to a smooth manifold.

Proof. Most implications follow directly from work in previs sections: (23 (1)
is Corollary 4.4; (3)< (2) follows from Proposition 4.5. By Proposition 4.8, thei-un
versal cover of K/G] is [ X/Gg], which verifies (4)= (2). Conversely, iiGq acts freely
on X, the principalGg-bundle X — X/Go may be viewed as a bi-bundle equivalence
[X/Gg] = X/Go, and hence (25 (4).

It remains to show (1= (2). To that end, suppose given a principal bi-bundle
representing an equivalenc¥ [G] = [Z/A] where A is discrete. Recall that this yields
a G x A-spaceP that is simultaneously &-bundle P — Z (with A-equivariant pro-
jection) and aA-bundle P — X (with G-equivariant projection). Sinc& is simply
connected, we hav® =~ X x A. And since theG and A-actions commute, thé&-
action onX x A may be written

g- (X1 )‘) = (g - X, ¢(gv X))")

where in the first factor signifies the originalG-action onX. Since A is discrete,¢
only depends on the component gf yielding a homomorphisnp: G/Gg — A with
©(9Go) = ¢(g,x) for any x. Finally, if g € Gg stabilizesx in X, theng-(x,A) = (X, 1)
and hencegj is the identity element, as required. ]

REMARK 4.11. In the proof of (1= (2) above, one may obtaiR by forming
the Cartesian square

P
|
X — [X/G]

The authors wish to thank the referee for this observation.
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The condition thatX be simply connected in the above theorem is necessary, as
illustrated by the following example.

EXAMPLE 4.12. LetG = S' act on X = S' with weight 2. This action has
a global stabilizerz, = {£1} € Gg = G. Nevertheless, we may readily verify that
[X/G] =~ BZ, = [x/Z;]. Explicitly, consider the following functord= and K. On
objects, letF: BZ, — [X/G] be defined by taking associated bundle

F(E - B) = (B < E xz, S' > X)

with f([(e, 2)]) = 7% and letK: [X/G] — BZ, be given byK(B «— P AN s =
(f~%(1) — B). (The effects ofF and K on arrows are the natural ones.) Alternatively,
see Example 4.15 and Proposition 4.14 below.

4.4. The universal cover of a quotient stack of non-simply amected mani-
fold X. We next work towards a statement in the spirit of the equivade(1) < (2)
of Theorem 4.10 for the case of connected manifotdthat are not necessarily simply
connected. LetX andG be as in Proposition 4.8, and I& denote the universal cover
of a smooth manifoldX and consider the induced action 6 on X. Let A denote
the image ofr1(Go, 1) — m1(X, p) (cf. (3.3)). SinceA is a subgroup of deck trans-
formations, X/A is a smooth manifold. Moreovety = Go/m1(Go, 1) acts onX/A,
and the covering projectioX/A — X is G equivariant.

The following technical lemma helps to identify the naturadp [(X/A)/Go] —
[X/Go] as a covering projection in the following proposition.

Lemma 4.13. Suppose a Lie group G acts smoothly on connected manifolds Y
and X. Assume the G-action on Y is proper and thatYf— X is a G-equivariant
submersion. Then the canonical mpp/G] — [X/G] is representable.

Proof. Lety: W — [X/G] be given and let\V <— E, — X) denoteyp(idw). The
fiber productY xx E, is a smoothG-invariant manifold since — X is a G-equivariant
submersion. Moreover, the diagor@taction onY xx E, is proper since th&-actions
onY and E, are both proper. Further, since the canonical nfapx E, — E, is G-
equivariant ands acts freely onE,, thenG also acts freely orY xx E,. By the slice
theorem for propeiG-actions, we conclude that the quotigdt= (Y xx E,)/G is a
smooth manifold.

