A ring R is called right bounded if every essential right ideal contains a nonzero two-sided ideal which is an essential ideal as a right ideal. If R is both right and left bounded, then we call R bounded. The boundedness is well studied for noetherian rings ([1]). In this paper, we study (Von Neumann) regular rings which are right bounded. This class includes all regular rings whose primitive factor rings are artinian. We know from S. Page [3] that a regular ring R is a FPF-ring if and only if R is a self-injective ring with bounded index of nilpotence. As a result, it follows that regular FPF-rings are bounded.

In Proposition 1, we shall show that right non-singular right FPF-rings are right bounded. In our main theorem (Theorem 1), we shall show that a regular right self-injective ring R is right bounded if and only if $R \cong \prod M_{n(i)}(R_i) \times \prod T_s$, where each R_i is an abelian regular self-injective ring and each T_s is a right full linear ring. In Theorem 2, as an application of Theorem 1, we shall give a necessary and sufficient condition for the maximal right quotient ring $Q(R)$ of a regular ring R to be Type I_f.

1. Preliminaries

Throughout this paper, R denotes an associative ring with identity element and we assume that all R-modules are unitary. We freely use terminologies and the results in [2].

Let R be a regular, right self-injective ring. R is called Type I if it contains an idempotent e such that eR is faithful right R-module and eRe is an abelian regular ring. R is called Type II if it contains an idempotent e such that eR is faithful right R-module and eRe is a directly finite regular ring, and R contains no nonzero idempotent f such that fRf is an abelian regular ring. R is called Type III if it contains no nonzero idempotent e such that eRe is directly finite.

Goodearl and Boyle have shown that if R is a regular, right self-injective ring, then $R = R_1 \times R_2 \times R_3$, where R_1 is Type I, R_2 is Type II and R_3 is Type III (Theorem 10.13 [2]). Furthermore, they have shown that if R is a regular, right
self-injective ring of Type I_f (Type I and directly finite), then $R \cong \prod M_{\alpha(i)}(R_i)$, where each R_i is an abelian regular, self-injective ring (Theorem 10.24 [2]).

For any ring R, we use $B(R)$ to denote the set of all central idempotents of R. If A and B are modules, then the notation $A \subseteq B$ means that A is an essential submodule of B.

Let A be a nonzero right R-module over a regular, right self-injective ring R. Put $X = \{ e \in B(R) | A(1-e) \neq 0 \}$. Since $B(R)$ is a complete Boolean algebra by Proposition 9.9 [2], there exists an element e in $B(R)$ such that $e = \bigwedge X$. We call e the central cover of A and denote it by $cc(A)$.

2. Structure theorem

A ring R is said to be right bounded if any essential right ideal I of R contains a two-sided ideal J such that $J \subseteq I$ as a right R-module. If R is both right and left bounded, R is simply called bounded. A ring R is called right finitely pseudo-Frobenius (FPF) if every finitely generated faithful right R-module is a generator in the category of right R-modules.

S. Page has shown in [3] that, for a given regular ring R, the following conditions are equivalent: 1) R is right FPF. 2) R is left FPF. 3) R is a right self-injective ring with bounded index of nilpotence. Therefore, combining this theorem with [2, Lemma 6.20 and Theorem 7.20] we see that regular right FPF-rings are bounded rings. This result suggests the following.

Proposition 1. If R is a right non-singular right FPF-ring, then R is a right bounded ring.

Proof. Let I be an essential right ideal of R, and let J be the right annihilator ideal of R/I. Assume that $J \neq 0$. Then R/I is a generator, since R is a right FPF-ring. Hence R/I generates R. However this is impossible since R is a non-singular right R-module and R/I is a singular right R-module. Therefore $J = 0$. Now, by Proposition 3 [2], we can obtain a central idempotent e of R such that $J \subseteq eR$. We claim that $e = 1$. If $e \neq 1$, then $I \cap (1-e)R = 0$. Put $M = ((1-e)R/(I \cap (1-e)R)) \oplus eR$. Then it is easy to see that M is a faithful right R-module. Thus M is a generator by the assumption. Hence there exist a positive integer n and an epimorphism f from the direct sum nM of n-copies of M to $(1-e)R$. Since $n((1-e)R/(I \cap (1-e)R))$ is singular and $(1-e)R$ is non-singular, we see that the restriction of f on $n(eR)$ is an epimorphism. But this contradicts that $eR(1-e) = 0$.

