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Abstract
Let k be an algebraically closed field. A polynomialF 2 k[X, Y] is said to be

generally rationalif, for almost all � 2 k, the curve “F D �” is rational. It is well
known that, if chark D 0, F is generally rational iff there existsG 2 k(X, Y) such
that k(F, G) D k(X, Y). We give analogous results valid in arbitrary characteristic.

1. Definitions and statements of results

Given rings R� S, we write SD R[n] to indicate thatS is isomorphic, as anR-
algebra, to the polynomial algebra inn variables overR. If L=K is a field extension,
we write L D K (n) to indicate thatL is a purely transcendental extension ofK , of
transcendence degreen. The field of fractions of a domainR is denoted FracR. We
write R� for the multiplicative group of units of a ringR.

DEFINITION 1.1. Let k be a field andF 2 AD k[2] .
(1) We define the phrase “A=(F) is k-rational” to mean:F is an irreducible element
of A and the field of fractions ofA=(F) is k(1).
(2) Suppose thatk is algebraically closed. We say thatF is a generally rational poly-
nomial in A if A=(F � �) is k-rational for almost all� 2 k, where by “almost all” we
mean “all except possibly finitely many”.

REMARK . In Lemma 2.4, below, we show that ifA=(F � �) is k-rational for
infinitely many � 2 k then it is k-rational for almost all� 2 k.

REMARK . In the literature, generally rational polynomials are sometimes called
“generically rational polynomials” or simply “rational polynomials”. The term “gener-
ically rational polynomial” is particularly misleading since it suggests that the fiber of
SpecA! Speck[F ] over the generic point of Speck[F ] is rational, which is not the
intended meaning. (Note that the fiber over the generic pointis rational if and only if
F is a field generator, cf. Definition 1.2.)
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DEFINITION 1.2. Let k be a field andF 2 A D k[2] . We say thatF is a field
generator in A if there existsG 2 FracA such thatk(F, G) D FracA. If G can be
chosen inA, we say thatF is a good field generator inA; if not, we say thatF is
bad. (Cf. [9], [14], [15], [2].)

It is known that if k is an algebraically closed field of characteristic zero, then
F 2 k[X, Y] is a field generator if and only if it is a generally rational polynomial
(this is mentioned, for instance, in the introduction of [13]). In positive characteristic,
one knows examples of generally rational polynomials whichare not field generators,
but, apparently, the precise relation between the two notions remains to be clarified.
It is the aim of the present paper to provide such clarification. In order to do so, we
propose the following

DEFINITION 1.3. Let k be a field andF 2 AD k[2] . We say thatF is a pseudo
field generator(PFG) in A if there existsG 2 FracA such that FracA is a purely
inseparable extension ofk(F, G). If G can be chosen inA, we say thatF is a good
pseudo field generator inA; if not, we say thatF is bad.

REMARKS 1.4. Let k be a field andF 2 AD k[2] .
(1) It is clear that “field generator” implies “pseudo field generator”, and that the two
notions are equivalent if chark D 0.
(2) If chark D p > 0 then the following hold:

• F is a PFG inA iff F p is a PFG inA.
• F is a good PFG inA iff F p is a good PFG inA.

Our aim is to prove Theorems 1.5, 1.8, 1.10 and 1.11 (the proofs are given in
Section 3). Throughout, our base field is algebraically closed and of arbitrary charac-
teristic. Our results are well known in the case chark D 0. In fact, we recover the case
chark D 0 as a special case of our results.

Theorem 1.5. Let k be an algebraically closed field and let AD k[2] . For F 2 A,
the following conditions are equivalent:
(a) F is a generally rational polynomial in A;
(b) F is a pseudo field generator in A and ifchark D p > 0 then F� Ap.

DEFINITION 1.6. Let k be an algebraically closed field and letA D k[2] . Con-
sider F 2 An k such that, for almost all� 2 k, F �� is irreducible inA. Let f W A2

D

SpecA! A

1
D Speck[F ] be the morphism determined by the inclusionk[F ] ,! A.
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Choose a commutative diagram

(1)
X P

1

A

2
A

1

 

!
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-

!

 

!

f

 
-

!

where X is a nonsingular projective surface, the vertical arrows are open immersions,
and Nf is a morphism. Note thatNf �1(P) is an integral curve for almost all closed points
P 2 P1.
(1) We say that (F, A) has no moving singularitiesif Nf �1(P) is a nonsingular curve
for almost all closed pointsP 2 P1.
(2) We say that (F, A) has no moving singularities at finite distanceif f �1(P) is a
nonsingular curve for almost all closed pointsP 2 A1.
These properties depend only on (F, A), i.e., are independent of the choice of dia-
gram (1). We give a concrete example of moving singularitiesin Example 1.15, below.

REMARKS 1.7. Let the assumptions onk, A, F be as in Definition 1.6, and con-
sider the question whether (F, A) has moving singularities.
(1) If chark D 0 then (F, A) has no moving singularities, by a theorem of Bertini.
(2) Assume that chark D p > 0. If (F, A) has no moving singularities then it has
no moving singularities at finite distance. However the converse is not true (see Ex-
ample 1.15, for instance).

Theorem 1.8. Let k be an algebraically closed field and let AD k[2] . For F 2 A,
the following conditions are equivalent:
(a) F is a generally rational polynomial in A and(F, A) has no moving singularities;
(b) F is a field generator in A.

Given a field extensionF=E, a valuation ring “ofF over E” is a valuation ring
O satisfying E � O � F and FracO D F .

DEFINITION 1.9. (1) GivenE � B, where E is a field andB is a domain, we
write P (B=E) for the set of all valuation ringsO of FracB over E satisfyingO ¤

FracB; we also set

P

1

(B=E) D {O 2 P (B=E) j B � O}

and

Pfin(B=E) D {O 2 P (B=E) j B � O}.