We claim thatZ = [Y/G] x[x,c; W = U. Recall that the objects of are triples
(B<~E—=Y,f: B— W,a) wherea: E — f*E, is a bundle isomorphism compatible
with the equivariant maps t&X. An object in Z therefore determines a canonical map
E — Y xx E, that is G-equivariant. This map descends to a mBp— U, which
defines a functof~: Z — U.
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Towards showing thaF is an equivalence, we next define: U — Z. Given a
map B — U, by pulling back and composing with the natural projectiare obtain
B« P—YxxE, =Y, and we may seK(B — U) to be the triple B <~ P —
Y,B - U — W, ) wherea is the canonical isomorphism given by pulling back along
a composition.

That F o K is the identity is easily verified. Similarly, the compositiK o F is
canonically isomorphic to the identity functor. ]

Proposition 4.14. Suppose a compact Lie group G acts smoothly on a connected
manifold X. The quotient stadkX/G] is equivalent to a quotient of a discrete group
action overDiff if and only if the restriction of the induced ¢@action on X/A is free
where A denotes the image of;1(Go, 1) — m1(X, p). Additionally the composition of
natural maps[(X/A)/Gg] — [X/Go] — [X/G] is a universal covering projection.

Proof. By [21, Theorem 18.24]X/G] is equivalent (oveDiff) to a quotient by
a discrete group action if and only if its universal cover guigalent to a manifold.
By Proposition 4.8, it suffices to determine conditions unghich the universal cover
of [X/Gy] is equivalent to a manifold, which is done next.

The representable mam [(X/A)/Go] — [X/Go] is a covering projection. Indeed,
by the proof of the previous Lemma, givem: W — [X/Gg], the natural projection
(X/A)xx E, — E, is a Go-equivariant covering projection, which induces () xx
E,)/Go — E,/Go = W, a covering projection that represers

Applying the exact sequence (3.3) toX[(A)/Gg], and noting that the first map in
this exact sequence is a surjection, we see théfA)/Go] is the universal cover of
[X/Go]. Finally, [(X/A)/Go] is equivalent to a manifold if and only if (the compact
group) Gy acts freely onX/A. O

EXAMPLE 4.15 (Example 4.12, revisited). B = S! = R/Z acts onX = St =
R/Z with weight 2, thenA = 2Z C Z = m1(X, 1) and the induce-action onX/A =
R/A may be writtene?'? . g7t = ¢71(t+2) which is free (and transitive). Therefore, as
in the proof of the previous proposition, the universal cove[X/G] is [(R/A)/G] =
*x and [X/G] = [x/Z3].

5. Toric DM stacks

We now apply the ideas of the previous section to toric Deligdumford stacks
arising from the combinatorial data stacky fang5] and stacky polytope$24]. As
we shall review below, these stacks arise as quotied{&5] of a simply connected
spacesX; therefore, we may apply Theorem 4.10.
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5.1. Stacky fans and polytopes—brief review. Mainly to establish notation, we
briefly recall some basic definitions of the combinatorigad@ppearing in the above dis-
cussion. In the following we use (~Jo denote the functor Hogt—, Z) or Homg (-, R);
it should be clear from context which one is meant. We useeshflackety—, -) to
indicate a natural pairing defined by duality. Also®— signifies -®z —.

Let {ey, ..., e} be the standard basis vectorsZA C R".

DEerINITION 5.1 ([5]). A stacky fanis a triple (N, X, 8) consisting of a ranid
finitely generated abelian groul, a rational simplicial fanz in N ® R with rays
01, - - ., pn @and a homomorphisng: Z" — N satisfying:

(1) the raysps, ..., on SpanN ® R, and
(2) for 1< j =n, B(e) ® 1 is on the rayp;.

Given a polytopeA C RY, recall that the corresponding faB = £(A) is ob-
tained by setting the one dimensional core®) to be the positive rays spanned by
the inward-pointing normals to the facets of a subsets of these rays is a cone
in X precisely when the corresponding facets intersect naallsivin A. Observe that
under this correspondence, facets intersecting in a vestex yield maximal cones
(with respect to inclusion) irk(A).

