

Title	THE CHARACTERISTIC RANK AND CUP-LENGTH IN ORIENTED GRASSMANN MANIFOLDS
Author(s)	Korbaš, Július
Citation	Osaka Journal of Mathematics. 2015, 52(4), p. 1163–1172
Version Type	VoR
URL	https://doi.org/10.18910/57693
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

THE CHARACTERISTIC RANK AND CUP-LENGTH IN ORIENTED GRASSMANN MANIFOLDS

Dedicated to Professor Mamoru Mimura on the occasion of his 77-th birthday

JÚLIUS KORBAŠ

(Received April 2, 2014, revised October 2, 2014)

Abstract

In the first part, this paper studies the characteristic rank of the canonical oriented k -plane bundle over the Grassmann manifold $\tilde{G}_{n,k}$ of oriented k -planes in Euclidean n -space. It presents infinitely many new exact values if $k = 3$ or $k = 4$, as well as new lower bounds for the number in question if $k \geq 5$. In the second part, these results enable us to improve on the general upper bounds for the \mathbb{Z}_2 -cup-length of $\tilde{G}_{n,k}$. In particular, for $\tilde{G}_{2t,3}$ ($t \geq 3$) we prove that the cup-length is equal to $2^t - 3$, which verifies the corresponding claim of Tomohiro Fukaya's conjecture from 2008.

1. Introduction and some preliminaries

Given a real vector bundle α over a path-connected CW -complex X , the *characteristic rank of α* , denoted $\text{charrank}(\alpha)$, is defined to be ([6]) the greatest integer q , $0 \leq q \leq \dim(X)$, such that every cohomology class in $H^j(X)$, $0 \leq j \leq q$, is a polynomial in the Stiefel–Whitney classes $w_i(\alpha) \in H^i(X)$. Here and elsewhere in this paper, we write $H^i(X)$ instead of $H^i(X; \mathbb{Z}_2)$.

In particular, if TM is the tangent bundle of a smooth closed connected manifold M , then $\text{charrank}(TM)$ is nothing but the *characteristic rank of M* , denoted $\text{charrank}(M)$; this homotopy invariant of smooth closed connected manifolds was introduced, and in some cases also computed, in [3]. Results on the characteristic rank of vector bundles over the Stiefel manifolds can be found in [4]. The characteristic rank is useful, for instance, in studying the cup-length of a given space (see [3], [6], and also Section 3 of the present paper).

It is readily seen that the characteristic rank of the canonical k -plane bundle $\gamma_{n,k}$ (briefly γ) over the Grassmann manifold $G_{n,k}$ ($k \leq n - k$) of all k -dimensional vector subspaces in \mathbb{R}^n is equal to $\dim(G_{n,k}) = k(n - k)$. Indeed, as is well known ([1]), for

2010 Mathematics Subject Classification. Primary 57R20; Secondary 55R25.

Part of this research was carried out while the author was a member of the research teams 1/0330/13 and 2/0029/13 supported in part by the grant agency VEGA (Slovakia).

the \mathbb{Z}_2 -cohomology algebra $H^*(G_{n,k})$ we can write

$$(1.1) \quad H^*(G_{n,k}) = \mathbb{Z}_2[w_1, \dots, w_k]/I_{n,k},$$

where $\dim(w_i) = i$ and the ideal $I_{n,k}$ is generated by the k homogeneous components of $(1 + w_1 + \dots + w_k)^{-1}$ in dimensions $n-k+1, \dots, n$; here the indeterminate w_i is a representative of the i -th Stiefel–Whitney class $w_i(\gamma)$ in the quotient algebra $H^*(G_{n,k})$. For the latter class $w_i(\gamma)$, we shall also use w_i as an abbreviation.

In contrast to the situation for $G_{n,k}$, the \mathbb{Z}_2 -cohomology algebra $H^*(\tilde{G}_{n,k})$ ($k \leq n-k$) of the “oriented” Grassmann manifold $\tilde{G}_{n,k}$ of all *oriented* k -dimensional vector subspaces in \mathbb{R}^n is in general unknown. Since $\tilde{G}_{n,1}$ can be identified with the $(n-1)$ -dimensional sphere, and the complex quadrics $\tilde{G}_{n,2}$ are also well understood special cases, we shall suppose that $k \geq 3$ throughout the paper.

In Section 2, we derive infinitely many new exact values if $k = 3$ or $k = 4$, as well as new lower bounds for the characteristic rank of the canonical oriented k -plane bundle $\tilde{\gamma}_{n,k}$ (briefly $\tilde{\gamma}$) over $\tilde{G}_{n,k}$ if $k \geq 5$. As a consequence, for odd n , we also obtain better bounds (as compared to those known from [3, p. 73]) on the invariant $\text{charrank}(\tilde{G}_{n,k})$. Then, in Section 3, our results on the characteristic rank of $\tilde{\gamma}$ enable us to improve on the general upper bounds for the \mathbb{Z}_2 -cup-length of $\tilde{G}_{n,k}$. In particular, for $\tilde{G}_{2t,3}$ ($t \geq 3$) we prove that the cup-length is equal to $2^t - 3$; this verifies the corresponding claim of Fukaya’s conjecture [2, Conjecture 1.2].

