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1. Introduction

For a positive squarefree rational integer m let &,, be the fundamental unit
of @(\/m) and suppose Ny myo(€,)=—1. Then, for s>1 and any prime ideal

P of @(+/m) with N(P)=1 mod 2°, the 2'-th power residue symbol (5_1;) is
z’

defined and has value +1 provided that &,, is a 2*~!-th power residue modulo P,
ie. (%") =1. Especially, if p is a rational prime with p=1 mod 2s*! and
25~
(%):1, the symbol (%) for P|p depends only on p and is denoted by
2&
Em

(7> . Concerning this latter case, explicit criteria for (%) =1 in terms of
2° 28

representations of powers of p by binary quadratic forms have been given in the

following cases ([13], [6], [2]):

A. m=5mod 8 or m=2 mod 4, and the ideal class group of @(\/—m) has no
invariant divisible by 4; s=1 and s=2.

B. m=1 mod 8, and the ideal class group of @(\/—m) has only one invariant
divisible by 4; s=1.
In this paper we treat the case s=2 for B. which could not be settled up to

now (§5); in this case we also determine the quartic residue symbol (8—"‘)‘, where
P is a prime divisor in @(v/m) of a prime p with (*-_1)2(1'_1_) =1 (if p=5 mod
8, this symbol depends on P and not only on p). pFurtheI:' we derive criteria
for (%)2:=1 (s=1, 2) for inert prime ideals P of @Q(\/m) under quite general

assumptions (§3) and criteria for (%) =1 (s=1, 2) in the case where m=q is
2!

a prime and 4=(1/¢q) (§6). The proofs depend on the generation of suitable
subfields of the ring class field modulo 8 of @(\/—m) by radicals (§4).
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There is a similar and even more complete series of results including octic
residuacity in the case Ngwmy(En)=1 (see [13], [6], [7] and [11]).

2. Notation

Throughout this paper we keep the following notation:
m>>1 is a squarefree rational integer;

F=Q(v/m), k= Q(V/—m);
K=F-k=Q(\/m, /—m) = F(i) = k(i), where
i=1v—-1;

h is the odd part of the class number of k;

E=U+V \/m is the fundamental unit of Z[/m] with

U VEN, so £>1,
Nowmye(§) = UP—mV? = —1.

If &,, is the fundamental unit of Q(v/m) then either £=§, or E=&5, where the
latter case can only occur if m=5 mod 8. In any case, € and &, have the same
2°-th power residue properties and we shall prefer to work with & instead of
&,

3. Residuacity criteria for inert primes

We start with two simple lemmas; the first concerns Galois theory, the
second quadratic reciprocity.

Lemma 1. K( ¥2¢)/k is a cyclic extension of degree 8, and K(+/2¢)/Q is
normal with a dihedral group of order 16 as Galois group.

Proof. As Ng,(26)=—4 we deduce from [6; Satz 1] that K(+/2¢)/k is
y\4
cyclic of degree 8. If o, generates the Galois group of KJk, then 0-0(25)2(_12;’1,
and thus a generator o of the Galois group of K(+/2¢)/k is given by €
1—i
7

a(¥2¢) =

Let 7, be the generator of the Galois group of K/F; then 7,(26)=2¢€ and
thus 7, has an extension 7 to K(«/2¢) defined by

7(¥26) = V2¢.

But 7,|k generates the Galois group of k/@, and therefore K(+/2¢)/Q is
normal with Galois group generated by o and 7. Now we can check the relations
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cd=7r"=1id, or= 10"

by applying the automorphisms to +/2¢& and ¢; this proves the assertion. Bl

Lemma 2. Let E be a quadratic number field, p an odd rational prime
which is inert in E and P=(p) the prime divisor of p in E. Then, for any rational

integer r, prime to p, we have (%)zl and

().

