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Abstract
We introduce a method which can be used to study maximal aliigs for
martingales of bounded mean oscillation. As an applicatiea establish shargp-
inequalities and tail inequalities for the one-sided matifunction of a BMO mar-
tingale. The results can be regarded as BMO counterpartseo€ltssical maximal
estimates of Doob.

1. Introduction

Martingales of bounded mean oscillation form an importartckass of uniformly
integrable martingales, which plays a role in the studyHgf spaces, for instance via
Fefferman’s duality theorem, the inequalities of John arnimberg or the integrability
properties of the corresponding exponential local masties) Essentially, the theory
is parallel to that of the BMO functions defined @, but the passage to the prob-
abilistic setting reveals some additional structure andbts further applications, for
example, in financial mathematics (see e.g. [1], [3] or [5]).

We start the exposition from recalling the necessary aicabdckground. A real-
valued locally integrable functiorf defined onR" is said to be in BMO, the space of
functions of bounded mean oscillation, if

1 1
— f - — f dy| d ,
SSp|Q|/Q‘ ) |Q|fQ ) y‘ X =

where the supremum is taken over all cui@sin R". This definition is due to John
and Nirenberg [8], who also established some fundamentah&®gs for such functions,
and the celebrated result of Fefferman [4] identified thes<IBMO as the dual to the
Hardy spaceH?!. In this paper we will study the probabilistic counterpafttiois no-
tion, introduced by Getoor and Sharpe [7]. Suppose thatA, P) is a complete prob-
ability space, equipped with a filtratiol¥();>o, & nondecreasing family of subields

of F, with Fy = {0, }. Let X = (Xt)i=0 be an adapted, continuous-path real valued
martingale, satisfyingXo = 0. Following [7], for 1< p < oo, the martingaleX belongs
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1126 A. CBEKOWSKI

to BMO, if it is uniformly integrable and

”X”BMOp = SUH“EHXOQ - Xa|p | ]:o]l/p”oo < 00,

where the supremum is taken over all stopping timedt turns out that all the norms
| - llsmo, are comparable and hence all the classes BMOincide. Thus we are al-
lowed to skip the lower index and just write BMO; furthermoitewill be convenient
for us to work with the norm| - |lsmo,, and will use the shortened notatidn |smo
for it.

The BMO martingales have very strong integrability progest{for an overview,
see e.g. the book by Kazamaki [9]). In particular, the indosBMO C H, holds
true for any 1< p < oo; in fact we have the exponential boumlexpC|X.|) < oo
for somec > 0 depending on the BMO norm of; see e.g. Getoor and Sharpe [7],
Garsia [6] and P.A. Meyer [11]. The question about sharp eassiof such estimates
(in the analytic setting) has gathered recently some istarethe literature: see Ko-
renovski [10], Slavin and Vasyunin [13], Vasyunin [14] and Vasyuramd Volberg
[15]. The purpose of this paper is to study the problem of tjfge, but concerning
X* = supsq Xt, the one-sided maximal function 0. We propose a novel method
which can be used to establish general sharp estimatesvimgoX and X* in the
BMO setting. The technique rests on finding a certain appatprspecial function,
having some convex-type and majorizing properties, andbzamnegarded as a version
of a well-known Burkholder's method (for the description tbk latter, see e.g. [2] or
[12]). The technique will be applied to establish the foliogs sharp®-estimate.

Theorem 1.1. Suppose that is a convex and increasing function ¢@, co) and
X is a uniformly integrable martingale. Then

(1.1) Ed(X*) < /OOO O(t[ X |lsmo)e™ dt.

The constant on the right is the best possibteore preciselythere is a martingale X
with 0 < || X|lsmo < oo for which both sides are equal.

In particular, if we take®(t) =tP, p > 1, we obtain the sharp estimate
IX*Ilp = (T(p + 1))PlIXlemo,

which can be regarded as a BMO version of the Doob’s maximajuality.
Our next result concerns the following bound for the tail>f.
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Theorem 1.2. Suppose that X is a uniformly integrable martingale. Themafoy
A > 0 we have

1-2/@2IXlemo)  if A <[ Xllavo,
(1.2) P(X*>1) <1{1 P
> exp(1- Al Xllgmo) i A > [ X|lamo-

The bound is the best possiblior eachi > 0 there is a martingale X such th& <
I Xllsmo < oo, for which both sides are equal.