2. On the characteristic rank of the canonical vector bundle over $\tilde{G}_{n,k}$

Using the notation introduced in Section 1, we now state our main result.

Theorem 2.1. *For the canonical k -plane bundle $\tilde{\gamma}_{n,k}$ over the oriented Grassmann manifold $\tilde{G}_{n,k}$ ($3 \leq k \leq n-k$), with $2^{t-1} < n \leq 2^t$, we have*

$$(1) \quad \text{charrank}(\tilde{\gamma}_{n,3}) \begin{cases} = n-2 & \text{if } n = 2^t, \\ = n-5+i & \text{if } n = 2^t-i, i \in \{1, 2, 3\}, \\ \geq n-2 & \text{otherwise;} \end{cases}$$

$$(2) \quad \text{charrank}(\tilde{\gamma}_{n,4}) \begin{cases} = n-5+i & \text{if } n = 2^t-i, i \in \{0, 1, 2, 3\}, \\ \geq n-3 & \text{otherwise;} \end{cases}$$

(3) if $k \geq 5$, then $\text{charrank}(\tilde{\gamma}_{n,k}) \geq n-k+1$.

In addition, if n is odd, then the replacement of the canonical bundle $\tilde{\gamma}_{n,j}$ by the corresponding manifold $\tilde{G}_{n,j}$, in (1)–(3), gives the corresponding result on $\text{charrank}(\tilde{G}_{n,j})$.

We shall pass to a proof of this theorem after some preparations.

For the universal 2-fold covering $p: \tilde{G}_{n,k} \rightarrow G_{n,k}$ ($k \geq 3$), the pullback $p^*(\gamma)$ is $\tilde{\gamma}$, and for the induced homomorphism in cohomology we have that $p^*(w_i) = \tilde{w}_i$ for all i , where \tilde{w}_i is an abbreviated notation, used throughout the paper, for the Stiefel–Whitney class $w_i(\tilde{\gamma}_{n,k})$. Of course, now $\text{charrank}(\tilde{\gamma}_{n,k})$ is, in other words, the greatest

integer q , $0 \leq q \leq k(n - k)$, such that $p^*: H^j(G_{n,k}) \rightarrow H^j(\tilde{G}_{n,k})$ is surjective for all j , $0 \leq j \leq q$.

To the covering p there is associated a uniquely determined non-trivial line bundle ξ such that $w_1(\xi) = w_1(\gamma_{n,k})$. This yields ([5, Corollary 12.3]) an exact sequence of Gysin type,

$$(2.1) \quad \rightarrow H^{j-1}(G_{n,k}) \xrightarrow{w_1} H^j(G_{n,k}) \xrightarrow{p^*} H^j(\tilde{G}_{n,k}) \rightarrow H^j(G_{n,k}) \xrightarrow{w_1} .$$

As is certainly clear from the context, we write here and elsewhere $H^{j-1}(G_{n,k}) \xrightarrow{w_1} H^j(G_{n,k})$ for the homomorphism given by the cup-product with the Stiefel–Whitney class w_1 .

Thus $p^*: H^j(G_{n,k}) \rightarrow H^j(\tilde{G}_{n,k})$ is surjective if and only if the subgroup

$$(2.2) \quad \text{Ker}(H^j(G_{n,k}) \xrightarrow{w_1} H^{j+1}(G_{n,k}))$$

vanishes.

By (1.1), a \mathbb{Z}_2 -polynomial

$$(2.3) \quad p_j(w_1, \dots, w_k) = \sum_{i_1+2i_2+\dots+ki_k=j} a_{i_1, i_2, \dots, i_k} w_1^{i_1} w_2^{i_2} \cdots w_k^{i_k},$$

with at least one coefficient $a_{i_1, i_2, \dots, i_k} \in \mathbb{Z}_2$ nonzero, represents zero in $H^j(G_{n,k})$ precisely when there exist some polynomials $q_i(w_1, \dots, w_k)$ (briefly q_i) such that

$$p_j = q_{j-n+k-1} \bar{w}_{n-k+1} + \cdots + q_{j-n} \bar{w}_n,$$

where $\bar{w}_i(w_1, \dots, w_k)$ (briefly \bar{w}_i) is the homogeneous component of $(1 + w_1 + \cdots + w_k)^{-1} = 1 + w_1 + \cdots + w_k + (w_1 + \cdots + w_k)^2 + \cdots$ in dimension i . Of course, we have

$$(2.4) \quad \bar{w}_i = w_1 \bar{w}_{i-1} + w_2 \bar{w}_{i-2} + \cdots + w_k \bar{w}_{i-k}.$$

We note that \bar{w}_i represents the i -th dual Stiefel–Whitney class of γ , that is, the Stiefel–Whitney class $w_i(\gamma_{n,k}^\perp) \in H^i(G_{n,k})$ of the complementary $(n-k)$ -plane bundle $\gamma_{n,k}^\perp$ (briefly γ^\perp); we shall also use \bar{w}_i as an abbreviation for $w_i(\gamma^\perp)$.

