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Introduction

Gevrey regularizing effect or analytic regularizing efféar (nonlinear) Schrodinger
equations is studied in [1], [2], [7], [10], and Gevrey rempging effect for the equa-
tions of Schrodinger type is studied in [3], [4], [5], [6]9]f Especially, concerning
Gevrey regularizing effect for nonlinear Schrodinger a&tpns
) { iOu+ Au_: f(u),

(0, x) = uo(x),

the following result is obtained: Assume that the initialtada,o(x) belongs to a
Gevrey class of ordes . Then, the solutiory, { ) belongs to a &evetass of order
max(/2, 1) inr #0 (in casef & ) is a polynomial, for simplicity). A simple ergion
to a higher order ofA is
e { 0 + A = £ ()

u(0, x) = uo(x).

In this case, we easily obtain that the solution, x( ) of (2) hgkto a Gevrey class
of order max{/(20), 1) in ¢ # O if the initial dataug(x) belongs to a Gevrey class of
order s . In the present paper, we replate in (2) by a semitiellpperatorA and
consider a dispersive equation

3) Lu =i0u+ Au = f(u),
u(0, x) =uo(x).

Let m = (my1,mo,...,m,) be a vector of even numbens; and det:m| =
> k=g o /my for a multi-indexa = (aq, ..., a,). Then, the operatod is defined by
A= Z an DY,

[a:m|=1

wherea,, are real constants anf, ®(,..., D,,), D,, = —i0/0x;. We assume
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(A.0) A is semi-elliptic,
that is,a €) = >_,.mj=1 @a{” is not zero for{ # 0.

Now, we introduce some notations. Fan = (mq1,mo,...,m,), we setm =
max{mi,...,mu}, p = (p1,...,pn) With pr = m/my and p;, = 1/my. Write P =
10, + Y -1 pixiOy,. Then, we havel, P ] =L . Denote\() = (1 +Zzzl§;"k)l/'", a
basic weight function, and denote B, , = {u € S; M) u(§) € Lo} a Sobolev space
with respect toA(¢), whose norm||ul|x, is ||M€) #(€)||L,. Let S§ be a class of sym-
bols ¢ (x, &) satisfying

0202q(x, &) < Ca g A(€)"

and we also use same notatiof§ to a class of pseudo-differential operataps
q(X, D,) with a symbolg &, &) in S§. Then, Q € S§¥ mapsH,, to Hy,_, (see [8]).
Now, we state our main results. First, we consider the casentin-linear term
f(u) is a polynomial ofu and: . In this case we takgsuch thatny satisfiesng >
po/2 for po = iy px = > gy m/my. In the following, we denotePy = > ;_ Xk 0, -

Theorem 1. AssumgA.0) and that f(u) is a polynomial ofu and: with £(0) =
0. Then for the initial data uo(x) satisfying
4 || Péuo||xno < C MY,

there exists a positive constarft such that the equat@®nhas a unique solu-
tion u(z,x) in C°([0, T1; Hy.n,) N CX([O, T1; Hyno—m) and it satisfies Plu(t, x) €
C([0, T1; Hy.,,) With an estimate

(5) sup|| P u(t, x)||an, < CM'11*
t
for any /.
For the regularizing effect with respect to the space véggmlwe have

Theorem 2. Leto = max(/m, 1) and assume that the assumptionTiheorem 1
are valid. Thenunder the condition(4) the solutionu(¢, x) of (3) satisfies the follow-
ing property For any C*°-function ¢(x) there exist constant§ = C, and M = M,
such that

6 l()2ut, x)|[an < CMlt="alr?
holds withv = [p - a]..

Here, a!?? = 1P %q@p!P27 - 1% p -« = prag + -+ - + py, @nd i is the
smallest integer such thatv > r.
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Remark 1. Whens <m andm; =m , theru , x ) is locally analytic with respect
to xy.

In case that the nonlinear terriu () is a general functiontof andve intro-
duce the following assumption (depending on ).

(A.1), For every positive numbeK , there exist constafits Cg and= M, g
such that

0FOK F(u)] < CMEM kK'Y for |u| < K

u-u

holds, whered;; is the differentiation with respect to the complex conjegaf u .

In this case we assume that the constansatisfiesng > po/2 andngmy/m are inte-
gers for anyk .

Theorem 3. Assume(A.0) and (A.1), with f(0) = 0. Then for the initial data
uo(x) satisfying(4), there exists a positive constafit  such that the equafB)nhas
a unique solutionu(z, x) in CO([0, T1; Hx.n,) N CX[O, T]; Hxno—m), and it satisfies
Plu(t, x) € C°([0, T); H.,,) With the estimatg5) for any /.

Theorem 4. Let o satisfy max(s/m,1) < o < s and assume tha(A.0)
and (A.1), with f(0) = 0. Then under the conditior(4) the solutionu(z, x) of (3) sat-
isfies the following propertyfor any C*°-function ¢(x) there exist constant§’ = C,,
and M = M, such that(6) holds withv =[p - o]..