The above result leads to the following sharp weak-type) estimate. Fomp > 1,
let | X*||p.co = SUP.-o[APP(X* = 2)]¥/P denote the wealp-th norm of X*. Multiplying
both sides of (1.2) by.P and optimizing over., we get

Corollary 1.3. For any 1 < p < oo we have
(1.3) IX*Ip.oe <27 YPpexpe ™ — 1) X[lamo
and the constan2=¥Pp exp(p~t — 1) is the best possible for each p.

The paper is organized as follows. The next section is devtiethe description
of the method which will be used in the proofs of Theorems hd &.2. These two
theorems are established in Sections 3 and 4.

2. A method of proof

This section contains the detailed description of the nulagy which will be
used to establish the results aforementioned in the inttgtu In general, all the prob-
lems studied in this paper can be stated as follows. Assuatectis a fixed real num-
ber, letV: R x [0, co) — R be a given Borel function and suppose we are interested
in proving the maximal estimate

(2.1) EV(Xoo, X*) < €

for all uniformly integrable martingalesX satisfying || X|lamo < 1. For example,
the choice
V(x,2)=®(2) and ¢ =/ d(t)e™ dt
0

corresponds to the inequality (1.1). To handle (2.1), itasvenient to interpret a mar-
tingale X with || X|[smo < 1 as an appropriate two-dimensional martingale. To be more
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precise, consider the set
(2.2) D={(X,y) eRx[0,00):0<y—x%><1}

and its interior
D°={(X,y) eRx[0,00): 0<y—x* <1}

Next, introduce the martingal¥ by the formulaY; = E(X2 | /), t = 0. Then, by
conditional Jensen’s inequality, we hav¥g> X2 almost surely; in addition,

Yo = X2 = E[[Xeo — Xi[? | Al < [ X[Buo < L.

Thus, the pair X,Y) is a two-dimensional martingale with uniformly integratioordi-
nates, taking values i and terminating at the lower boundary Bt Y, = X2 with
probability 1. In fact, this correspondence can be rever$edany such pair X, Y),
we haveY; = E(Yx | /1) = E(X2 | F) for all t and hence the martingalé satisfies
[ Xllemo = 1.

The underlying concept of our approach is to find a speciatfanU: D x[0,00) —
R which majorizesV at the lower boundary dP (that is,V(x, z) < U(x, x?, 2) for all
X, z) and such that for alX,

(2.3) EU (Xac, Yoo, X*) < C.

Obviously, the existence of such a function immediatelyldgethe desired estimate
(2.1). To guarantee (2.3), we will impose some conditionslWrwhich will imply
that the processU(X:, Yi, X{))=o0 iS a supermartingale such theit(Xo, Yo, X§) < ¢
almost surely (hereX{ = sup_.; Xs is the truncated one-sided maximal function of
X). We turn to the precise formulation. Introduce the clag¥), which consists of
all functionsU : D x [0, o0) — R, satisfying the following conditions:

(2.4) U@,y,0<c forall ye]o0,1],
(2.5) U(x,x? 2)>V(x,2) forall xeR, z>0,
(2.6) U is continuous orD x [0, co) and of classC? on D° x (0, 0o),

(2.7) Uy(x,y,X) <0 forall x>0 and ye (X3 x?+1),
and the further property that for alk(y, z) € D° x (0, o0),

UXX(X1 y! Z) UXy(X! y! Z)

2.8 the matrix
(2:8) [ny(x, Y,2) Uy(X Y, 2)

] is nonpositive-definite.

The following statement is the key to handle the superngaten property of
(U(Xt, Y, X{Dr=o-
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Lemma 2.1. Suppose that a function:UD x[0,00) — R satisfies(2.6), (2.7)and
(2.8). Let X be a uniformly martingale withX|smo < 1 and lett, o be two stopping
times such thatr < t almost surely. Then there is a sequelfegn>o of stopping times
which starts fromo and increases ta almost surelysuch that

(2.9) E[U(Xq, Yo, X;) —U(X,, Y5, X7)] =0, n=0
(here and in what followsY; = E(X2 | /), t > 0).
Proof. Introduce the procesgd = (X, Y, X*). Observe that we have the strict

inequality Y; — X? < | X||3yo < 1 and that the processX(Y) terminates at the lower
boundary ofD. Thus, by (2.6), we may apply Ité’s formula to obtain

1
(2.10) U(Zive)—U(Z,) = I1+§I2+ I3,

wherel; = I, = I3 =0 on {o = oo} and, on the compliment of this set,

tvo tvo
u::/ uazgdxy+/' Uy (Zs) dYs,

tvo

umawmwk+/ Uyy(Ze) Y, Y],

o

tvo

tvo

|2 = / UXX(ZS) d[x, X]S + 2/
tvo

I3 = / U(Zs) dX?.