Proof. By Euler’s criterion, we have

1, if p=—1 mod 4,
L), if p=1 mod 4.
(P), if p mod 4

(_r_) =r**Y2 mod P,
P

as N(P)=p? thus (%):1 since r#*~V2=(y?-)*+V2=1 mod p. In the same
way,

(_r_) =7y®*-D4 mod P,
Pl

and if p=—1 mod 4, r#*-VA—(#-)*+0=1 mod p implies (3’5) —1. If p=1
4

2
mod 4, P;—l is odd and the decomposition P :1=P ;1 2 ;‘_1 shows that 7¢*-0/4

=1 mod P if and only if r*~Y2=1 mod p, i.e., (%):1. n

RemarRk. Lemma 2 is a very special case of a general formula for the
power residue symbol, see [5; §14, IV.].
Now we are well prepared to prove the reciprocity criteria for inert primes:

Theorem 1. Let p be an odd rational prime inert in F, i.e. (—;-:z—)z—l,

and let P=(p) be the prime divisor of p in F. Then:

_5_> — (;1
a) (P > ) .
& 2
b) If p=1 mod 4, (*) :(_ .
) Ifp=1mod4, (5) = ()

Proof. Let p, resp. pg be a prime divisor of p in k resp. K; then pg is
a prime divisor of P of relative degree 1 and the prime residue class groups
modulo P and pg coincide.

If p=—1 mod 4, p; is inert in K, and as K(1/2¢)/k is cyclic, p; remains
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inert in K(1/2€). Thus pg is inert in K(+/2€) too, and we obtain
-1=(2)-F)-G)E -3
using lemma 2.

If p=1 mod 4, p is inert in & and therefore p, splits completely in K(+/2¢)
by [9; Satz 25] and lemma 1. Thus pg splits completely in K(+/2¢) too, and

we obtain
2¢ 2¢ 2 & 2\.( &
= (2) - (- G- ()0
DPx /4 P>4 (P)4 P)4 (p <P 4
by lemma 2, which is the assertion. Bl

4. The ring class groups and ring class fields involved

In this section we study the subfields of the ring class field modulo 8 of
Q(v/—m) which can be generated by radicals; the arithmetic of these fields is
used in the next section to derive the announced power residue criteria.

From now on, we will assume that

m = ql.....qd
is the product of d>1 different primes gq,, -+, g; with
G=¢=-+=¢,=1 mod 8.

For s>0 let R(s) be the ring class group modulo 2° of & and R(s)’ the
2-component of R(s); especially, R(0) is the ideal class group and R(0)’ is the
2-class group of 2. For an integral ideal @ of % (prime to 2 if s>1) let [a],€
R(s) be the ring class which contains a.

Let C,, -+, C; be a basis of R(0)’, 2%i>1 the order of C;, and m; a primi-
tive ambiguous ideal of & in C%'/™" (see [4; §29]). If m;=N(m;), then m;|2m
for j=1, -+, d, and we may assume that m,=2m{ and that mi, m,, ---, m; divide
m (especially m{=m,=-=m,;=1 mod 8). As m has only prime factors ¢;=1
mod 8, the prime divisor of 2 lies in the principal genus of % [4, §26] and thus
we have ¢,>2. Let t;&C; be integral ideals prime to 2, {;=m; in case t;=1.
Set

65 = (uy)
with integral u;€k(j=1, .-, d). Then we obtain:

Lemma 3. There exist rational integers ry, -+, 7, such that pu,=r,\/—m
mod 8 and p;=r; mod 8 for j=2, -+, d.

§=1 . . ;=1
Proof. As t%’™" and m; are both contained in C%/~" we have
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-1
677 = my- (7))

with
o= ﬂ%‘ﬂEk» X, ¥j €4, (%5, ¥, %) = 1
J
and

2 2
N(7™) = mye 20105
7
N(#3™") is integral and congruent to 1 modulo 8, if ¢;>2.
As t,>2, we have z,=22{ and x,=y,=2{=1 mod 2; therefore

b=yt = my A mimyl miny,
1 z] zl

=x 5V —mmod 8.

If in the case j>2 we have t;=1 then ¢;=m;, p;=-m; and we are done.
If j>2 and ¢;>2 then 2; is odd and elther x; or y; is divisible by 4; there-
fore

xi+my:  2m;my; 4 2x; y,

2
:i:lbj =m;Yj=m;
2? ‘Z§ zJ

m,

and the assertion follows from 2x; y;=0 mod 8. B

Now we are in position to determine the structure of the group R(s)’ in
our special situation, at least for s<3 (compare [6; §7] where this was done
under somewhat different assumptions).