RemArRk 2. Inm =2, the problem (3) coincides with the problem (1) andhis
case Theorems 3 and 4 are already proved in [7]. So, in thewfmly, we always
assumen > 4,

Remark 3. In Theorem 3 and Theorem 4 we assumye,/m are integers for
any k. We conjecture that this assumption can be removed if re@t the idea of
Bessov spaces.

The outline of the present paper is as follows. In Section 1giwe preliminaries.
In Section 2 we show the existence of the solution of (3) byhgishe idea in [7].
Finally, in Section 3, we show the regularizing effect foe tholution of (3). Since
the operatorA is semi-elliptic, we use not homogeneous fiattowith respect to the
space variables. So, we emphasize that we have to pay aftentivery carefully the
power of constants corresponding to radius of convergetheepower of factorial and
so on, in order to proceed the proof of Theorem 2 and Theorem 4.
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1. Preliminary
As in Introduction, we always denotigy = Z’}:l pj = Zj’zlm/mj.
Lemma 1.1. Letr satisfyr > uo/2. Then we haveB® c Hy ,.

Proof. Using polar coordinates, we know thgt)~? is integrable inR”. Hence,
we obtain foru € S

@) wi=| [ 3O p@ae e < { [ 30 de} ul,
< Callufix.r.
This impliesB° C H),. O
In (1.1) and in what follows, we usd¢ = (2r) " d€.
Proposition 1.2. Let ng satisfyng > po/2. Then we have foru, v € Hy ,,
(1.2) [[uv]|xno < CallutllxnollVl[xno-

Proof. We may only prove (1.2) for v € S. Denote|n|m = E’j’.:l|nj|mf/'”.
Then, we can find a constan§ such that

ME-m - MO <20O  for i < c)©).

This implies

| s
XE = mpPronmye

1 1
= +
/|,,|m<cox@ ez I e NE = oA 4

N 1 O 1
<o [ S OO /n

dn
nlm<core) A0 m>aone) ME = m)2e

< cpn© .
Now, setu, (&) = ME)™u(€) and v, (&) = A(§)™v(€) for u, v € S. Then, we have
2 = | [ ME = )N "l — 1)) |
< [ €= 2oxe 2 dn [ lile — )Pl d
< CHNO > [ finale ~ Pl
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Multiplying both sides byA(£)? and integrating with respect t6, we get (1.2).
U

Lemma 1.3. Letng satisfyng > po/2 and ng; = nomy/m be integers for any .
Then if u € L? satisfiesD;**u € L? for k=1,...,n, we haveu € H,,, and

(13) e < Cof lull + > 1D04ull }-
k=1

We note that, foru € H, ,,, we haveD{u € L, with « satisfyingp - a < nq,
since D¢ € S§'*. Hence, we get

Corollary 1.4. Suppose thang satisfiesng > 1o/2 and thatngx = nomy/m be
integers for anyk . Therthe norm|ju||x ., is equivalent toflu| + > ;_; || Di*ul|.

Proof of Lemma. Using Fourier transformation, we have
2 non 2 - mp 2no/m ~ 2
3 = IMO™ @7 = [ (1D €)™ 1R de
k=1
<y [ (LoD )R de = cs{ulP + S 102 2,
k=1 k=1
Hence, we get (1.3). O

Lemma 1.5. Letr satisfyr > po and g1, g2, - .., q,+1 be nonnegative constants
such thatgy +- - - +¢,+1 < r. Then, we have

v+l
1

1 ~y — v+l —
(14) // A(f — 7’]1)”*5]1 r! A(nJ,]_ . 'r]j)r*‘Ij d77 S C4 (770 - 57 n 1= 0)5
j:

whered” = (0%, ..., ") and di¥ =dn*- - -dn”.

Proof. Forv =2 we have

| se—r e
MNE—my—ax(y = 7

<C, / 1 dn+C, / 1 i
= e M) e * Jinlnzaem ME —mF e
<cy.

Hence, we get (1.4) for = 2. Forv > 3 we get (1.4) by induction om. U
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Proposition 1.6. Letng satisfyng > po/2 and nom,/m be an integer for each
Suppose thag(u) € C=(C; C) satisfies|d? 0% g(u)| < My for v+v' < ng and |u| <
K. Then for u, v € Hy ,,, we haveg(u)v € Hy ,, and

(1.5) 18@)vl[xne < CsMi G([[ullxno) v]|xno,

where G(-) is a polynomial of ordermy and Cs is a constant depending only on
and ng.