By what we have said, no nonzero homogeneous polynomials in w_1, \dots, w_k in dimensions $\leq n - k$ represent 0 in cohomology; therefore the kernel (2.2) is the zero-subgroup for all $j \leq n - k - 1$, and we always have

$$(2.5) \quad \text{charrank}(\tilde{\gamma}_{n,k}) \geq n - k - 1.$$

For the Grassmann manifold $G_{n,k}$ ($3 \leq k \leq n - k$), let $g_i(w_2, \dots, w_k)$ (briefly just g_i) denote the reduction of $\bar{w}_i(w_1, \dots, w_k)$ modulo w_1 .

The following fact is obvious.

Fact 2.2. *Let $r < k$. If $\bar{w}_i(w_1, \dots, w_k) = 0$, then also $\bar{w}_i(w_1, \dots, w_r) = 0$ and, similarly, if $g_i(w_2, \dots, w_k) = 0$, then also $g_i(w_2, \dots, w_r) = 0$.*

For $G_{n,k}$, the formula (2.4) implies that $g_i = w_2 g_{i-2} + w_3 g_{i-3} + \dots + w_k g_{i-k}$, and an obvious induction proves that

$$(2.6) \quad g_i = w_2^{2^s} g_{i-2 \cdot 2^s} + w_3^{2^s} g_{i-3 \cdot 2^s} + \dots + w_k^{2^s} g_{i-k \cdot 2^s}$$

for all s such that $i \geq 1 + k \cdot 2^s$.

In our proof of Theorem 2.1, we shall use the following.

Lemma 2.3. *For the Grassmann manifold $G_{n,k}$ ($3 \leq k \leq n-k$),*

- (i) $g_i(w_2, w_3) = 0$ if and only if $i = 2^t - 3$ for some $t \geq 2$;
- (ii) $g_i(w_2, w_3, w_4) = 0$ if and only if $i = 2^t - 3$ for some $t \geq 2$;
- (iii) if $k \geq 5$ then, for $i \geq 2$, we never have $g_i(w_2, \dots, w_k) = 0$.

Proof of Lemma 2.3. PART (i). In view of Fact 2.2, the equality

$$g_{2^t-3}(w_2, w_3) = 0$$

for $t \geq 2$ (already proved, in a different way, in [3]) is a direct consequence of the equality $g_{2^t-3}(w_2, w_3, w_4) = 0$; the latter will be verified in the proof of Part (ii).

Now we prove that $g_i(w_2, w_3) \neq 0$ for $i \neq 2^t - 3$. For $i < 14$, this is readily verified by a direct calculation. Let us suppose that $i \geq 14$. Then, for each i , there exists a uniquely determined integer λ ($\lambda \geq 2$) such that $2^\lambda < i/3 \leq 2^{\lambda+1}$. For proving the claim, it suffices to verify it in each of the following three situations:

- (a) $3 \cdot 2^\lambda + 1 \leq i < 5 \cdot 2^\lambda$;
- (b) $i = 5 \cdot 2^\lambda$;
- (c) $5 \cdot 2^\lambda + 1 \leq i \leq 6 \cdot 2^\lambda$.

CASE (a). By (2.6), we have

$$g_i = w_2^{2^\lambda} g_{i-2 \cdot 2^\lambda} + w_3^{2^\lambda} g_{i-3 \cdot 2^\lambda}.$$

By our assumption, i is not of the form $2^j - 3$, and one sees that $i - 2 \cdot 2^\lambda$ or $i - 3 \cdot 2^\lambda$ is not of the form $2^j - 3$. If just one of the numbers $i - 2 \cdot 2^\lambda$, $i - 3 \cdot 2^\lambda$ is not of the form $2^j - 3$, then it suffices to apply the inductive hypothesis (and the proved fact that $g_{2^t-3} = 0$ for $t \geq 2$). If none of the numbers $i - 2 \cdot 2^\lambda$ and $i - 3 \cdot 2^\lambda$ have the form $2^j - 3$ then, by the inductive hypothesis, both $g_{i-2 \cdot 2^\lambda}$ and $g_{i-3 \cdot 2^\lambda}$ are nonzero and, as a consequence, also $g_i \neq 0$. Indeed, now a necessary condition for $g_i = 0$ is that $g_{i-2 \cdot 2^\lambda}$ should contain the term $w_3^{2^\lambda}$; but the latter implies that $i - 2 \cdot 2^\lambda \geq 3 \cdot 2^\lambda$, thus $i \geq 5 \cdot 2^\lambda$, which is not fulfilled.

