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0. Introduction

A special structure of the orbit space is known for typical examples of
piecewise continuous maps of intervals to themselves, such as beta transforma-
tions among number theoretic transformations, and some unimodal linear
maps among continuous maps of intervals. That structure is a kind of irre-
ducible Markov property but not of finite type. The order of Markov pro-
perty is finite locally but unbounded globally. In such typical examples, there
appears a function of the form

(1) D(t) = 1—ag—af’— -

with nonnegative integer coefficients a, ([4,12]), which is the reciprocal of the
Artin-Mazur zeta function, whose minimal nonnegative zero is given as e*
in terms of the topological entropy % of the given system, and which can be
interpreted as the Fredholm determinant of the Perron-Frobenius operator
associated with the system ([12]).

We shall define a class of one sided shift transformations in Section 1,
for the special cases of which the properties stated above are simultaneously
verified. These special cases were introduced in a previous paper [11]. They
are images of the towers (or sky-scrapers) over shifts as is stated in Theorem
1 in Section 2. The formula (1) is valid for these special cases called shifts
with free orbit basis. There the coefficient 4, has the meaning that it is the
number of words of length # in the orbit basis. And the power series D()
in the typical examples are never meromorphic unless they are rational func-
tions as is shown in Remark 3 of Section 1.

The topological entropy of shifts with free orbit basis and the towers as-
sociated with them is computed in Theorem 2 of Section 3, after the defini-
tion of topological entropy for noncompact dynamical systems is given.

Next, it turns out that any piecewise continuous map f can be realized as
a union of shifts with orbit basis (Theorem 3 stated in Section 4). Some con-
crete examples are given at the end of that section. Furthermore, we shall
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define the “boundary” X of the two sided sequence X space realizing f and
show that it is negligible if it is measured by topological entropy. The bound-
ary comes from the gap between X and the image of the associated tower in
the two sided sequence space (Theorem 4 stated in Section 4). The boundary
0X is something like the Martin boundary of Markov chain. The final section
5 is devoted to the proof of Theorems 3 and 4.

The results stated in Theorem 3 are obtained in [4, 9, 10] for beta trans-
formations and in [7] for unimodal continuous maps by Shinada. Further-
more, the explicit form of the orbit basis is obtained from these works. For
example, the realization of a beta transformation admits an orbit basis

(2) B= {(go; E) gu—l) (1); a= O; 1) R é‘”“l, ”%1}

where §=(¢,) is the sequence called the expansion of one.

Another representation of the orbit basis (in our sence) is obtained in [5]
for unimodal continuous maps of intervals. Finally, the author admits that
the proof of a corollary to the main theorem in [10] was not complete because,
as it was pointed out by Hofbauer [2], the boundary 8X was not discussed
there and its negligibility was considered to be obvious, which turned out not

to be the case in closer scrunity.

1. Definitions and notations

We are concerned with shifts which are not necessarily topological.

DeFINITION 1. Let 4 be a finite or countably infinite set and o the shift
transformation on AV= {x=(x,),cn; X, €A}, i.c.
( 1 ) (G'x),, = Xp11 (nEN) .

The shift transformation on AZ will be denoted by . A pair (X, o) or (X, &)
consisting of a g-invariant or s-invariant set X or X and the restriction of &
or 5 to X or X, denoted again by & or g, is called (one-sided or two-sided) shift,
respectively. If A is endowed with a topology and X (or X) is compact, then
it is called a topological shift.

The following notations are necessary. For a one or two sided shift (X o),
(2) W(X) = {(%0, %y, =+ Xpey); & = (%) EX} (n-word set),
W(X) = G W,X)  (word set of X),
(3) Fix(X, ¢") = {x€X; o"x = a},
Per,(X, o) = Fix(X, ") n(UFix(X, o*);
Per(X, o) = ”L=JlPer,,(X, a).
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For a word u=(a,, -+, a,)€A",
0’1(41, ) an) = (az, ) an) ’
(4) lu| =n (length of u),
[u] = {x; (% *++, %,-1) = u} (w-cylinder set) .

Here the notation [#] will be used both in one sided and two sided cases. If
u=(ay, *, a,), v=_(by, +*+, b,) and x=(%,),en»

Uy = (al, ey a,, blr ey bm) ,

(5)

ux = (al) ctty Ay Koy Xy "') .

For a subset ¥ of the union QA",

(6) | W | = the number of elements of W& NV {o},
W]=_U [o],
(7) MW) = {x = (%,); (%i14)szeE[W] for any 7}
(Markov hull of W) .

DeriNiTION 2. If a shift (X, o) satisfies
(8) X:M(W)’ W= Wp+l(X)y

then, (X, o) is called a p-Markov shift. 'The minimal p that satisfies (8) will
be called the order of (X, o) and the set W=W,,,(X) is then called the struc-
ture set of (X, o).

If 4 is a discrete topological space, then Markov shifts satisfy the following
properties:

(a) If (X, o) is Markov, then X is a closed shift invariant set.

(b) For any topological shift (X, o),

(9)  X=nMW,X), XCMW,,(X)MW,X) (¢20).

DrrINITION 3. For one or two sided shift (X, o), the following quantity
is called the word entropy of (X, o):

(10) ent(X, o) = lim sup L log | W,(X)| €0, o] .
n.yco n

It is obvious that ent(X, o)=Ilim ent(M(W, (X)), ¢). The “lim sup” in the
right hand side of (10) can be replaced by “lim” and “inf” in virtue of the in-
clusion relation

(11) W\ n(X)C fuv; u€W(X), vEW,(X)} .
DerFiNITION 4. Let (X, o) be a shift and U: X—(—oco, 4c0]. Assume
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that

(12) 0X, U)=_ 31 exp[— 3} Ule')]

*eFix(x,o"
are well-defined. Then the following power series will be called the D-func-
tion of the pair (X, U):
o t”
(13) Dyo(t) = exp[— 23— Qu(X, U]

n=1

The radius of convergence of Dy ,(2) is given by exp[—P°(X, U)], where
(14) P(X, U) = lim sup 1 log O,(X, U).
n—>c0 n

ReMARK 1. The reciprocal 1/Dy ((¢) of the D-function for (X, 0) (0 stand-
ing for the constant function with value 0) is called Artin-Mazur zeta function
and the reciprocal 1/Dy y(t) is called Artin-Mazur-Ruelle zeta function, (cf. [6]).
But we shall call them as above for simplicity. They have their own meaning
as the Fredholm determinant in certain cases ([12, 4]).

DrrINITION 5. For a given one sided shift (X, o), define
(15) X = {x=(%)nez; @simnenEX forallnsz}.

The two sided shift thus obtained is called the natural extension of (X, o) to
the two sided shift.

Let us denote the natural projection of 4% to A¥ by

(16) (%) = (% )uen i &= (X,)nez -

Lemma 1. Let (X, o) be the natural extension of a one sided shift (X, o).
Then the follcwing statemenis are valid:

(i) =®)=X

(ii) If (X, o) is a topological shift, then, so is (X, &).

(iii) The projection = maps Per(X, &) bijectively to Per(X, o).

(iv) ent(X, &)=ent(X, o).

Proof. Since 6X=2X, for each x& X, one can find a sequence x*=(x%),cn»
kE N, such that gx*=x*"! for k=1 with x’=x. Define ¥=(&,),c, by &,=x5"
(n<0) and x,=x, (n=0). Then x&X and z(%)=x. To prove (ii), let us
introduce a map j: A25%— (7(67"%)),,enS(AY)V. Then j is an into homeomor-
phism and so the set X is homeomorphic to the closed subset j(X)= {(x"),cn
EXV; gx"=x""1(n=1)} of the compact set X». Hence, X is compact. Con-
sequently, (ii) is proved. The other assertions are obvious.