The elements ofP
1

(B=E) are called the “places at infinity” ofB=E. Note that
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T

Pfin(B=E) is the integral closure ofB in FracB.1

(2) Let k be a field, F an irreducible element ofA D k[2] and R D A=(F). Then it
is customary to refer to the elements ofP

1

(R=k) as the places at infinity ofR, or of
SpecR, or of F . The cardinal numberjP

1

(R=k)j is a positive integer; if it is 1, we
say thatR (or SpecR, or F) has one place at infinity.
(3) Let k be a field andF 2 AD k[2] , F � k. Let A D S�1A where SD k[F ] n {0}.
Then the elements ofP

1

(A=k(F)) are called thedicriticals of F (or more correctly,
of the pair (F, A)). Given a dicriticalO 2 P

1

(A=k(F)), the residue field� of O is
a finite extension ofk(F); the number [� W k(F)] is called thedegreeof the dicritical;
one says that the dicriticalO is purely inseparableif � is purely inseparable overk(F).
Note that a dicritical ofF is the same thing as a place at infinity ofA=k(F). By “the
number of dicriticals ofF ” we mean the cardinal numberjP

1

(A=k(F))j, which is a
positive integer.

In [14, Remark after 1.3], Russell observes that a field generator F 2 A is good if
and only if it has at least one dicritical of degree 1. The nextresult gives an analogous
criterion for pseudo field generators.

Theorem 1.10. Let k be an algebraically closed field and let F2 AD k[2] be a
pseudo field generator in A. The following conditions are equivalent:
(a) F is a good pseudo field generator in A;
(b) F has at least one purely inseparable dicritical.

The casek D C of the next result can be found in [18, Theorem 2] and [10, Corol-
lary 2]; the more general case chark D 0 is proved in [13, 1.6]. The case chark > 0
appears to be new.

Theorem 1.11. Let k be an algebraically closed field and let F2 AD k[2] be a
generally rational polynomial of A. Then

t � 1D
X

�2k

(n
�

� 1)

where t is the number of dicriticals of F and n
�

is the number of irreducible compo-
nents of the closed subset V(F � �) of SpecA.

Remarks and examples

It is quite clear that Theorems 1.5 and 1.8 are of the same nature: each states the
equivalence of two conditions onF 2 A, the first being a property of the fiber ofF

1We abbreviate
T

O2Pfin(B=E) O to
T

Pfin(B=E) and we decree that
T

Pfin(B=E) D FracB when
Pfin(B=E) D ¿.
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over a general closed point, and the second, an algebraic property of the pair (F, A)
which is a weakening of the condition “there existsG satisfying AD k[F, G]”.

To gain some perspective, we shall now recall two more results of the same type
(Theorems 1.12 and 1.13). One could formulate these facts ina characteristic-free lan-
guage, as we did in Definition1.1–Theorem 1.11, but for the sake of simplicity we
mainly consider the case chark > 0 in this discussion.

Polynomial curves. Let k be an algebraically closed field. An affine curve over
k is called apolynomial curveif it is rational and has one place at infinity. Abusing
language, one says that an irreducibleF 2 A D k[2] is a “polynomial curve inA” if
SpecA=(F) is a polynomial curve.2 The first result that we want to recall is:

Theorem 1.12([3]). Let AD k[2] , where k is algebraically closed and of char-
acteristic p> 0. For F 2 A, the following are equivalent:
(1) for almost all � 2 k, F � � is a polynomial curve in A;
(2) F � Ap and there exist G2 A and n2 N such that Apn

� k[F, G].

Theorem 1.12 is a corollary of the main result of [3]. In that paper, one says that
F 2 A is a p-generator in Aif there existG 2 A and n � 0 such thatApn

� k[F, G]
(so condition (2) of Theorem 1.12 states thatF is a p-generator inA which does not
belong to Ap). Clearly, everyp-generator inA is a good PFG inA (the converse is
not true, by Example 1.17). Also note thatF is a p-generator inA iff F p is.

Lines. Let k be a field andF 2 AD k[2] . If there exitsG such thatAD k[F,G],
one says thatF is a variable in A. If A=(F) D k[1] , one says thatF is a line in A.
Obviously, every variable is a line; a line which is not a variable is called anexotic
line. The Abhyankar–Moh–Suzuki theorem ([1], or [18] ifk D C) implies that exotic
lines do not exist if chark D 0. If k is any field of characteristicp > 0, then F D
X p2
C Yp(pC1)

C Y is an example of an exotic line ink[X, Y].
The second (and last) result that we want to recall is:

Theorem 1.13([4]). Let AD k[2] , where k is algebraically closed and of char-
acteristic p> 0. For F 2 A, the following are equivalent:
(1) F � � is a line in A, for all � 2 k;
(2) F � � is a line in A, for almost all � 2 k;
(3) F � Ap and there exist n2 N and G2 A such that Ap

n
[F ] D k[F, G].

(This is a consequence of either one of [5, 3.1 and 4.12] or [4,3.13 and 3.14];
more equivalent conditions are given in [5], [4].)

2Apparently, the term “polynomial curve” was coined by Abhyankar. Note thatF is a polynomial
curve in A D k[2] if and only if A=(F) is a subalgebra of ak[1] . That is, a polynomial curve is an
affine curve that can be parametrized by a pair of univariate polynomials.
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It is obvious that ifF 2 A satisfies the equivalent conditions of Theorem 1.13 then
F is a line in A. The converse, however, is an open question. It is clear thatif F is
a variable inA then F satisfies those conditions, and all currently known examples of
exotic lines in A also satisfy them, but it is not known whether all exotic lines have
that property. See [5] for a discussion of this question.

1.14. To summarize, consider the following four subsets ofAD k[2] (wherek is
an algebraically closed field of characteristicp > 0):
• E1 D the set of generally rational polynomials inA, which is equal (by The-
orem 1.5) to the set of PFGs inA not belonging toAp;
• E2 D the set of generally rational polynomialsF in A such that (F, A) has no
moving singularities, which is equal (by Theorem 1.8) to theset of field generators
in A;
• E3 D the set ofF 2 A such thatF � � is a polynomial curve inA for almost all
� 2 k, which is equal (by Theorem 1.12) to the set ofp-generators inA not belonging
to Ap;
• E4 D the set ofF 2 A such thatF � � is a line in A for almost all� 2 k, which
is equal (by Theorem 1.13) to the set ofF 2 A satisfying F � Ap and 9G,n Apn

[F ] D
k[F, G].
Then the following hold:
(i) E2 � E1 � E3 � E4, where all inclusions are strict;
(ii) E2 \ E3 D E2 \ E4 D the set of variables ofA.
Indeed, inclusionsE2 � E1 � E3 are obvious, andE3 � E4 holds because every line
is a rational curve with one place at infinity; all inclusionsare strict by Examples 1.16
and 1.17. Assertion (ii) follows from the fact (cf. [14, 4.5]) that any field generator
which has one place at infinity is in fact a variable.