Proof. From the differentiation of composite function wevéa

D;OL{g(u)v} g(u)D”OKU
nok
no! o
+ Z Z Z (nOk l)'V”U”' 8u 8 g(u)
=1 v=1v'+v'=v
l/ 1 Ij v 1 ) ]
Z HZTkaM H I_DM D_XLOL
Lty =l =1 jEoer
i>1
Take a constank  such that(x)| < K, which is assured by Lemma 1.1. Then, we
have

(1.6) D3 {g@)v ] < CsMi|[v][x.no

n
eSS Y [Tk |

1=1 v=1 L+ +,=l j=1
=1

In order to estimat<$|]'[;’:1 Df{;,u - D! !y|| we set forly, ..., 1, satisfyingly+---+1,
nox — 1

174
A7) = TT AP =2 = o eudi x(gyro— prtoos =D,
Jj=1

with 7V = (%, ..., n"), n° =& and p, = m/no,. Then, we have

(1.7) ]f[f[ Diu- Dﬁ:’-”’v} (6)]
Jj=1

// TT{~ = ity — )}y 1o di
j=1
’// AL ﬁy)flgf‘no(""*l = 17) - Do

IN
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<{[[acarzar}”
A Tl = i}
=1
Since an inequality

/ AET) 2 il < Ca

holds from Lemma 1.5, we get
1 ; 2
|TT D e =To]|” < CallullB 013 g
Jj=1

by squaring both sides of (1.7) and integrating with respect. This yields

1D {8}l < CeMi G([[ul|x.no)l[V][xn0

with (1.6). Now, we use Corollary 1.4. Then, we have

lg)olnn < Co{ gyl + 3 1D (v} }
k=1
< (n+ 1)C7CeMk G([[ul|xno) [V xno-
This proves Lemma 1.6. O

Finally, we quote two lemmas from [7].

Lemma 1.7. There exists a constarfg without depending o such that

1 1
1.8 <C .
9 ,,HZ:, 7+ 1P +1P = P+ 1P
Lemma 1.8. For a multi-index and an integer/ we assume that the integers
pj (>1) (G=1...,k) satisfyus +-- -+ = |5 +1. Then we have

k(g +1:)
o S [T - gy
ﬁl+...+ﬁk:5 j=1 ﬁ U
I+l
|B71+=p
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2. Existence of the solution

In this section we prove Theorem 3 by using Proposition 1.@ Rroposition 1.6.
Then, we can prove Theorem 1 by the same method only by usiogoBition 1.2.
So, throughout this section we always assume thasatisfiesng > po/2 and that
nomy/m are integers for ang . Since we can prove Theorem 3 by the saetleoth
of proving Theorem 1.1 in [7], we only give outline of the pfoo

First, for a vector fieldQ with analytic coefficients IR” or [0, T'] xR" we define
a function spaces}, @ £ ,,) by

®(Q5 Hxno) ={u € Hy o5 |[ullGy(0:mn,,) < 00}
or

G;(Q: H)\.no) = {Lt = u(t) ECOO([Ov T] ; H)\.no);
[u(®)llG3(0:mx.g) < oo for any s}

with

o0

$ R Q'ul|,
”u”G’;g(QJH/\.nO) = ”u”)\,ﬂo + I — 1)571"0
=1

Especially, forP =d,+) ", pxx0y, We denoteGy £ Hx o) by G°(R), l|ullGsy(pimy )
by |lu|lgsr) and set

lulllgsry = sUP [|ullgs(s)-
t€[0,7]
Next, we write|[ul|G.zy = llullg:(r) — [[ul[x..o- Then, as in Lemma 2.3 in [7], we have

Lemma 2.1. Let f(u) be aC*°-function satisfying(A.1), and suppose that =
u(t, x) belongs toG%(P; Hy ,,) for a constantR . Thenthere exists a constarR; de-
pending onR such that an inequality

Collullg:(x,)
C10R1|u|G (ry)

holds with constant€s and C1o depending onlyf, ||u||x.ne, 7o and n.

Now, we give the outline of the proof of Theorem 3.

Proof of Theorem 3. Consider a linearized equation with eespo (3):

2.1) { Lu =i0u+ Au = f(v),

u(0, x) = uo(x).
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Then, the solution of (2.1) is written as
t
u=euy+ i_l/ eI £(u(s)) ds
0

with the evolution operatoe*  fofd, + A. SinceA is defined by 37,21 aa DY
with real coeffientsz,, an operatoe’’4 map#l, , to itself for anyr with the estimate
”e”Au”)\.r = ||u||>\,r- This |mpI|es

(2.2) l[llxno < lluollxne + T (W)l|xno-
Now, we use [, P ] =L . Then, from (2.1) we have witPy ="}, pjxxOx,
LP'u=(P+1ff(),
{ (P'u)|i=0 = Puo,
which yields
1P [l xn0 < | Pouollnng *+ TI(P + 1Y { £ ()} |xno-

Combine this with (2.2) and Lemma 2.1. Then, oy € G%(Po; Hx ), there exists a
constantR; (< R) such that