The term “natural extension” will sometimes be used for extensions of
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other quantities defined for a one sided shift to corresponding quantities for
the natural extension.

For instance, if (X, o) is given a Borel structure and p is an invariant pro-
bability measure for (X, o), then there may be the natural extension 7 of ux as
a shift invariant measure. In fact, the measure 7 is, if any, characterized by
the conditions

(17) mxp=p and GE=T.

If (M, f) is an invertible dynamical system and % is a homomorphism of (M,
f) to a one sided shift (X, &), then there is the natural extension k: (M, f)—
(X, ).

Now let us introduce the following notion.

DerFINITION 6. Let (X, o) be a one sided shift over an alphabet set A4
and reN. The shift (X, o) is said to admit an orbit basis (B, V) of order
7 if the following five conditions are satisfied:

(a) B is a subset of the word set W(X) of X and V is a subset of the pro-
duct set B,

(b) Let

(18) V,= {b, -, b,)eB"; b:--b,eW(X) (nz=1)}.

Then, for n>7,

(19) V,= {(y =+, b)eB"; (b; -+, b, )€V (1=iZn—r)}.
(c) Each sequence x in X can be represented as

(20) % = (o'bo)byby--

for some (b,),=c= M(V) and some 0=<1=<|b,]|.

(d) Conversely, the sequence defined by (20) belongs to X whenever
(8,)s2eEM(V) and 0=1<< | b, ]|.

(&) If (bu)uzo (br)uzeEM(V), 0=i<|by| and

(21) (obo)byb, -+ = bgbids -+,
then, ,=b§ when =0 and |o'b,| = | 5| when 7==0.

If =0, i.e. if V=B, then we shall call that a shift (X, o) admits a free
orbit basis B. If r=1, then the orbit basis (B, V) is said to be simple Markov.
The notion of free orbit basis is the only one that is essential as it will be shown
in Lemma 2 below.

RemaRk 2. The condition (e) is a sort of uniqueness condition for the
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expression (20). The precise formulation will be given as Theorem 1 in terms
of two sided shifts.

Let us give simple examples of shifts with free orbit basis. The proofs
of these examples are trivial and so are omitted but they show the essence of
the proof of Lemma 2 below.

Let us denote, for a given two sided shift (X, ) and a word ue W(X),

X(u) = {xEX’ (xm Tty xn-Hul—l) = u both for

(22) o
infinitely many #=>0 and <0} .

ExampLE 1. Let (X, &)=(M(W), &) be a two sided 1-Markov shift with
structure set W. Fix an alphabet a and denote X(a)=n(X(a)). Then the
shift (X(a), o) admits a free orbit basis

B = {(ay, *+, a,); n=0, ay = a, (a,, a)EW,
a,+a and (a,_y, a,)EW(im =1, -, n)} .

ExampLE 2. Let (X, &)=(M(W), 5) be an r-Markov shift with r=>2.
p=r and ueW,(X). Put X(u)=n(X(x)). Then the shift (X(u), o) admits
a free orbit basis B, where B is the collection of words (a,, -+, a,) € W(X) which
satisfy the following three conditions:

(a) m=pand (ay, -, a,-;)=u.

(b) (@m ***» Aprp-r)Fu (m=1; -, n).

(©) (@ s pry)EW (m=0, 1, .-, n).

Here we put a,,;=a;_, for i=1.
For a given two sided shift (X, o), denote

(23) X.. = {x€X; x€X(u) for each uc W({c"x; n€ Z})} .

Lemma 2. Let (X, o) be a shift with orbit basis (B, V') of order r=1 and
(X, ) its natural extension. Put X, .=n(X,.). Then (X, o) is the union of
its subshifts (X,, o) which admit free orbit bases.

Proof. It is obvious that
Xrec =“g7_ (Xrec) (u) M

Fix (83, -+, 8})€V, and put X(83, -+, b%)=n[(X,.c) (8%, -+, b7)]. Now let C be
the collection of words (b, -, b,) over B which satisfy the following three condi-
tions with b,,,=58? (:>0):

(a) n=rand (by, -+, b,_,)=(d3, -+, b).

() By s brr-r) £ (B3, -+, BY) (m=1, -+, m).

) m s bpi)EV (m=0, 1, -, n).
Finally, put
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B = {b, --- b,; (b, +**, b,)EC} .

Then it is obvious that B’ is a free orbit basis for the shift (X(83, -, 87), o).

2. Tower over a shift

In this section, we shall characterize shifts with orbit basis in terms of tower
construction. We shall consider shifts over alphabet sets 4 and B, and the
shifts will be denoted by o and 7, respectively.

DrerINITION 7. Let (Y, 7) be a shift over alphabet set B, and §: Y—>N
be a function. Define

(1) Y= {(y,n); yeY,neN 0=n<d(y)}
and 7°: Y*—Y?® by

(y, n+1) if (y,n4+1)eY?
(ty, 0) otherwise .

(2) (5 = {

The pair (Y?, 7°) is called a tower over (Y, ) with the ceiling function 0.

Let (X, o) be a shift over alphabet set 4 which admits an orbit basis (B,
V). Put

(3) Y=MV)={y = uezEB% (Iu = V) EV (n€Z)}

(4) 0) = 1yl if y=(y)
and define a map ¢: Y®—A4Z as follows:

(5) i(y, m) = o"iy(y)
where

yin— 23 ly;1) i 0=n— 33 [y;[<I|yl
0=j<k 0<j<k

(6) i) )= and n0
yi(n+ Z ly;l) if 0>n4 2 [yl >— |3l
0>j>k 0>ji>k
and n<<0

From now on, we shall assume that the alphabet set 4 is a Hausdorff space
and introduce a topology on the set UA" which is given by
JUV UA"  with U,c 4" open and N1
n=1 >N
as the basis of open sets. Its subset B is always given the relative topology.
The shifts over 4 or B are given the relative topology from the product topol-
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ogy. Finally, the tower Y? is given the relative topology from the product
topology on Y X N, where the set N of nonnegative integers is given the usual
topology (so that VY {co} is compact).

Theorem 1. Let (X, o) be a one sided shift over alphabet set A which ad-
mits an orbit basis (B, V), (X, &) its natural extension to the two sided shift, Y
and Y* the spaces defined by (3) and (1) with (4), respectively, and i the map given
by (6) and (5). Then the map i is a homeomorphism of Y® into X such that

(7) (roi) (V) = X and ior? = goi .

Remark 1. The map 7 is not surjective in geneial. For instance, in
Example 1 in the previous section, it is immediate to see that

(8) i(Y*) = {x&X(a); x, = a for infinitely many 7= 0}

while the natural extension X(a) contains sequences x such that x,=a for all
n=<0 but a finite number of #’s. The set

0X = X ~i(YOY

will be referred to as the boundary of X and discussed in Theorem 4 in Sec-
tion 4 in a concrete situation.

Proof of Theorem 1.

It is obvious that #(i(y, n))€X for any (y, n)€Y? and that &(i(y, n))=
i(7%y, n)). Consequently, i(y, n)eX for each (y, n)e Y.

First let us prove that 7 is an injection. Let (y, ), (y’, #’)€Y? and as-
sume that #(y, n)=i(y’, n’). It suffices to prove y=y' and n=n' under the
additional assumption that n=n'=0. Then it follows from (5) that

m(((y’, 0)) = yoyi -+ = z(i(y, 7)) = (¢"Y)P1Y2 " -
If #==0, then one would get

Yo+ = (6" YLi)yLis - Yoy1 =+ .

for some k=1 where m is defined so that

le"yil =n—|ylpal — - — 14l .