First note thatl; < O: the measure }* is concentrated oris: Xs = X;}, and on this
set we have,(Zs) <0, in view of (2.7). Next, we will prove that, < 0, by showing
that the process

t t

(2.11) (/Ot Uxx(Zs) d[X, X]s + 2[0 Uxy(Zs) d[X, Y]s + /(; Uyy(Zs) dY, Y]s)

t>0

is nondecreasing. To do this, note that (2.8) implies
(2.12) Uxx(Zs)h? + 2Uyy(Zs)hk + Uyy(Zs)k? < 0

for any h,k € R. Fix positive numbers, u such thats < u. For anyj, let (t,ﬁj))ﬁ;o be
a nondecreasing sequence \MiéH =s and tﬁjj) = U, such that lim_, SUR <, It —
t | = 0. Apply (2.12) toh = X0 — Xy, k=Y =Y, n=12...k,sum the
obtained inequalities and lg§t— co. As the result, we get that

Uxx(zs)[xr X]§ + 2ny(zs)[xv Y]§ + UYY(ZS)[Yv Y]g = O'
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where we have used the notatiok, Y]y = [X,Y]u—[X,Y]s. This implies the monotonic-
ity property of the process (2.11), by a simple approximatb the integrals by discrete
sums, and henck < 0. Next, by the properties of stochastic integrals, the ggec

t t
( / Ux(Zs) dXs + / uy(zs)dvs)
0 0 t>0

is a local martingale. Letng)n>1 be the corresponding localizing sequence and define
= AmAInf{t: | X =nAn)ve, n>0.
Then @n)n=0 IS a nondecreasing sequence of finite stopping times whitisfiea 1o =
o and which converges almost surely to Furthermore, by the martingale property,
Tn

IE[ /g " Un(Zo) dXe + / Uy(Zs) dYs

o

fa:|1{a<oo} =0.

Thus, pluggingr, in the place oft in (2.10) and integrating both sides gives
E[U (Zrn) -U (ZJ)] = 0,
which is precisely the claim. O

The above lemma leads to the following solution of the probfermulated at the
beginning of this section. Suppose tHate /(V) and fix a martingaleX satisfying
[Xllemo < 1 and Xo = 0. Take a numbek € (0, 1) and consider a martingakeX,
which has the BMO norm strictly smaller than 1. An applicatmihLemma 2.1 with
T =00 ando = 0 yields

EU (k Xz, £2Yy,, £ X2) < BU (k Xo, k%Yo, £ X5) = U(0, k*EXZ, 0),

for an appropriate sequence,),>1 of stopping times. By (2.4), the right-hand side
can be bounded from above by Now if we can only justify the passage with
n to infinity and « — 1 (for example, ifU is nonnegative, or the random variable
SuR, SUR.¢(o, 1|V (k X, K2y, kX3 )| is integrable), we get

EU (Xoo, Yoo, X2) < C.

However, Y,, = X2, almost surely; thus, by (2.5), we obtain the desired bountl) (2
and we are done.

3. Proof of Theorem 1.1

3.1. Proof of (1.1). By homogeneity, it suffices to prove the estimate under the
additional assumptiotj X||gmo = 1 (indeed, having this done, we recover (1.1) in full
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generality by considering the martinga¥¢/|| X ||smo and the functiort — &(t|| X||zmo))-
Furthermore, by a standard approximation, we may and dovesshatd is of classC?.
As we have already observed above, we need to take

V(x,2) =®(2) and c= /OO o(t)e ! dt.
0

The corresponding special functidh: D x [0, co) — R is defined by the formula

_x2 v _1\2 oo
y X®+ (22 X 1) [ (I)/(t)827t dt.
z

(Some steps which lead to the discoverylbfare sketched in Subsection 3.3 below).
Let us verify the conditions (2.4)—(2.8). The first propeftylows easily from the in-
tegration by parts and the next two are evident. To check),(2vé derive that for
X > 0,