In the following examples, we letA D k[X, Y] D k[2] where k is algebraically
closed and of characteristicp > 0.

EXAMPLE 1.15. LetF 2 AD k[X,Y] be any exotic line satisfying the equivalent
conditions of Theorem 1.13 (for instance,F D X p2

C Yp(pC1)
C Y) and let f W A2

!

A

1 be the morphism determined by the inclusionk[F ] ,! A. By Theorem 1.13 (1),
f �1(P) � A1 for every closed pointP 2 A1; in particular,
(i) F is a generally rational polynomial inA and (F, A) has no moving singularities
at finite distance.
As was mentioned in Section 1.14, any field generator which has one place at infinity
is a variable. As lines have one place at infinity, it follows that no exotic line is a field
generator. So:
(ii) F is not a field generator inA.
By (i), (ii) and Theorem 1.8, (F, A) has moving singularities (but not at finite distance).

For a concrete example, letF D X p2
C Yp(pC1)

C Y and choose a diagram (1);
then for almost all closed pointsP 2 P1 the fiber Nf �1(P) is a complete curveC with
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one singular pointQ, where Q has multiplicity p on C and C n {Q} � A

1. These
claims can be justified by direct computation. Indeed,F has one place at infinity and
by repeatedly blowing-up the singular point at infinity one finds that the sequence of
multiplicities of that point is (p, : : : , p, p�1,1,1,: : : ), where “p” occurs p2

C3p times.
One also finds that the first (p C 1)2 of these blowings-up are exactly the minimal
resolution of the base points of the pencil3(F) defined in the proof of Lemma 2.10;
so those (pC 1)2 blowings-up construct a diagram (1) and, since (pC 1)2 < p2

C 3p,
the diagram has the desired property (i.e., for almost all closed pointsP 2 P1 the fiber
Nf �1(P) is as claimed). So we see directly (without using Theorem 1.8) that (F, A) has

moving singularities.

EXAMPLE 1.16. Let F D X p
CYpC1

2 AD k[X, Y]. Then Ap
� k[F, Y], so F

is a p-generator (hence a good PFG) inA. For every� 2 k, A=(F � �) is a singular
k-rational curve with one place at infinity. By Theorem 1.8,F is not a field generator
in A.

EXAMPLE 1.17. Let F D (X p
CYpC1)Y 2 AD k[X, Y]. Then k(X, Y) is purely

inseparable overk(F, Y) D k(X p, Y), so F is a good PFG inA. For almost all� 2
k, the k-curve A=(F � �) is a singular rational curve with two places at infinity. By
Theorem 1.12,F is not a p-generator inA; by Theorem 1.8, it is not a field generator
in A.

2. Preliminaries to the proofs

Lemma 2.1. Let k be an algebraically closed field and F2 AD kn. Then the set

{� 2 k j F � � is not irreducible in A}

is either finite or equal tok, and it is equal tok if and only if FD P(G) for some
G 2 A and some univariate polynomial P(T) 2 k[T ] such thatdegT P(T) > 1.

Proof. This can be derived from a general Theorem on linear systems proved by
Bertini (and reproved by Zariski) in characteristic zero, then generalized to all char-
acteristics by Matsusaka [12]. For the result as stated here,see [16], Chapter 3, Sec-
tion 3, Corollary 1.

Recall that afunction field in one variableis a finitely generated field extension of
transcendence degree 1. Refer to [17] for general background on that topic.

NOTATIONS 2.2. Let F=E be a function field in one variable and recall from
Definition 1.9 thatP (F=E) is the set of valuation ringsO of F over E satisfyingO ¤
F . The divisor group Div(F=E) is the free abelian group on the setP (F=E); given
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� 2 F�, we write div(� ), div0(� ), div
1

(� ) 2 Div(F=E) for the principal divisor, divisor
of zeroes and divisor of poles of� , respectively.

Lemma 2.3. Let k be a field and consider an irreducible F(X, Y) 2 A D
k[X,Y] D k[2] . Then A=(F) is k-rational if and only if there exists(x(T), y(T), z(T)) 2
k[T ]3 satisfying:
(1) z(T) ¤ 0, {x(T)=z(T), y(T)=z(T)} � k and F(x(T)=z(T), y(T)=z(T)) D 0;
(2) max(degT x(T), degT y(T), degT z(T)) � degX F C degY F.

Proof. It is clear that if (x(T), y(T), z(T)) exists thenA=(F) is k-rational. Con-
versely, suppose thatA=(F) is k-rational. Then there exist',  2 k(T) D k(1) satisfy-
ing F(', ) D 0 andk(', ) D k(T). If ' 2 k then3 F D �Æ (X � a) (somea 2 k) and
(x, y, z) D (a, T, 1) satisfies the desired conditions. Similarly, if 2 k then (x, y, z)
exists. From now-on, assume that',  � k. Considering divisors in Div(k(T)=k) with
notation as in Notation 2.2,

(2)
deg div0(') D [k(T) W k(')] D degY F and

deg div0( ) D [k(T) W k( )] D degX F .

Write ' D u=w1,  D v=w2 whereu, v, w1, w2 2 k[T ], w1, w2 ¤ 0 and gcd(u, w1) D
1D gcd(v, w2). Let u D �Æ

Qm
iD1 pei

i , w1 D �Æ
Qn

iD1 q fi
i be the prime factorizations of

u andw1 respectively, whereei , fi > 0 and where thepi , qi 2 k[T ] are mC n distinct
monic irreducible polynomials. DefinePi D k[T ](pi ) (1 � i � m), Qi D k[T ](qi ) (1 �
i � n) and P

1

D k[T�1](T�1); then Pi , Qi , P
1

2 P (k(T)=k) and div(') D
Pm

iD1 ei Pi �
Pn

iD1 fi Qi C (degw1 � degu)P
1

, so:
• if degw1 > degu then div0(') D

Pm
iD1 ei Pi C (degw1�degu)P

1

has degree equal
to degw1;
• if degw1 � degu then div0(') D

Pm
iD1 ei Pi has degree equal to degu;

so deg div0(') D max(degu, degw1) in both cases. Then max(degu, degw1) D degY F
by (2) and, for similar reasons, max(degv, degw2) D degX F .