In particular, |oe™y’,| =n<|y,|. But the condition (e) implies [a"yZ;| = | ,l.
Hence, a contradiction. Consequently, n=0 and it follows again from (e)
that yf=y,. A similar argument shows that y;=y, for each n Z.

Next let us show that 7 is an open map. Since Y is a subset of Y XN,
the open sets of Y? are generated by the sets UX {#} where n& N and U are
open subsets of Y. Furthermore, U can be taken among the sets
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U(Ve s Va)={yeY; y,€V;(j=0, :--, m)}

where keZ and Vs are open subsets of B. Here, V/; can be chosen among
the sets B~ (WX -+ XW,) where W;’s are open subsets of A. Hence it
suffices to prove that the sets

i(Uk(WmX b XWOﬁo’ °ty WmIX oo Xmem)X {n})
are open subsets of X. But it is trivial since they are of the form
{XEX; xp+1'eWi (j = O’ tty q)}

for some p, ¢ and some open subsets W; of 4.

Finally, the relation 7z(i(Y?)=JX is trivial from Definition 6 and the con-
tinuity of 7 follows immediately from the fact that each coordinate of i(y, )
depends only on one coordinate of the sequence y. Hence the proof is com-
pleted.

The following properties are valid as formal power series.

Corollary 1. Let U: X — (— oo, +o0] and (X, o) be a shift with orbit basis.
(1) The D-function satisfies the following relation:

(9) DX,U(t) = Dy,U"-(log:)o(l) ’
where
(10) v () =,_3},, U, ).

(ii) If (X, o) admits a free orbit basis B and if the function U(x) depends
only on the zero-th coordinate x,, then,

(11) Dy y(t) = 1— Fexpl— 33 Ue"B)] -4
(iii) In particular, if (X, o) admits a free orbit basis B, then,
(12) Dy () =1— ;1—-}‘3"“ .
Proof. Let x&Per,(X, o). Then, for some b,€B and 0<k<|b,|,
x = (a*bo)byby: = g?x
_ [(a**2be)biby: - if k+p<|b,|
(6/bmbmssbmiz i j=ktp—|by| —+-— b,

satisfies 0= 7<<|b,,|(m=1).

It follows from (e) of Definition 6 that the first case never takes place and that
m=1, ¢*by=¢7b,, and b,,,=b, for n=1. Consequently, each x&Per(X, o) is
expressed in a unique manner as
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(13) x =1y, n) with (y, n)€Y? such that yePer(Y, 7).

Conversely, it is evident that (13) defines an x&Per (X, o).
Now one gets

et S exp[— 3 U™)]

n=1 *EPery(X,0.
S S 1611 SR

=3 >y Bl 2 e 1 S Uy, m)]
=16, 00,1 R =0 Ao

- S0 k N
S 5 B Vep - S ureny).

d -
dt ¥=1 kyeperyw,m n=
%

Consequently,

Drst)=epl- 55 5 ep{— 5 U}

n=1 9§ *EPery(X,0)

—ep[— 3 3 exp{— 3 (U—log 16) (""y}]

n=1 g1 YEPers(¥,™
= DY,Uo-(IogI)G (1)

Thus, (i) is proved.
Next let us note: if V(y) is a function of y(0) and Y=B?Z, then,

(14) D, ,(t) = l—é exp[—V(b)]-t.
In fact, (14) follows from the Taylor expansion of log(1—t). Hence, we obtain
(ii) and (iii).

ReMARK 2. (i) The D-function for general shifts with orbit basis is given
under the same assumption on U in (ii) of Corollary 1 by the formula

(15) DX,U(t) — r:l (1_ bg e-Uﬂ(b)tlbl)

where B, are the free orbit bases of the subshifts (X,, o) which give a decom-
position of the recurrent part of (X, o) stated in Lemma 2 of Section 1.

In fact, (15) follows from the property of D-functions that, if X,’s are
mutually disjoint shift invariant subsets of X and if

Per(X, g)=U Per(X,,, o)
then, for any function U,
(16) Dy u(t) = 1 Dy, u(2) -

(ii) As a special case of (15), the following theorem on matrices is ob-
tained. Let M=(M;;); j—; .. y be a matrix (N < oo). Then,
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a7 det(I—tM) = (] (1— 33 T,nt")

where T;,;=M,; and

(18) T,,= 21 MiilMiliz Mi,,_li (nz2).
fpareerin_ i

In fact, let W be the set of pairs (7, j) such that M;;%0 and consider the
Markov shifts X;=M(W)A {i, i+1, ---, N}?. Let us employ the method
and notation given in Examples 1-2 of Section 1. Then the set of recurrent
points of X=X, is the union of the sets X,(¢), i=1, 2, ---; N, and each sub-
shift (X; (), o) admits the free orbit basis B;={(¢, 7}, ***, 7,1); i+1=¢,<N
for all k}. Take U(x)=—log M, , (x=(x,)) as the potential. Then the
formula (17) is nothing but (15) since

det(I—tM) = exp|[— ?;‘i :7” tr M"].

RemArRk 3. The power series D(t) satisfies the following properties in
many typical examples:

(a) The coefficients, say c,, belong to a finite set, or

(b) ¢,=a, - a,-, and a,, n=0, belong to a finite set. In such cases, one
of the following (i) or (ii) is valid:

(i) For some n, the sequence c,,, (or a,.,) is periodic and D(¢) is ra-
tional.

(i)  €y4y, (OF @,4,,) never form a periodic sequence for any 7, and the power
series D(t) has no meromorphic extension beyond its domain of convergence.

Let us give a proof by computing the meromorphic radius of Hadamard
[1]. Put

€y Cut1 " Cpip

c C eee (.
(19) An,p — .n+l .n+2 .n+p+1 .

Cotp Cntpt1"* Cutop

Then the following condition is sufficient for the non-extendability as mero-
morphic function:

(20) lim lim sup |4, ,|/*®*) = lim sup |c,|"*.
proo fyo0 ’ n.y00

Since ¢, or a, takes a value in a finite set, (20) fails if and only if 4, ,=0 for
all sufficient large n for some p. Here we used the relation: A4, ,,,=0 for
n=ny+1 if A, ,=0 for n=n, This relation follows from the following iden-
tity obtained from the Laplace expansion of the determinant A4, , with respect
to the minor matrix of the four corner elements:
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(21) An+1,p—1An—1,p—1“An,p-12 = An,pAn-H,p-Z .

Thus, it suffices to show the claim: if there is a p such that 4, ,=0 for
any sufficiently large n, say, n=n,, then, the sequence c, (or a,), n=n,, is periodic
for some n,.

If p=1, then, ¢,_,¢,:,;=c,2. Hence, if ¢,_,=0, then, ¢,=0, and so, ¢,=0
for any m=n. If ¢, ,c,=+0, then, ¢, ;%0 and c,,,/c,=c,[c,-;. In either case,
¢, can be written as ¢” for some ¢. Consequently, ¢,=0, 1, or —1 in case (a)
and a,=c in case (b).

Now let p=2 be the minimal number for which 4, ,=0 for n=mn,. Then,
A, ,-1%0 for n=m,. In virtue of the identity (21) the sequence A, ,_, satisfies
the relation 4, , ,=c" for n=n, and for some ¢. It follows from the choice of
p that ¢==0.