23)  lullgmy < lluolly, (poits ) + TS W)llGy, (rasag)
< [luolly(Poitnng + €T f ()l g:(rs)

< luoll6s(oitinng) + €T F @) ano + 1F @) Ge(re) }

Col[v[Igs () }
1— C1oR4|[v[|g: (g,

< luolloy et + € T{ Caallollany +

SetK = 2uol|Gy(poHy.,,) and writeG*(R, K) = {u € C>([0, T]; G*(R)); |[[ull|g:r) <
K}. Then, denoting by the mapping which corresponds to thetisnlu of (2.1),
the inequality (2.3) shows tha&® magB(R;, K) into G*(R1, K), if we take T small
enough. Moreover, using Lemma 2.1 again, we can prove that

ISu = Svlllg (k) < Ca2T'[[[u = vllgs(r) for u, v € G*(R, K)

with a constantCq, independent off ¢ and . Hence, if we retake a consfant  such
that C1oT < 1, S is a contraction mapping frod*(R1, K) to G*(R1, K), and we get
a solution of (3). This proves Theorem 3. O

3. Local Gevrey regularizing property

As in Section 2 we only prove Theorem 4. Then, we can prove fEma2 by
the same method. So, throughout this section we always astmtng satisfiesng >
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po/2 and thatnom ;/m are integers for anyj . Now, let 7,(x ) be a solution con-
structed in Theorem 3. Then, sincg,[P JI= , we have

LP'u=(P+1f{f()},
which implies
(3.1) AP'u=—i0, Plu+ (P +1Y{f(u)}

1 1¢
=—i=pP*y+i= g Pixk Oy Plu+ (P + 1Y { f(u)},
t t )

sinced, = (1/1)P — (1/1) Y j=q ppXkOx, -

Proposition 3.1. Let u(¢, x) be a solution of(3). Then for an integerNy and a
C§°-function ¢(x), there exist constant€'1z and C14 such that

1
l 1,—1 17151
3.2) lo(x) Plul|amgrs < CaaM't (1 + 1)!! (+1¢2’
v— —V §— 1
B3) )P ullanr < Calt™ 2y = DUy =20 g

hold for 2 < v < Ngm in (3.3) and for all integer! in(3.2) and (3.3).
For the proof we prepare two lemmas.

Lemma 3.2. Assume tha(3.2) and (3.3) hold for 2 < v < Nm. Then, we have
for a Cg°-function x(x) with x € ¢

(3.4) X () PH{f (@) | nngtvm <CasM™N" 2=
1

x ((+Nm)! (I + Nm — 1)P" L. 3

with a constantCis depending onp(x), x(x) and N and independent oh .
Here, for two C3°-functions p(x) and x(x), x € ¢ means thatp(x) =1 on supp.

Lemma 3.3. Assume that the following hold fo€g°-functions(x) and ¢(x)
with ¢ € ¥

1
(+1p°

1
(+1p

(3.5) W) Plulla, < CreM™ ~H= (1 +m"\ ([ +m' — 1)L

3.6)  [eG)P{f)}HIap < CooM™™ =272 +m" )1 (1 + m” — 1)r
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Then, we have

1
(+1p

(3.7) lo(x)” Pl v <Cag, M 2=1 (1 + i) (1 + 0 — 1P~ L.
for v<m,

with j/ = (ju+ 1)V jo (for v <m/2), j = {(jp + D)V jo} + 1 (for v > m/2) and
m=(m'+1)vVm”, where ji V j, = max(j, jo2).

In order to fix the constanM in (3.2)—(3.7), we prepare

1
: Plul[am < CroM' V(1 —1)P .
(3.8) [P ullxn, < CreM™™ 711 (I — 1) T+ 17
1
l < =171 (7 _ 1y15—1,
(3.9) [P 7@ s < Cood™ 1 =1 =,
(3.10) 10K 08" Fu)| < ConME KN (K + K — 1)1,

which is assured by the assumption and the result in the qusvsection. Then, the
constantM in (3.2)—(3.7) is always taken such that (3.89)(and

(3.11) MCoCgCro< M

hold with the constant€, and Cg in (1.2) and (1.8). Now, we start to prove Proposi-
tion 3.1 and Lemmas 3.2-3.3. First, admitting Lemmas 3.2 &8¢ we prove Propo-
sition 3.1.

