

Title	Correction to : "On J_R-homomorphisms''
Author(s)	Minami, Haruo
Citation	Osaka Journal of Mathematics. 1983, 20(4), p. 939–941
Version Type	VoR
URL	https://doi.org/10.18910/5796
rights	
Note	

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Minami, H. Osaka J. Math. 20 (1983), 939–941

CORRECTION TO

"ON \int_{R} -HOMOMORPHISMS"

HARUO MINAMI

(Received December 2, 1982)

The proof of Theorem 4.1 in [3] is incorrect, for the relation $(ig) \circ \gamma \simeq_{\tau} \gamma \circ$ (*if*) made on p. 587 does not hold. The mistake was pointed out also by Professor Victor Snaith in Math. Rev. (1981). The following theorem for G = Z/2 proves immediately a modified form of Theorem 4.1 (Corollary) via the canonical transformation σ from KR(-) to $KO_G(-)$. Because σ commutes with the *p*-th Adams operations for *p* odd (This is proved by a similar discussion as the usual realification homomorphism). This theorem seems to follow from [2], Theorem 11.4.1 and the result on p. 295. But the latter is not necessary for a proof of our case. So we give here a direct simple proof of it by using only Proposition 11.3.7 of [2].

We use the notations of [3] and [1]. Let X be a $\Sigma^{1,1}$ -suspension of a finite pointed G-complex, and let p be an odd prime. By ψ^p we denote the p-th Adams operation in KO_{G^-} , KR- or KO-theory.

Theorem. Let J_c denote the equivariant stable real J-homomorphism defined by the usual construction. Then, for any $x \in \widetilde{KO_c}^{-1}(X)$

$$J_{G}(1-\psi^{p})(x)=0$$

as an element of $\pi_{S}^{0,0}(X)_{(2)}$. (L₍₂₎ is the localization of a group L at the prime 2.)

Corollary. For any $x \in \widetilde{KR}^{-1}(X)$

$$J_R(1-\psi^p)(x)=0$$

as an element of $\pi_S^{0,0}(X)_{(2)}$.

1. Observe the composites

$$\widetilde{KO}_{G}^{-1}(X) \xrightarrow{\psi} \widetilde{KO}^{-1}(X) \xrightarrow{\delta} \widetilde{KO}_{G}^{-1}(X) \text{ and } \pi_{S}^{0,0}(X) \xrightarrow{\psi} \pi_{S}^{0}(X) \xrightarrow{\delta} \pi_{S}^{0,0}(X)$$

then by the definitions of ψ and δ we have

(1) $\delta \psi = 1 - \rho$ times (cf. [1], Lemma 12.6).

Let $f: X \to SO(2n)$ be a pointed G-map. Here SO(2n) denotes the rotation group of degree 2n with the involution $A \mapsto \tau A \tau$ where τ is the involution of $R^{n,n}$, and the unit matrix as basepoint. Define a G-map $\hat{f}: X \times R^{n,n} \to X \times R^{n,n}$ by $\hat{f}(x, u) = (x, f(x)u)$ for $x \in X$, $u \in R^{n,n}$. We denote by E_f a real G-vector bundle over $\Sigma^{0,1}X$ obtained from the clutching of trivial bundles $E_1 = C^+X \times R^{n,n}$ and $E_2 = C^-X \times R^{n,n}$ by $\hat{f}: E_1|_X \to E_2|_X$, where $C^{\pm}X = \{t \land x \in \Sigma^{0,1}X \mid \pm t \ge 0\}$ respectively. As is well known any element of $\widetilde{KO}_G(\Sigma^{0,1}X)$ is the stable equivalence class $\{E_f\}$ of such a G-vector bundle E_f .

Since p is odd we can set

$$\psi^p(\{E_f\}) = \{E_g\}$$

where g is a pointed G-map from X to SO(2n).

By \tilde{F} we denote the fibrewise one-point compactification of a real G-vector bundle F. According to [2], Proposition 11.3.7 we may have

(2) There exists a fibrewise G-map $\tilde{\gamma}: \tilde{E}_f \to \tilde{E}_g$ with fibre-degree p^i for some $i \ge 0$, which preserves the basepoints of fibres.

2. Let γ be the restriction of $\tilde{\gamma}$ to the fibre on the basepoint of $\Sigma^{0,1}X$, which is a pointed G-map of $\Sigma^{n,n}$ into itself. Write $s+t\rho \in A(G)=Z[\rho]/(1-\rho^2)$ for the element determined by γ (see [1], §§1 and 2). Then

$$s-t=p^i$$

Moreover let $\tilde{\gamma}_k$ be the restrictions of $\tilde{\gamma}$ to \tilde{E}_k for k=1, 2. Then, as a fibrewise G-map

 $\tilde{\gamma}_{k} \simeq_{G} 1 \times \gamma$

for k=1, 2 evidently. Considering γ to be the constant G-map from X to $\Omega^{n,n}\Sigma^{n,n}$ given by $X \mapsto \{\gamma\}$, and also f and g to be the G-maps from X to $\Omega^{n,n}$ $\Sigma^{n,n}$ respectively through the natural inclusion $SO(2n) \subset \Omega^{n,n}\Sigma^{n,n}$, we therefore have

 $\gamma \circ f \simeq_{G} g \circ \gamma \colon X \to \Omega^{n,n} \Sigma^{n,n}$

and hence

 $f \circ \gamma \simeq_G g \circ \gamma$

as a G-map from X to $\Omega^{2n,2n}\Sigma^{2n,2n}$. Add $-\gamma$ to the both sides of this relation, then it follows from the definition of J_G that $(s+t\rho)J_G(1-\psi^p)(\{E_f\})=0$ That is, we obtain

(3)
$$((2t+p^i)+t(\rho-1))J_G(1-\psi^p)(x) = 0 \text{ for any } x \in KO_G^{-1}(X).$$

Applying ψ to this equality we have

(4)
$$J_o(1-\psi^p)(\psi(x))_{(2)}=0$$

940

where J_o is the stable real *J*-homomorphism. (Here we write $z_{(2)}$ for $z \in L$ viewed as an element of $L_{(2)}$.)

By (3) and (1)

$$(2t+p^i)J_G(1-\psi^p)(x) = t\,\delta\psi J_G(1-\psi^p)(x)$$

= $t\delta J_o(1-\psi^p)(\psi(x))$.

Thus, by (4)

$$J_G(1-\psi^p)(x)_{(2)}=0$$

since $2t + p^i$ is odd. This completes the proof of Theorem.

References

- [1] S. Araki and M. Murayama: τ -Cohomology theories, Japan J. Math. 4 (1978), 363-416.
- [2] T. tom Dieck: Transformation groups and representation theory, Lecture Notes in Math. 766, Springer-Verlag, 1979.
- [3] H. Minami: On J_R-homomorphisms, Osaka J. Math. 16 (1979), 581-588.

Department of Mathematics Osaka City University Sugimoto, Sumiyoshi-ku Osaka 558, Japan