Consequently, c¢,,;, can be solved from A4,,=0 by Cramer’s formula.
In case (a), it then follows that c,.,, is a fixed function of c,, *+, ¢,1,,-, On a finite
set. Consequently, ¢, forms a periodic sequence from some 7, on. In case
(b), @43, is then solved as a function of a,, -+, @y, if @,#0 for any n. Con-
sequently, a, also form a periodic sequence from some n, on. (If a,=0 for
some m, the choice of a,, n=m, loses its meaning.)

As to the invariant measures we obtain the following.

Corollary 2. Let u be an ergodic invariant measure of (X, o). Assume
that (X, o) admits an orbit basis and the assumptions of Theorem 1 are satisfied.
Then onme of the following two statements is valid for the natural extension & of
e

(a) 7w is supported by X Ni(Y?), i.e. m( X Ni(Y?)")=1.

(b) There exists a unique probability invariant measure v=a(p) of (Y, 7),
with respect to which the ceiling function @ is integrable, such that ix'(v°)=r.
Here v° denotes the invariant measure of (Y°, 7°) defined by the formula:

(22) W(Ex {n}) = v{yeE; (, meY}/| odv
for Borel subsets E of Y.

Proof. Since the set #(Y) is an invariant subset, the natural extension 7
is concentrated on #(Y?) unless (a) holds. In virtue of the injectivity of the
map 2, there is a unique invariant measure »° on Y?. Let » be the probability
measure obtained by renormalizing the restriction of »? to the set Y X {0} iden-
tified with the set Y. Then it is an invariant measure of (Y, 7) and the re-
lation (22) is immediate.

3. Topological entropy

Let us begin with a few comments on the relation between the topological
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and the word entropy.
If M is a compact Hausdorff space and f: M—M a continuous map, let
us denote for a given finite open cover U of M

(1) XU) = (U)o U,€U, 0 [V, 40} .
Then, the topological entropy is given by
(2) (M, f) = sup ent(X(U), o) .

In general the definition of topological entropy is given based upon the
uniform structure on the space M. For instance, if M is a normal topological
space, then a uniform topology compatible with the given topology on M is
defined by the collection of finite open covers of M as system of uniform covers
and a continuous map f is a morphism of uniform topological space M to it-
self.

DrrFINITION 8. Let M be a normal topological space and f: M— M be a
continuous map. Denote the minimal number of elements of subcovers of a
finite open cover U by N(U) and put

(3) h(M,f, Cl])=}1f£—}z—log N(q]vf'wUV...Vf-nﬂCU).

Here UV CY is the refinement of covers U and €/, and the limit exists in virtue
of the inequality: N(UV CPY)<N(U)N(CY). Then the following quantity is
called topological emiropy of the dynamical system (M, f):

(4) h(M, f) = sup {h(M, f, U); U is a finite open cover} .
ReEMARK 1. (a) It is easy to see that, if (X, o) is a shift over a finite alpha-

bet set 4 (regarded as a discrete topological space), then the topological and
the word entropies coincide with each other:

(5) WX, o) = ent(X, o).

(b) It is also immediate to see that, if (X, o) is a shift over a compact
Hausdorff alphabet set 4, then,

(6) KX, o) = sup W(X(U), o),
where the supremum is taken over finite open covers U of X which can be
expressed in the form

(7) U = {U[a]; VeV} for some finite open cover €/ of 4.
acv

(c) Although we shall employ Definition 8, there are many possibilities
for the choice of uniform topology on M which may depend on f, and we do
not know the relationship among the resultant topological entropies.
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Theorem 2. Let (X, o) be a shift over a countable compact Hausdorff
alphabet set which admits a free orbit basis B and (Y?, °) the tower associated
with it. Then,

(8) h(Y?, %) = kX, o) = PYX, 0) = —log t(B),
where

(9) 1(B) = sup {t=0; D(t) converges and is nonnegative}
(10) D(t) = Dy(t) = I—bEEBt”’I .

The proof will be given after a series of lemmas.

Lemma 1. Let a,,, k=1, n=1, be nonnegative real numbers such that
Uy = A,y and k’fg Qy=0w,. Define

(11) Dyt) = 1— Na,t" (1Sk<ow) and
n=1
(12) t, = sup {t=0; D,(t) converges and is nonnegative}

Then (i) t,=tp=t.. (ii) lim =t..
kyoo
Proof. It is obvious that
Dy(t)=D(t) 1Z2k=j=o0 for =0

so far as they are convergent series. Hence, (i) follows.
Now put s=inf {t,; 1<k<<oc}. Then it follows from s<¢,

Dy(s)=Dy(t,) =0 .. gak”s”él .
Hence,
f} A.,s"<1 ie. D.(s)=0.
Consequently, s<t. and so s=%...

Lemma 2. Let f; be a continuous map of a normal topological space M; to
atself (1=1, 2) and assume the existence of a continuous map g of M, onto M, such
that go fy=f,08. Then,

(12) h(M,, f)Z MM, f,) -
Proof. Obvious from the definition of topological entropy.
Lemma 3. A(Y® °)=Ak(X, o).

Proof. Let us recall that the following diagram is commutative and all
the maps are surjective:
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Y":i_—“l_, i(Y")o N X
0 ::_1 ‘G |& ‘ o
4 w

— i)~ X
1 QX

T

Consequently, it follows from Lemma 2 and Theorem 1 that
h(Y?, °) = h(i(Y?), 5)
= WX, o) = WX, &) = h(i(Y?), 5)

since the topological entropy does not change its value under the natural ex-
tension.

Lemma 4. Assume that A is a finite set and that there are an alphabet
a*€ A and a number N such that

(13) {6€B; |b| =n} = {(a*, -+, a*)}  for n>N.
Then,
(14) h(X, o) = ent(X, o) = —log #(B) .
Proof. Let
R*= {(@y , ) EW(X); ty=+=a,=a% 20},

Ro = {(ai’ B aj); (ao: "ty am—l)EBx O§l§]<m§N} ’
Rl = {(ab M) am—l); (a()) R am—l)EBr O§Z<M§N} N {e} )
R, = {(ay -, a)); (@, =+ 4y-1)EB, 0=j<m=N}V {¢},
where the letter e stands for the empty word, i.e., e is a formal word of length

|e] =0 such that eu=ue=u for any word u. Then any word v W ,(X) satisfies
one of the following two conditions:

(a) ueR,YR*
(b) u=vb, - bw, veRVYR*, weR,VYR*, p=0 and b,=B.
Now let us use the notation
F(t) < G(2)
when G(£)—F(¢) is a formal power series with nonnegative coefficients. Then,
N EW(X)
(15) £ E Zl”‘—}— 2 E 2 .. 2 t|v|+lw|+2|b,,l

e
uERG VR vER, UR* wER,UR* $=0 b,€B b,EB
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—_ 2 t|“|+tN+l(1—t)_l

¥ER,

H(Z - (1—0) (F B+ —D)/(— Z o).
"ERI WER, bEB
On the other hand, since b, ---b,& W(X) for any p=1 and b, B,

W(X)> i} ST 30 gl Hbgl

(16) =1 b,EB  b,EB

— (Z - .

Consequently, it follows from (15), (16) and the finiteness of the sets R;, i=
1, 2, 3, that the radius of convergence of the left hand side of (15) and (16) co-
incides with #(B).

Lemma 5. Assume that A is finite. Then (14) holds.

Proof. Let us add an extra alphabet a* to 4 and put A*=A4V {a*}.
Define a map f=fy: B— U (4*)" for each N=1 by

b if |b| <N

(a*, -+, a*) otherwise

6~ |

so that | f(b)|=1b|. Then f is a continuous map in virtue of our definition
of the topology on B (given before Theorem 1 in Section 2).