Proof of Proposition 3.1. From (3.8) and (3.9), we have (&bJ (3.6) with
j1=j2=0,m" =m"” =0 andu = np. In this case we can také(x) = 1 instead
of the function with compact support. Hence, applying Lem#&?3a, we get for any
Cg°-function 1(x) and for anyr <m

y 1
v pl l— s—1
620" Plullnmges < Coan Mt 1+ DU 5

with j/ =1 (v < m/2) and j’' = 2 (v > m/2). This implies (3.2) and (3.3) for Z
v < m, sincem > 4. In order to prove (3.3) fom < v < Nom, we takeCg°-functions
pn(x), N=2,..., Ny satisfying

P1LD P23 D PN

and prove

1
(L +1p

(3.12)  |lon(x) P ut||angry <CoayM™ 2t V(1 4+ — 1) (I +v —2)P 2.

for 2<v < Nm
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by induction onN . Now, we assume (3.12). Then, from (3.2) a&hd2) we get (3.4)
with x(x) = py+1(x) from Lemma 3.2. This implies (3.6) witlp(x) = py+1(x), p =
no+ Nm, jo=Nm andm’” = Nm. Moreover, from (3.12) withv = Nm, an inequality
(3.5) holds withy(x) = pn(x), t =no+ Nm, j1=Nm —1 andm’ = Nm — 1. Hence,
from Lemma 3.3 we get

1

||§0N+l(x)uplu”A,110+Nm+v SC24,VMI+Nm_lt_j/(l + Nm)l (l *Nm = l)!s_l ' (l + 1)2

for v<m

with j' = Nm (v < m/2), j/ = Nm +1 (v > m/2). This proves that the inequal-
ity (3.12) holds forNm +1< v < (N +1)m with ¢y replaced bypy+1, and hence, we
get (3.12) withN replaced byv +1. Summing up, by the inductionAb we get (3.3)
for 2 < v < Ngm from (3.12). O

Proof of Lemma 3.2. Using

Nm _ ﬂml ﬁ,;mn
O S e
|B'|<N

we write

IXC)PHL @) Hangrwm < Cos > IDEXP{f @)} nno

|B:m|<N

<Cxs > Y (5) D7 X)DI P )} I am

|Bm|<Ny<p

For convenience of the notation below, we gg(x) = 1 andy,(x) = ¢(x) for v # 0.
Then, we have from (3.8), (3.2) and (3.3) for2v < Nm

1
~ ! < I=171 (7 _ 1y—1.
|Go(x) Prut]|x o < CroM'~H! (I — 1) (1
1@ ()P ut]| xngtip1, < CagM*1P71= 1 =lo7]
1
+[p- AN U+[p-~] —1I1.
X+l DH+ N =D gy

for 0 < |y| < Nm.

Here, we usedd-~]. <[p-y]l+1landp-v=1if [p-~]. = 1. Hence, forl 4| >1
we get fromy € ¢, Proposition 1.6 and (3.10)

(D=7 X)DY P { f ()} xno
I+|y]

<Z Z k"k”'

k=1 k’+k''=k

(DP=7x)OK OK” £ (u)
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k/
1 Pl Pl
< > 1= u H
Fill)! Dy Il | Ao
Ip+eH=l j=1 j= k'+1 ’
Ayt =y
L+ |>1
I+[y]
- B—v k”
=3 > mleroae s
k=1 k'+k"' =k
Y5 DY G, m
X - D] gow(x)Pfu H J'l' DY @.i(x)Pu
I1+-- +lL_l Jj= l H;! _k/+l
Altyt=y
L+ |21
I+]y|
k k—1 -1
§C27§ P CoaMiCy (k= 1)
k=1
x Z HH /|1|@7’(X)PIJMH
A.not[p-yil.
l1+ +lk-l i1 no+[p-y7]
Ayt =y
L+y |21
I+[y]

k=1

v !
< CarCad (k= e tubeteglel P (Y )

YL ykzy

><max Z H(l +[P ! MU 111

L4+ =l j=1

. 1
1. +[p-~i1— 1) 1.
< ChrC0nCy H(Co6/Crg) V11 MIHNm =N

I+]y]

M;CC19 (I +Nm)!
et 2 T
. ; ( M ) Il

1

—_ 11 =

x (I+Nm —1)! g RO
I+ -+ =1

S C28M1+Nmt7

N+ Nm)! (1 + Nm — 1)1~ L. 1

((+1y
I+[y]

y Z (M1C2C8C19) P

M
k=1

A.ng

923
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This proves (3.4), since we have from (3.11)

O ML CoCaC o)\
Z( : 12‘,18 1_9> k1< CooM . O
k=1

Proof of Lemma 3.3. We prove (3.7) by the induction enFor v = 0 the in-
equality (3.7) holds if we regarg(x)® as +(x). So, we assume that (3.7) holds for
v/ <v and prove (3.7). Sincel ¥, ,.;z1aa DY € SY is semi-elliptic, we have
(3.13) [lp(x)" Plullxev < Cao{l|Ap(x)” Pulln porv—m + [[0(x)” Plutl| 5, ovv—m}

< Caoflp()" AP Ul s+ laa D™ @) 1Pl

la:m|=1
+ ) Pl v |-
Use [ D%, o(x)"] = —da Yoo pea(-171 (§) DS {DIp(x)"} and
D;vfﬁ c Si'(afﬁ) - S;ﬁ[pﬂ]‘
Then, we have

laaD®, () 1P | n prv—m < Ca1 Y [{DLP)" I P ulx g1
0<fB<L

and, in caser — [p- 5] <0, we have fromp € v, ngp(x)” € S and (3.5)
I{DZ ()"} Plullxpis—tp-81 = I{DF 0(0)” 3 (x) Pl x pis—1-01
< Caol|t(x)P'ulx

/ . 1
< CaoCaM"™ ~= 1l + m/ ) (1 + m' — 1) L.