CASE (b). One directly sees, from $(1 + w_2 + w_3)^{-1} = 1 + w_2 + w_3 + (w_2 + w_3)^2 + \dots$, that

$$g_{5 \cdot 2^\lambda} = w_2^{5 \cdot 2^{\lambda-1}} + \text{different terms} \neq 0.$$

CASE (c). By a repeated use of (2.6), we now have that

$$\begin{aligned}
 g_i &= w_2^{2^\lambda} (w_2^{2^\lambda} g_{i-4 \cdot 2^\lambda} + w_3^{2^\lambda} g_{i-5 \cdot 2^\lambda}) \\
 &\quad + w_3^{2^\lambda} (w_2^{2^{\lambda-1}} g_{i-4 \cdot 2^\lambda} + w_3^{2^{\lambda-1}} g_{i-9 \cdot 2^{\lambda-1}}) \\
 (2.7) \quad &= (w_2^{2^{\lambda+1}} + w_2^{2^{\lambda-1}} w_3^{2^\lambda}) g_{i-4 \cdot 2^\lambda} \\
 &\quad + w_2^{2^\lambda} w_3^{2^\lambda} g_{i-5 \cdot 2^\lambda} + w_3^{3 \cdot 2^{\lambda-1}} g_{i-9 \cdot 2^{\lambda-1}}.
 \end{aligned}$$

If $i - 4 \cdot 2^\lambda$ is of the form $2^j - 3$, then one verifies that $i - 5 \cdot 2^\lambda$ or $i - 9 \cdot 2^{\lambda-1}$ is not of the form $2^j - 3$. If just one of the numbers $i - 5 \cdot 2^\lambda$, $i - 9 \cdot 2^{\lambda-1}$ is not of the form $2^j - 3$, then it suffices to apply the inductive hypothesis (and the proved fact that $g_{2^t-3} = 0$ for $t \geq 2$). If none of the numbers $i - 5 \cdot 2^\lambda$ and $i - 9 \cdot 2^{\lambda-1}$ have the form $2^j - 3$ then, by the inductive hypothesis, both $g_{i-5 \cdot 2^\lambda}$ and $g_{i-9 \cdot 2^{\lambda-1}}$ are nonzero and, as a consequence, also $g_i \neq 0$. Indeed, now a necessary condition for $g_i = 0$ is that $g_{i-5 \cdot 2^\lambda}$ should contain the term $w_3^{2^{\lambda-1}}$; but the latter implies that $i - 5 \cdot 2^\lambda \geq 3 \cdot 2^{\lambda-1}$, thus $i > 6 \cdot 2^\lambda$, which is not fulfilled.

Finally, let us suppose that $i - 4 \cdot 2^\lambda$ is not of the form $2^j - 3$ (thus, by the inductive hypothesis, $g_{i-4 \cdot 2^\lambda} \neq 0$). Then, in order to have $g_i = 0$, it would be necessary to “eliminate” $w_2^{2^{\lambda+1}} g_{i-4 \cdot 2^\lambda}$. This would only be possible if $g_{i-5 \cdot 2^\lambda}$ contains $w_2^{2^\lambda}$, thus if $i - 5 \cdot 2^\lambda \geq 2 \cdot 2^\lambda$, hence $i \geq 7 \cdot 2^\lambda$, which is not fulfilled, or if $g_{i-9 \cdot 2^{\lambda-1}}$ contains $w_2^{2^{\lambda+1}}$, thus if $i - 9 \cdot 2^{\lambda-1} \geq 2 \cdot 2^{\lambda+1}$, hence $i \geq 17 \cdot 2^{\lambda-1} \geq 8 \cdot 2^\lambda$, which is not fulfilled.

PART (ii). We first prove that $g_{2^t-3}(w_2, w_3, w_4) = 0$ for $t \geq 2$. We directly see that $g_1 = 0$ and $g_5 = 0$. For $t \geq 3$ we have, by (2.6) and the inductive hypothesis, that

$$(2.8) \quad g_{2^t-3} = w_2^{2^{t-3}} g_{3 \cdot 2^{t-2}-3} + w_3^{2^{t-3}} g_{5 \cdot 2^{t-3}-3}.$$

Thus, again by (2.6) and the inductive hypothesis, we obtain

$$\begin{aligned}
 g_{2^t-3} &= w_2^{2^{t-3}} (w_2^{2^{t-3}} g_{2^{t-1}-3} + w_3^{2^{t-3}} g_{3 \cdot 2^{t-3}-3} + w_4^{2^{t-3}} g_{2^{t-2}-3}) \\
 (2.9) \quad &\quad + w_3^{2^{t-3}} (w_2^{2^{t-3}} g_{3 \cdot 2^{t-3}-3} + w_3^{2^{t-3}} g_{2^{t-2}-3} + w_4^{2^{t-3}} g_{2^{t-3}-3}) \\
 &= 0.
 \end{aligned}$$