U(x,y,z) =o@2+

_ w2 _ 1 o0
Uy(X, ¥, X) = %[ / @' (t)e? dt — qa/(z)].
z
It suffices to note thaty—x2—1)/2 < 0, by the definition ofD, and that the expression

in the square brackets is nonnegative: indeed, sthcés nondecreasing, we have

[o¢] (o]

/ o'(t)e* " dt > / (26 dt = '(2).
z z

Finally, the condition (2.8) is trivial, since all the emsi of the corresponding matrix

vanish. Consequently) belongs to the clas&(V); in addition, U is nonnegative, so

the reasoning presented at the end of the previous sectibtsyihe claim.

3.2. Sharpness. Now we exhibit an appropriate example for which both sides
of (1.1) are equal. Suppose thBt= (By);>o is a standard, one-dimensional Brownian
motion starting from the origin and let

T = inf{t: B — B = 1)

be the first timeB experiences the drop of size 1. Defibke= (B;.)i=0. We have
B, — Bt <1 and by Itd’s formula, the processB{()2—2B;B;);>o is a martingale, so

EB2

TAt

= E(B},; — Brat)® — E[(B ) — 2B, B}, ] < 1.

At T TAL

In consequenceX is a uniformly integrablel ?-bounded martingale. Furthermore, for
any stopping timeo,
Y, =E(X, | ;) = El(B} — B.)’ | F,] —E[(B})’ — 2B B} | F,]

(3.1)
=1+ X2 — (X! = X,)%,
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which implies that|| X||smo < 1. Next, observe that for any > O the process & —
Bt + A7) exp(—AB;))=0 is @ martingale: this follows immediately from It&’s fornaul
Therefore, we have

E[(X{ — Xt + A7) expEaX)] = a74,

and since (< X; — X; <1, we may lett — oo and use Lebesgue’s dominated conver-
gence theorem to gét exp(-AX%) = (A + 1)~1. Consequently,

(3.2) X follows the exponential law of parameter 1

o0
and hence

Ed(X*) = /Ooo o(t)e™ dt,

so the inequality (1.1) is sharp.

3.3.  On the search of the suitable majorant. Let us now describe the infor-
mal reasoning which leads to the special function used aftewe the optimal constant
f0°° ®(t)et dt). This function needs to satisfy the conditions (2.4)-X2f8ur of these
conditions are inequalities. Sindg is supposed to yield sharp results, it seems rea-
sonable to expect that it will actually produce equalitiegsome of) these conditions.
Thus, at least at the very beginning, let us try to findor which (2.5) and (2.7) hold
with equality sign, and such that

Usx(X, ¥, 2)  Uxy(X, Y, 2) ] _
de[|: ny(X, Y, Z) Uyy(X, Y Z) 0

for all (x,y, z) € D° x (0,00). The latter condition means, roughly speaking, that if we
fix z> 0, then for any X,y) € D, x < z, there is a line segment containedZn passing
through &, y), along whichU (-, -, 2) is linear. This further suggests (compare this to
the analogous situation occurring in the papers [13], [1#] £L5]) that the whole set
{(x,y) € D: x <z} can be “foliated”, i.e., split into the union of line segmerdlong
which U(-, -, 2) is linear. It is not difficult to guess the foliation, at Ieéder a part

of the set (here a look at the papers [13], [14] and [15] islyelalpful, as a similar
splitting appears there). Namely, fix an arbitrary< z and consider the line segment
Iy passing through the pointx & 1, (x — 1)%) and &, x> + 1). It is easy to check that
this line segment is tangent to the upper bounddry y): y = x? + 1} of the setD
and the collection{l,: x < z} splits the sef{(x, y) € D: y > 2zx+ 1—7?}. So, let us
assumethat U is linear along eachy. Then for anyx € [0, 1], and anyx < z,

U — 1)+ (1= )X, A(x — 1P + (L= 1) (X? + 1), 2)

(3.3) =AUKX—-1, x—1)?22) + (1 —-DU(X x2+1,2).
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But we have assumed above that both sides of (2.5) are eqimd. implies U(x —
1, (x —1)?,2) = ®(2) and hence, if we substitut&,(x) = U(x, x?> +1,2) and carry out
some straightforward computations, we obtain