Now, we are concerned with regular, right self-injective rings which are right bounded. Let R be a regular, right self-injective right bounded ring. By Theorem 10.21 [2], there exists a decomposition $R = R_1 \times R_2$ such that R_1 is directly finite and R_2 is purely infinite, where a regular, right self-injective
ring \(R \) is called purely infinite if it contains no nonzero central idempotent \(e \) such that \(eR \) is directly finite. Clearly each \(R_i \) is a regular, right self-injective and right bounded ring. So we may observe \(R \) by dividing into two cases; the directly finite case and the purely infinite one. First we mention the directly finite case.

Proposition 2. Let \(R \) be a directly finite regular, right self-injective ring. Then the following conditions are equivalent.

1. \(R \) is right bounded.
2. \(R \) is bounded.
3. \(R \) is Type \(I_f \).

Proof. (3) \(\Rightarrow \) (2). According to Theorem 10.24 [2], \(R \) is isomorphic to \(\prod M_{\alpha}(R_i) \), where each \(R_i \) is an abelian regular, self-injective ring. Since each \(M_{\alpha}(R_i) \) has bounded index of nilpotence, it is bounded. Thus \(R \) is bounded.

(2) \(\Rightarrow \) (1). This is clear.

(1) \(\Rightarrow \) (3). By Theorem 10.22 [2], there exists a decomposition \(R=R_1 \times R_2 \) such that \(R_1 \) is Type \(I_f \) and \(R_2 \) is Type \(II_f \). We shall show that \(R_2=0 \). Assume that \(R_2 \neq 0 \), and put \(R=R_2 \) for brevity. For any finitely generated projective right \(R \)-module \(P \), there exists a decomposition \(P=P_1 \oplus P_2 \) such that \(P_1 \cong P_2 \) by Lemma 11.19 [2]. We use repeatedly this result. First we shall construct orthogonal idempotents \(e_1, e_2, \ldots \) in \(R \) such that \(R \cong 2^n(e_nR) \) and \((1-\sum_{i=1}^n e_iR) \cong R/(\oplus e_iR) \cong e_nR \) for all \(n \). In fact, we can take an idempotent \(e_1 \) such that \(e_1R=(1-e_1)R \). Put \(I_2=(1-e_1)R \). Since there exists a decomposition \(I_2=J_1 \oplus J_2 \) such that \(J_1 \cong J_2 \), there exist orthogonal idempotents \(e_{21}, e_{22} \) such that \(J_1=e_{21}R \) and \(J_2=e_{22}R \), and \(1-e_1=e_{21}+e_{22} \) by Proposition 2.11 [2]. Put \(e_2=e_{21} \). Then \(e_1e_2=e_2e_1=0 \), \(R \cong 2^2(e_2R) \) and \(R/(e_2R \oplus e_2R) \cong e_2R \). Continuing this procedure, we have desired idempotents \(\{e_n\} \). Now we put \(I=\oplus e_nR \). First we shall show that \(I \) does not contain a nonzero central idempotent. Suppose that there exists a nonzero central idempotent \(e \) in \(I \). Then \(e \) is in \(\oplus e_nR \) for some positive integer \(t \). This shows that \(e \cdot e_n=0 \) for all \(n>t \). On the other hand, \(2^t(e \cdot e_nR) \cong eR \) for all \(n \geq 1 \). Consequently, we obtain that \(e=0 \). Therefore \(I \) does not contain a nonzero central idempotent of \(R \). Next we shall show that \(I \) does not contain a nonzero two-sided ideal of \(R \). We assume that \(RxR \subseteq I \) for some \(x \neq 0 \). Since \(R \) satisfies the general comparability by Theorem 9.14 [2], there exist \(f_n \in B(R) \) such that \(f_ne_n \leq f_ne_nR \) and \((1-f_n)xR \leq (1-f_n)e_nR \) for all \(n \). If \(f_n=0 \) for all \(n \), then \(n(xR) \subseteq R \) for all \(n \). By Corollary 9.23 [2], we have that \(xR=0 \). Hence there exists \(t \) such that \(f_t \neq 0 \). Since \(f_te_nR \leq f_ne_nR \leq xR \) and \(fxe_nR \cong 2^t(f_te_nR) \leq 2^t(xR) \), we obtain that
by Corollary 2.23 \[2\]. Hence \((0+)f \subseteq I\), a contradiction. Finally we shall show that \(I\) is an essential right ideal of \(R\). Suppose that \(I \cap fR = 0\) for some idempotent \(f\) of \(R\). Since \(fR \cap \bigoplus_{i=1}^{t} e_i R = 0\) for all \(t\), we obtain that \(fR \subseteq R/\bigoplus_{i=1}^{t} e_i R = e_i R\). Since \(t(fR) \leq 2'(fR) \leq 2'(e_i R) = R\) for all \(t\), we have that \(R = 0\) by Corollary 9.23 \[2\]. This is a contradiction. Therefore a regular, right self-injective ring of Type \(II_f\) is not right bounded. Thus \(R\) is Type \(I_f\).