Proposition 1. Let m be a product of d>1 different primes g;=1 mod 8
and keep all the notation introduced above. Then:
a) For se{0, 1}, R(s)' s of type

(2475, 2%, -+, 24)
with basis
([tds, [Ea]ss -, [2a]) -
b) For s {2, 3}, R(s)’ of is type
(2571, 2% 2tz oo 2%a)
with basis

([(_1+2 \ “m)]n [tl]s» [tz]sr ) [td]s) .

c) For s=>4, R(s)' is generated by [(—14+2v/—m)]s, [£1)s> -, [Ea]s (but these
elements do not necessarily form a basis).
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Proof. Let P(s) be the prime residue class group modulo 2° in k2 and Py(s)
C P(s) the subgroup generated by those prime residue classes modulo 2° which
contain rational numbers. For an integral @ €k, prime to 2, let {a}, & P(s)/Py(s)
be the class determined by &¢. 'Then we see from [8]:

PO)=P(l)=1,
P(1) = P(1)/Py(1) is of order 2, generated by {\/—m},,

and for s>2

P(s)/Py(s) is of type (2°7%, 2) with basis ({—142v—m}, {V—m}s) .
Now R(s) is determined by the exact sequence
1 P()/Pys) B R B RO 1

with @ ({a},)=[(a)], and ¥ ([a],)=[a],. Obviously, im(p)CR(s)’, and we get
the exact sequence

1 - P(s)|Py(s) > R(s)’ — R(0) — 1

which determines R(s)’ as follows:
R(s)’ is generated by im(p), [t,),, -**, [£2)s. This, together with lemma 3,
proves the proposition. l

Now let, for s>0, k(s) be the ring class field modulo 2° over k& and k(s)’
the maximal 2-extension contained in k(s). Then k(s)/k is abelian, and the
Artin map gives isomorphisms

¢ (5): R(s) = Gal(k(s)/F)

with ¢(s) (R(s)")=Gal(k(s)’'/k). The decomposition law for rational primes
in k(s) can be described using binary quadratic forms as follows:

Let C(s) be the composition class group of integral primitive binary quad-
ratic forms f=aX?+bXY+cY?eZ[X, Y] with discriminant D(f)=>0—4ac=
—4°+4m; then there is an isomorphism

st R(s) = C(s)

(called canonical) such that for each positive rational integer a with (a, 2m)=1
and each class Q@ € C(s) the following holds:

Q represents properly a if and only if a=N(a) for some integral primitive
ideal a with Q=x,[a],).

Concerning the structure of the fields k(s) we will have to use the following
corollary to proposition 1:



RiNne Crass FieLps MoburLo 8 oF Q(v/ —m) 631

Corollary 1. Let Lk be a cyclic extension of degree 4 and suppose L C k(s)
for some s>0; then LCk(3).

Proof. Actually we have LCk(s)" for some s>3. Let X: R(s)’—C™ be the
character of degree 4 defining L, and let &: R(s)’>R(3)’ be the natural
epimorphism defined by ¢#([a],)=[a];. Then we have to show that there is a
factorization X =2X,02 for some character X,: R(3)’—C™, but this is equivalent to

ker (§) Cker(X) .
Suppose C &ker(¥); then by proposition 1, ¢)
C = [(=1+V—m)le- IT5[t;]%
with a,, a,, +++, a; EN,, and as J(C)=1 we deduce from proposition 1, b)
ay=a,=0 mod 4,
a;=0 mod 4ifj>2 and ¢;>2,
a;=0 mod 2ifj>2 and ¢;=1.
Then
d
X(C) = I X ([t 1)

t.=1
7
but if ¢;=1, [¢;]?=[(m;)];=1 and thus X([¢,],)*=1, which implies X(C)=1. W

Now we are well prepared to study the Galois theory and the ramification
of those fields, which control the quartic character of &.

If m is a product of different primes congruent to 1 modulo 8, then the
prime divisor of 2 in & lies in the principal genus and therefore there are rational
integers a, b, u Z such that

u>0, a+b\/m>0,2Yu, ab=3 mod 4
and
at4-mb® = 20 ;
we fix such a triple (a, b, u) in the sequel and consider the algebraic integer
S =atb\/“meEk;
it has the ideal decomposition
() = w-u?

where w is the prime divisor of 2 in k2 and & is a primitive integral ideal of k
with N(u)=u.
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Proposition 2.

a) K(eS(1—i)D/kis a cyclic extension of degree 8, K(/e8%(1—i)2)/@Q is
normal with a dihedral group of order 16 as Galois group, and K ( \/582(1 ;)2)C
k(1).

b) k(V(2+/2) 8k is a cyclic extension of degree 4, k(v/ (2+/2) 9)/Q
is normal with a dihedral group of order 8 as Galois group, and k(\/(2-+1/2) 8)
Ck(Q3).

c) K(+/28)[k is a cyclic extension of degree 8, K(+/2€)/Q is normal with a
dihedral group of order 16 as Galois group, and K(+/28)CK(+/€8*(1—i))-
(V@ 2) 9)CR(Q), but K(H28)EH(2).