So (x, y, z) D (uw2, vw1, w1w2) satisfies the desired conditions.

Lemma 2.4. Let k be an algebraically closed field and F2 AD k[2] . The follow-
ing conditions are equivalent:
(1) A=(F � �) is k-rational for infinitely many� 2 k;
(2) A=(F � �) is k-rational for almost all� 2 k.

Proof. Assume that (1) holds. In particular, there exists� 2 k such thatF � �
is irreducible in A; then, by Lemma 2.1,F � � is irreducible in A for almost all� 2
k. ChooseX, Y such thatA D k[X, Y], let d D degF and n D degX F C degY F ,

3We use Abhyankar’s symbol “�Æ” to denote an arbitrary nonzero element of the base fieldk.
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and consider the homogenizationF�(X, Y, Z) 2 k[X, Y, Z] of F , i.e., F�(X, Y, Z) D
Zd F(X=Z, Y=Z). Let RD k[X0, : : : , Xn, Y0, : : : , Yn, Z0, : : : , Zn, L] D k3nC4 and define
g0, : : : , gnd 2 R by

F�

 

n
X

iD0

Xi T
i ,

n
X

iD0

Yi T
i ,

n
X

iD0

Zi T
i

!

� L

 

n
X

iD0

Zi T
i

!d

D

nd
X

iD0

gi T
i .

Define idealsI and J of R by stipulating thatI is generated byg0, : : : , gnd and that

J is generated by all 2� 2 determinants
�

�

�

Xi X j

Zi Z j

�

�

�

and
�

�

�

Yi Yj

Zi Z j

�

�

�

with 0 � i < j � n.

Consider the zero-setsZ(I ), Z(J) � k3nC4 of I and J respectively, the locally closed
subsetU D Z(I ) n Z(J) of k3nC4 and the maph W U ! k which is the restriction of
the projectionk3nC4

! k on the last factor.
For � 2 k, the following are equivalent:

(i) � 2 im h;
(ii) there exist (a0, : : : , an), (b0, : : : , bn), (c0, : : : , cn) 2 knC1 such that, if we define
x D

Pn
iD0 ai T i , y D

Pn
iD0 bi T i and zD

Pn
iD0 ci T i , then F�(x, y, z)� �zd

D 0, z¤ 0
and {x=z, y=z} � k;
(iii) there exist (x, y, z) 2 k[T ]3 such that max(degT x, degT y, degT z) � n, z ¤ 0,
{x=z, y=z} � k and F(x=z, y=z) D �.

Moreover, under the assumption thatF � � is irreducible in A, Lemma 2.3 shows
that (iii) is equivalent toA=(F � �) being k-rational.

Since we assumed that (1) holds, imh is an infinite set. As imh is a constructible
subset ofk, we obtain thatk n im h is a finite set. SinceF �� is irreducible for almost
all � 2 k, (2) holds. The converse is trivial.

Lemma 2.5. Let K � L be algebraically closed fields, X, Y indeterminates over
L and F 2 K [X, Y] � L[X, Y], F � K. Then
(a) F is irreducible in K[X, Y] � F is irreducible in L[X, Y].
(b) K [X, Y]=(F) is K -rational � L[X, Y]=(F) is L-rational.
(c) F is a generally rational polynomial in K[X, Y] � F is a generally rational
polynomial in L[X, Y].

Proof. Assertions (a) and (b) are well known and easy to prove. Assertion (c)
follows from (a), (b) and Lemma 2.4.

2.6. (Refer to [11] for this paragraph.) A fieldK is said to beC1 if, for every
choice of integers 0< d < n and every homogeneous polynomialF(X1, : : : , Xn) 2
K [X1, : : : , Xn] of degreed, there exists (a1, : : : , an) 2 K n

n {(0, : : : , 0)} satisfying
F(a1, : : : , an) D 0. Tsen’s Theorem states that ifK is a function field in one variable
over an algebraically closed field, thenK is C1. Lang showed that if a fieldK is C1
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then so is every algebraic extension ofK . It follows in particular:

If k is an algebraically closed field and� an indeterminate over
k then k(� ) is a C1 field. Moreover, if chark D p > 0 then
k(� )p�1 is C1.

Refer to [17, I.4.15, p. 21] for the definition of the genus of afunction field in
one variableL=K . One may also define the genus as dimH1(C, OC) whereC is the
complete regular curve overK whose function field isL.

2.7. Let L=K be a function field in one variable, where K is a C1 field and is
algebraically closed in L. Then L=K is rational if and only if it has genus0.

Indeed, it is known that ifL=K has genus zero then it is the function field of a
curve in P2

K given by an equationF(X, Y, Z) D 0, where F(X, Y, Z) 2 K [X, Y, Z]
is an irreducible homogeneous polynomial of degree 2. AsK is C1, the curve has a
K -rational point, soL=K has a place of degree 1 and hence is rational. The converse
is clear.

2.8. Let k be an algebraically closed field andf W X ! Y a dominant morphism
of integral schemes of finite type overk. Assume that dimX D dimY. Thenk(X)=k(Y)
is a finite extension of fields, wherek(X) andk(Y) denote the function fields ofX and
Y respectively. One defines

deg f D [k(X) W k(Y)], degs f D [k(X) W k(Y)]s

and

degi f D [k(X) W k(Y)] i .

It is well known (cf. [7, Proposition 9.7.8, p. 82] and [6, Définition 4.5.2, p. 61]) that
the positive integerd D degs f has the following property:

There exists a nonempty open subset V� Y such that, for each
closed point y2 V , the set f�1(y) consists of exactly d closed
points of X.

The following notation is used in Lemma 2.9. Given morphismsof schemesX
f
�!

Y
�

�! T and a pointP 2 T , we write XP D X �T Spec�(P) and YP D Y �T Spec�(P)
for the fibers of� Æ f and� over P (where�(P) is the residue field ofT at P). Note
the commutative diagram

XP YP Spec�(P)

X Y T

 

!

fP

 

!

 

!

�P

 

!

 

!

 

!

f

 

!