We note that the general comparability is left-right symmetric, and moreover, for idempotents \(e, f\) of a regular ring \(R\), \(R f \leq Re\) implies \(fR \leq eR\). Therefore by Proposition 2 and it's proof, we have the following corollary.

Corollary 1. Let \(R\) be a regular, right self-injective ring of Type \(II_f\). Then \(R\) is neither right nor left bounded.

Corollary 2. Let \(R\) be a regular, right self-injective and right bounded ring. Then \(R\) is directly finite if and only if \(R\) is left self-injective.

Proof. If \(R\) is a directly finite, then \(R\) is Type \(I_f\) by Proposition 2. Hence \(R\) is left self-injective by Corollary 10.25 \[2\]. The converse is clear by Theorem 9.29 \[2\].

Now we consider the case that \(R\) is a purely infinite, right self-injective, regular ring. Let \(Z(R)\) be the center of \(R\) and \(S\) be the socle of \(Z(R)\). There exists a central idempotent \(e\) of \(R\) such that \(S \subseteq eZ(R)\). Therefore we have a decomposition \(R = R_1 \times R_2\) such that \(Z(R_1)\) has an essential socle and \(Z(R_2)\) has a zero socle.

Proposition 3. Let \(R\) be a purely infinite, regular, right self-injective ring whose socle of \(Z(R)\) is zero. Then \(R\) is neither right nor left bounded.

Proof. According to Theorems 9.7 and 10.16 \[2\], there exist orthogonal idempotents \(e_1, e_2, \ldots\) in \(R\) such that \(\bigoplus e_n R\) is an essential right ideal of \(R\) and \(e_n R \approx R_g\) for all \(n\). First we show that \(R\) is not left bounded. Assume that \(R\) is left bounded, then since \(Re_n \approx R\) for all \(n\), we set \(H = (\bigoplus Re_n) \oplus I\), where \(I\) is a complement left ideal of \(\bigoplus Re_n\) in \(R\), and take a nonzero two-sided ideal \(J\) in \(H\). Choose a nonzero element \(x\) in \(J\) and set \(c = cc(xR)\). Since \(Soc(Z(R)) = 0\), we can write \(c = \bigvee c_n\) for some orthogonal, countably infinite, nonzero central idempotents \(c_1, c_2, \ldots\) in \(R\). Since \(Re_n \approx R\), we have a nonzero \(\varphi_n \in Hom_R (Rxc_n, Re_n)\) for all \(n\). We define an \(R\)-homomorphism \(\varphi: \bigoplus Rxc_n \rightarrow \bigoplus Re_n\) by \(\varphi(\sum rxc_n) = \varphi_n(\sum r_nxc_n)\). Furthermore, each \(\varphi_n\) can be extended to an \(R\)-
homomorphism \(\varphi = (\varphi_a) : \prod R gösterim için \Pi R^e_{R^e} \) and there exists a natural isomorphism \(\theta : R \rightarrow \prod R a_n \) given by \(\theta(rc) = (rc_a) \) \[2, Proposition 9.10\]. Hence \(\varphi \) is given by the right multiplication by some element \(a \) of \(R \). Therefore we obtain that \(\varphi \) is the right multiplication by \(a \). On the other hand, since \(J \) is a two-sided ideal of \(R \), \(xa \in J \subseteq \oplus R e_{R^e} \oplus I \), so we can write that \(xa = \sum r_n e_{R^e} + r \) for some \(r_n \in R \) and \(r \in I \). But we observe that \(xa e_{R^e} \subseteq (Re_{R^e} \cap \sum \oplus R e_{R^e} \oplus I) (=0) \). This is a contradiction. Consequently \(H \) can not contain any nonzero two-sided ideal of \(R \). Therefore \(R \) is not left bounded. Similarly we can show that \(R \) is not right bounded. Now the proof is complete.