Proof.
a) We set

n = VEF(1—i);

then Ng,(n*)=—48", and from [6; Satz 1] we deduce that K(5)/k is cyclic of
degree 8. Let o, be the generator of the Galois group of K/k; then oy(%*)=
&2 %, and thus we may fix an extension o of o, to K(%) by setting

0'(77) \/'—‘ /R

and o generates the Galois group of K(7)/k. Let 7, be the generator of the
Galois group of K/F; then 7y(5*)=[(1—7) u8~']*-* and thus 7, has an extension
to an automorphism 7 of K () satisfying

7(n) = (1—i) ud7'+y

As 7,|k generates the Galois group of k/@ we deduce that K(3)/@ is normal
with Galois group generated by o and 7. Now we can check the relation

8 -1

*=7"=1id, or= 10
by applying the automorphisms to &, 7 and %. Thus the Galois group of
K(7)/@Q is a dihedral group of order 16, and K(7) is contained in a ring class
field over & by [9; Satz 11].

It remains to show that the conductor £ of K(y)/k devides 2. By [6;
Satz 13] the extension K(+/ & )/k is urnamified; thus, if d and d* denote the
relative discriminants of K(5)/K(\/ € ) and K (n)/k, we have

d* = Ngoon(d) .

Let X be a generating character of K(»)/k and £(X’) be the conductor of X’
(=0, 1, .-+, 7). Then, by [14; §4], we have the following relations:



RinGg Crass FieLps MobuLo 8 oF Q(v/ —m) 633

f=r(X) for j=1 mod2,
f(X)=1 for j=0 mod 2

and
a* = I F(X) = 1.

From these we see that in order to prove £|2 it is sufficient to show d |2; but
this demands a careful analysis of the relative quadratic extension K ()/K(v/€).
Setting
A\/ 8 .

1— '
we have K(7)=K(v/ €)(V ) and the ideal decomposition of & shows that
K(n)|K(\/ &) is unramified outside 2. Let w be a prime divisor of 2in K(1/¢€);
then ord,(2)=2, and thus it is sufficient to show ord,(d)<2, which, by [3; §11]
is equivalent to:

o=

« is a quadratic residue mod* w®.

We have
a¥(1—i)? = &€8° = (U+V V'm) (®—mb*+2ab~/ —m) ;
by [6; Satz 13]
U=0 mod4, V=1 mod#4

which, together with ab=3 mod 4 and a*—mb*=0 mod 8 implies a’(1—i)*=
(1—7)* mod 8 and thus

a?’=1 mod 4.

Therefore 1—}2—05 is an algebraic integer, i.e.
a=1 mod 2.
Let z€K(1/ &) be an element with ord,(z)=1; then
a=1+wn?® mod w?

for some wEK(\/ €). As the prime residue class group modulo w is of odd
order, @=wj mod w for some w,& K (/€ ), and then

a=(14wyr)? mod w?

as asserted.
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b) We consider the field
M=Q(V2)(Vv)
with
v=(at+uv2)2+vV2)EQ(V2)

As Nopvzy)9(7)=2(a%—2u?)= —2mb?, M|Q is not normal, its normal closure

L=Q(V2,V=2m V)
is cyclic of degree 4 over k, and the Galois group of L/@ is a dihedral group of
order 8 [9; Satz 1,2]. Finally, the identity

oozl

shows that
L=kV(2+v2)9)-

The prime ideal decomposition of & shows that L[k is unramified outside 2,
and by [9; Satz 11] LCk(s) for some s>0, so LCk(3) by corollary 1.

c) The Galois theoretic assertion comes from lemma 1. The asserted
inclusion of fields follows from the identities

2+v2):8-¢—i)* = V2 §(1—)

and

V28 = V/28(1—i) Vg (1) [8(1—)]™

with
¢ — l\/"%ieK( VES(1—1)) k(V 2+ 2) 0) -

Now suppose we have K(+/2¢8)Ck(2). By lemma 1, K(+/2¢)/k is cyclic of de-
gree 8; let X: R(2)—C™ be a generating character of K(+/2¢g). Then, by prop-
osition 1, X*=+Jrcf where §: R(2)—R(0) is the natural epimorphism defined by
0([al,)=I[a], and + is a character on R(0) of degree 4. Thus, K(1/2¢)/k is
defined by X? and also by +r and therefore unramified, a contradiction. W

Remark. Proposition 2 a) generalizes [6; Satz 14, a]; the Galois theoretic
assertion in ¢) could equally be deduced from [2; Proposition 1].