(34) UK Y, 2= VX—y+10@) +(1— VX —y+ DUx + VxE—y +1)

for any x,y) € D, y > 2zx+1—7%. To find ¥,, let us go back to the equation (3.3). A
nice feature of the foliation we chose is that any segmgnk < z, can be lengthened
a little bit “to the right” and it is still contained iD. Thus, looking at the property
(2.6), it is natural to suspect that for ary< z, (3.3) can be extended to some negative
values of (in the sense that the difference of the left- and the rigitehsides should
be of ordero(x) as A — 0). So, taker < 0, write this difference, divide by. and let

A — 0. The result must be zero; using the formula (3.4), we obthé differential
equationW,(x) = W,(x) — ®(2), and hence

W,(x) = K(2)e* + @(2),

for some functionK to be found. Now it is high time to apply (2.7) (recall that we
have assumed that equality holds here). Differentiating)(%/ith respect to the vari-
able z at the point ¢, 2> + 1, z), we obtain ®'(z) + K'(2)¢* = 0. HenceK(2) =
fz°° ®'(t)e™t dt + « for some constant and, coming back to (3.4), we see that

Uy, =@ +1-Vx* -y + 1)(/ ®'(t)e dt + a)ex+¢x2—y+1.
z
With a lack of a better idea, let us take= 0 in the above formula. Then

(35 UKy 2=+ (1- m)/m &/ (t)e VEY It gt

for (x,y) € D, y > 2zx+ 1 —Z2. In particular,
u(, 1, 0)= &(2) +/ o'(t)et dt = / o(t)e™ dt,
0 0

which gives us the hint about the best constant. What aba&utehaining part of the
domain? One can, of course, proceed as above and try to fingmopaiate foliation.
This can be done, but the expression we get is different fivemh above and the func-
tion is not of classC2. Thus, in order to use of Lemma 2.1, one has to apply some
mollification to ensure the necessary regularity, and tesults in a significant com-
plication of technicalities (we will encounter some of tbdselow, in the proof of the
tail bound (1.2)). Fortunately, there is a different salotito the above problem. The
key fact is that in general, the special function needed tabéish a given inequality
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is not unique, and hence we have some freedom with choosiag Becall that we
have imposedthe equalities in (2.5) and (2.7), while we need only ineijigal This
leads to the following natural idea: let us exteddto the whole domain with the use
of the formula (3.5) and verify whether all the condition® anet; if so, we will be
done. Unfortunately, the condition (2.7) does not hold tamel hence we need some
modification ofU. How should we proceed?

Some indications can be found in Subsection 3.2 above (dasimmhenomenon
occurs in the analytic Bellman setting: the knowledge altbet (candidates for) the
extremals can be very helpful in the search for the speciattfon). Again, we stress
that the arguments presented here are informal; they omlye s an intuition in the
construction ofu. The triple X,Y, X*) considered in Subsection 3.2 evolves along the
set{(x,y,2):y=2zx+1—7%): see (3.1). In addition, it follows from the above con-
struction thatU (X, Y, X*) is a martingale (roughly speaking, all the inequalitiesolh
imply the supermartingale property hold with equality gigtarting fromjooo d(t)etdt.
Thus, we have the following important observation. Supptbse U is another spe-
cial function which leads to theb-estimate with the constaryﬁ)Oo ®(t)e™t dt; hence,
in particular, U (0, 1, 0) < Jo~ @(t)e™ dt. ThenU should coincide withU on the set
{(x,y,2): y = 2zx+ 1—2?}. Otherwise, the martingale property Bf(X, Y, X*) would
not hold (only thesupermartingaleproperty would be valid) and this would violate the
optimality of the constant. Indeed, an application of thelrod from Section 2 would
lead to thestrict inequality E®(X*) < f0°° ®(t)et dt, a contradiction. Now, if we take
a look at the abovéJ, we see that ify = 2zx+ 1 — 7%, then

U, y,2)=®@2 +(1—-2z+Xx) /OO o'(t)e* " dt.