PART (iii). First, one readily calculates that $g_5(w_2, w_3, w_4, w_5) = w_5 \neq 0$. Then for completing the proof of Part (iii), in view of what we have proved up to now and Fact 2.2, it suffices to verify that $g_{2^t-3}(w_2, w_3, w_4, w_5) \neq 0$ for $t \geq 4$. For this, we show that $h_{2^t-3}(w_4, w_5)$ is nonzero for $t \geq 4$, where $h_{2^t-3}(w_4, w_5)$ (briefly h_{2^t-3}) is obtained by reducing $g_{2^t-3}(w_2, w_3, w_4, w_5)$ modulo w_2 and w_3 . Indeed, by (2.6), we see that

$$(2.10) \quad h_{2^t-3} = w_4^{2^{t-3}} h_{2^{t-1}-3} + w_5^{2^{t-3}} h_{3 \cdot 2^{t-3}-3}.$$

By the inductive hypothesis, $h_{2^{t-1}-3} \neq 0$; thus a necessary condition for $h_{2^t-3} = 0$ is

that the term $w_5^{2^{t-3}}$ should be contained in $h_{2^{t-1}-3}$. But this would require that $2^{t-1}-3 \geq 5 \cdot 2^{t-3}$, which is not fulfilled. This finishes the proof of Lemma 2.3. \square

The announced preparations are finished, and we can prove Theorem 2.1.

Proof of Theorem 2.1. Recall that, for $G_{n,k}$ ($k \leq n-k$) there are no polynomial relations among w_1, w_2, \dots, w_k in dimensions $\leq n-k$, and a nonzero polynomial $p_{n-k+1} \in \mathbb{Z}_2[w_1, w_2, \dots, w_k]$ represents $0 \in H^{n-k+1}(G_{n,k})$ if and only if $p_{n-k+1} = \bar{w}_{n-k+1}$. From the Gysin sequence (2.1) we see that

$$(2.11) \quad \begin{aligned} p^*: H^{n-k}(G_{n,k}) &\rightarrow H^{n-k}(\tilde{G}_{n,k}) \quad \text{is surjective} \\ \text{and, equivalently, } \text{charrank}(\tilde{\gamma}_{n,k}) &\geq n-k, \\ \text{precisely when } g_{n-k+1}(w_2, \dots, w_k) &\neq 0. \end{aligned}$$

We still observe that, for $3 \leq k \leq n-k$,

$$(2.12) \quad \text{if } g_{n-k+1} \neq 0 \quad \text{and} \quad g_{n-k+2} \neq 0, \quad \text{then} \quad \text{charrank}(\tilde{\gamma}_{n,k}) \geq n-k+1.$$

Indeed, by the criterion (2.11), we have $\text{charrank}(\tilde{\gamma}_{n,k}) \geq n-k$. To show that this inequality can be improved as claimed in (2.12), let us suppose that a nonzero polynomial $p_{n-k+1} \in \mathbb{Z}_2[w_1, \dots, w_k]$ represents an element in $\text{Ker}(H^{n-k+1}(G_{n,k}) \xrightarrow{w_1} H^{n-k+2}(G_{n,k}))$. Thus $w_1 p_{n-k+1}$ represents $0 \in H^{n-k+2}(G_{n,k})$. This means that, in $\mathbb{Z}_2[w_1, \dots, w_k]$, $w_1 p_{n-k+1} = a w_1 \bar{w}_{n-k+1} + b \bar{w}_{n-k+2}$, where $a = 1$ or $b = 1$. Of course, since $g_{n-k+2} \neq 0$, necessarily $b = 0$, $a = 1$. But the polynomial equality $w_1 p_{n-k+1} = w_1 \bar{w}_{n-k+1}$ implies that $p_{n-k+1} = \bar{w}_{n-k+1}$, thus p_{n-k+1} represents $0 \in H^{n-k+1}(G_{n,k})$. So we see that $\text{Ker}(H^{n-k+1}(G_{n,k}) \xrightarrow{w_1} H^{n-k+2}(G_{n,k})) = 0$ and $\text{charrank}(\tilde{\gamma}_{n,k}) \geq n-k+1$.

Proof of Parts (1) and (2). By Lemma 2.3(i), (ii), $g_{n-k+1}(w_2, \dots, w_k)$ vanishes if $(n, k) \in \{(2^t - 1, 3), (2^t, 4)\}$. By the criterion (2.11), for these pairs (n, k) , the homomorphism $p^*: H^{n-k}(G_{n,k}) \rightarrow H^{n-k}(\tilde{G}_{n,k})$ is not surjective; thus, there is a non-Stiefel–Whitney generator in $H^{n-k}(\tilde{G}_{n,k})$ if $(n, k) \in \{(2^t - 1, 3), (2^t, 4)\}$, and we conclude that $\text{charrank}(\tilde{\gamma}_{2^t-1,3}) = 2^t - 5 = \text{charrank}(\tilde{\gamma}_{2^t,4})$.

Of course, again by Lemma 2.3 (i), (ii), we have $g_{n-k+1}(w_2, \dots, w_k) \neq 0$ if $(n, k) \notin \{(2^t - 1, 3), (2^t, 4)\}$ and $k \in \{3, 4\}$. By the criterion (2.11), for these pairs (n, k) , the homomorphism $p^*: H^{n-k}(G_{n,k}) \rightarrow H^{n-k}(\tilde{G}_{n,k})$ is surjective; so we have that $\text{charrank}(\tilde{\gamma}_{n,3}) \geq n-3$ if $n \neq 2^t - 1$ and $\text{charrank}(\tilde{\gamma}_{n,4}) \geq n-4$ if $n \neq 2^t$.