�
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in which every square is a pullback square.

Lemma 2.9. Let k be an algebraically closed field and X
f
�! Y

�

�! T dominant
morphisms of integral schemes of finite type overk. Suppose thatdim X D dim Y
and that

there exists a nonempty open subset U� T such that, for each
closed point P2 U , XP and YP are integral schemes.

Then there exists a nonempty open set U0

�U such that, for every closed point P2U 0,

fP W XP ! YP is dominant, dim XP D dim YP and degs( fP) D degs( f ).

Proof. In lack of a suitable reference, we provide a proof. For each closed point
P 2 U , XP and YP are closed subschemes ofX and Y respectively. Viewing them
as subsets ofX and Y, we haveYP D �

�1(P), XP D (� Æ f )�1(P) D f �1(YP) and
the continuous mapfP W XP ! YP is simply the restriction off . Note that f �1

P (y) D
f �1(y) for all y 2 YP.

Let d D degs( f ) and choose a nonempty open setV � ��1(U ) such that, for each
closed pointy 2 V , the set f �1(y) consists of exactlyd closed points ofX (cf. Sec-
tion 2.8). Then�(V) is dense inT and hence contains a nonempty open subsetU 0 of
T . Note thatU 0

� U .
Let P be a closed point ofU 0. Then YP \ V ¤ ¿ (becauseU 0

� �(V)) and, for
every closed pointy 2 YP \ V , the set f �1

P (y) consists of exactlyd closed points of
XP. Since fP W XP ! YP is a morphism of integral schemes of finite type overk,
it follows that fP is dominant, that dimXP D dim YP and (by Section 2.8 again) that
degs( fP) D d, as desired.

The following result is proved in paragraphs 2.8–3.3 of [14].

Lemma 2.10. Let k be an algebraically closed field, A D k[2] and F 2 A n k.
Assume thatk(F) is algebraically closed inFracA and let g denote the genus of the
function fieldFracA=k(F). Then, for any diagram(1) as in Definition1.6, the follow-
ing holds:

For almost all closed points P2 P1, the arithmetic genus of the
curve Nf �1(P) is equal to g.

Proof. Since this fact is not explicit in [14], we fill the gaps. Choose a diagram
(1). The assumption thatk(F) is algebraically closed in FracA implies that, for almost
all closed pointsP 2 P1, Nf �1(P) is an integral curve overk. Note that the number
“arithmetic genus of Nf �1(P) for a general closed pointP 2 P1” is independent of the
choice of a diagram (1) (any two diagrams can be reconciled after finitely many extra
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blowings-up, and these blowings-up affect only finitely many fibers Nf �1(P)). So it’s
enough to show that at least one diagram (1) has the desired property.

Choosex, y such thatAD k[x, y], let d D deg(F) (with respect tox, y), let F�

2

k[x, y, z] be the homogenization ofF , and consider the pencil3(F) D {div0(aF� C
bZd) j (a W b) 2 P1} on P2 (where we write div0(H ) for the divisor of zeroes of a homo-
geneous polynomialH 2 k[X, Y, Z] n {0}). The assumption thatk(F) is algebraically
closed in FracA implies that the general member of3(F) is irreducible and reduced.
Let B be the set of base points of3(F), including infinitely near ones. ThenB is
a finite set. Let� W X ! P

2 be the blowing-up ofP2 along B (i.e., resolve the base
points of3(F)); then X is a nonsingular projective surface,� is a birational morphism
centered at points ofP2

n A

2 and the strict transform of3(F) on X is free of base
points. This base point free pencil determines a morphismNf W X ! P

1; by restricting
� we get an isomorphism��1(A2) ! A

2, whose inverse defines an open immersion
A

2
,! X; so we have constructed a diagram (1). By paragraphs 2.8–3.3of [14], the

genusg of the function field FracA=k(F) is equal to

(3)
(d � 1)(d � 2)

2
�

X

Q2B

�(Q)(�(Q) � 1)

2
,

where �(Q) is the multiplicity of the base pointQ, i.e., the multiplicity of Q on
the general member of a suitable strict transform of3(F) (refer to [14] for details).
Clearly, the number (3) is equal to the arithmetic genus ofNf �1(P) for a general closed
point P 2 P1.

3. Proofs

Throughout this section,k is an algebraically closed field andF 2 A D k[2] . We
also consider thek(F)-algebraA D S�1A where S D k[F ] n {0}. Define q D 1 if
chark D 0, andq D p if chark D p > 0.

Given k-domainsB � C and x 2 C, the phrase “x is purely inseparable overB”
means that there existsn 2 N such thatxqn

2 B (if chark D 0, this means thatx 2 B).
We also define “C is purely inseparable overB” to mean that each element ofC is
purely inseparable overB. When B and C are fields, these definitions coincide with
the usual ones.

Let us also remark that ifF=E is a purely inseparable extension of fields,O a
valuation ring ofF andO0

D O\ E, thenO is purely inseparable overO0 and conse-
quently the residue field ofO is a purely inseparable extension of that ofO0; moreover,
every valuation ring ofE has auniqueextension to a valuation ring ofF .

Proof that 1.5 (b) implies 1.5 (a). Suppose that 1.5 (b) holds. ChooseG 2 FracA
such that FracA is purely inseparable overk(F, G).

Consider anyW 2 A such thatk[F ] � k[W] � A. Then W is integral overk[F ]
and Wqn

2 k(F, G) for somen. SinceWqn
2 k(F, G) and Wqn

is integral overk[F ],
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we haveWqn
2 k[F ] and hencek[Wqn

] � k[F ] � k[W]; by assumption,F � Ap if
chark D p > 0; so k[F ] D k[W]. Consequently, Lemma 2.1 implies:

F � � is irreducible in A for almost all � 2 k.

ChooseH 2 A n {0} such thatk[F, G] � AH .
For almost all� 2 k, F �� is irreducible inA and F ��  H in A; for each such

�, F � � is irreducible in AH . Consequently, the morphisms of schemes SpecAH !