Proposition 3. Suppose M=K (\/§(1—1)); let p be a rational prime with
p=1 mod 4, (%):1 for j=1, -+, d, and let P be a prime divisor of p in F.
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Then there exist w, r, s Z with

(r,9)=1,7r—s=1 mod 4, 2fw,

W’ p = r’—ms*
and
r+svmeP.
If w,r, s are as above then P splits in M if and only if
r—s=1 mod 8.

If p=1 mod 8 then s=0 mod 4, and the two prime divisors of p in F either both
split in M or both do not; if p=5 mod 8 then s=2 mod 4 and exactly one of the
prime divisors of p in F splits in M.

When showing proposition 3 we shall also prove the following congruence
which has not been noticed hitherto:

Proposition 4. We have

Remark. If mis a prime a short proof of proposition 4 can be given as
follows: The prime divisor # of # in k lies in an ideal class of order 4 and
thus the class number of % is divisible by 8 if and only if u lies in the principal
genus, ie., #=1 mod 4. On the other hand, U=0 mod 8, if and only if 8
divides the class number of & [1].

P. Kaplan remarked that proposition 4 can also be deduced from [12] by

appealing to theorem 1 and formula (2.6) of that paper (with 4=[2,2, l——Hfl-]

and a square root B, of A representing u).
Proof of propositions 3 and 4. The identity

a1 u \®_ atbv/m
8-(1=9) {2+8(1——i)} ==z

shows that
M=K-F(y etV 4),

and as p=1 mod 4, p splits completely in K. Thus P splits in M if and only
if it splits in F(Vﬁ%@+u)

As a-+b/m>0, u>0 and



636 F. HaLTER-KocH AND N. Isun

NF,Q<‘#’+1¢) = —;— (#+a)*>0,

a"H;\/;l—l—u is totally positive in F, and F <V a——‘_bz\/ﬁ-ku)/F is unramified

at infinity. As the ideal (§(1—7)) is a square in K, MJF and thus also
F ( ,\/ W-Fu)/F are unramified outside 2. Let z, 2’ be the prime divisors

of 2 in F, normed such that
vVm=—1mod 22, /m=1mod z?.
Then we have (14 +v/m)*=1+m-+2+/m=0 mod 2* and thus
vzt mod 5.

From
@+mb* = (a+b\/m) (a—b/m)+2mb* = 2u*
and
2mb*=2u*=2 mod 16
we deduce

(a+b+/m) (a—b\/m)=0 mod 16,
and ab=3 mod 4 implies

a—by/m=a—b=2mod 2% ;

consequently
a+b\/m=0 mod 2.
This implies
a—t%—\/j—}—uzu mod 2% ;
as Ngq ““‘bz\/ﬁ-i-u):% (a-+u), ord, (ﬂzl@+u) =1 mod 2.

Now let £ be the conductor and ¢ the generating ideal character of
F(A/ tﬁ%ﬂ) |F. Tt follows from [3; §11] that

f=22"

with
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{0, if #=1 mod 4,

0 =

2, if =3 mod+4.

For an integral a € F with =1 mod 4 we have in any case

1, if =1 mod 22,

¢((a))={~1, if a=5 mod 2.

Now suppose p=1 mod 4, <%>=l for j=1, «-+, d, and let P be a prime di-

visor of p in F. Then P lies in the principal genus (in the narrow sense), so
there is a primitive integral ideal w prime to 2p such that w’P is principal,

WP — (r'+s2' \/%)

with 7', s'€Z, (r',s')|2, ' =s" mod 2 and

2 72
N@*P) = w’p = L:;’”_‘_ .