So, a natural idea is to consider given by the above formula foall (X, y, z). Un-
fortunately, this still does not work: this time the conditi (2.5) is not valid (when
z> 1+ x andy = x?, the above expression is smaller théf(z)). So, let us try to
replace the term + z + x by some other expression, possibly involviggtoo. This
unknown term must be nonnegative \if= x? (because of (2.5)), and equal to 0 for
z=x+1 (since it coincides with & z+ x on the sety = 2zx+ 1—2%). This strongly
suggests to consider the expressidn(y — x?) + B - (z— x — 1) for some positiveA,

B. Then we must have

Aly—x?)+B@z—x—-1P2=1-2z+x

for y = 2zx+1—7?; one easily checks that this is satisfied if and onlpit= B = 1/2.
Then we get exactly the function studied in Subsection 3.1.
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4. Proof of Theorem 1.2

4.1. Proof of (1.2). Here the reasoning will be slightly more complicated. As
previously, it suffices to establish the estimate onlyXowhich have BMO norm smaller
than 1, due to homogeneity reasons. Tai{g, z) = 1(-,; and

_f1-x/2 for A <1,
~ lexp(l—1)/2 for A > 1.

To define the corresponding special function, consider tiieviing sets:
Dl = {(X1 y) €D: X Z)‘-}v
Do={(X,y)eD:A—1<X <A, ¥>2i1—2X—2%+ 2)x},
D3 ={(Xx,y) € D:y < 2x—2x — A2 + 20X},
Ds={(X,y)€D: X <r—1,y> 2L —2x—2%+ 2ix},

see Fig. 1 below.
The special functiold = U, : D x [0, co) — R is given by

1 if z>2x or (x,Y)e Dy,
1-(A—x)/2 if z<2, (X,y)€ Dy,
U(x, Y, 2) =4 (y—=x*)/(y—22x+1?) if z<2, (X,y)e€Ds,

1-y1-y+x2 i
@exp(ererl—k) if z<A, (X, y)€ Da.

This function is constructed with the use of a similar reasgrto that in Sub-
section 3.3. Consult also the papers [14], [15] and the Rlem& below.

The problem withU is that it is not of classC?, so to apply the technique from
Section 2, we need to use appropriate smoothing argumehtshwesults in some un-
pleasant technicalities. To overcome this problem, we pifisent a slightly different
approach, which rests on a direct use of Lemma 2.1 and egplwiee simpler special
functions. Namely, introduc&lg, Uy, Us: D x [0, co) — R by

A —X y — x?
:1—— - @
Uo(x, Y, 2) 5 Uiy, 2) VDX 12

and

1—/1- 2
Ua(X, Y, 2) = fyﬂexp(H VI-y+x2+1-2).

Observe that all these functions appear as “building bloaksthe aboveU. These
functions satisfy (2.6); moreover, none of these functidapend on the variable and



1136 A. CBEKOWSKI

Fig. 1. The regiondD; — D, in the caser > 1.

thus (2.7) holds true for all of them. Finallyy, U; andU, satisfy (2.8). This is trivial
for Uy, while for the remaining two functions, we calculate a dittit to get that

[ Unx  Usky ] _ [ —b(x, Y)(y =237 b(x, y)(x — A)(y — 4?) }

Uiy Uiy b(x, Y)(X —A)(y—22)  —b(x, y)(r — x)?
and
[UZXX Uzﬂ _ | e X+ V1-y 4+ X2 220X, V)X + V1—y +x?)
Uiy Uy 2¢(x, Y)(X + v/1—y +?) —c(X, )

whereb(x, y) = 2(y — 2Ax + 2%)~3 > 0 and

c(x,y) = BV1-y+x2)texpk + vV1-y+x2+1-2)>0.

Clearly, both matrices are nonpositive-definite and hec®) (holds true. We will also
require the following properties df); and U,. First, observe that; is bounded: in
fact, we have

_y2
4.1) 0< m <1 for (x,y)eD.
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Next, we have that
4.2) the functions U;(0, -, 0),U,(0, -, 0) are nondecreasing on [0, 1],

which can be easily verified by differentiation.
Now we split the reasoning into two parts, corresponding. t6 1 andx > 1.
CAse A < 1. Then the processX( Y) starts from the seD, U D3; suppose first
that (Xo, Yo) € D». Introduce the stopping times

T =inf{t: X¢ > A}
and
g = |nf{t X¢ > or (Xt, Yt) € Ds3}.