DEFINITION 5.2 ([24]). A stacky polytopés a triple (N, A, B) consisting of a
rank d finitely generated abelian groul, a simple polytopeA in (N ® R)* with n
facetsFy, ..., Fy, and a homomorphisrg: Z" — N satisfying:

(1) the cokernel off is finite, and
(2) for 1<j=<n, B(e)®1in N®R is an inward pointing normal to the facé.

Condition (2) above implies that the polytope in Definition 5.2 is a rational
polytope. Also, from the preceding discussion it followsmediately that the data of
a stacky polytope N, A, B) specifies the data of a stacky fan by the correspondence
(N,A,B)— (N,X2(A),B). Indeed,A is simple if and only ifX(A) is simplicial. More-
over, the fanx(A) is rational by condition 5.2 (2). Finally,N, A, B) satisfies condi-
tions (1) and (2) of Definition 5.2 if and only ifN, £(A), 8) satisfies conditions (1)
and (2) of Definition 5.1.

The extra information encoded in a stacky polytopg 4, 8) (compared with the
stacky fan (N, X(A), B)) results in a symplectic structure on the associated tONt
stack. Given a presentation of a rational polytapeas the intersection of half-spaces

(5.1) A=(|xe(N®R)|(x,A@&)®1) > ¢}
i=1

for somec; € R and where eacl(e)®1 € N®R is the inward pointing hormal to the
facet F, the fanX(A) only retains the data of the positive ray spanned by the atsm
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and not the parameters, which encode the symplectic structure on the resulting DM
stack (see [24] for details).

Stacky polytopes can be thought of as generalizations ahaerand Tolman'’s la-
belled polytopes. In its original form [16], a labelled pmpe is a pair 4, {m;}{_,)
consisting of a convex simple polytopg in (N ® R)*, whereN is a lattice, withn
facetsFy, ..., F, whose relative interiors are labelled with positive intege,, ..., my.

If we denote the primitive inward pointing normalg ® 1, ..., vy ® 1, then defining
B: Z9 — N by the formulag(e) = miy; realizes N, A, 8) as a stacky polytope. Thus
labelled polytopes are precisely the subset of the stackytques for which theZ-
moduleN is a free module. By results of Fantechi, Mann, and Nironi [Bmima 7.15]
this is equivalent to the geometric condition that the ais¢ed toric DM stack has no
global stabilizers.

5.2. Toric DM stacks from stacky fans and polytopes. Recall (as in [5]) that
given a stacky faniN, 2, 8), the corresponding DM stack may be constructed as a quo-
tient stack Zx/G] as follows. As with classical toric varieties, the fah determines
an idealJx generated by the monomialg , ¢o % € C[z, ..., z,] corresponding to the
coneso in . Let Zs denote the complemer@" \ V(Jg) of the vanishing locus of
Js. Note thatZy is the complement of a union of coordinate subspaces of @mpl
codimension at least 2; thereforgs is simply connected. Next, we recall a certain
group action onZsy.

Choose a free resolution

O—>ZrE>Zd“—>N—>O

of the Z-module N, and letB: Z" — Z9*" be a lift of 8. With these choices, define
the dual group DG(8) = (z"+")*/im[B Q]* where B Q]: z™" = 2" @ Z' — Z9*'
denotes the map whose restrictions to the first and secondnands areB and Q,
respectively. LetY: (Z")* — DG(B8) be the composition of the inclusiorZ{)* —
(z™*")* (into the firstn coordinates) and the quotient map"(")* — DG(B). Apply-
ing the functor Hom(—,C*) to 8" yields a homomorphisn® := Homz(DG(8),C*) —
(€C*)", which defines aG—action onC", which leavesZy C C" invariant. Define
X(N, £, B) = [Zx/G]. By Proposition 3.2 in [5],X(N, £, g) is a DM stack.