To prove the result for $\tilde{G}_{2^t-2,3}$, we first recall (Lemma 2.3 (i)) that $g_{2^t-4} \neq 0$, $g_{2^t-3} = 0$, and $g_{2^t-2} \neq 0$. Thus $\bar{w}_{2^t-3} = w_1 p_{2^t-4}$ for some polynomial p_{2^t-4} . The latter cannot represent 0 in the cohomology group $H^{2^t-4}(G_{2^t-2,3})$; indeed, if p_{2^t-4} represents zero, then necessarily $p_{2^t-4} = \bar{w}_{2^t-4}$ (as polynomials), thus we have a relation $\bar{w}_{2^t-3} = w_1 \bar{w}_{2^t-4}$, which is impossible. This implies (see (2.1)) that $p^*: H^{2^t-4}(G_{2^t-2,3}) \rightarrow$

$H^{2^t-4}(\tilde{G}_{2^t-2,3})$ is not an epimorphism, thus $\text{charrank}(\tilde{\gamma}_{2^t-2,3}) \leq 2^t - 5$. By (2.11), since $g_{2^t-4} \neq 0$, we have $\text{charrank}(\tilde{\gamma}_{2^t-2,3}) \geq 2^t - 5$, which proves the claim for $\tilde{G}_{2^t-2,3}$. The result for $\tilde{G}_{2^t-1,4}$ can be derived in an analogous way.

Now we prove the claim for $\tilde{G}_{2^t-3,3}$. We have $g_{2^t-5} \neq 0$, $g_{2^t-4} \neq 0$, and $g_{2^t-3} = 0$. Thus $\bar{w}_{2^t-3} = w_1 p_{2^t-4}$ for some polynomial p_{2^t-4} . The latter cannot represent 0 in $H^{2^t-4}(G_{2^t-3,3})$. Indeed, if p_{2^t-4} represents zero, then $p_{2^t-4} = a w_1 \bar{w}_{2^t-5} + b \bar{w}_{2^t-4}$ in $\mathbb{Z}_2[w_1, w_2, w_3]$, with $a = 1$ or $b = 1$; as a consequence, we would have $\bar{w}_{2^t-3} = a w_1^2 \bar{w}_{2^t-5} + b w_1 \bar{w}_{2^t-4}$, which is impossible. From the Gysin sequence (2.1), we see that $p^*: H^{2^t-4}(G_{2^t-3,3}) \rightarrow H^{2^t-4}(\tilde{G}_{2^t-3,3})$ is not an epimorphism. Thus $\text{charrank}(\tilde{\gamma}_{2^t-3,3}) \leq 2^t - 5$. At the same time, by the observation (2.12), we have $\text{charrank}(\tilde{\gamma}_{2^t-3,3}) \geq 2^t - 5$. This proves the claim for $\tilde{G}_{2^t-3,3}$; again, the result for $\tilde{G}_{2^t-2,4}$ can be proved analogously.

We pass to proving the result for $\tilde{G}_{2^t,3}$. We know that none of g_{2^t-2} , g_{2^t-1} , g_{2^t} vanishes. By (2.12), we see that $\text{charrank}(\tilde{\gamma}_{2^t,3}) \geq 2^t - 2$. At the same time, since $w_2 g_{2^t-2} + g_{2^t} = w_3 g_{2^t-3} = 0$, we have (as for \mathbb{Z}_2 -polynomials) $w_2 \bar{w}_{2^t-2} + \bar{w}_{2^t} = w_1 p_{2^t-1}$, for some polynomial p_{2^t-1} . The latter cannot represent 0 in $H^{2^t-1}(G_{2^t,3})$. Indeed, p_{2^t-1} representing 0 would mean that $p_{2^t-1} = a w_1 \bar{w}_{2^t-2} + b \bar{w}_{2^t-1}$ (where $a = 1$ or $b = 1$), which implies an impossible relation $\bar{w}_{2^t} = (a w_1^2 + w_2) \bar{w}_{2^t-2} + b w_1 \bar{w}_{2^t-1}$. Thus p_{2^t-1} represents a nonzero element in

$$\text{Ker}(H^{2^t-1}(G_{2^t,3}) \xrightarrow{w_1} H^{2^t}(G_{2^t,3})),$$

and we have that $\text{charrank}(\tilde{\gamma}_{2^t,3}) \leq 2^t - 2$, which proves the claim for $\tilde{G}_{2^t,3}$.