Speck[F, G]! Speck[F ] (determined by the inclusionsAH � k[F, G] � k[F ]) satisfy
the hypothesis of Lemma 2.9. This implies that there exists asubsetU of k such that
k nU is a finite set and, for all� 2 U ,

k[F, G]=(F � �)k[F, G] ! AH=(F � �)AH

is injective and

(4) [L
�

W K
�

]s D [Frac AH W k(F, G)]s D [Frac A W k(F, G)]s D 1

where we setL
�

D Frac(AH=(F ��)AH ) and K
�

D Frac(k[F, G]=(F ��)k[F, G]). For
each� 2 U we havek � K

�

� L
�

where each ofK
�

, L
�

is a function field in one
variable over the algebraically closed fieldk and, by (4),L

�

=K
�

is purely inseparable;
thus [8, Chapter IV, 2.5] implies thatL

�

=k and K
�

=k have the same genus, which is
0 sinceK

�

D k(1). Hence,

L
�

D k(1) for almost all � 2 k.

Now L
�

D Frac(AH=(F � �)AH ) D Frac(A=(F � �)A), so A=(F � �)A is k-rational for
almost all� 2 k, i.e., we have shown that 1.5 (b) implies 1.5 (a).

Proof that 1.5 (a) implies 1.5 (b). LetF be a generally rational polynomial inA.
The assumption implies, in particular, that there exists� 2 k such thatF � � is irredu-
cible in A; so if chark D p> 0 then F � Ap (which is part of the desired conclusion).
Let � be an indeterminate overk, let K be an algebraic closure ofk(� ) and let

K D {x 2 K j x is purely inseparable overk(� )}

D

�

k(� ), if chark D 0,
k(� )p�1 , if chark D p > 0.

Then k(� ) � K � K and

F 2 AD k[X, Y] � k(� )[X, Y] � K [X, Y] � K [X, Y].

Applying Lemma 2.5 toF 2 k[X, Y] � K [X, Y] shows thatF is a generally ra-
tional polynomial in K [X, Y]. Then almost all� 2 K are such thatK [X, Y]=(F � �)
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is K -rational. Since{� C � j � 2 k} is an infinite subset ofK , there exists� 2 k such
that K [X, Y]=(F � � � �) is K -rational. There exists ak-automorphism� of K which
sends� C � on � . Extend� to a k-automorphism2 of K [X, Y] such that2(X) D X
and2(Y) D Y. Then2 W K [X, Y] ! K [X, Y] is an isomorphism of rings satisfying
2(K ) D K and2(F � � � �) D F � � ; it induces an isomorphism of rings

K [X, Y]=(F � � � �)! K [X, Y]=(F � � )

which mapsK onto itself. As K [X, Y]=(F � � � �) is K -rational,

(5) K [X, Y]=(F � � ) is K -rational.

This implies, in particular, thatF � � is irreducible inK [X, Y]; then it is also irredu-
cible in K [X, Y] and in k(� )[X, Y]. Moreover,

(F � � )K [X, Y] \ K [X, Y] D (F � � )K [X, Y],

(F � � )K [X, Y] \ k(� )[X, Y] D (F � � )k(� )[X, Y]

because, say,k(� )[X, Y] ! K [X, Y] ! K [X, Y] are faithfully flat homomorphisms (if
R! S is a faithfully flat homomorphism andI is an ideal ofR then I S\ R D I ).
So there is a commutative diagram of integral domains and injective homomorphisms

(6)

K R M RD K [X, Y]=(F � � ), M D FracR,

K R L RD K [X, Y]=(F � � ), L D FracR,

k(� ) R0 L0 R0 D k(� )[X, Y]=(F � � ), L0 D FracR0.

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

 

!

Applying the exact functorK 
K ( ) to 0! (F � � ) ! K [X, Y] ! R! 0 yields
0! (F � � ) ! K [X, Y] ! R! 0, and this shows thatR D K 
K R. Note that
L D 6

�1R where6 D R n {0}. Since K is integral overK and RD K 
K R, R is
integral overR and consequently6�1R is integral over6�1R (D L); so 6�1R is a
field, i.e.,6�1RD M. So we have shown thatRD K 
K R and M D R
R L. The
same argument shows thatRD K
k(� ) R0 and L D R
R0 L0. This can be summarized
by saying that the four little squares, in diagram (6), are pushout squares; so

(7) all nine squares, in (6), are pushout squares.
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The following fact is well known:suppose that B, F, X, Y are rings,

F Y

B X

 

!

 

!

 

!

 

!

is a pushout square(i.e., X
B F D Y) in which all arrows are injective homomorphisms
of rings, F is a free B-module and there exists a basisB of F over B such that1 2 B;
then Y is a free X-module, there exists a basisB0 of Y over X such that1 2 B0 and
F \ X D B, when we view B, F, X as subsets of Y .Applying this to (6) and (7) gives,
in particular:

(8)
K \ L D K , K \ L0 D k(� ), K \ L0 D k(� ), R\ L D R and

R\ L0 D R0.

In view of the fact thatK is algebraically closed inM, the equalitiesK \ L D K and
K \ L0 D k(� ) imply:

(9) K is algebraically closed inL and k(� ) is algebraically closed inL0.

Note thatK is purely inseparable overk(� ); since L D K 
k(� ) L0, L is the com-
positum K L0 and it follows thatL is purely inseparable overL0; since R\ L0 D R0,
we obtain thatR is purely inseparable overR0. We record this:

(10) L (resp. R) is purely inseparable overL0 (resp. R0).

Observe in particular that the following assertions are true:
(i) M=K is a function field in one variable andK is algebraically closed inM;
(ii) L=K is a function field in one variable andK is algebraically closed inL;
(iii) the compositum of fieldsK L is equal toM;
(iv) M is an algebraic extension ofL;
(v) K is perfect.
By [17, Theorem III.6.3], conditions (i)–(v) imply thatM=K has the same genus as

L=K ; as M D K
(1)

by (5), that genus is 0. NowK is a C1 field by Section 2.6; so
Section 2.7 yields:

(11) L D K (1).