Proposition 4. Let \(R \) be a purely infinite, prime, regular right self-injective and right bounded ring. Then \(R \) is a right full linear ring.

Proof. Since \(R \) is a prime, regular, right self-injective ring, \(R \) is indecomposable as a ring. Hence \(\text{Soc}(R) \) is essential or zero. We claim that \(\text{Soc}(R) \) is essential. If not, then we can take a minimal ideal \(I \) of \(R \) by Theorem 12.23 \[2\]. Now there exists nonzero orthogonal, infinite, idempotents \(\{f_\beta\}_{\beta \in \kappa} \) in \(I \) such that \(\bigoplus \beta f_\beta R \subseteq \varepsilon I_R \) since \(\text{Soc}(R) = 0 \). If \(\bigoplus \beta f_\beta R = I \), then we can take countably, infinite orthogonal idempotents \(\{g_\beta n\} \) in \(f_\beta R \) for all \(\beta \), such that \(\bigoplus \beta g_\beta n R \subseteq f_R \) since \(\text{Soc}(R) = 0 \). So we may assume that \(\bigoplus \beta f_\beta R \neq I \). On the other hand, since \(I \) is a minimal ideal of \(R \), \(\bigoplus \beta f_\beta R \) can not contain nonzero ideal. This contradicts that \(R \) is right bounded. Therefore \(\text{Soc}(R) \) is an essential ideal of \(R \), as claimed. Then \[2, Theorem 9.12\] shows that \(R \) is a right full linear ring.

Corollary. Let \(R \) be a purely infinite, regular, right self-injective and right bounded such that \(\text{Soc}(Z(R)) \) is an essential ideal of \(Z(R) \). Then \(R \approx \Pi R \), where each \(R \) is a right full linear ring.

Proof. Let \(\{e_{\alpha n} : n \in I \} \) be all central primitive idempotents of \(\text{Soc}(Z(R)) \). Evidently, we obtain that \(\bigvee e_{\alpha} = 1 \) since \(\text{Soc}(Z(R)) \subseteq Z(R) \). Then by Proposition 9.10 \[2\], \(R \approx \Pi e_{\alpha} R \), where each \(e_{\alpha} R \) is a prime, regular, right self-injective and right bounded ring. Then Proposition 4 shows that each \(e_{\alpha} R \) is a right full linear ring.

Now we shall prove our main theorem.

Theorem 1. Let \(R \) be a regular, right self-injective ring. Then the following conditions are equivalent.

1. \(R \) is right bounded.
(2) \(R \approx \prod M_{\pi(R)}(R_t) \times \prod T_t \), where each \(R_t \) is an abelian regular, self-injective ring and each \(T_t \) is a right full linear ring.

Proof. \((1) \Rightarrow (2)\). We have a decomposition \(R = R_1 \times R_2 \) such that \(R_1 \) is directly finite and \(R_2 \) is purely infinite by Theorem 10.21 [2]. Since each \(R_t \) is also right bounded, \(R_1 \) is Type I by Proposition 2 and \(R_2 \) is isomorphic to a direct product of right full linear rings by Propositions 3 and 4. Furthermore, Theorem 10.24 [2] shows that \(R \approx \prod M_{\pi(R)}(R_t) \), where each \(R_t \) is an abelian regular, self-injective ring.

\((2) \Rightarrow (1)\). It is easily seen that a direct product of right bounded rings is also right bounded. Moreover, we have pointed out that a regular, right self-injective of bounded index of nilpotence is right bounded, and by Theorem 9.12 [2], we see that a right full linear ring is also right bounded. Therefore \(R \) is right bounded.

Corollary. Let \(R \) be a regular, right self-injective ring. Then if \(R \) is right bounded, then \(R \) is bounded.

Proof. This is clear by Theorem 1.

3. Application

In this section, we apply Theorem 1 to a right bounded regular ring which is not necessarily self-injective.

Lemma 1. Let \(R \) be a regular, right bounded ring such that every nonzero two-sided ideal of \(R \) contains a nonzero central idempotent. Then the maximal right quotient ring \(Q(R) \) of \(R \) is also right bounded.