Of course, we haver < t almost surely. Furthermoré)y and U; coincide atdaD, N
dD3, the common boundary dD, and D3. Therefore, applying Lemma 2.1 and using
(4.1) yields

]EUO(Xan Yoa X;) = EUl(XO'! Yc;y X;) > EUl(Xrn; ann Xjn)y

for an appropriate sequencep),>o Of stopping times. Lettingn — oo gives
EU1(X;, Yz, X¥) < EUg(X,, Y5, X), by the use of (4.1) and Lebesgue’s dominated
convergence theorem. Next, applying Lemma 2.1 again, thie to the functionUg
and the stopping times 0 angd we obtain

EUo(Xs,s Yo, X5 ) < EUo(Xo, Yo, Xg) =1—-4/2,

for some sequence()no of stopping times increasing to. However, K, ,Y,,) belongs
to the closure oDy, so X,, > > —1 and hence the random variablég( Xy, , Ys, . Xj;n) are
nonnegative. Now, applying Fatou’s lemma, we obtain ®idb(X,, Y,, X¥) <1—1/2
and combining this with the previous estimates we get

(4.3) EUy (X, Yy, X¥) < 1—1/2.

We have obtained this bound under the assumptiy Yo) € D»; but this is also true
if (X,Y) starts fromD3. Indeed, we apply Lemma 2.1 to the functith and the
stopping times 0 and, use Fatou's lemma and get

(4.4) EU;1(X¢, Yz, XI) < EU1(Xo, Yo, Xg) = U1(0, Yo, 0).

However, it is easy to check that;(0,y,0) <1—1/2 if (0, y) € D3, so the inequality
(4.3) holds true.

We turn to the final step. Observe that for any fixed 0, we haver < oo and
Ui(X;:, Yz, X¥) =1 on the se{ X* > A + ¢}. SinceU; is nonnegative, we get

P(X* > A + &) < EUy(X,, Yy, X¥) <1-2/2.
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SubstitutingA := A + ¢, we see that for any < (0, A),
P(X* >1) <1—1/2+¢/2,

and lettinge — 0 yields (1.2).

CAsSeE A > 1. Here the reasoning is essentially the same (and restsopenies
of U; andUy), so we shall be brief. The procesX,(Y) starts fromD3 U Dy4; suppose
first that (Xo, Yo) € D4 and introduce the stopping times

 =inf{t: Xy > A} and o =inf{t: (X, Y;) € D3}.

We haveo < t and, arguing as previously, we obtain

]EU].(XT! Y‘L’v X;k) S ]EUl(XUI Y(Tv X:)
< ]EUz(Xg, Yy, X:) < ]EUz(Xo, Yo, Xg) < exp(l— )\.)/2

The same bound holds true iX(Y) starts fromDs: then (4.4) is valid and hence,
using (4.2) and the fact thal; and U, coincide atoD3 N dD,4, we get

EU1(X:, Yz, X¥) < EUy(Xo, Yo, X3) < U2(0, 1, 0)= exp(1—1)/2.
It remains to repeat the above argumentation to get
P(X* > A +¢) <EU1(X,, Yo, X¥) < exp(l-1)/2, & >0,
which yields (1.2) fora > 1.

4.2. Sharpness. Leta> 0 be a fixed number and |8 be a standard Brownian
motion. Introduce the stopping times= inf{t: B — B; > 1 or B; = a} and

~n if B, <a,
~\infit>n: Biefa-1,a+1}} if B,=a.

Of course,n < t almost surely. We have the following fact.

Lemma 4.1. The martingale X= (B;.t)i>0 iS uniformly integrable and satisfies
[ Xllemo = 1.

Proof. The uniform integrability can be easily shown usirtge tmartingale
(2B By — (B;)?)i=0; See Subsection 3.2 above. To prove the bound for the BMO norm
of X, note that for any stopping time we have

(45) ]E(Xgo | ]:a) = Bzzl{tfo} + ]E[Brzl{r>02n} | ]:a] + ]E[Bzzl{zpu} | ]:J]'



BMO MARTINGALES 1139

Let us analyze each term on the right separately. We B3¢, <,, = X?1;,<,) and
E[B?Lr-05p | Fo] = E[(B: — B))’Lizo02p + (2B: By — BY)1jro02y | Fol
= Lrsozn + (2Bo By — B (ro02y
S Lsozpy + Bgl{wazn},
where in the second passage we have used the eqiBlityB,| = 1 valid on{r > n},