As w’p=1 mod 4, we have r'=s"=0 mod 2, r'=2r, s'=2s,
wP = (r+s\/m)CP,
wp = r*—ms?
and from w?»=1 mod 4 we deduce =1 mod 2, s=0 mod 2. By changing

signs if necessary we may assume

r—s=1 mod 4.
Then we obtain
r+svm=rt+s=r—s=1mod 4,
and as
r+sv/m=r—s mod 23,
we deduce:

@((r+sv/m))=1 ifand onlyif r—s=1mod 8.
Now P splits in F(V #’—l—u) if and only if @ (P)=1, but
P(P) = p((r+svm)),
and this proves the first part of proposition 3; the second part is obvious.

To prove proposition 4, consider €=U~V v/m and observe that
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U=0 mod 4, Vsm%l mod 8
by [6; Satz 13], which implies

&= U_<li£ﬁ)25_ U—1 mod 2*,

whilst

E=v/m=1mod 2z,
If now v=0, F (V a_"'"%@-{_u)/F has conductor z° and thus there is no unit 7
in F with =1 mod 2% %1 mod 2°. As —&6=1 mod 2? we have —€=1-U=
1 mod 2® which implies U=0 mod 8.

If v=2, F(«/ ﬁi%\/_’i”—{—u)/F has conductor z? 2’2 and thus there is no unit 7y

in F with =1 mod 2%, =1 mod 2z*2?’. As —&z%1 mod z'2 we have —&E=1—
U =1 mod 2z* which implies U=4 mod 8. B

5. Residuacity criteria for splitting primes

Theorem 2. Suppose m=gq,+-+-+q, is a product of d>1 different primes
g;=1 mod 8 and suppose that the ideal class group of k has only one invariant 2!
(¢=2) divisible by 4; then the fundamental unit E=E,, of F satisfies Npjo(€)=—1.

Let | be a prime satisfying =3 mod 4 and I*=§"+-mn® with £, n€Z, (£, 7)
=1.

Let p be a prime such that p=1 mod 4 and <ﬂ)=1 for j=1, -+, d, and let
P ke a prime divisor of p in F; suppose p
w’p = r’—ms’
with w,r, sEZ such that
(r,s)=1,r—s=1mod 4, 2 fw
and
r+sv/meP.
A. There is a unique exponent n< N, satisfying n<2'!""' such that
(*) I ph = X?+-4mY*

with X, YeZ, (X, Y)=1.

B. The following assertions are equivalent:

) (G
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b) In (¥), we have n=0 mod 2;

c) p is represented by a class Q  C(0) which is a 4-th power.
d) ¥ *=x’+-my® with x,yEZ, (x, y)=1.

e) p is represented by a class Q  C(1) which is a 4-th power.
£) p* =P +4my? with x, yEZ, (x, y)=1.

C. Suppose(P) 1,7.e. n=0mod 2 in (%). Then

__§. — (—1)(#2)+(r—s-1/4)
(5)=¢v -

D. Suppose( ) 1 and p=1 mod 8. Then, in (*) we have n=Y =0
mod 2, and »

(%)4 — (— 1)+

E. Suppose (p) 1 and p=1mod 8; let Q= C(3) represent p. Then either

) ¥ = X*4-16mY?
or
(II) P = 16X2+-mY?

with X, YeZ, (X, Y)=1, and we obtain:
(.%5_) =1
p /4
if and only if

in case (I): Q is an 8-th power;
in case (II): Q is no 4-th power.
F. Suppose p=1 mod 8 and p*'=16X*+mY* with X, YeZ, (X, Y)=1.

Then <§—>= 1, and we have

(1:_)‘ — (_1)2'-2+x .

Remark. 1. In theorem 2,/ plays the role of an auxiliary parameter. If
C is an absolute ideal class of % of order 2f and I&C is a prime ideal of degree
1 then the underlying prime [ satisfies all requirements.

2. Criteria for the quadratic character of & under more general conditions
were proved in [6]; for a different approach see [2].

Proof. Ngse(€)=—1 follows from [6; Satz 14]. The assumption concern-
ing the ideal class group implies t,=t>2 and ¢;=1 for j=2, ---, d in the termi-
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nology of §4. Let p be a prime divisor of p in k.
For s>0, let k(s)* be the genus field of k(s), i.e. the greatest absolutely
abelian subfield of k(s). Then, by [10],
k(\/ay"')\/a’ V—l), 1f SSI,
k(\/a)'“y \/94_-1’ \/—“—1) \/7), lf S__>_2,
and k(s)¥* is the greatest multiquadratic extension of % inside &(s).

