

| Title        | p-radical groups are p-solvable                          |
|--------------|----------------------------------------------------------|
| Author(s)    | Okuyama, Tetsuro                                         |
| Citation     | Osaka Journal of Mathematics. 1986, 23(2), p.<br>467–469 |
| Version Type | VoR                                                      |
| URL          | https://doi.org/10.18910/5776                            |
| rights       |                                                          |
| Note         |                                                          |

# Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Okuyama, T. Osaka J. Math. 23 (1986), 467-469

## p-RADICAL GROUPS ARE p-SOLVABLE

Dedicated to Professor Hirosi Nagao for his 60th birthday

Tetsuro OKUYAMA

(Received January 24, 1985)

Let k be an algebraically closed field of characteristic p>0. Let G be a finite group with Sylow p-subgroup P. Following Motose and Ninomiya [3] we call G p-radical if  $k_p^{c}$  is completely reducible, where  $k_p$  is the trivial kP-module. Our aim in this paper is to prove the following theorems.

**Theorem 1.** If G is p-radical, then G is p-solvable.

**Theorem 2.** Let G be a p-radical group with Sylow p-subgroup P. Then the following hold;

(1) If  $D=P \cap P^x$  for some x in G, then D is a vertex of some simple kG-module.

(2) If  $D=P \cap P^x$  for some x in  $C_G(D)$ , then D is a defect group of some pblock of G.

We will write V | W if a kG-module V is isomorphic to a direct summand of a kG-module W. For kG-modules V and W and a subgroup H of G, let  $(V, W)^{c} = \operatorname{Hom}_{kG}(V, W)$  and  $(V, W)^{c}_{H} = T_{H,G}(V, W)^{H}$ , where  $T_{H,G}$  is the trace map from  $(V, W)^{H}$  to  $(V, W)^{c}$ .

### 1. Preliminaries

Throughout this paper we let G be a p-radical group with Sylow p-subgroup P and put  $Y=k_P^G$ . In this section we shall prove two lemmas which will be used to prove the theorems stated in the introduction.

**Lemma 1.** If S is a simple kG-module with vertex Q, then every indecomposable direct summand of  $S_P$  is isomorphic to  $k_A^P$  for some  $A \subset P$  which is conjugate to Q.

Proof. Since Y is completely reducible,  $(Y, S)^G = (Y, S)^G_Q$  and  $(Y, S)^G_R = 0$ if R does not contain any conjugate of Q. Let X be an indecomposable direct summand of  $S_P$ . Then by Mackey decomposition theorem  $X \simeq k_A^P$  for some  $A \subset P$  such that A is contained in some conjugate of Q. By the isomorphism Т. ОКИУАМА

Hom<sub>k</sub> $(Y, S) \approx (\text{Hom}_k(k_P, S_P))^G$  we have  $T_{G,A}((Y, S)^A) \neq 0$  (see Lemma 3.5, II in [1]). Thus by the above remark A contains some conjugate of Q and therefore A is conjugate to Q.

**Lemma 2.** Let Q be a subgroup of P and put  $N=N_G(Q)$  and  $R=P\cap N$ . Let V be an indecomposable direct summand of  $k_R^N$ . If  $V_R$  has an indecomposable direct summand with vertex Q, then V also has Q as a vertex.

For our proof of the lemma Scott's study in [5] is very useful. Proof. Let  $\Omega$  be the set of right cosets of P in G. Then Y is the permutation module  $k\Omega$ . If  $\Omega_Q$  is the set of fixed points of Q in  $\Omega$ , then  $X = k\Omega_Q$  is a kN-module,  $X = \bigoplus \sum k_{P^x \cap N}^N$  where x ranges over the set of representatives of (P, N)-double cosets in G with  $P^x \supset Q$  and  $k_R^N \mid X$ . Note that every indecomposable direct summand of X has a vertex containing Q as  $Q \triangleleft N$ . By Scott's investigation in (section 3, [5]) there exists a k-algebra homomorphism f from  $(Y, Y)^{G}$  to  $(X, X)^{N}$ . The map f induces the epimorphism from  $(Y, Y)^{G}_{\rho}$  to  $(X, X)^{N}_{\rho}$  (see Proof of Theorem 3(b), [5]). Since  $(Y, Y)^{c}$  is semisimple we conclude that  $(X, X)^{N}_{Q}$  is an ideal of  $(X, X)^N$  with  $J((X, X)^N) \cap (X, X)^N_Q = 0$ , where  $J((X, X)^N)$  denotes the Jacobson radical of  $(X, X)^N$ . Then it follows that  $(X, X)^N_Q$  is a direct summand of  $(X, X)^N$  as algebras. Let V be an indecomposable direct summand of  $k_R^N$  and assume that  $V_R$  has an indecomposable direct summand with vertex Q. Then  $k_Q^R$  is a direct summand of  $V_R$  by Mackey decomposition theorem and therefore  $(V, k_R^N)_Q^N \neq 0$ . Thus  $(V, X)_Q^N \neq 0$  and this is implies that an idempotent in  $(X, X)^N$  corresponding to V is in  $(X, X)^N_Q$  as  $(X, X)^N_Q$  is an algebra direct summand of  $(X, X)^N$ . So V also has a vertex Q and the result follows.