and Doob’s optional sampling theorem. To deal with the thédn on the right-hand

side of (4.5), we make use of the martingald(2 B, — (B;‘At)z)tzo and write

E[BL()-0) | Fo] = E[(B: — B))*1(yn0) + (2B. B} — (B)))1(y-0) | ol
(4.6) = E[(B: — B})*1(0) | Fol + (2B, B — (B})*)1(=0)
< E[(B; — B))’Liyo0) | Fol + BZLi50).
However, using Doob’s optional sampling theorem and thealiguB, = B = a, valid
on {tr > n}, we get
E[(B: — B})"Lir= | ] = E[(B: — B,)* + 2B, B, — B} | F]L(r=
+ (=28, B; + (B))Ljr-y)
= 1izony-
Plugging this into (4.6), we get
E[BZ1()-0) | o]
< E[(B; — B))’(Ljr=y=0) + Lirsn=01) | Fol + BZLioe)
= E[l{r=y=0) + E[(B: = B} Liroy) | Filliy=o) | Fol + BZLpn0)
= E[Lr—y=0} + Lie=nLin=oy | Fol + BZLi0)
= Ly=o1 + B Ljyn0)-

Plugging all the above estimates into (4.5) yielgX2 | F,) < 1+ X2, which is
precisely the claim. ]

Now we are ready to prove the sharpness of (1.2). First cendlte case. > 1.
Take the martingale from the above lemma, corresponding oA — 1. This martin-
gale, and the process exploited in Subsection 3.2, coingid¢he interval [0y], so
using (3.2), we get

P(r > n) =P(X5, >1—1)=¢e""
Therefore,
P(X;, =21 =P(XL =2 | Xy =2 A —1P(XL, =A—1)
=P(B, =1 |B,=1-1)-e =¢"")2.
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Finally, we turn to the case € (0, 1). Consider the martingale X, where X
comes from the above lemma applieddo= 1 — A. Let us compute the probability
P((—X)* < ). A closer look gives that

{(—X)* < A} = {B reaches 2- 1 before getting tar}.

Indeed, the inclusion€” is obvious, and to get the reverse one, it suffices to observe
that (—X)* > 1 on the set{r = n}, since X, = X, —1 < —A there. Consequently,

P((—X)* > 1) = 1— P((—X)* <) =1—A/2.

This gives the optimality of the the bound (1.2) and comi¢ke proof of Theorem 1.2.

REMARK 4.2. The approach described in Section 2 can be also usee icae
when X starts from arbitrary real number (i.e., not necessarily from 0). Denoting
EX2 by y, one can show that for any > 0,

* X max(x, 0}
P(X" = 2) =< UA/I|X|BMO( : )

[ Xllemo ™ 1 X[13uo 1Xllemo

(this is clear: see the last paragraph of Section 2) and halsce

X y max{X, 0})

[Xlemo ™ 1Xl13mo " 1 Xllemo

4.7) P(Xee = A) < U,\/||X|BMO(

Here U,/ xjmwo IS the function of Subsection 4.1, corresponding to the rpatar
A/ X|lemo- Moreover, it can be proved that the bound (4.7) is sharp, wWith use
of similar examples as above. This should be compared to ¢hemaximal tail esti-
mates for BMO functions obtained in [14] and [15]. Vasyunird afolberg found there,
for each fixedx > 0, the least functionsB,: D — R with the following property. If
f:[0,1] — R is a function satisfyingfy f = x, f; f2=y and || f|lsuo, < 1 (that is,

f =/, f du\zdt <1 for any intervall € [0, 1]), then
{x €0, 1]: | f(X)| = A} = Bu(X, y).

The functionsB, have plenty of similarities with the abowg. Actually, the formulas
for U|p, andU|p, appear also in the definitions @&,. Let us briefly provide an in-
formal explanation for this phenomenon. A crucial obsdovais that the functions;
originating from “analytic BMO” can also be used in the magtife setting described
in Section 2, as special functions correspondingVi, vy, z) = Lx=x; (formally, we
treat the variablez as “empty”, i.e., we takeB; (X, y, 2) = B, (X, y)). Applying the
approach of Section 2, one obtains the sharp bound

X y
(4.8) P(| Xoo| = 1) = Byyjx ( , )
P X ewo " X IBwo
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where, as previouslyy = EX2. This is of course very close to (4.7); the connection
becomes even closer when one notes thasfonepairs ,y), the extremal martingales
in (4.8) satisfyP(|Xsx| = A) = P(Xo = A). This explains why the same expressions
appear in the definitions of the functiots and B;, (on some parts of the domains).
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