Choosev 2 L such thatL D K (v). If chark D 0, defineg D v; if chark D p > 0,
definegD v pn

wheren 2 N is large enough to havev pn
2 L0. Then in both cases we

have g 2 L0, and we claim:

(12) L0 is a purely inseparable extension ofk(� , g).
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Indeed, if chark D 0 then L0 D L D K (v) D k(� , v) D k(� , g), so (12) holds.
Assume that chark D p > 0. We use the following notation. Givens 2 N and a poly-

nomial P(T) D
P

i ai T i
2 K [T ] D K [1] (where ai 2 K ), let P(ps)(T) D

P

i aps

i T i
2

K [T ]. Note that P(ps)(T) 2 k(� )[T ] if s is large enough.
Let � 2 L0. Then� 2 L D K (v), so � D P(v)=Q(v) for someP(T), Q(T) 2 K [T ],

Q(T) ¤ 0. Chooses� n large enough to haveP(ps)(T), Q(ps)(T) 2 k(� )[T ]. Then

�

ps
D P(ps)(v ps

)=Q(ps)(v ps
) D P(ps)(gps�n

)=Q(ps)(gps�n
) 2 k(� , g),

showing that� is purely inseparable overk(� , g). This proves (12).
Finally, we note that there is a commutative diagram:

(13)

k(F) A k(X, Y) FracA

k(� ) R0 L0

 - !  - !

(

(

 - !

 

!

�

 - !

 

!

�

 

!

�

'

where the vertical arrows arek-isomorphisms that send� to F and whereA D S�1A,
SD k[F ] n{0}. Let g 2 L0 be as before and letGD '(g) 2 k(X,Y). Then (12) implies
that k(X, Y) is purely inseparable overk(F, G).

This shows that 1.5 (a) implies 1.5 (b) and completes the proof of Theorem 1.5.

All facts established in the proof of 1.5 (a)) 1.5 (b) are valid wheneverF is a
generally rational polynomial inA. This is used in several of the proofs below.

Proof of Theorem 1.8. If (a) or (b) holds thenF is a generally rational poly-
nomial in A (this is obvious if (a) holds and is a consequence of Theorem 1.5 if (b)
holds, since a field generator inA cannot belong toAp if chark D p> 0). So, to prove
the theorem, we may assume throughout thatF is a generally rational polynomial inA.

Let g denote the genus of the function field FracA=k(F) and note thatk(F) is
algebraically closed in FracA (for instance by (9) and (13), which are valid here since
F is a generally rational polynomial inA). Now F is a field generator if and only
if Frac A D k(F)(1), and this is equivalent tog D 0 by Sections 2.6 and 2.7. So it’s
enough to show:

(14) g D 0 if and only if (F, A) does not have moving singularities.

Choose a diagram (1) as in Definition 1.6. Then, for almost allclosed pointsP 2
P

1, Nf �1(P) is an integral curve overk. By Lemma 2.10,

for almost all closed pointsP 2 P1, the arithmetic genus of
Nf �1(P) is equal tog.
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So, keeping in mind thatNf �1(P) is rational, we see thatgD 0 iff the arithmetic genus
of Nf �1(P) is equal to 0 for almost all closed pointsP 2 P1, iff Nf �1(P) is nonsingular
for almost all closed pointsP 2 P1, iff ( F, A) does not have moving singularities,
proving (14).

Proof of Theorem 1.10. LetF be a pseudo field generator inA. If chark D p>
0 then F is good if and only if F p is good, and it is easy to check thatF and F p

have exactly the same set of dicriticals and that a given dicritical is a p.i. dicritical of
F iff it is a p.i. dicritical of F p; so, to prove Theorem 1.10 in characteristicp> 0, we
may (and shall) assume thatF � Ap. Then, by Theorem 1.5,F is a generally rational
polynomial in A. Consequently, all facts established in the proof of 1.5 (a)) 1.5 (b)
remain valid here.

Suppose thatF is good. Then there existsG 2 A such that FracA is purely insep-
arable overk(F,G). Let (R,m) be the unique valuation ring ofk(F,G)=k(F) such that
G � R and note thatR=m D k(F). Since FracA is purely inseparable overk(F, G),
it follows that (R, m) extends uniquely to a valuation ring (S, n) of FracA=k(F) and
that S=n is a purely inseparable extension ofR=m D k(F). Then S 2 P

1

(A=k(F))
is a purely inseparable dicritical ofF (whereA D S�1A, SD k[F ] n {0}, as before),
proving that 1.10 (a) implies 1.10 (b).

For the converse, begin by observing that the isomorphism'W L0! FracA of (13)
satisfies'�1(A) D R0 and '�1(k(F)) D k(� ). Suppose thatF has at least one purely
inseparable dicriticalS 2 P

1

(A=k(F)). Then '�1(S) is an element ofP
1

(R0=k(� ))
which we denote (O0, m0); S being a purely inseparable dicritical, the residue field
of S is purely inseparable overk(F) and consequentlyO0=m0 is a purely insepara-
ble extension ofk(� ). As (by (10)) L is purely inseparable overL0, (O0, m0) extends
uniquely to a valuation ring (O, m) of L over K and O=m is a purely inseparable
extension ofO0=m0:

K O=m

k(� ) O0=m0.

 

!

 

!

p.i.

 

!p.i.  

!p.i.

Then O=m is purely inseparable overK . Since K is perfect,O=m D K . Since L D
K (1) by (11), it follows that the ring

R D
\

(P (L=K ) n {O})

satisfiesR D K [1] and L D FracR. Choosev such thatR D K [v]. Then L D K (v),
so if we defineg 2 L0 as in the proof of Theorem 1.5 (see just before (12)), and if
we takeG D '(g) 2 FracA, then the proof of 1.5 (a)) 1.5 (b) shows that FracA is
purely inseparable overk(F, G). Note thatg D vqn

for somen 2 N, so g 2 R.
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Since L0 � L and k(� ) � K , we have a well defined map

(15) P (L=K )! P (L0=k(� )), B 7! B \ L0I

this map is surjective becauseK=k(� ) is an algebraic extension; it is injective because
L=L0 is purely inseparable; so (15) is bijective. It follows thatthe image ofP (L=K ) n
{O} by that map is equal toP (L0=k(� )) n {O0}, and this implies that

(16) R \ L0 D
\

(P (L0=k(� )) n {O0}).