Now we shall pass to $\tilde{G}_{2^t-3,4}$. Then we have $g_{2^t-6} \neq 0$, $g_{2^t-5} \neq 0$, $g_{2^t-4} \neq 0$, $g_{2^t-3} = 0$. By (2.12), we know that $\text{charrank}(\tilde{\gamma}_{2^t-3,4}) \geq 2^t - 6$. To improve this inequality, we now show that

$$(2.13) \quad \text{Ker}(H^{2^t-5}(G_{2^t-3,4}) \xrightarrow{w_1} H^{2^t-4}(G_{2^t-3,4})) = 0.$$

Let a nonzero polynomial p_{2^t-5} represent an element in the kernel under question. This means that the polynomial $w_1 p_{2^t-5}$ represents 0 in $H^{2^t-4}(G_{2^t-3,4})$. Consequently, $w_1 p_{2^t-5} = a w_1^2 \bar{w}_{2^t-6} + b w_2 \bar{w}_{2^t-6} + c w_1 \bar{w}_{2^t-5} + d \bar{w}_{2^t-4}$ in $\mathbb{Z}_2[w_1, w_2, w_3, w_4]$, where at least one of the coefficients a, b, c, d is equal to 1. We cannot have $b = d = 1$, because $w_2 \bar{w}_{2^t-6} + \bar{w}_{2^t-4}$ reduced mod w_1 is $w_2 g_{2^t-6} + g_{2^t-4}$ and, as we shall see in the next step, the latter is not zero. Indeed, let z_i denote the reduction of g_i modulo w_2 and w_3 . Then $w_2 g_{2^t-6} + g_{2^t-4}$ reduced modulo w_2 and w_3 is equal to z_{2^t-4} . A direct calculation gives that $z_{12} = w_4^3$ and, by induction, we obtain that $z_{2^t-4} = w_4^{2^{t-3}} z_{2^{t-1}-4} = w_4^{2^{t-3}} w_4^{2^{t-3}-1} = w_4^{2^{t-2}-1} \neq 0$. So we have shown that $w_2 g_{2^t-6} + g_{2^t-4} \neq 0$. One also readily sees that it is impossible to have $(b, d) = (1, 0)$ as well as $(b, d) = (0, 1)$. Thus the only remaining possibility is $(b, d) = (0, 0)$. So we obtain $w_1 p_{2^t-5} = w_1(a w_1 \bar{w}_{2^t-6} + c \bar{w}_{2^t-5})$, thus $p_{2^t-5} = a w_1 \bar{w}_{2^t-6} + c \bar{w}_{2^t-5}$. This means that p_{2^t-5} represents 0 in $H^{2^t-5}(G_{2^t-3,4})$, and we have proved the equality (2.13).

As a consequence, we have $\text{charrank}(\tilde{\gamma}_{2^t-3,4}) \geq 2^t - 5$. Since $g_{2^t-3} = 0$, we have that $\tilde{w}_{2^t-3} = w_1 p_{2^t-4}$ for some polynomial p_{2^t-4} , about which one can show (similarly to situations of this type dealt with above) that it cannot represent zero in cohomology. Thus we also have $\text{charrank}(\tilde{\gamma}_{2^t-3,4}) \leq 2^t - 5$, and finally $\text{charrank}(\tilde{\gamma}_{2^t-3,4}) = 2^t - 5$.

In view of Lemma 2.3 (i), (ii), for all the manifolds $\tilde{G}_{n,3}$ and $\tilde{G}_{n,4}$ that remain, the observation (2.12) implies the lower bounds stated in Theorem 2.1 (1), (2).

Proof of Part (3). For $k \geq 5$, Lemma 2.3 (iii) says that $g_{n-k+1} \neq 0$ and $g_{n-k+2} \neq 0$; thus the observation (2.12) applies, giving that $\text{charrank}(\tilde{\gamma}_{n,k}) \geq n - k + 1$ in all these cases.

To prove the final statement of the theorem, it suffices to recall that, if n is odd, then (see [3, p. 72]) we have $w_i(\tilde{G}_{n,k}) = \tilde{w}_i + Q_i(\tilde{w}_2, \dots, \tilde{w}_{i-1})$ ($i \leq k$), where Q_i is a \mathbb{Z}_2 -polynomial, and $\tilde{w}_j = w_j(\tilde{G}_{n,k}) + P_j(w_2(\tilde{G}_{n,k}), \dots, w_{j-1}(\tilde{G}_{n,k}))$ ($j \geq 2$) for some \mathbb{Z}_2 -polynomial P_j .

The proof of Theorem 2.1 is finished. \square

3. On the cup-length of the Grassmann manifold $\tilde{G}_{n,k}$

Recall that the \mathbb{Z}_2 -cup-length, $\text{cup}(X)$, of a compact path connected topological space X is defined to be the maximum of all numbers c such that there exist, in positive degrees, cohomology classes $a_1, \dots, a_c \in H^*(X)$ such that their cup product $a_1 \cdots a_c$ is nonzero. In [3] and, independently, in [2], it was proved that for $t \geq 3$ we have

$$\text{cup}(\tilde{G}_{2^t-1,3}) = 2^t - 3;$$

in addition, [3, Theorem 1.3] gave certain upper bounds for $\text{cup}(\tilde{G}_{n,k})$.