The above construction was adapted to stacky polytopes kgi $a[24]. As the
reader may verify, the DM stack’(N, A, B) obtained from a stacky polytope is a
quotient stack Z,/H] where Z, is a retract ofZy (cf. [24, Lemma 27]) equipped
with an action of the compact abelian Lie grodth = Homz(DG(8), SY). Similar to
the discussion in the preceding paragraphacts onC" and the invariant subsef s
is a certain level set~%(c) of the moment map:: C" — b* for this H-action (where
h denotes the Lie algebra d¢f). In particular, the regular value is determined by the
constantscy, . .., ¢, appearing in (5.1) (see [24, Lemma 16]).
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5.3. The fundamental group and inertia homomorphism of a toic DM stack
associated to a stacky fan. By Corollary 3.5, the fundamental group of a toric DM
stack X (N, X, 8) = [Zx/G] associated to a stacky falN(XZ, B) is 71(X (N, X, 8),2) =~
G/Go, whereGq is the connected component of the identity element. Usirapés-
ition 3.6, we compute the inertia homomorphisms G, — 71(X(N, 2,8),2) =~ G/Gy,
for the various isotropy group&; that arise.

In [12], both the isotropy group&, and the quotienG/Gg are described in terms
of the stacky fan data, which we summarize next. The isotr@mup of a point in
X (N, X, B) arises as the stabilizer Stap(C G of z € Zy C C". These stabilizers
depend only on the cone in X satisfying{i: z =0} = {i: o C o}; namely, for such
a coneo, the corresponding isotropy group, is the kernel of the composition

6 % () = @y,
whereJ, = {j: pj  o}. Hence we shall write the inertia homomorphismsvas 'y —
71 (X(N, X, B)).

As shown in [12], we may identifyr, with Tor(N/N,), the torsion submodule of
the quotientN/N,, whereN, = spar{f(ei) | pi C o}. Moreover, the inclusiod’, — G
may be modelled by an explicit homomorphism: Tor(N/N,) — G constructed in
[12]. Additionally, the quotientG — G/Gq, which is obtained by applying Hom(€;)
to the inclusion of the torsion submodule Tor(DE3¢— DG(B), may also be modelled
by an explicit isomorphism Hom(Tor(D@}), C*) = cokerf. (See [12] for details.)

It is then straightforward to verify that the diagram

Tor(N/N,) —— N/N, < N/im(B)

| :

r, — Hom(DG({), C*) —— Hom(Tor(DG{B)), C*)

commutes; therefore, the inertia homomorphism may be iitkthiwith the composition
in the top row, which proves the following.

Proposition 5.3. Let (N, X, 8) be a stacky fan and let be a cone inX. Using
the identifications abovehe inertia homomorphisms, : I'y, — 71(X(N, Z, B), 2) may
be identified with the composition

wy 2 Tor(N/N,) < N/N, — cokerp.

We may apply the above Proposition to characterize globatiguts among toric
DM stacks in terms of their stacky fan data, giving anotheroprof Corollary 5.7 be-
low. By Theorem 4.10, it follows tha®’'(N, X, 8) is a global quotient if and only if
the kernels ketw, = Tor(im 8/N,) are trivial for all coneso, if and only if img8/N,
is trivial for all maximalconeso.
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5.4. The universal cover of a toric DM stack associated to a atky fan. By
Proposition 4.8, the universal cover of the DM statkN, X, 8) is [Z5/Go], where Gg
is the connected component of the identity elemenGoft Homz(DG(B8), C*). Next
we describeGy in terms of the stacky fanN, =, ). As we shall see, this can be
roughly described as replacing the abelian gréupvith the image ofg.

Let N’ C N denote the image g8, and letX’ be the fan inN’®R corresponding
to ¥ under the natural isomorphisii’ ® R = N ® R. Finally, let 8’: Z" — N’ be
with restricted codomain. The following lemma is easilyified.

Lemma 5.4. Let (N, X, B) be a stacky fanand let (N’, X’, 8/) be defined as
above. Ther(N’, g/, ¥’) is a stacky fan.

Proposition 5.5. Let (N, X, 8) be a stacky fanand let(N’, ¥/, ') be defined as
above. Then the toric DM stack’(N’, X', g) is the universal cover o’ (N, X, B).