Next, let F(X) be the shift with orbit basis f(B).
Then F is also continuous and it follows from Lemmas 3 and 4 that

(17) Wf(Y), 1) = W(F(X), 3) = —log (f(B)) .

Since the topology on Y is generated by the induced topologies from sets
fN(B) beN» N=1,2, -,

(18) h(Y?, 79) = sup A(fy(Y)?, 79).
N
On the other hand, it follows from Lemma 1 that
(19) sup {—log #(fy(B))} = —log #(B).

Consequently, one obtains
h(X, o) = h(Y?, 7°) = —log (B) .

Proof of Theorem 2.

We have proved it in Lemma 5 when 4 is finite. Since 4 is a countable
compact Hausdorff space, any open cover admits its refinement of the form
{g7Y(c); c=A(g)} where g is a continuous map of 4 to a finite set 4A(g). Con-
sequently,
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(20) WX, o) = WX, 5) = sup hG(X), &)

where G is the map of X to A(g)Z defined by G((x,))=(g(,))-

The shifts (G(X), &) are, of course, not necessarily shifts with orbit basis.
However, the map zoi of (G(B)?)? to z(G(X)) is still surjective. Thus, Lemmas
4 and 5 work as the upper estimate of 4#(G(X), o) and one obtains

(21) h(G(X), &) <h(G(B)?), %) = —log {(G(B))<h(Y?, 7).
Then Lemma 1 is applicable and it follows

(22) —log #(B) = sup {—log {G(B))} .
Consequently, Theorem 2 is obtained from (20), (21) and (22).

4. Structure of the realization of a map of interval

In this section we shall show that the shifts which realize piecewise con-
tinuous maps of bounded closed intervals are unions of shifts with orbit basis.
This result is obtained in [7] for unimodal continuous maps and in [4, 9] for
beta transformations.

Let f be a piecewise continuous map of a bounded closed interval J and
assume, for the sake of simplicity, that it is surjective on J and that there are
finite number of lap intervals. Denote the lap intervals by I,, a= 4. Then,
by definition, the map f is nomotone on each I,, the intersection of I, and 7,
for a==a’ is, if any, a one point set and the union of I,’s is the interval J. If

f is nondecreasing on [,, then we shall denote &(a)=-1 and, otherwise, &(a)
=—1.

DerINITION 9. Let us define a linear order <= <, on the product space
AN as follows: x=(x,)>x'=(x;) if x=x" or if there is a number k&N such
that

x(n) = x'(n) for 0=<n<<k and
x(k) = x'(k)  according as &(x, -+ x;-,)=0,

(1)

where &(x, «+ %,_,)=E(%,) *** &(%;-,), and the order a>a’ for a, a’€ A is defined
by max I,,<min I,.

In a previous paper [11] the following theorem is proved:

Theorem 0. Let f be a piecewise continuous map of interval J. Then
there exists a realization (X, o, p) in the following sense:

(a) The set X is a o-invariant closed subset of AN which is characterized
by its elements £}, &7, ac A, as

(2) X = {x€d¥; tin<o"x<tim (neN)}.
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(b) The map p is defined on X and takes subintervals of J as its values. It
is monotone in the sense that

(3) max p(x)=min p(x') i x<x' and x=+x’'

and is surjective in the sense that

(4) U p(x) =]
Furthermore, it is a conjugacy map in the sense that
(5) plex)D flp(x)), x€X.

(c) The set X is the disjoint union of two subsets X° and X, where X' is
at most countable. For each x& X, the subinterval p(x) consists of a single point,
which is denoted, again, by p(x). The map p: X°— J is countinous and is one-to-
one except for at most couniably many exceptional points where it is two-to-one.

(d) The topological entropy of (], f) is the same as that of (X, o) and the
periodic orbits of (X, o) are in one-to-ome correspondence with the connected com-

ponents of the set of periodic points of (], f).
The proof of Theorem 0 is given in [11] but we shall sketch the proof.
1° Let ¢ J be such that f"¢ never falls into the boundaries of monotone
intervals I,, ac A, and define a sequence x(f)=(x,()) by

x(t) =a if tel,, and x,(t) = x(f"t) (n=x1).

Put X = the closure of x(¢)’s in AV
= the closure of x(f)’s w.r.t. <,

6) §a = sup {x(t); x,(t) =a},
( ¢z = inf {x(f); x,(t) =a}.

Then it turns out that (a) is valid.
2° Let xeX and put

(7) p®) = Nf"Luw -

Then (b) holds.
3° (c) follows from the Baire’s category theorem.
4° (d) follows from the relation: p(x(z))>¢.

Remark 1. If the boundaries of I,, ac 4, fall into a single orbit under
the iteration of f, then, only one of the sequences {7, ¢, is sufficient to define
X. It is the case for beta transformations ([4, 8, 9]) and unimodal continuous

maps.
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RemMARK 2. Theorem 0 is valid even if there are infinitely many mono-
tone intervals I,. In this general case, the set 4 is taken as the closure of the
set {I,} of the monotone intervals with respect to the order structure among
the subintervals of /. Hence, the set 4 is always countable and compact Haus-
dorff. Under this interpretation, Theorems 3 and 4 below are valid for general
cases except possibly the property (9) in Theorem 3 (ii).

Now let us state the main theorem.

Theorem 3. Let f be a piecewise continuous map of a bounded closed inter-
val | onto itself and (X, o, p) its realization by a shift over alphabet set A stated
in Theorem 2. Then there exist two subshifts X* and X** of X which satisfy
the following three properties:

(i) The shift (X*, o) admits a simple Markov orbit basis. Moreover, for
each ac A, the subshift (X*(a), o), where

(8) X*(a) = {x€X*; x(n) = a for infinitely many n’s}

admits a free orbit basis.

(ii) The shift (X**, &) also admits an orbit basis. The subshift defined
similarly by the set X**(a) admits a simple Markov basis (B, V') with the following
property but it does not admit a free orbit basis in general: there is a finite subset
B, such that

(9) B = {b; (b, b))V for some b= B} .

(i) The set X* is the intersection of the inverse images of the complement
(X**)° under the iterates of o:

(10) X* = Mg "(X**).

In particular, the complement X ~(X*\ X**)° contains no recurrent points of
X, o).

The proof will be given in the next section.

ReMARK 3. The second subshift (X**, ¢) in Theorem 3 appears when
there are mutually disjoint closed subintervals J; of J such that

(11) fuJ)cu;.

Furthermore, the union of J;’s is then an attractor of the map f. It corre-
sponds to the case called window phenomenon by R. May or to the case called
island phenomenon. (cf. [3], [12])

The conclusion above follows from the construction of the sets X*, X**
given in Section 5, the definitions of which are found in Lemmas 7 and 8. A
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typical concrete example will be found in Example 1 and a more complicated
one in Example 2 at the end of this section.

Let (X, &) be the natural extension of (X, ¢). As it was already pointed
out in Remark after Theorem 1, there may exist the boundary 8X. But the
example there was trivial since the sequence was not recurrent. A recurrent
point x does belong to the boundary when x(— oo, 0) does not admit a unique
representation by orbit basis. In fact, if there is a unique representation, then
xe7(Y?). Therefore it is necessary to consider the following sets, which are
the essential parts of the boundary. 8X=08X*\oX**,

For {=t4, a4, de {+1, —1}, let
(12) Ty(t) = {xeX: x[—n, 0) = {[0, n) for infinitely many 7} ,
(13) T() = 0 " Te).

