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1. Introduction. In Takeuchi [4] higher order asymptotic risk suffi-
ciency of maximum likelihood estimator has been discussed. In this paper
we try to find some relations between asymptotic risk sufficiency with a special
loss function and asymptotic sufficiency in a local sense.

Let 5>

Λ= {PQt n θ e Θ} be a family of probability distributions on a measurable
space (3?, cJ?Λ) with an index set Θ which is a subset of an Euclidean space with
the usual norm | | . For a sub σ -field C of Jln, real number c^O and θ, 0'eΘ
let tζ(c: θ, <9'Wnf (l+cΓlil—EP (φ)+cEP , (φ); φ are ^-measurable statis-

θ,n 0 ,n

tical test functions on 3?}. We note that rζ(c: θ, θ') means the Bayes risk of
statistical problem of testing a hypothesis 'Pβ/fll is true' against an alternative 'Pβ,n

is true' with experiment (3?, C, |FV,«> P0,«}) relative to a prior probability distri-
bution (cl(l+c), l/(l+c)) on {#', θ} provided that the loss function is simple.

Let {&n\ if=l, 2, — } be a sequence of sub σ-fields of iJln}(<Bnc:Jln). In
this paper we give a sufficient condition about the Bayes risk r^n for {&„}• to be
higher order locally asymptotically sufficient sequence of σ-fields. More
precisely our main result in this paper is the following: Under some condi-
tions if for some positive number a sup sup sup {r$n(c: θy θ*)—

00 Θ*<=K θ .-H1/2 |0-0*|^δ
r^»(c: θ, θ*)} =o(n~*) for every b>0 and every compact subset K of θ, then for
every β satisfying 0<y8<3~1α{^Λ} is locally asymptotically sufficient for {ί?*}
with order o(n~β) in the sense that for each n=l, 2, ••• and each 00eθ there
exists a family {Ql*n\ 0eθ} of probability distributions on (3?, cjϊβ) for which
3>

n is sufficient σ -fieJd and that for every

uniformly in 00 over every compact subsets of θ. Here IHIj^ means the total
variation norm over Jln.

We have discussed such a problem in the case a=β—Q in Suzuki [3] under
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non-local situation. In LeCam [1], Chap. 5 he discusses some relations between
insufficiency and deficiency in his terminology.

In Section 2 some auxiliary results about the order of asymptotic suffi-
ciency are proved. The main theorem is stated and followed by some discus-
sions about the asymptotic sufficiency in non-local sense in Section 3.

2. Auxiliary results. For each n<=N= {1, 2, •••} let Sn= {Pθ,n; 0<Ξθ}
be a family of probability distributions on a measurable space (3£, <Λ^) with an
index set θ. For a subset t/(Φφ) of θ we shall denote by S^ the totality of
-P0f,/s satisfying Θ^U. We assume that for each n^N 3>

n is dominated by a σ-
finite measure μn on (2£y <_Λ?Λ). The probability density function of Pθ>n relative
to μn will be denoted by pn(x, θ). Without loss of generality we assume in the
following that μn is a probability measure on (3?, <JLn). For each 0, 0'eθ let

Sn(θ)= {*; pu(x, 0)>0} and let hn(x; θ,θ')=ρu(x, θ)lpn(x, θ') if

For each θ, 0'eθ and real number s^>l we define

We note that βn(θ, θ') = 1-/M(1 : θ, θ').
Let {Un\ be a sequence of nonempty subsets of θ. For {Un} we consider

the following assumption.

ASSUMPTION 1. There exist a sequence {0*} n^N(θϊ e Un) and a positive
number γ such that

(a) Foi every s^l

Km sup sup Jn(s: θy

(b) sup βu(θ9 θt) = o(n~

For a sub σ -field C of Jln we denote by Φ(C) the family of ^-measurable
statistical test functions on 3C. For each θ,θ'^& and each real number ^^0
we define

rζ(c: θ, θ') = inf (l+c)-i{l-EPtιf (φ)+c£,.,t. (φ); φeΦ(C)} .

Let {̂ a} be a sequence of sub σ-fields of {<Λn} (<Bnd o?»). For each
define jf,(«, ^)=^μB|j>B(^, ^)|-®»] the conditional expectation of pn(x, θ) given
with respect to μ* and put 5ί(^)={Λr;^,,(Λ?, (9)>0>. For θ,θ'eθ define

(*; θ, θ')=fn(x, θ)lfn(x, θ') ifxeS'n(θ'), = + oo if xeSWYnSίW, =1 if
Sί(ΘJΓ\SίKΘ). For c>0 and δ>0 let EH(c, θ, S)= {*;£,(*; β,

and £ί(c, β, S)= {*;&,(*;
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Proposition. Suppose that for some positive number a, and a sequence {#*} nejv

(2.1) sup sup ir* (c: θ, θ*)-r^(c: θ, θ*)} = o(n~*) .
C>0

Then we have

(2.2) sup δ(l+c)-1 \u(c, δ) = o(O » and
c>0,<5>0

sup δ(l+c)"1 \n(c, δ) — o(ri~*)

where \Λ(c, 8)= sup Pfn.n(Eu(c, θ, δ)) and \'Λ(c, 8)= sup P9lu(E'u(c, θ, δ)).