Proof. By Proposition 4.8, it suffices to verify that the torDM stack
X(N', X', B") =[Zx/Go], where the groupG = Homz(DG(B), C*), which is verified
in [12]. U

For a stacky fan N, =, 8), given a cones in X, let N, C N denote spajB(g) |
pi C o}. The following lemma describes well-known conditions on tacky fan
(N, X, B) that characterize when the toric DM stadiN, X, 8) is in fact a smooth
(toric) manifold. The corollary that follows then immedift characterizes global quo-
tients among toric DM stacks.

Lemma 5.6. Let (N, X, B8) be a stacky fan. Then the toric DM stagi(N, =, 8)
is (equivalent t» a smooth manifold if and only if N= N, for all maximal cones
o€EX.

Proof. Recall that sinc&’(N, =, 8) is Deligne—Mumford, it admits an étale pres-
entation, and the diagonal map: X(N, =, B) — X(N, X, 8) x X(N, =, B) is proper
therefore a closed embedding. By Proposition 74 in [19] ffices to check that all
isotropy groups are trivial. This follows from Theorem 422]. O

Corollary 5.7. Let (N, X, B) be a stacky fan. The following are equivatent
(1) The toric DM stackX(N, =, 8) is equivalent to a global quotient oveiff.
(2) N’ = N/ for all maximal conesr in X.

REMARK 5.8. Corollary 5.7 is also obtained in joint work of the authavith
Goldin and Johanssen [12] by working out the combinator@bdition (2) directly
from the equivalent condition that the connected compowérihe identityGo C G =
Hom(DG(B), C*) act freely onZy.
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REMARK 5.9. A similar result to Proposition 5.5 was obtained by Rwdand
Sarkar for quasi-toric orbifolds, which are effectivefnedd orbifolds studied using
methods from toric topology (see Theorem 3.2 in [23]).

We may recast the above in terms of stacky polytopes. Givetagkys polytope
(N, A, B), let N =img and 8': Z" — N’ as before and le\’ be the polytope in
(N” ® R)* described by

A = m{x e(N®R)" | {x,f(8)®1) > —¢)
i=1

where the numbers;, ..., c, are the same as those appearing in (5.1) for the polytope
A. This ensures that the corresponding level sétsand Z/, coincide. Equivalently,

A c (N'®R)* is the polytope corresponding # under the dual of the natural iden-
tification N’ ® R =~ N ® R. Analogous to Proposition 5.5¢(N’, A’, 8) is the universal
cover of ¥(N, A, B). In addition, the natural covering: X(N’, A, ) - X(N, A, B)

(as in Proposition 4.8) is compatible with the underlyingngjectic structures.

Proposition 5.10. Let (N, A, B) be a stacky polytopg(N’, A’, 8’) be as above
and let p X(N’, A/, B') - X(N, A, B) be the universal covering projection. 4 and
' denote the symplectic forms cti(N, A, 8) and X(N’, A’, 8), respectively then
p*w = o'

Proof. Recall that the symplectic form on a toric DM stack arising from a
stacky polytope N, A, B) can be identified with the differential 2-ford*w on Z,
where&: Z, — [Z,/G] is a presentation (see Proposition 2.9 in [18] and Theorém 1
(and the discussion preceding it) in [24]). Furthermores'ifZ, — [Z4/Go] denotes a
presentation fortt'(N’, A’, 8’) we have that{’)*«’ = £*w, as they are each the restric-
tion of the same 2-form o€". Therefore, it suffices to verify that)* p*w = §*w.

The natural isomorphism oB-bundles B x Gg) xg, G = B x G (over any base
B) gives rise to the 2-commutative diagram,

P

[ZA/Gal 5 [ZA/C]

which shows that{)*p*w = £*w. Indeed, a differential formw on a stack) is an
assignment of a differential form(y) € 2*(U) for every objecty overU that is com-
patible with maps, in the sense that an armw-> y over f: V — U forcesw(x) =
f*w(y). It follows thaté*w is a the 2-form assigned to the objett < Z,xG — Z,
and that £')*p*w is the 2-form assigned to the objeZiy < (Zx x Go) Xg, XG —
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Z,. But the natural isomorphism covering the identity betwéaese objects (i.e. the
2-isomorphism in the diagram above) and the compatibilipdition forces these 2-
forms to coincide. [