7+

For the caser —[p- 5] > 0, we write chp(x)l’ = @V‘gtp”_w = cpy,gtp[p'ﬂ]_w(p”l with
a functiony, g(x) andv’ =v — [p- 8]. Then, noting|3| < v and ¢, gl A1-181 € 59,
an inequality

I{DPo(x)"} Plul| . yisr—1p5) < Casll@(x)” Plue]|x o

~ y 1
< Ca3Crgy M"Y~ I (L + ) (I +m — 1)L

(1 +1y

holds by the assumption of the induction. In order to estntae last term of (3.13),
we usep € 9, ¢(x)” € 9 and (3.5) again. Then, we have

1
(+17

o(x) Pul| s puvv—m < CaaCreM™ 2t =71(1 +m") (1 + m' — 1)L
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Summing up, we get

(3.14) o) P'ulers < Cao{ )" AP ]l

o 1
+m—1,—j )1 ~ o 1ys—1 .,
+ CasM™ = Y=T (1 + ) (1 + 7 — 1)! (z+1)2}‘

Now, we use (3.1). Then, we have
(3.15)

1
||<P(x)VAPl”||>\,,u+V—m < ?H‘P(X)VPHl”HA,uW—m

1
+ Z ? ||Q0(X)kaaxk Plu”)\.uhlfm + ||S0(X)V(P + 1)l{f(u)}||)\.u+y7rn.
k=1

We estimate each term of (3.15). For the first term we get

1 1
(3.16) ;”SD(X)VPIH’/‘”A.Mme = ?||90(x)u'€/}(x)Pl+lu||>\.u+u—m
1
< CSG?H'Q[J(X)PH:L”HA.M

I+m’  —j1—1 ’ | nys—1
< C36C16M™ ™ 8 (+m'+ (I +m')! (+ 1P

from (3.5). In order to estimate the second term of (3.15), diwéde into two cases
v <m/2 andv > m/2. Then, for the case < m/2, we get from (3.5)

1 1
(3.17) ?||¢(x)yxkaxkP’u||A,W,,,, = ?||sa(x)”xkaxk¢(x)P’u||M+H,

< Cart Y[ Yp(x)Plula
1
(1 +1)%

< Cq7C1eM™™ =Y+ m ) L+ m’ — 1P L.

since we have),, € S8 andv—m+p, =v—m+m/my <m/2—m+m/2 =0. For the
case ofv > m/2, we use (3.7) withv = m /2, the assumption of the induction. Then,
we have

1
(3.18) lip(x)" 2D Pt puvw—m

1
< {llx0 o) Plulln o + 20 p ()"} Pt}

S C38t71||90(x)m/zplu”)\,,u+m/2
1
(+17

< C38C18,m/2M’+’7’*1t*{(jl+1)vj‘z}*1(l +m) (1 +m— 1) L.
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Finally, we get from (3.6)

/
(3.19) @) (P + 1Y {f @) Hrprvm <D () @) P"{F @)}
1'=0

1
(+1p

< CaoCrM™™ ~ Y2 +m" W (1 +m” — 1)L
Summing up, we have proved (3.7) from (3.14)—(3.19). O

Now, we proceed to prove Theorem 4. From Proposition 3.1 we estimate
82 P'u locally for 3 satisfying |p - 3| < mn if we take No = n in Proposition 3.1.
Especially, taking aCg°-function ¢(x) and a constand/, appropriately, the following
inequality holds forg satisfyingm < [p- 8], < mn

(3.:20) [jo(x)"TrP Plu|xpe < MY T W AT —m)T 1T (v =p- Bl

In fact, taking anotheCg°-functions ¥(x) with ¢ € + and usingp(x) 187 € §¢°
we get

() =0 Plull g = 0Ge)" 1074 (c) P'ut| ano < Caollth(x) Pu][ ng
1

< +v—2_ 1—v _ | _ 1s—1,
< CpoC1aM t (+v—-DI(I+v-2) (l+1)2

S C40C14T/Mu+l—2tl—u—l(y + l)!d (l + mn)!s—o
S C40C14T1M”+1_2tl_u_1M§+l(V +] — m)!d l!s—o'
= C4OC14TIMI1172M§11(MMg)uﬂfmtlfol(V +] — m)!o J15—0

from (3.3) with ¢(x) replaced byy(x). Hence, takingMy such thatM M3 < My and
C40C14T’M'”*2M§” < Moy, we get (3.20). In the following, we prove (3.20) for any
v =[p-Bl«. Then, as see below, the inequalities (3.20) and (3.2))}-(BBlies (6). So,
it remains to estimate (3.20) fop[5]. > mn. In order to do so, we shall employ the
induction onv.