Theorem 4. Assume the same hypotheses as in Theorem 3. Then the
following statements are valid:

(i) Let x0X and assume that x is a recurrent point. Then, the point
x belongs to the set T(52) for some ac A and some d = {+1, —1}.

(ii) For each t=¢3, ent(T(%), o)=0.

The proof will be given in the next section.

REMARK 4. The second statement of Theorem 4 shows that the set 3.X,
which is the complement of the image of the tower associated with (X, &), is
small enough to be negligible in entropy analysis of map f. In [10] the samll-
ness was thought to be self-evident and left unproved as it was pointed out
by Hopfbauer [2].

ExampLE 1 (beta transformations). Let 3>1, J=[0, 1] and
f@&) =pi—[p] if €0, 1),
£7(1) = lim (1)
where [s] denotes the integer part of a real number s. The monotone inter-

vals are [a/B, (a+1)/8],acA={0, 1, ---, 7} and r is the integer such that 3—1
<r<@B. It is easy to see that the sequences &;, {7 are given as

é‘a— = ag(-)_a E(.]- - (O’ O) "')’
£ = at; (a*r).

(14)

(15)

Consequently, the realization (X, p, o) of f is characterized by the sequence
&=} and is given by
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X = {x€d4¥; ¢"x<t}, and
p(x) = ’g x(n)|B**! (B-expansion of t = p(x)) .
As it was stated in Introduction, the shift (X, o) admits a free orbit basis

(17) B= {(CO) ) Cu-la a); ngo, a<§n}

(16)

when the sequence § is not periodic. If ¢ is periodic with period p, then,

B = {(Coa RS ;,,_1, a); Oéngp_zv aégp—l}

v {(L‘o’ ) gp—z» d); aégp—l}
is a free orbit basis. The proof is contained implicitly in [4, 10] but the direct
proof js immediate from the following two observations:

(a) [6]AX, bEB, form a partition of X.
(b) Any b: B is a free word. In other words, f**! maps f~"p[{] A

N J7plE-1] A pla] bijectively onto J.

(18)

Consequently,
(19) Dyyt) = 1— T = 1— 1L,
when { is not periodic, and
(20) Dy o(2) = 1 =Lt — o=, P —(E - 1)2?

when it is periodic. Hence we can obtain the results in [4, 9] and [10]. In
particular, the B-expansion of one,

1=R¢/em,
shows that &(J, f)=h(X, o)=log B.

ExaMPLE 2 (unimodal continuous maps). Let f be a unimodal continuous
map of the unit interval J=[0, 1] onto itself i.e. the inverse image f~’(1) con-
sists of a single point ¢ and f(1)=0. Then,

(21) £¢ =018, &7 =118, and &f = 18 with &= {7 .
Consequently, the realization shift (X, o) is characterized by
(22) X = {x€d4”; o"x>L (neN)}.

We shall not discuss the form of orbit basis but the D-function has the follow-
ing form ([12]):
1— i gt if ¢ is not periodic

7n=0

(23) Dy o(2) = i
1— 2 E " — (&)1 1-E,)t?  if § has period p
n=0
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where

& —{(*1)“*'"*4"“1 if nz1
"1 if n=0.

Here the right hand side of (23) must be multiplied by some factor in patho-
logical cases when f does not satisfy the Schwarzian condition.
Now let us state some results on unimodal linear maps:

(+atb—1)b  if O=x=c=1—a
l(1—x)/a if c<x<l

(24) f(x) =

where a and b are parameters which satisfy 0<a<<1, 4$>0, a+56>1. It was
observed in [3] that the unimodal linear map f shows window phenomenon
or island phenomenon according as

(25) ab**>1 or a(a+b)b*~2=1, respectively,
when it satisfies the condition
(26) a(14-b+ -+ <1<a(l4---+4b7").
In fact, it follows from the condition (26) that
(27)  fre=0<frP2e<for<frPec < o < fre<c<frHe<fPVc<fc= 1.
Consequently, the subintervals

(28) S =1[f"%¢, fc] and J; = [fic, fi*?] (i=2,3, -, D)

are mapped cyclically to each other under f, and their union J** is an attractor
of f?. Depending on which of the alternatives in (25) takes place, the map
f? on each J; has an attracting periodic orbit or is chaotic. In this sense, the
map f shows window or island phenomenon.

In our terminologies, the subintervals J; correspond to the cylinder sets
[6], bE B,, the orbits in J** to the sequences in X** and the orbits contained
in the complement J*=] ~ (J**) to the sequences in X*. The statement (iii)
of Theorem 3 is reflected in the fact that J** is an attractor and the sequences
in X ~(X*VYX**) correspond to the orbits of f which wander out from jJ*
to J**. Window phenomenon can be verified by the fact that the orbit basis
for X** consists of words of the periodic sequence &.

ExampLE 3 (critical unimodal continuous maps). The (N,)-critical case
defined in [12] corresponds to the following situation. Let IV,, =0, be inte-
gers greater than 1, and f be an (V,)-critical map. Then the map f has N, sub-
intervals which are mapped cyclically onto each other and the map f*o has
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N, subintervals in each of the N, subintervals which are mapped by f*: cyc-
lically onto each other and so on. As a consequence of this ‘“‘self-similarity”’,
the recurrent part of X is decomposed into countably many subshifts (X, o)
which admit free orbit bases.

Let N be an integer=2 and f be a unimodal continuous map of the unit
interval [0, 1] which corresponds to N=-critical case (N,=N for all n). Let
c=f1{1}€(0, 1) and f(1)=0. Then the realization (X, o, p) is characterized
by the sequences

(29) £ =¢85 =015, &y = 11¢, and & =18

and, therefore, by the single sequence {. In this case f shows many self-
similarities. Let us state the conclusions without proofs.

The sequence ¢ is generated by the following two rules:

Rule 0°  ¢£[0, N)=(0, ---, 0, 1).

Rule 1°  £[0, N™+)={[0, N™)£[0, N™)* .- [0, N™)*.
Here,

(aO’ R an)* = (ao: ty Aypy a;tk-—ly an)) 0* = 1, 1*=0.

In this case, the structure of the set X** is known: there are subshifts
(X™, &), m=0, XO=X* which admit finite free orbit bases

B, = {t[0,nN™); n=1, ---, N—1} (m=1)

(30) B, = {{[0, n); n=2, ---, N—1} U {1} .

The sets X™ are mutually disjoint and the systems (X, ¢¥") are mutually
conjugate to each other. Note that, for N=2, each basis B,, consists of a single
word. It means that X™ is the orbit of some periodic point. The comple-
ment X®) of the union of X™ m>0, also admit an orbit basis (B, V') given
by

31) B = {{[0, N"); m=0}  and
V = {(&[0, N™), £[0, N")); m<n} .

The natural extension (X, ¢) of (X, ) satisfies a strange property: X
=X®). In particular, the topological entropy of (X, &) is zero. It seems
that the orbit closure of the almost periodic sequence & coincides with X
but we have no proof.

5. Proof of Theorems 3 and 4

The key to the proof of Theorem 3 is the following notion.

DeriniTION 10. Let weW(X). A word u in X is called w-free if ue
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W(X) and

(1) ux = (Ugy **+y Upy)_1y Xgp ¥y, +-)EX  whenever x&X[w].
The totality of w-free words will be denoted by F(w).