Notice that the polytoped’ and A are the same up to a rescaling of the underly-
ing lattices via the natural identificatioN’ ® R = N ® R; therefore, their corresponding
volumes satisfy the relation vai() = |[N/N’| vol(A). Corollary 5.11 below verifies a
similar relation among the corresponding symplectic vaam

Corollary 5.11. Let (N, A, B) be a stacky polytopeand let (N’, A’, B') be as
above. The corresponding symplectic volumes salsfyX'(N’, A’, g)) = |cokerp| -

Proof. LetX = X(N, A, B) andX’ = X(N’, A/, /) and p: X’ — X denote the
universal covering projection. Choose an étale presentati Xo — X" with a partition
of unity so that Volgt) = fxo o’ (see [3] for details about integration on stacks). Since
p is a covering projection, the fiber produdt’ xy Xo = W for some manifoldW
and W — Xg is a covering projection with fibeG/Gy =~ coker, where Gy is the
connected component & = Homz(DG(B), SY). (In fact, as in Lemma 4.7, we may
take W = E,/Go where Xo < E, — Z, is the object representing(idx,).) Then we
have the following 2-Cartesian diagram

W;PO>XO

.

X P x

It follows that ¢’: W — X’ is an étale presentation fot’. Moreover, we may pull
back the partition of unity orXg to W. By the previous proposition,

Vol(X') = [W (@) prw= /W (po)*¢*w = deg(po) - /X oo = |G/Go| -VOI(X). O

5.5. Examples. We conclude with some examples illustrating the discussion
above.
The following class of examples is studied in [12].

EXAMPLE 5.12 (Labelled sheared simplices). L&t (ay,...,aq) be a primitive
vector in N = z% with a > 1 and letmg, ..., my € Z.o. Let =(a) be the fan in
N ®R = RY whose rays are generated by and the standard basis vectors. Note that
3(a) is the normal fan of asheared simplexA(a). Letting fo, ..., fq be the standard
basis vectors fozd*1, setg: 9+ — z9 to be B(fo) = —moa and B(f;) = m;e; for
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L] [ ] L] [ ] [ ] [ ] [ ] L] [ ] L]
O O ° L] ° °

® L ® &2. L

@] o ° [ ] L] ° o

[ ] L] [ ] [ ] [ ] [ ] ° L]

(@) Z(a) in N®R, with N’ indi- (b) A(a) in (N ® R)*, with non-
cated by darkened dots. trivial labels indicated.

Fig. 5.1. Afan¥(@ c N ® R and its corresponding labelled
polytope A(a) € (N ® R)*.

(@ =@ in N®R =R?corres- (b) A(a) in (N’ ®R)* = R? cor-
ponding to the fan in Fig. 5.1 (a). responding to the labelled polytope
in Fig. 5.1 (b).

Fig. 5.2. The fanX(a) and corresponding labelled polytope
A(a) of the universal cover of the symplectic toric DM stack
represented in Fig. 5.1.

j =1,...,d. It is straightforward to verify thatN, 2(a), 8) is the stacky fan associated
to the labelled polytopeX(a), {mj}‘j’zo). (See Fig. 5.1 illustrating a concrete example
with a = (1, 2) and labelsng =m; =1 andm, = 2.)

In [12], it is shown that the toric DM stackR’'(N, X(a), 8) is a global quotient if
and only ifm; = mpa; for all j =1,...,d. In this caseN’ = @?:Imjz C N and that
under an identificatioN’ =~ Z% we find ¥’ is the fan inRY whose rays are generated
by —3"e; and the standard basis vectes...,eq and thatg’: Z9+1 — N’ =~ Z9 may be
expressed by the formulg&(fo) = - e;, p/(f;) =¢;. That is, ¥(N', X', p)=C pd
so thatX (N, X(a), 8) is a quotient of complex projective space whenever it isaball
quotient. (See Fig. 5.2 illustrating the (stacky) fan andlyfope of the universal cover
of the symplectic toric DM stack whose fan and polytope appedsig. 5.1.)
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[ ] [ ° (] [ ) o o ° °
3 ° ° ° ° ° °
¢ L] [ ] L]
2 :2 ° ° ° ° g °
L ®
3

(&) A labelled polytopeA(a) in (b) The polytopeA(a) in (N’ ®

(N ® R)* = R? corresponding to a R)* =~ R? corresponding to the

stack that is a global quotient. universal cover of the stack associ-
ated to Fig. 5.3 (a).