This proposition can be proved in the same way as the proof of the first
and second steps of Theorem 1 in Suzuki [3]. So we shall omit the proof of
the proposition.

Theorem 1. Suppose that Assumption 1 is satisfied with a sequence {#?}„<=#
and γ>0, and that {<Bn} has the property (2.1) with β>0. Then for every β

satisfying 0<β<3~1a and β^j, {<Bn} is asymptotically sufficient for {9?nn} with
order o(n~β) in the following sense: For each n^Nthere exists a family {qn(x\ θ, θ%)

of probability density functions on (3£, Jl^) relative to μn such that

(i) each qn can be factorized as follows:

n (v ft fl*\ — r (v fi fl*\ /> (v fl*\qn\X, V, Un ) — rn\x> V) "n ) Pn\x> σu )

where rn is a ^^measurable function, and

ΊΛ(M)-ί.(*;MΪ) I <*/*.=

Proof. We shall divide the proof into several steps.
The first step. Suppose that Assumption 1 is satisfied with a sequence

Whs* and γ>0, and that {$n}n(ΞN has the property (2.1) with α>0. Let β
be any number satisfying 0<β<3~~1a and /3^γ. Take £x be any number

satisfying 0<51<3~1 (α—3/3). Let an=n~β(log n)"1, mn—n*ι and iH=[mnaήl]
+ 1 where [a] means the maximum integer not exceeding a. Put (%,=) 7n

(xi (9, θ*)= \hu(x; θ, θ*)-gn(x: θ, θ*) \ , (rί=) Ύ'n(*', θ, fl*)= \hn(x; θ, θ*)-IWu(x)
gn(x ,θ,θ*)\ and

where Wn=Wn(θ, θ$)= {x\gn(x\ θ, θ$)^mn} and IWn means the indicator func-
tion of Wn.

We have
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sup Pn(θ, W)^su£ J^ <yndPfa+tup \wM*'> θ> W <&•:.* =JΪ+JΪ* >

(2.3) and J* = sup j γM dPθ*ιn^an+ sup j ^ <γndPθ*ntn = c

(Dn= {x;yn^an}).

Furthermore we have

— sup I fγndPθ*n^ sup \ ΎΛ^β*Λ+ sup I 7
- -\JDnι\wn "' θ<=U-4DnnwH "' θ<=U~lwH

where W'.= {x\ hn(χ-, θ, θ*)^mn}, Wn=WnD W'n and W*=WnΓ\(W'nγ.
The second step. It holds that

Γ 2/n"2 Γ
Iί= sup ^ r.dP :.. ̂  Σ sup ΎndPeln

θςΞUn*
DnWn i = l θ<=Un*Bi

(2.4) +13 sup ( γnrfPβ;,n
' - o ^ e ϋ J c ,

where 5y=fFnn {̂  An(^; β, 0*)^2~\i+l) an,tu(x; θ, θί)<2'li an} and C~

Wnn {^hn(xιθyθϊ)<2'\i+l)anίgn(x'yθ9θ^^2^(i+2)an}. Using the pro-
perty (2.2) in Proposition we can evaluate /ί§l (ι'=l, 2) as follows. Taking ac-
count of 3f!<α— 3/3 we have

/ί.ι= ίi/e^L7"^-11

£2inmn[ sup sup P*;,Λ{*; AΛ(Λ:; 5, 5*)^2"1(/+1) an

(2.5) ^2ί.»,[ sup
l^*^2, n-

rt[ sup

^^ n"(β>"2p"3tι)(log n)2 η'n (Al is a constant)

Similarly we have

(2.6) /ί.2 =

Thus from (2.4) and (2.5) we have

(2.7) I'm = o
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The third step. Next we evaluate I'n as follows. For every $>1 we have

/ ί / =su f .y.rfiP^sup \ Λ,(*;
*Wn q Θ^Un^hn>mn}

Hence we have

I'n'^A2(s)(mnΓ* = A2(ήn«-*ι

where A2(s) is some constant depending only on s. We can choose s>ί large
enough so that

(2.8) /£' = o(n-') .

From (2.7) and (2.8) we have

Hence from (2.3) we have

/* = o(n-').