As p=1 mod 4 and <%)=1 for j=1, ---d, p splits completely in k(s)* for

ko* = {

s<1; but this implies @([p],)=1 for all quadratic characters @ of R(s), i.e. [p];
is a square in R(s) for s<1. 1If, in addition, p=1 mod 8, then [p], is a square
in R(s) also for s>2.

By proposition 1, R(3) is of type (4,2/*,2,+,2) with basis ([(—1+
27/ —m)ls [ti]s -+, [L.]5), and we set

Co=[(—142vV—m)]s, C; = [t;]s -

For s<3, let w,: R(3)—R(s) be the canonical epimorphism defined by o,([als)=
[@),; then ker(w,)=<C3>, ker(w,)=<Co> and ker(w)=<C,, C¥*>. From Ci'=
[(vV/—=m)]s we see that, for s<3, \,0w(C3%’) contains the form 4 X*+mY?>.

By proposition 2, K(+/£8%(1—i)?) is a cyclic extension of k of degree 8 con-
tained in k(1). Let X,: R(1)—C™ be a generating character for K(+/€8%(1—i)?)/
k; then (by raising X, to an odd power if necessary) we may assume X,([£,],)=¢,

where {= %E C* is a primitive 8-th root of unity. Then X=X,cw,: R(3)—>C"

also defines K( v/ €8(1—1)?), X* defines K(1/¢€), X* defines K, and we have

X(Cy) =1, X(C)=F¢.
As [p), is a square in R(1), we may set
[ply= C§-C¥-U
with a’, heN,, a’<4, b<2! and a class U< R(3) of odd order.

Proof of A. As I*=r*+ms’, ( ; ) 1, and (/)=1, I, with different prime

ideals 1, I, of k which lie in ideal classes of even order. , induces an iso-
morphism of the odd parts of R(3) and R(0), and thus we have

[l = CiCt T, [Lh= C3 CY*T

with exponents v, u €Ny, v<<2, u<<2* and a class T R(3) with T?=1. Asl=3
mod 4, [, is inert in K, and thus —1=X*([,]s)=(—1)", i.e.
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=1 mod 2.

Now, for nEN, the integer [** p* is properly represented by the classes
M([23 P, M([23" p*);) and their inverses in C(1).  So the existence of X, YeZ
with (X, Y)=1 and /* p*=X?+4mY? is equivalent to [I}" p"],=1 or [I}* p*],=
1, i.e. to [I%" p"],€<{C, for j=1 or j=2. From

[lgn ph]3 — Cg’h+2uw_ C2bh+2nk ,

[lgn ph]a — Cg'h—va.Cfbh—Znﬂ-
we see that it is sufficient to show that there is a unique nE N, with n<2¢"!
for which one of the congruences

2bh+4-2np,=0 mod 2!*!
holds; but this is obvious.

Proof of B. As p=1 mod 4, ( % ) is well defined, and as X? defines K(/¢€),

(_;—) —1, ifandonlyif XX([p]y)—1.
From the above we deduce

3
(%) = %ol = (-1,
P

and the congruence 2bh+2nu=0 mod 2+ together with £>2 and A=p=1 mod
2 implies

b=n mod 2,

)= (=17,
(5)=cn

which proves the equivalence of a) and b).

For s {0, 1}, p is represented by the class \cw,([P]s)=n,([t,],)* - Ao, (U)
and its inverse in C(s), and as Ao, (U) is of odd order, p is represented by a
4-th power in C(s) if and only if 5=0 mod 2; this proves the equivalence of a)
with ¢) and e).

For s {0, 1}, p**"~™ is properly represented by the class A ([¢,],)*" ",
and this is the principal class if and only if 5=0 mod 2; this proves the equiva-
lence of a) with d) and f).

thus

Proof of C: If (§)=1, then by B. we have n=6=0 mod 2, and from

2bh+-2ny=0 mod 2'*), t>2 and h=p=1 mod 2 we infer
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Now let Py be a prime divisor of P in K; as K(+/£8%(1—i)?)/Q is normal,
Py splits in K(+/&8%(1—1)?) if and only if p does; therefore, Px splits in
K (+/€8%(1—1)?) if and only if p does, and as X defines K(+/£8%(1—:)?), this is
equivalent to X([p];)=1. As

X([ply) = (—1)"* = (—1)"*,

we obtain

The prime residue class groups of P and Py coincide, thus we conclude

()= ()

As (—8-%:——1.))=1 if and only if Py splits in K(1/§(1—1)), it follows from proposi-
K
tion 3 that

8(1—-i) = (—1)r—s—1/4
(3G = (e,
Putting all together, we deduce

& e n
L) = (—1)r-s-Dia+—
(P>4 ( ) :

Proof of D: Let 4r: R(3)—>C* be a generating character for K(+¥/2¢)/k.
By raising ) to an odd power if necessary, we may assume that

v(C)=¢.
By proposition 2, K(+/2€)d¢ k(2), thus ker(w,)=<C%> ker(yr) and consequently
Y(Co) = £i.