Now, we assumes = [p - §]. > mn. Then, there existg such thg} > m;. Set
v = mje; with a unit vectore; with the; -th element = 1, and s&t= 5 — ~ and
v =p- 3. Then, we have/ = v — m. Write

(3.21) p(x)" 100 Plu = Y p(x)" 107 Plu+ [p(x)* %, 02107 P'u.
and estimate each term of the right hand side of the abovditigen
Lemma 3.4. Assume tha{3.20) holds forv’ < v. Then we have

(3.22) I[p(x)” 2, 00107 Plul|png < CarME ¥t =1om @/ + 17 1157
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Proof. Since

ol _
o081 = = 3 () X g g e e
7' <y k=1

v'#0
holds with functionsy, x(x) independent of,, we have

3.23)  [lle(x)" % 7107 P'ul|xm

Iyl

< Y T e st 08 P
v <y k=1
7’70

Setpu=[p- (8 +v—~)] Then, sinceu < v — 7| < v +m —k, we have

(v—21)! Lk G
1o ke T Pl
- =Dt v—k—p p—19p"+y—+' pl
- (V 11— k)' ”{spﬁ”,k(x)sp(x) }SD(X) 8,\' P u”)\,no
/ — |
< (V,(l:_;lni 1i)k)' C£&M6;+l+l—mt1—p—l—m(ﬂ+l _ m)!ol!s—o

<{2"¢/+0)---(V+1+1-k)
% CzllllM(l)/,—k+/+ltlf(l//+mfk)fl(V/ —k+D)T e

S zkczllllM(l)/HtlfV/flfm(V/ + l)!o J15—0.
Combining this with (3.23), we get (3.22). U

Next, we estimate the&d, ,,-norm of the first term of (3.21) by using the semi-
ellipticity of A and (3.1). Then, we have

(3.24) (|07 p(x)" 207 P ul[ams < |l(x)” 207 Pl xongim
»1no X »1no
< Can{||Ap(x)" 202 Plul|x o + [ 0(x)" 207 P'ut||x 00}
< Caof[lp(x)" 720 AP ||\ o + I[A, 0(x)* 7107 Pl 0o
+ Caal|p(x)” 207 Plull 00}

n
< Cao{ ) 207 P!l g + 171D o) 207 310 Pt
k=1

+[lp(x) 2% (P + 1) { £ ()| xuno
+ 114, ()10 Pullang |
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+ CaCagMy 1 U0 [ — )17 157
We estimate each term in the last member of (3.24).
Lemma 3.5. Assume tha{3.20) holds for+’ < v. Then we have
(325 [[A, 0(x)" 07 Plullrny < CaaMy = == + )17 1=
We can prove this lemma by the same method as in the proof ofrize®4.

Lemma 3.6. Let o satisfyoc > s/m. Assume tha{3.20) holds for’ < v. Then
the inequality

(326) ||(P(X)V_laflpl+1u||A,/10 S C45Mg’+/t2—u’—[—m(y/ +l)!ol!s—o'
holds.
Proof. Noterv’ > m. Then, sinces > s/m, we have

(l + 1)s—<7 < (l + 1)(111—1)0

m—1 m
<J[e+1+V —m+i) =[]/ +1+k —m).
k=1 k=2

Hence, we get from (3.20)

o) 07 P ullsm < Clsllo()” 07 Pl
< C£5M51+(l+1)+l—mt1,l/7(l+1)(yl +]+1— m)!a (l + 1)!570

< CheME =V 1w + )17 (e,
This yields (3.26) fronm > 2. O
Lemma 3.7. Assume tha{3.20) holds forv’ < v. Then we have
(3.27) o(x)’ 207 Dy, Plu||amy < CasMy 2= 1m0 + )17 1177,
Proof. Write
()" =07 x4, Plullxne < [lo(x)” ™ 240,07 Plullxno + Bellp(x)” 107 Pt x g

and setu = [p- 3’ +p]«. Then, sincep, =m/m; andm; > 2, we havey < v/ +m —1.
Hence, we obtain from the boundedness of supp

() =0 D P | 3 6
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< Caslllp(e)" 10,87 Plul|x e + BelloCe)” 107 Plut||x.no}
< Cag{My™ " Gk L — )7 1
+ ﬁkM(l)/+l+lfmtlfulfl(V/ +] — m)!o l!sfa}

< C:{GM(l)/,le_y,_l_m(V/ +l)!ol!.€—d'
This yields (3.27). U

Lemma 3.8. Let f(u) be a function satisfyindA.1), and assume that3.20)
holds forv’ < v. Then an inequality

(3.28) o) 1Y (P + 1Y {f ()} ane < CarMy e 1=m @ + 1)1 117
holds.