Fig. 5.3. The labelled polytopes(a) and A(a)’ of a of a quotient
of a Hirzebruch surface and its universal cover (a Hirzetrsiar-
face), respectively.

EXAMPLE 5.13. Leta= (aj,a,) be a primitive vector ilN = Z? with a;,a, > 1.
Consider the farx in N ® R = R? with four raysp, ..., p4 generated by-a, e, e,
—&, respectively, and maximal conesy, 023, 034, andos;, whereoj; denotes the two
dimensional cone generated by and p;. Let my, ..., ms be positive integers and let
B:Z* — N be

,3_ —Mag 0 mz 0
a —ma, My 0 —my '

Note that the stacky fanN, X, B) corresponds to a labelled right trapezoid. (See
Fig. 5.3 (a) illustrating a concrete example wih= (1, 2).)

By Corollary 5.7, the toric DM stack’(N, 2, 8) is a global quotient if and only if
N’ = N/ for all maximal conesr. This occurs precisely whemja; = mgz, my = my,
and my|mga,. In this case,N’ = mzZ & myZ C N and that under an identification
N’ = Z2 we see thal®’ is the fan inR? with four rays generated by(1,b), e, e,
and —e,, whereb = mia,/m,. Moreover, under this identification

, -1 0 1 0]
F= [—b 10 —1}’
therefore, ¥(N, X, B) is a quotient of a Hirzebruch surface whenever it is a global

quotient. (See Fig. 5.3 illustrating the labelled polytopkea global quotient of a
Hirzebruch surface.)

The remaining three examples consider toric DM stacks wath-tnivial global sta-
bilizer (due to the presence of torsion in the abelian grdl)p The first example ex-
hibits a global quotient with global isotropy, while the tlawo illustrate how the con-
dition in Corollary 5.7 may fail.
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ExAMPLE 5.14. LetN = Z ¢ Z/2Z and ¥ be the fan inN ® R = R with
rays +£1. Let 8: Z?> — N be given by &, b) — (2a — 2b, a + b mod 2). ThenN’ is
generated by (2, 1 mod 2), as i, for each maximal cone. Therefore,X'(N, X, B)
is a global quotient. Under an identificatiod' =~ Z, we see thap’(a, b) =a—b and
that Y(N’, ©’, 8’) = CP. Moreover, a direct calculation shows thayGg = cokerg =
7./47 so thatZ/4 acts onC P! with global stabilizer isomorphic t@ /27 (the torsion
submodule ofN), and X(N, X, B) = [CP'/(z/4z)].

ExampLE 5.15. Let (N, X, 8) be any stacky fan witlN containing a non-trivial
torsion subgroup ang surjective (e.g. the stacky fan of a weighted projectivecspa
with non-trivial global stabilizer). The®'(N, X, B8) is not equivalent to a global quo-
tient sinceN’ = N has torsion andN, is necessarily torsion free for any comein
the rational simplicial fanz (cf. the proof of Theorem 3.1 in [12]). (More generally,
if N’ C N contains non-trivial torsion, the®’(N, X, 8) is not equivalent to a global
quotient.)

EXAMPLE 5.16. LetN = Z @ Z/4Z and £ be the fan inN ® R =~ R with
rays +1. Let 8: Z?> — N be given by &, b) — (a — 2b, a + 2b mod 4). ThenN’ is
torsion-free, generated by (1,&)N; however,N/ is generated by (2, 2) for the cowe
generated by-1. By Corollary 5.7,X(N, X, 8) is not equivalent to a global quotient.
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