As p=1 mod 8, [p];=R(3) is a square, and thus a’=0 mod 2,

a’ = 2a, 0<a<?2.

From (%):1 we deduce as in the proof of C. b=n=0 mod 2 and

mod 2.

b_n
2 2

This implies
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2¢& b/2)+a ni2)ta
(58), = 91oh) = (=10 = (=1

In (%), we have Y=0 mod 4 if and olny if I** p* is properly represented By the
principal class of C(3); but as /** p* is properly represented by the classes
A([2%" p"]5) (=1, 2) and their inverses in C(3), Y =0 mod 4 is equivalent to

1= [l?" ph]a — C%""-C?”"*z"“

for j=1 or j=2, i.e. for one choice of the sign in the exponent of C,. As n
was determined so that 2bh+27,=0 mod 2¢*! for one choice of the sign, Y=0
mod 4 is equivalent to =0 mod 2, thus

and

(Zf)4 — (—1ywear

Proof of E: As (§)=1 and p=1 mod 8 we have a’=2a, b=n=0 mod 2

and —2b—'=‘—’2—'— mod 2 as in the proof of C. p is represented by the class Ay(C3* C3*-

U) and its inverse in C(3). Thus, if @ =C(3) represents p, @ is a 4-th power
if and only if a=0 mod 2.
As p*7* is properly represented by the ambiguous class Ay0w(C3 )&
C(2), we deduce
=0 mod 4 in case (I),
b=2 mod 4 in case (II) .

As in the proof of D. we obtain

(_2.;)4 = (_.1)(nlz)+a — (_1)(bﬂ)+a .

In case (I), 5=0 mod 4 and thus <28) =1 if and only if ¢=0 mod 2, i.e. @ is

an 8-th power. In case (II), 5=2 mod 4 and thus (28) =1 if and only if
a=1 mod 2, i.e. @ is not a 4-th power.

Proof of F: As p=1 mod 8, we have a’=0 mod 2, a’=2a, and p is re-
presented by the classes A;(C5° C3*U)*' & (C(3); thus p* is properly represented
by X(C3 CP¥M*'eC(3) and by A0w,(C3* CH*)*F=n0w,(CE*")EC(2). As
P'=16X?4+mY? with X, YeZ, (X, Y)=1, p* is also properly represented by
A0wy(C3') and this implies
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b=21,

As in B. we have 5=# mod 2 and thus

(.;_)=(—1)b=1.

Further, we have X=0 mod 2 if and only if p* is properly represented by
As(C¥), and as p* is properly represented by Ay(C§* Ci') this is equivalent to
a=0mod 2. This implies

a=X mod 2

and

6. Residuacity criteria for ramified primes

In this final section we assume that 7 is a prime and consider &, modulo
the prime dividing m.

Theorem 3. Let m=q=1 mod 4 be a prime and a=(\/gq) the prime
divisor of ¢in F. Then:

a) If g=5 mod 8, (_fl_a)=—1.

b) Ifg=1 mod 8§, (—2—“):1,

(fi)‘:(—l)(«-‘)/fl and (%)4:(—1)2“2.

q
Proof. Eq=U+V\/?, and U?—qV?=—1. Therefore we have &=U

mod ¢,
()= (D)= (2)= ()=

and, if g=1 mod 8,

(5, ()= ()~ ()=

To show (2%) =(—1)*"* we adopt the terminology of the proof of the-
4
orem 2. Then
[q]:i = [( \% '—q)]s = CY

and
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(Ee) = v(@=(-1".m

Corollary 3. ¢>3 if and only if (—_4> —1.
q 8

Proof. (— 1)2'-2=(g§i’—)4= (%)4 . (%’)4= (—3«)4<:q—1)8= (:qf)a’ by the the-

orem. l

Remark. Corollary 3 was first proved in [1]; it is not surprising that an

extensive study of the structure of the ring class fields as we have done in this
paper delivers this basic fact too.
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