Proof. Let \(I \) be an essential right ideal of \(Q(R) \). Then clearly \(I \cap R \subseteq R_2 \). Since \(R \) is right bounded, there exists a nonzero two-sided ideal \(J \) of \(R \) such that \(J \subseteq I \cap R \). From the assumption, \(J \) contains a nonzero central idempotent \(e \) of \(R \). Note that \(e \) is also central in \(Q(R) \). Thus \(I \) contains a nonzero central idempotent of \(Q(R) \). Let \(H \) be the ideal generated by all central idempotents in \(I \). We claim that \(H \subseteq eQ(R)Q(R) \). If not, then \(l_{Q(R)}(H) \), the left annihilator ideal of \(H \) in \(Q(R) \), is not zero and \(H \cap l_{Q(R)}(H) = 0 \) since \(Q(R) \) is semi-prime. Hence there exists a nonzero central idempotent \(f \) in \(J \cap l_{Q(R)}(H) \) since \(J \cap l_{Q(R)}(H) \) is a nonzero two-sided ideal of \(R \). On the other hand, \(f \) is in \(H \) since \(f \in J \subseteq I \). But this contradicts that \(H \cap l_{Q(R)}(H) = 0 \). Consequently, \(H \) is an essential right ideal of \(Q(R) \), as claimed. Therefore \(Q(R) \) is right bounded.

Theorem 2. Let \(R \) be a regular ring and \(Q \) be the maximal right quotient ring of \(R \). Then the following conditions are equivalent.

(1) \(Q \approx \prod M_{\pi(S)}(S_t) \), where each \(S_t \) is an abelian regular, self-injective ring.
(2) There exist orthogonal central idempotents \(\{e_i\} \) such that \(e_i R \cong M_{n(i)}(A_{i}) \), where each \(A_i \) is an abelian regular ring and \(\sum_{i; \sigma \in \mathcal{K}_i} e_i R \subseteq R_R. \)

(3) For any nonzero two-sided ideal \(J \) of \(R \), \(J \) contains a nonzero central idempotent \(e \) such that \(eR \) is isomorphic to a full matrix ring over an abelian regular ring.

(4) \(R \) is right bounded and every nonzero two-sided ideal of \(R \) contains a nonzero central idempotent of \(R \).

Proof. (1)\(\Rightarrow \) (2). Since \(Q \cong \prod M_{n(t)}(S_t) \), there exist orthogonal central idempotents \(f_1, f_2, \ldots \) in \(Q \) such that \(f_t Q = M_{n(t)}(S_t) \). Clearly, \(f_t Q \) has bounded index \(n(t) \), so \(R \cap f_t Q \) has also bounded index \(n(t) \) by Corollary 7.4 [2]. Thus in view of Theorem 7.2 and Lemma 7.17 [2], we have a central idempotent \(e_{i_0} \) in \(R \cap f_t Q \) such that \(e_{i_0} R \cong M_{n(t)}(A_{i_0}) \) for some abelian regular ring \(A_{i_0} \). It is easy to see that \(e_{i_0} \) is a central idempotent of \(R \). For a maximal family \(\{e_{i_0} \}_{\sigma \in \mathcal{K}_i} \) of orthogonal central idempotents of \(f_t Q \cap R \) as above, we note that \(\sum_{i; \sigma \in \mathcal{K}_i} e_{i_0} R \subseteq f_t Q \cap R_{f_t Q \cap R} \). Next we show that \(\sum_{i; \sigma \in \mathcal{K}_i} e_{i_0} R \subseteq R_R \). Let \(I \) be a right ideal of \(R \) such that \(\sum_{i; \sigma \in \mathcal{K}_i} e_{i_0} R \cap I = 0 \). Since \(\bigoplus f_t Q \) is an essential right ideal of \(Q \), if \(I \) is not zero, then \(f_t Q \cap I \neq 0 \) for some \(t \). But, then since \(\sum_{i; \sigma \in \mathcal{K}_i} e_{i_0} R \) is an essential \(R \)-submodule of \(f_t Q \cap R \), this is impossible by our assumption. Hence \(I \) must be zero, so \(\sum_{i; \sigma \in \mathcal{K}_i} e_{i_0} R \) is an essential right ideal of \(R \).

(2)\(\Rightarrow \) (3). Let \(J \) be a nonzero two-sided ideal of \(R \). Since \(\sum_{i; \sigma \in \mathcal{K}_i} e_{i_0} R \) is an essential right ideal of \(R \), there exists a positive integer \(t_a \) such that \(e_{i_0} R \cap J \neq 0 \). Now since \(e_{i_0} R \cong M_{n(t)}(A_{i_0}) \) for some abelian regular ring \(A_{i_0} \), Theorem 6.6 [2] shows that \(J \cap e_{i_0} R \) contains a nonzero central idempotent \(e \) of \(R \) such that \(eR \) is isomorphic to a full matrix ring over an abelian regular ring.