Let us use the following abbreviations and notations:
For a sequence x=(ix,, #;, -++) or a word u=(uy, -+, %,,;) (m=|ul), let x(n) and
u(n) denote the n-th coordinate x, and u,, respectively, and

x[n: m) = (xm ) xm—l): u[n! m) = (um ) um—l))

( 2) ou = (ul, ey um_l)’ u = (uOr .ee, um—z) ,

(3) Z = {t3[0, n); acAd, de={—1, +1}, neN},

(4) Wo(w) = {uesW; wweW ~Z° where W= W(X),
(5) Fo(w) = {ucW,; sucW(w), n=0, -, |u| -2},

(6) Z(w) = {usF(w); uwwel},

(7) Fla, w) = {ueF(w); u(0)=a},

(8) Fy(a, b)) = {usF(a, b); u[0, n)cF(a, u(n))’ for n=|u|—1} .
Furthermore,

(9) x<?x" if d=+1 and x<x" orif d= —1 and »'>x.
For zeZ,

(10) dz)=d and §,=104 if 2 =190, |=]).

Here the map d(*) and &, are considered to be double-valued when they are
not uniquely determined, i.e., when 2={¢3[0, 7#)={;[0, z) for some a and n.

Lemma l. LetweZ.
(i) If zeZ, wze W and d(z)=d(w)&(w), then,

(11) wz = E,[0, |w|+[z]).
(ii) If wtieX for some acA with d=d(w)&(w), then, ¢'"™'t,={2.
Proof. Let n—|w|, m=|z|, e=d(w) and e¢'=d(w)&(w). It follows from
wz<* £,[0, ntm) = w(c"t,) [0, m),

that 2<“s"¢,[0, m). Since d(z)=e’ and z is the largest word with respect
to <, it follows that z=4",[0, m) and, hence, wz="{,[0, m-+n). The second
assertion follows from (i) by considering the limit as m — oco.



SHiFT wITH ORBIT Basis 623

Lemma 2. LetwesW.

(1) IfusF(w)and |u| =2, then, cuc F(w).
(ii) If usF(v) and ve F(w), then, uv € F(w).
(i) F°(w) is a subset of F(w) and

Fw)AF(w) = {usW; u=uu,, u,cF(u,w), u,eZ(w), |u,|=1}.
(iv) Z@)={=€Z; o"E=t! if &(x)=e(a)d).

Proof. The assertions (i) and (ii) are trivial. The condition u&F(w)
means that

(12) Com<cuwx<&i,  for n=0, -, |u|—1
whenever wxe X. An obvious sufficient condition for (12) is that
cguweW ~Z° for n=0, -, |u|—1

ie., that uF°w). Now suppose that ¢c"uweW ~Z° for every m<n and
that c"uweZ. Then, 4[0, n)EF°(¢"uw) and s"ucZ(w). Hence, one obtains
(iii).

Finally, assume that z=Z(w) and weZ. Then, 2{,€X and zeZ.

Hence it follows from Lemma 1 that {i=¢'"¢, for d=d(2)&(z). Thus, (iv) is
proved.

Lemma 3. Each word uc F(a, b) is decomposed as
(13) U=y Uy
for some m=1, u;& Fy(u,(0), u;4,(0)), 0<i<m, and u,, & F(u,(0), b).
Proof. Let u=(ay, -, a,)EF(a, b). If n=0, then (13) is trivial. Put
k= min {i; (ay -, @) EF(@ 6} (@ = b).

Then, if k=n,ucsFy(a,b). If k<n, then, u,=(ay, :*-, a;) belongs to F(a, a;,,)
and o**'ues F(a,,,, b) in virtue of Lemma 2(i). Consequently, (13) follows by
induction on the length |u| of u.

Let F=F(A) be the union of F(a), ac 4, and
(14) [Fl=U U [4].

ac4 4eF(a)

Lemma 4. Let x&X A\[F]. Then, for each n=1, there is an m=0 such
that m<n and

(15) x[m, nleZ, x[m, n)c=F(x(n))° and x[0, m)cF°(x[m, n]).

(The last relation is not necessary when m=0.)
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Proof. It follows from the assumption that x[0, n) € F(x(n))° for each n=1.
Fix n and put

(16) m =max {i; 0<i<n, x[j, n)eW°(x(n)) for every 0<j<i}.

Then it is clear that x[m, n]Z by the definition of W°(*). It follows from
Lemma 2 (i) that x[0, m) € F°(x[m, n]) when m=1. Finally, if x[m, n)e
F(x(n)), then one would obtain x[0, z) e F(x(n)) by Lemma 2 (ii). Consequ-
ently, x[m, n) & F(x(n))’.

Lemma 5. Let x&XA\[F]. Then, for each n=0, there are an integer k
=0 and words 2y, -+, 2, Z such that

(1) [0, n]==2} -+ 2t 12, =202, *** G2}

(ii) 2iEeF%(2i11) A F(2;4(0)), i=0, -+, k—1, and 2} F(x(n))".

(iif) [0, ) EF(2,())) j=1, =+, 12| —1.

Proof. Let us prove ( i)—(iii) by induction on z. For n=0, they are trivial.
Assume that they are true for n<<zm,. Take the number m in (16) for n=n,.
It then follows from the induction assumption that the expression (i) is true
with n=m for some z,, ---, 2, satisfying (ii) and (iii). Now put 2,.,=x[m, n].
Then (1)—(iii) for 2;, j<k+1, follow from Lemma 4.

Lemma 6. Let x€X ~[F]°. Then either (A) or (B) is valid:
(A) o"x=td,, for somen and d= {41, —1}.
(B) The following three properties are satisfied:

(a) x==2{2] - =2,02,0%, " .

(b) =zi,€ZAF°(2)AF(2(0)),i=1.

() =0, )EF(=(f)), 1=j< 20| —1.

Proof. In virtue of Lemma 5, one obtains a number k=Fk(n) and words
z;=2} for each n which satisfy (i)-(iii) of Lemma 5. For =0, there are two
cases. If the length of 27 is not bounded in %, then one can find a sequence,
say ny(k), k=0, ny(k)—co along which 1° [2§|—c0 and 2° &(zf)=const., say d.
Hence, x={%0). On the other hand, if 2§ is bounded in », then one can
find a sequence my(k)—oco along which the word 2§ itself is constant, say z,.

Now it follows from a similar argument that either of the following two
takes place for each i<<1:

(A,) =2%=z; for any j<<¢ and 2!—{% for some a and d along some sub-
sequence 7,(k) —oo of n;_,(k).

(B;) =2%==z; for any j<{ (including 7) along some subsequence 7,(k)—>co
of n;_,(k).

Thus Lemma 6 is proved.

ReMarg. It is immediate to obtain the converse of Lemma 6: If a se-
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quence # is defined by (a) with 2,’s satisfying (b) and (c), then, x belongs to the
set X A [F]".

Lemma 7. Let

(17) X* = Ji " [F1 A X
(18) B* = U Fya,b)
(19) V* = {(u, v)eB*x B*; ucF(v(0))} .

Then the shift (X*, o) admits (B*, V*) as a simple Markov orbit basis.

Proof. Let x&X*. Then it is clear that the sequence x can be expressed
as

(20) 3 = ity -, Uy, EF(,0)) (n21)

by some u,&F since ¢"x&[F] for each n. It follows from Lemma 3 that x
can be expressed as (20) by some »,& B*, which is unique. On the other hand,
it is obvious that the sequence x defined by (20) with some (u,),>,M(V*)
belongs to the set X*.

Suppose that x given by (20) has another expression

x = (a'0)0,0; -+, (V)0 EM(VY).

Then, o'v,€F and so it is decomposed into several words in the sets Fy(a, b)’s
in virtue of Lemma 3. Since the expression (20) with »,&B* is unique, o'v,
=u, when i=0 and |¢'v,| = |u,] when 7=0.