As P (L0=k(� )) n {O0} � Pfin(R0=k(� )), we get

(17)
\

(P (L0=k(� )) n {O0}) �
\

Pfin(R0=k(� )) D R0,

where R0 is the integral closure ofR0 in L0. In view of diagram (13) and of the fact
that A is integrally closed in FracA, we see thatR0 is a normal domain, soR0 D R0

and hence (by (16) and (17))R \ L0 � R0. As g 2 R \ L0, we haveG D '(g) 2
'(R0) D A D S�1A. Multiplying G by a suitable element ofSD k[F ] n {0} gives
an elementG0

2 A, and sincek(F, G0) D k(F, G), FracA is purely inseparable over
k(F, G0). So F is good, and this completes the proof of Theorem 1.10.

Before proving Theorem 1.11, we need a definition and a lemma.See Notation 2.2
for the notation.

DEFINITION 3.1. We say that a function field in one variableF=E has property
(�) if:

(�)
For any choice of distinct elementsO1,O2 2 P (F=E), there exists
� 2 F n E such that supp(div� ) D {O1, O2}.

We leave it to the reader to check that ifF D E(1) then F=E has property (�).

Lemma 3.2. Let k be an algebraically closed field and let F2 A D k[2] be a
generally rational polynomial in A. Then the function fieldFrac(A)=k(F) has prop-
erty (�).

Proof. Let F be a generally rational polynomial ofA. Then the facts established
in the proof that 1.5 (a) implies 1.5 (b) are valid here. The notation being as in that
proof, consider the two function fields in one variableL0=k(� ) and L=K . Since L D
K (1) by (11), L=K has property (�). We noted in (10) and (15) thatL=L0 is purely
inseparable and that the mapP (L=K ) ! P (L0=k(� )), O 7! O \ L0, is bijective. It
easily follows thatL0=k(� ) has property (�). In view of the isomorphisms of (13), we
conclude that the function field Frac(A)=k(F) has property (�).
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Proof of Theorem 1.11. LetF be a generally rational polynomial ofA. Once
more, all facts established in the proof of 1.5 (a)) 1.5 (b) remain valid here. Let
W D FracA andA D S�1A where SD k[F ] n {0}.

Consider the finite set3 D {� 2 k j F � � is not irreducible inA}. For each� 2
3, choose a prime factorization ofF � � in A, F � � D

Qn
�

jD1 G
e
�, j

�, j , where theG
�, j

are pairwise relatively prime irreducible elements ofA, and wheree
�, j > 0 for all

�, j . Note thatn
�

has the same meaning here as in the statement of the theorem.
Let G

�

D {G
�,1, : : : , G

�,n
�

} and G D
S

�23

G
�

. Then the elements ofG are pairwise
relatively prime.

Note thatG � A�; let hGi be the subgroup ofA� generated byG and hF ��W � 2
3i the subgroup ofhGi generated by{F � � j � 2 3}. Then hGi and hF � � W � 2 3i
are free abelian groups of ranksjGj D

P

�23

n
�

and j3j respectively. Let' W hGi !

A�

=k(F)� be the compositionhGi ,! A�

�

�! A�

=k(F)� where� is the canonical epi-
morphism. It is easy to see that each element ofA� has the form�G for some� 2
k(F)� and someG 2 A whereG is a product of elements ofG. So ' is surjective and
consequently the abelian groupA�

=k(F)� is finitely generated. Since, by (9) and (13),
k(F) is algebraically closed inW, it follows in particular thatA�

=k(F)� is torsion-
free; soA�

=k(F)� is a free abelian group of finite rank. We leave it to the readerto
check that the kernel of' is hF � � W � 2 3i. So

1! hF � � W � 2 3i ! hGi
'

�! A�

=k(F)� ! 1

is an exact sequence and it follows that the rank ofA�

=k(F)� is jGj � j3j, i.e.,

(18) A�

=k(F)� is a free abelian group of rank
X

�2k

(n
�

� 1).

Let R0, : : : , Rt�1 be the distinct dicriticals ofF , i.e.,

P

1

(A=k(F)) D {R0, : : : , Rt�1}.

For eachi D 0, : : : , t � 1, let vi W W�

! Z be the valuation ofRi . Since W=k(F)
has property (�) by Lemma 3.2, we may choose, for eachi 2 {1, : : : , t � 1}, an
element�i of W n k(F) satisfying supp(div�i ) D {R0, Ri }. Note that�i and ��1

i be-
long to

T

Pfin(A=k(F)) D A, so �i 2 A�. Let h�1, : : : , �t�1i be the subgroup ofA�

generated by�1, : : : , �t�1 and let W h�1, : : : , �t�1i ! A�

=k(F)� be the composition

h�1, : : : , �t�1i ,! A�

�

�! A�

=k(F)�. To complete the proof, it’s enough to prove:

(19)
h�1, : : : , �t�1i is free of rank t � 1,  is injective and
(A�

=k(F)�)=im  is torsion.

Indeed, if this is true then the rank ofA�

=k(F)� is equal to t � 1, so the desired
equality follows from (18).
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For eachi D 1, : : : , t � 1, let mi D vi (�i ) 2 Z and note thatmi ¤ 0. Also note
that v j (�i ) D 0 for all choices of elementsi ¤ j of {1, : : : , t � 1}.

Suppose that (k1, : : : , kt�1) 2 Zt�1 is such that
Qt�1

iD1 �
ki
i 2 ker . Then

Qt�1
iD1 �

ki
i 2

k(F)�, so for eachj 2 {1, : : : , t � 1} we have 0D v j
�

Qt�1
iD1 �

ki
i

�

D k j m j , so k j D 0.
This proves thath�1, : : : , �t�1i is free of rankt � 1 and that is injective.

Let u 2 A�. ChooseN > 0 so thatmi j vi (uN) for all i 2 {1, : : : , t �1} and define
(k1, : : : , kt�1) 2 Zt�1 by mi ki D vi (uN) for all i 2 {1, : : : , t �1}; let � D

Qt�1
iD1 �

ki
i 2 A

�.
Then the elementuN

�

�1 of A� satisfiesvi (uN
�

�1)D 0 for all i 2 {1,: : : ,t�1}. We also
have supp(div(uN

�

�1)) � {R0, : : : , Rt�1}, becauseuN
�

�1
2 A�. So supp(div(uN

�

�1)) �
{R0} and hence div(uN

�

�1) D 0. Consequently,uN
�

�1
2 k(F)�, so �(u)N

D  (� ).
This shows that (A�

=k(F)�)= im  is torsion, which completes the proof of (19). The
theorem is proved.
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