Put W'n'= {x'9 hn(x\ θ, θ^)<2~1 mn} . Then we have

7**=βup ( Λ(*;M«*W;.«
ΘeUnJw»

(2.9) ^sup [ c //A.(Λ?;β,β*)dP f.. f l+8up f c H
θ^ϋnίw nw θ<=Unlwnn(wn)

^Z-1 mn x;(ifie> mnl2)+(mn/2γ-s sup /β(ί : θ, θ*)

The first term on the right hand side is of order o(n~β) by Proposition. The
similar consideration as the evaluation of I" implies that the second term of
(2.9) is also of order o(n~β) for sufficiently large number s. Thus we have

Hence it follows from (2.3) that

(2.10) sup pn(θ, θ*) = o(n-*) .

The fourth step. Let atf, ^*)=[^ /r.(*)ί.(*; ^> W) ̂ C-Π^ °°) and

letr.(*;β,βί)=α.(d, W) /*„(*)*,(*; «, W)if β.(β, β?)<oo ,=1 otherwise. De-
fine ?B(Λ;; 5, 0*) =rs(ic; ,̂ θf)pn(x, θ%) and let £>g»B be the probability distribution
on (3C, tj?Λ) with density qn(x; θ, θ$) relative to μn. We note that &„ is sufH-
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cient σ-field for the family {Q$n θ e θ} by the factorization theorem. It follows
from (2.10) thai there exists nQ such that an(θ, 0*)<oo for every n^fjQ and every
Θ^Un. Therefore we can assume without loss of generality that an(θ, 0*)<oo

for every θ&Un and every n^. 1.

Under this circumstances we have

\PA*, *)-?.(*; θ, θ*)\dμΛ

(«*> ' *'(*; θ' ^-".(O, *?) Iwu(*)gn(*\ θ, tit) I

p.(x,θ*)dμ.+βJ(θ,θ*)

= P«(θ, θ*)+ 1 1 -an(θ, θ*)-1 1 +β.(θ, θ*)

Here \\v\\ji means the total variation norm of a signed measur v on (2C, <Jlx).
From Assumption 1, (b) and (2.10) we have

Th's completes the proof of the theorem.

3. The order of local asymptotic sufficiency. In th's section the

index set θ is assumed to be a subset of />-dimensional Euclidean space Rp. We
denote by | | the usual Euclidean norm in JR°. For 0eθ and δ>0 let Un(θ, b)

Let {^Bn}neN be the sequence of sub σ-fields <Bnc:Jln as in the previous
section. We consider the following assumption which will be used to prove

our main theorem, Theorem 2.

ASSUMPTION 2. For every compact subset K of θ and b>0

(a) lim sup sup sup JH(s: θ, 0*)<oo (V s>l) , and

(b) sup sup
Θ*(=K

Let a be a given positive number. We state a result about higher order

locally asymptotic sufficiency of {*Bn} for

Theorem 2. Suppose that Assumption 2 is satisfied zΰith γ>0, and that

for every compact subset K of θ and every δ>0

(3.1) sup sup sup {r®«(c\ θ, θ*)—r<Λn(c: θ, (9*)} = o(n~*) .
00

Then for every positive number β satisfying /3<3-1α and β^Ύ {*Bn}neN is locally
asymptotically sufficient for {&n} with order o(n~β) in the following sense: For each
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n^N and each ΘQ^& there exists a family Qn°— {QfynΊ θ&θ} of probability distri-

butions on (3£} <Jln) such that

(i) ,®n is sufficient for Qfy , and

(ii) for every compact subset K of Θ and every ό>0

sup sup ||Pβ.n-£*MU =o(n~t).
°*

Since the above result follows directly from Theorem 1 we shall omit the
proof.

It is open problem whether non-local version of Theorem 2 still holds or

not, i.e., whether any conditions such as in Theorem 2 imply the followings

or not: There exists a sequence Qn={Qe,n'y θ^®} of probability distributions
on (3£y <Jln) such that &n is sufficient for Qn> and that for every compact subset

Kof®

(3.2)

The case of a— β=0 has been discussed in Suzuki [3] in such a non-local

situation.

It is well known that under some regularity conditions there exist a sequence

{vn}nfΞN of estimators of Θ, a positive number γ and a number v^l having
the following property: For every compact subset K of Θ there corresponds

a(K) such that

sup P..Λβ"*|,(*)-0| ^a(K) (log «)°/2} = „(»-»)
Θ&K

(c.f. Matsuda [2], Chap. 3).

Using such an estimator {#„} we may be able to construct {Qe,n> θ^&} satisfy-
ing the property (3.2), and for which <Bn is sufficient.
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