Lemma 8. Let

(21) X = 0 o"(X A[FI),

(22) B* = U F*=) nFO) nZ,

(23) V¥ = {(u, v, w)€B** X B¥* x B¥*; uc F°(vw(0)) A F(v(0)),
veF(w(0))} .

Then the shift (X**, o) admits (B**, V**) as an orbit basis.

Proof. It follows from Lemma 6 that any x&X A [F]° can be expressed
as

(24) x = 262] -+, (2}, Zay i) EVI¥.

Conversely, if x is a sequence defined by (24), then it is evident that xX.
Let us prove that x[F]°. In fact, if x[0, n) & F(x(n)) for some #, then it fol-
lows from Lemma 2 (i) that there are some m and p such that 0<p<|z,]|
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and z,[0, p)=F(z,(p)). It contradicts Lemma 6.
Now let the sequence x given by (24) have another expression

(25) x = (ctwl)wiwy -+, (Wi, Whey, Whi)EVH*
and suppose that p=|g*w{| satisfy 1<p<<|z4|. Then
%[0, p)wil0, [2]—p) = 23,
which contradicts the fact that 2= F°(z;). Since xE”:CJOa‘”X ALF] satisfies o"x

X A[F]° for some n=1, thus the proof is completed.

Proof of Theorem 3.
The assertion (i) follows from Lemma 7. The first half of (ii) if obtained

as Lemma 8 and the second half comes from Lemma 2 of Section 1. Finally,
(iii) is obvious from our choice of the sets X* and X**.
Now we are going to prepare several lemmas used for the proof of Theo-

rem 4.

Let us fix {={84 (a4, d= {+1, —1}) and denote W=W(X),
(26) Z = 2(§) = W(T()) = {z.,; n21}, =,=¢[0,n),
(27) P= {nz1;&(z,)= +1},
(28) O = {neP; o" "z,+z, ifmeP}.

Lemma9. (i) IfneP,m=1, and 2,2,EW, then, 2,2,=2yim
(ii) IfneP, meQ and 2,2, =W, then, n=m.

Proof. The assertion (i) follows from Lemma 1 (1) since
d(2,)6(z,) = d = d(2,,) -
Suppose the contrary to (ii). Then it follows from n<m that
28 = Rpim = B0 Bpim = 20 By Byim

Hence, 2,=¢"2,6"2,+n and so 2,_,=c¢"2,. Consequently, one would obtain
Bp=2,%p-pn and &(2,_,)=E&(c"2,)=E&(2,)E(2,)=-1, a contradiction to the fact
that me Q.

Let x€ T=T(%) and, for N =0, define a function N* of N by
(29) N* = iof {neD; n>N, x[—n, 0)=Z}

where D=P or P°. It is obvious that (29) defines a finite valued function of
N either with D=P or with D=P° or both. Let us denote P or P° by D ac-
cording as N* is well-defined with D=P or is not, respectively. Then define
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(30) Ny= Nyx) =0, N;=Nx)=(N,;-)* (j=1) and
(31) nj=nix)=N,—N;, (j=1).
Lemma 10. Let x&€Ty=T\($). Then, n)x)cQ for each j=1.

Proof. Since &(z,) takes a constant value for neD, n;P is evident.
If n=n;cQ"’, then it would contradict the choice of N, in virtue of Lemma
9 (i). Infact, if there were meP such that m<n and " "z,=2,, then, by
Lemma 1.

Zuini_y = Bman;., A0 E(Zpin; ) = E(3n;_,) -

Consequently, n=n;€ Q.

Lemma 11. If { is not a periodic sequence, then,
(32) limnj(x) = oo for any x&Ty= T\({).

e

Proof. It follows from Lemma 9 (ii) and Lemma 10 that the sequence
n; is nondecreasing. Thus, if #; is bounded in j, then, #,=n;,;=--- for some
. Hence, zy;=%,2y,_, for all j>iand so {=x2,F.

Lemma 12, Let M =1 and put

(33) On= {9€0Q; =M} .

Then the disjoint sets o*[2,) \T(}), REQy, and the remaining set in T({) form
a partition ay of T(8) which is a generator for the shift o, i.e., for any distinct points
x and x', one can find an integer n such that either of the following is valid:
(a) o"xEc'[zy], o"¥' €c¥[3], REQy, k' €Q,, and k*E'.

(b) one of ¢"x and o"x' belongs to the union of o*[2,), kE Q,, and the other does not.

Proof. The sequence x in T is determined in virtue of the definition of
the set 7(§) by any sequence M ;—>co such that x[—M;, 0)Z. Hence, it is
determined by those 7;(x)’s for which n;=>M, where M is an arbitrary given
number. In other words, if such #;’s coincide with each other for x and x’
in T, then, x=x'. But the #,’s are determined by whether ¢"x&o*[2,], k€ Oy,
n being an integer, or, equivalently, by the images of the partition «, under
the action of . Consequently, «,, is a generator.

Next let us apply the method of tower construction stated in Section 2.
Let

(35) By = {2,; €0y}, Yy = B

and 7 be the shift on Y,,. The ceiling function is defined as before by

(36) 0)= Iyl if y=(,)EYy.
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The map 7 defined by the relation
iy, m) = (e"yo =+ (HmEY
has a natural extension to the map 7: Y,,—A4Z which is given as follows:
iy, n) = o"i(y,0) forn0 and

(37) N .
°y, 0) = -y 151+

where the dot means that the 0-th coordinate of the sequence is y,(0).

Lemma 13. Under the situation above,

(i) The map i defines a homomorphism of (Y, °) onto (T(§), o).

(ii) ent(Y%y, 7°)<—log ¢, where t, is the smallest nonnegative solution of
the algebraic equation

37) . 1—(1—#)"#" = 0.

Proof. It follows from the iterated application of Lemma 9 (i) that the
image of the map 7 is contained in 7=7(%). On the other hand, Lemma 10
shows that T is contained in the image. Hence one obtains (i). Recall Corol-
lary 1 to Theorem 1 in Section 1 and Remark 1 after the proof of Corollary 2
of the same theorem. It follows that exp[—ent (Y9, 7%)] is the smallest non-
negative solution of the equation

(38) 1- D tr=0.
kEQy
Since k=M for kCQ,,, the second assertion (ii) is obtained from the inequality
(39) > = )(1—1).
kEQ .
Proof of Theorem 4.

Now the second assertion (ii) follows from Lemma 13 since #, converges
to 1 as M tends to infinitely

Let us prove the first assertion (i). Let ¥€8X=0X*\V0X** be a recur-
rent sequence. Then, for B=B* or B**, there are sequences (p,) and (gq,) of
integers with the following properties:

(@ limp,=—oco (b) infg,>—co (c) #[p, q.]EB.

If B=B**, then BCZ. Since «x is recurrent, one can find ac4 and d=—1,
+1 such that, for infinitely many n, x[p,, ¢,]=54[0, ¢,—p,]. Consequently,
xeT(%9).

Now let us assume that B=B* and, for simplicity, ¢,=0. Then, x[p,, 0]
eFy(x(p,), (1)). Hence, x[p,, ) F(x(?))* for 0=i=p, by the definition (8).
It follows from Lemma 5 (note that Lemma 5 (i)-(iii) hold for all words
%[0, n] W A F°) that there exists a unique expression
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X[Puy 0) = 2 -+ 2f1%

where 2=k, >0 and 2!/=z,, _,=Z satisfy Lemma 5 (ii)—(iii) for each . Since
x=X** it follows from an argument similar to the argument in the proof
of Lemma 6 that the length of the word z,; cannot be bounded in # for some
i. Consequently, x& T({) for some &, and the proof is completed.
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