(3)\(\Rightarrow \) (4). We shall show that \(R \) is right bounded. Let \(I \) be an essential right ideal of \(R \). First we claim that \(I \) contains a nonzero central idempotent \(e \) of \(R \). Choose a nonzero element \(x \) of \(R \). Then \(RxR \) contains a nonzero central idempotent \(f \) of \(R \) such that \(fR \) is isomorphic to a full matrix ring over an abelian regular ring. Since \(I \) is essential, \(I \cap fR \subseteq fR \). Now since an essential right ideal of a full matrix ring over an abelian regular ring contains a central idempotent, it is easy to see that \(I \) contains a nonzero central idempotent \(e \) of \(fR \). Clearly, \(e \) is also central in \(R \), so \(I \) contains a nonzero central idempotent \(e \) of \(R \), as claimed. Let \(H \) be the ideal generated by all central idempotents in \(I \). We show that \(H \) is an essential right ideal of \(R \). If not, then \(l_R(H) \), the left annihilator ideal of \(H \) in \(R \), is nonzero and \(H \cap l_R(H) = 0 \). On the other hand, since \(I \) is an essential right ideal of \(R \), \(I \cap l_R(H) = 0 \), so \(I \cap l_R(H) \) contains a nonzero central idempotent \(h \) of \(R \). But this is a contradiction. Therefore \(R \)
is right bounded.

(4)\Rightarrow(1). By Lemma 1, \(Q \) is also right bounded. Hence we have that
\(Q = Q_1 \times Q_2 \), where \(Q_1 \) is Type \(I_f \) and \(Q_2 \) is a direct product of right full linear rings by Theorem 1. By the assumption, every nonzero two-sided ideal of \(R \) contains a nonzero central idempotent of \(R \). Clearly, the same property holds for \(Q \). But it is easily seen that a right full linear ring does not satisfy this one. Hence we obtain that \(Q_2 = 0 \). Therefore \(Q \) is isomorphic to a direct product of full matrix rings over abelian regular, self-injective rings.

Corollary. Let \(R \) be a regular, right self-injective ring. Then \(R \) is isomorphic to a finite direct product of full matrix rings over abelian regular, self-injective rings if and only if

1. \(R \) is right bounded.
2. All prime ideals of \(R \) are maximal.

Proof. Since \(R \) is right self-injective, the condition (2) is equivalent to the condition that, for each \(x \in R \), the two-sided ideal \(RxR \) is generated by a central idempotent. Therefore Corollary is an immediate consequence of Theorems 1 and 2.

Remark 1. Without (1) or (2), Corollary can fail, as the following examples show.

There exists a prime regular, right self-injective ring which is right bounded, but not simple and not directly finite.

For example, choose a field \(F \), let \(V \) be a countable-infinite dimensional vector space over \(F \) and set \(R = \text{End}_F(V) \) and \(M = \{ x \in R \mid \dim_F(xV) < \infty \} \). Then clearly, \(R \) is a prime regular, right self-injective ring. Given any \(x \in R - M \), we have that \(\dim_F(xV) = \dim_F(V) \) and so \(xV \cong V \), whence \(xR \cong R_R \). This shows that \(R \) is not directly finite. On the other hand, \(R \) is right bounded by Theorem 1.

Furthermore, there exists a simple regular, right self-injective ring, which is not right bounded and not Type \(I_f \).

For example, choose fields \(F_1, F_2, \ldots \), set \(R_n = M_n(F_n) \) for all \(n = 1, 2, \ldots, \) and set \(R = \prod R_n \). Let \(M \) be a maximal ideal of \(R \) which contains \(\bigoplus R_n \). Then \(R/M \) be a simple right and left self-injective ring of Type \(II_f \) by Example 10.7 [2]. Therefore by Proposition 2, \(R/M \) is not right bounded.

Remark 2. Let \(R \) be a regular ring whose maximal right quotient ring \(Q(R) \) is right bounded. Then according to Theorem 1, \(R \) is also right bounded. But we don't know whether \(Q(R) \) is right bounded when \(R \) is right bounded.

Acknowledgement. The authors would like to express their sincere gratitude to Mr. J. Kado for his useful conversations.
References

Department of Mathematics
Osaka City University
Osaka, 558, Japan.