Proof. Since we have

)
o) 20 (P + DY { £ @) < > (4) lo@)* =20 P { £ ) Hl o

1’=0

we may only prove
(3.:29) o) 0 PHLF @) Iang < CagMg ™= =17 + 1)1 1147

in order to prove (3.28). So, in the following, we prove (3.2Bor 3" satisfyingm <
V' =[p-0"]« < v we have from (3.20);m > 3 andv” <[p-p"]+1
||Q0(.X)V“718xﬁﬁplu||)\’no < Mé/”+l+1—mtlfu”fl(1/// +]—m)7 e
< MY P I o B [ B+ L+ — m)1° 1150
< CagMly "M I [ g+ DY ([p- B+ 1 - T
y 1
(18" +1+1F°

since (B"|+1+1¢ < Cao(lp-8"]1+1—1)([p-3"]+1) holds for some constanse. This
yields

(3.30) [J() =DV Pluy g

< Cagly P MY I (g B+ D (- B+ L — 1)1
y 1
(87 +1+ 1"
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for B” satisfyingm < " =[p-3"]. < v. Moreover, from (3.2) and (3.3) we get (3.30)
for 8" satisfying 1< v” = [p - 8”]« < m with an appropriate constamt,. We also
use

1

1 [=1.—I7) _ jo—-1l48-0  _ -
(3.31) [Pufxne < CaoMg "t 1H(1 — 117771 (13" +1+ 12

which is guaranteed in the previous section.
Now, we use the differentiation of composite function. Themiting go(x) = 1
and gz(x) = ¢(x) for 5 # 0 we have

()~ P{LF ()l ame
18|+

<>y oy 2

el
k=1 k'+k”‘kﬂ1+ +5L k k
11+ +lk—l

1871+, >1

oty 7O 0 rw)

k/
1 .
T By DVIgE pl
X 1_{ B Ppi(x) oY Pu
=

(v —1)V156’ pl;
H gnll‘pﬂ’(x) o P ﬂ‘mo

_k/

with v; = [p- 3], and 5(B3*) = 32, piaq{(v; — DV 1} for g€ = (5% ..., 6.
Since we can prove X v — 4(B%) < k — 1 there exists a constariisp such that
"7 B2y xne < Chollvllam, for v € Hy,,. Hence, using Proposition 1.2 and

Proposition 1.6 we have from (3.30) and (3.31)

()20 P f ) Hlamo < Cs1 > k- /11 MEKIT™?

k=1
k
1 BT+ — j .
k k—1 [o-B' 1+ =1 —[p-B/]—1;
x Cgg Z C, H BT C49Mop im= A i([p- 871+ 1))

Bre.+gk=p ' !

I1+-- -+ =l

187]+,;>1

x ([p- B1+1; — 1) L1570 (|57 +1; + 1)

Note [p- Y +---+[p- B <[p-B']. =v'. Then, we have from Lemma 1.8

@)1 P £ () Hlamo

1+
M1CoC
< ChCy Mg S k (71 jwo“gcs‘)) ) + 0oL

k=1
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, (157] +1,)
DRSS H|zl|5n

pat oy =| 8|41 Ble+pt=p J71
pi>1 llf"""/k:/
|B71+=p

k .
([p-p+0) 1
X : ,
H (6] + 1)t (i + 1)2}
1+~ jo—17p5— Ul+\5| M1C2CaC 50\
< CgoCy "My ( +0e-in Zk e
k=1

X Z (W | (|5/| +l)' H (/f« + 1)2

pate =B+
pj>1

S CéOCEnglMV’H 171/717111(V/ +l)!al!sfo'

+|8’
M1C2C4C 5 g 1
X,;k< Mo ) EEDa

This proves (3.29) and hence (3.28) if we taki such thatMiCoC4CseC g < Mo.
|

Now, we are prepared to prove Theorem 4.

Proof of Theorem 4. Letp(x) be a Cg°-function. Then, from (3.2) and (3.3)
with 2 < v < mn we have forg satisfying|p- 5| < mn

(3.32) le)dulame < Mgt "0 (v =[p- Bl).

Now, let v > mn. Then, if we assume (3.20) holds for satisfying p - 5. < v, we
have from (3.21), (3.24) and Lemmas 3.4-3.8

() 202 Plul|x ny < {Ca1+ Caa(Cas + Cap+ Caz + Cag+ Cag)}

x My I e

with v/ =v—m = [p-[].—m. Retake the constarily so large such tha€s1+Co(Cys+
CaetCa7tCastCa3) < Mo. Then, we have (3.20) fof satisfying|p- 3| = v, and hence,
by the induction, we have (3.20) for amy with |p - 8| > mn. This implies (3.32) for
any (. Finally, we use p- 5].!19 < Cé‘;'*lﬁ!’”. Then, we get (6) from (3.32). [l
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