#### 2. Proof of Theorem 1

Let S be a simple kG-module in the principal p-block of G and Q be its vertex. By Lemma 1  $S_P = \bigoplus \sum k_{Qx}^P$  for some x's with  $Q^x \subset P$ . By the result of Knörr (Corollary 3.6, [2]) Q is a defect group of the principal p-block of  $QC_G(Q)$ and therefore is a Sylow p-subgroup of  $QC_G(Q)$ . Thus  $Z(P) \subset Q^x$  for every x with  $Q^x \subset P$ . So Ker  $S \supset Z(P)$  and it follows that  $O_{p'p}(G) \supset Z(P)$ . As  $G/O_{p'p}(G)$ is also p-radical, the theorem follows by induction on the order of G.

#### 3. Proof of Theorem 2

First we shall prove the statement (1) in Theorem 2. For any Sylow intersection  $D=P^x \cap P$ ,  $k_D^P$  is a direct summand of  $Y_P$  by Mackey decomposition theorem and therefore is a direct summand of  $S_P$  for some simple kG-module S. Then the result follows from Lemma 1.

Next we shall show the statement (2) in Theorem 2. Let  $D=P^x \cap P$ where x is in  $C_G(D)$  and put  $N=N_G(D)$ ,  $H=DC_G(D)$  and  $R=P \cap N$ . Since x is in  $C_G(D)$  and  $D=R^x \cap R$  it follows that  $k_D^R |k_R^{RH}_R$ . Then by Lemma 2  $k_R^{RH}$ 

468

has an indecomposable direct summand V with vertex D as  $k_R^{RH} | k_R^{N}_{RH}$ . Let W be an indecomposable kH-module such that  $W^{RH} = V$  and let b be a p-block of H which contains W. We claim that  $W^N$  is completely reducible. By the result of Scott (Theoremc, [5]) every indecomposable direct summand of  $k_R^N$  with vertex D is the Green correspondent of an indecomposable direct summand of Y and is therefore a simple kN-module by (Lemma 2.2, [4]). Since  $W^N | V^N | (k_R^{RH})^N = k_R^N$  and every indecomposable direct summand of  $W^N$  has a vertex D we have that  $W^N$  is completely reducible by the above remark and our claim follows. Since  $W^N$  is completely reducible, W is simple and is a unique simple kH-module in b as  $H = DC_G(D)$ . Let B be a p-block of N which covers b. Then every simple kN-module in B is a submodule of  $W^N$  and therefore direct summand of  $W^N$ . This implies that B has a defect group D. So G has a p-block with defect group D by Brauer's First Main Theorem.

#### References

- [1] W. Feit: The representation theory of finite groups, North-Holland, Amsterdam, New York, Oxford, 1982.
- [2] R. Knörr: On the vertices of irreducible modules, Ann. of Math. (2) 110 (1979), 487-499.
- [3] K. Motose and Y. Ninomiya: On the subgroups H of a group G such that J(KH) $KG \supset J(KG)$ , Math. J. Okayama Univ. 17 (1975), 171-176.
- [4] T. Okuyama: Module correspondence in finite groups, Hokkaido Math. J. 10 (1981), 299-318.
- [5] L.L. Scott: Modular permutation representations, Trans. Amer. Math. Soc. 175 (1973), 101-121.

Department of Mathematics Osaka City University Osaka 558, Japan