Now Theorem 2.1 implies the following exact result for $\tilde{G}_{2^t,3}$, confirming the corresponding claim in Fukaya's conjecture [2, Conjecture 1.2], or improvements on the results of [3, Theorem 1.3] in the other cases.

Theorem 3.1. *For the oriented Grassmann manifold $\tilde{G}_{n,k}$ ($3 \leq k \leq n - k$), with $2^{t-1} < n \leq 2^t$, we have*

$$(1) \quad \text{cup}(\tilde{G}_{n,3}) \begin{cases} = n - 3 & \text{if } n = 2^t, \\ \leq (2n - 3 - i)/2 & \text{if } n = 2^t - i, i \in \{2, 3\}, \\ \leq n - 3 & \text{otherwise, for } n \neq 2^t - 1; \end{cases}$$

$$(2) \quad \text{cup}(\tilde{G}_{n,4}) \begin{cases} \leq (3n - 10 - i)/2 & \text{if } n = 2^t - i, i \in \{0, 1, 2, 3\}, \\ \leq (3n - 12)/2 & \text{otherwise}; \end{cases}$$

$$(3) \quad \text{if } k \geq 5, \text{ then } \text{cup}(\tilde{G}_{n,k}) \leq (k - 1)(n - k)/2.$$

Proof. For a connected finite CW -complex X , let r_X denote the smallest positive integer such that $\tilde{H}^{r_X}(X) \neq 0$. In the case that such an integer does not exist, that is, all the reduced cohomology groups $\tilde{H}^i(X)$ ($1 \leq i \leq \dim(X)$) vanish, we set $r_X =$

$\dim(X) + 1$; thus always $r_X \geq 1$. To obtain the upper bounds stated in the theorem, we use the following generalization of [3, Theorem 1.1].

Theorem 3.2 (A. Naolekar–A. Thakur [6]). *Let X be a connected closed smooth d -dimensional manifold. Let ξ be a vector bundle over X satisfying the following: there exists j , $j \leq \text{charrank}_X(\xi)$, such that every monomial $w_{i_1}(\xi) \cdots w_{i_r}(\xi)$, $0 \leq i_t \leq j$, in dimension d vanishes. Then*

$$\text{cup}(X) \leq 1 + \frac{d - j - 1}{r_X}.$$

For the manifold $\tilde{G}_{n,k}$, every top-dimensional monomial in the Stiefel–Whitney classes of the canonical bundle $\tilde{\gamma}_{n,k}$ vanishes (indeed, if a top-dimensional monomial in the Stiefel–Whitney classes of $\tilde{\gamma}_{n,k}$ does not vanish, then it is a p^* -image of the corresponding non-vanishing top-dimensional monomial in the Stiefel–Whitney classes of $\gamma_{n,k}$; due to Poincaré duality, the latter monomial can be replaced with a monomial divisible by $w_1(\gamma_{n,k})$; but p^* maps this monomial to zero). Now the upper bounds stated in Theorem 3.1 are obtained by taking $X = \tilde{G}_{n,k}$ ($3 \leq k \leq n - k$), $\xi = \tilde{\gamma}_{n,k}$, and j equal to the right-hand side of the corresponding (in)equality given in Theorem 2.1.

For $\tilde{G}_{2^t,3}$, it was proved in [3, p. 77] that $w_2(\tilde{\gamma})^{2^t-4}$ does not vanish. This implies that $\text{cup}(\tilde{G}_{2^t,3}) \geq 2^t - 3$; this lower bound coincides with the upper bound proved above. The proof is finished. \square

ACKNOWLEDGEMENTS. The author thanks Peter Zvengrowski and the referee for useful comments related to the presentation of this paper.

References

- [1] A. Borel: *La cohomologie mod 2 de certains espaces homogènes*, Comment. Math. Helv. **27** (1953), 165–197.
- [2] T. Fukaya: *Gröbner bases of oriented Grassmann manifolds*, Homology, Homotopy Appl. **10** (2008), 195–209.
- [3] J. Korbaš: *The cup-length of the oriented Grassmannians vs a new bound for zero-cobordant manifolds*, Bull. Belg. Math. Soc. Simon Stevin **17** (2010), 69–81.
- [4] J. Korbaš, A.C. Naolekar and A.S. Thakur: *Characteristic rank of vector bundles over Stiefel manifolds*, Arch. Math. (Basel) **99** (2012), 577–581.
- [5] J.W. Milnor and J.D. Stasheff: *Characteristic Classes*, Princeton Univ. Press, Princeton, NJ, 1974.
- [6] A.C. Naolekar and A.S. Thakur: *Note on the characteristic rank of vector bundles*, Math. Slovaca **64** (2014), 1525–1540, arXiv:1209.1507v1 [math.AT].

Faculty of Mathematics, Physics, and Informatics
Comenius University
Mlynská dolina
SK-842 48 Bratislava
Slovakia
and
Mathematical Institute of SAS
Štefánikova 49
SK-814 73 Bratislava
Slovakia
e-mail: korbas@fmph.uniba.sk