<table>
<thead>
<tr>
<th>Title</th>
<th>On a relation between higher order asymptotic risk sufficiency and higher order asymptotic sufficiency in a local sense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Suzuki, Takeru</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 25(1) P.115-P.122</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1988</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5811</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5811</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
ON A RELATION BETWEEN HIGHER ORDER ASYMPTOTIC RISK SUFFICIENCY AND HIGHER ORDER ASYMPTOTIC SUFFICIENCY IN A LOCAL SENSE

TAKERU SUZUKI

(Received November 26, 1986)
(Revised May 7, 1987)

1. Introduction. In Takeuchi [4] higher order asymptotic risk sufficiency of maximum likelihood estimator has been discussed. In this paper we try to find some relations between asymptotic risk sufficiency with a special loss function and asymptotic sufficiency in a local sense.

Let $\mathcal{P} = \{P_\theta; \theta \in \Theta\}$ be a family of probability distributions on a measurable space $(\mathcal{X}, \mathcal{A}_n)$ with an index set Θ which is a subset of an Euclidean space with the usual norm $| \cdot |$. For a sub σ-field \mathcal{C} of \mathcal{A}_n, real number $c \geq 0$ and $\theta, \theta' \in \Theta$ let $r^\mathcal{C}_n(c; \theta, \theta') = \inf (1+c)^{-1} \{1 - \mathbb{E}_{P_\theta}(\phi) + c \mathbb{E}_{P_{\theta'}}(\phi); \phi$ are \mathcal{C}-measurable statistical test functions on $\mathcal{X}\}$. We note that $r^\mathcal{C}_n(c; \theta, \theta')$ means the Bayes risk of statistical problem of testing a hypothesis 'P$_\theta$ is true' against an alternative 'P$_{\theta'}$ is true' with experiment $(\mathcal{X}, \mathcal{C}, \{P_{\theta'}, P_\theta\})$ relative to a prior probability distribution $(c/(1+c), 1/(1+c))$ on θ' provided that the loss function is simple.

Let $\{\mathcal{B}_n; n=1, 2, \ldots\}$ be a sequence of sub σ-fields of $\{\mathcal{A}_n\}$. In this paper we give a sufficient condition about the Bayes risk $r^\mathcal{B}_n$ for $\{\mathcal{B}_n\}$ to be a higher order locally asymptotically sufficient sequence of σ-fields. More precisely our main result in this paper is the following: Under some conditions if for some positive number $\alpha > 0$ and every compact subset K of Θ, then for every β satisfying $0 < \beta < 3^{-1} \alpha$ $\{\mathcal{B}_n\}$ is locally asymptotically sufficient for $\{\mathcal{P}_n\}$ with order $o(n^{-p})$ in the sense that for each $n=1, 2, \ldots$ and each $\theta_0 \in \Theta$ there exists a family $\{Q^\theta_{\theta_0}; \theta \in \Theta\}$ of probability distributions on $(\mathcal{X}, \mathcal{A}_n)$ for which \mathcal{P}_n is sufficient σ-field and that for every $b > 0$

$$\sup_{\theta : n^{1/2} |\theta - \theta_0| \leq b} ||P_{\theta_0} - Q^\theta_{\theta_0}||_{L_n} = o(n^{-p})$$

uniformly in θ_0 over every compact subsets of Θ. Here $|| \cdot ||_{L_n}$ means the total variation norm over \mathcal{A}_n.

We have discussed such a problem in the case $\alpha = \beta = 0$ in Suzuki [3].
non-local situation. In LeCam [1], Chap. 5 he discusses some relations between insufficiency and deficiency in his terminology.

In Section 2 some auxiliary results about the order of asymptotic sufficiency are proved. The main theorem is stated and followed by some discussions about the asymptotic sufficiency in non-local sense in Section 3.

2. Auxiliary results. For each \(n \in \mathbb{N} = \{1, 2, \ldots \} \) let \(\mathcal{P}_n = \{P_{\theta,n}; \theta \in \Theta \} \) be a family of probability distributions on a measurable space \((\mathcal{X}, \mathcal{A}_n)\) with an index set \(\Theta \). For a subset \(U(=\phi) \) of \(\Theta \) we shall denote by \(\mathcal{P}_n^U \) the totality of \(P_{\theta,n} \)'s satisfying \(\theta \in U \). We assume that for each \(n \in \mathbb{N} \) \(\mathcal{P}_n \) is dominated by a \(\sigma \)-finite measure \(\mu_n \) on \((\mathcal{X}, \mathcal{A}_n)\). The probability density function of \(P_{\theta,n} \) relative to \(\mu_n \) will be denoted by \(p_{\theta,n}(x, \theta) \). Without loss of generality we assume in the following that \(\mu_n \) is a probability measure on \((\mathcal{X}, \mathcal{A}_n)\).

For each \(\theta, \theta' \in \Theta \) let \(S_n(\theta) = \{x; p_{\theta,n}(x, \theta) > 0\} \) and let \(h_n(x; \theta, \theta') = p_{\theta,n}(x, \theta) / p_{\theta,n}(x, \theta') \) if \(x \in S_n(\theta) \), \(+\infty\) if \(x \in S_n(\theta') \cap S_n(\theta)^c \), \(-1\) if \(x \in S_n(\theta)^c \cap S_n(\theta') \). We put \(\beta_n(\theta, \theta') = P_{\theta,n} \{S_n(\theta')\} \).

For each \(\theta, \theta' \in \Theta \) and real number \(s \geq 1 \) we define

\[
J_n(s; \theta, \theta') = E_{P_{\theta,n}}[\{h_n(x; \theta, \theta')\}^s].
\]

We note that \(\beta_n(\theta, \theta') = 1 - J_n(1; \theta, \theta') \).

Let \(\{U_n\} \) be a sequence of nonempty subsets of \(\Theta \). For \(\{U_n\} \) we consider the following assumption.

Assumption 1. There exist a sequence \(\{\theta_n^*\} \subseteq U_n \) and a positive number \(\gamma \) such that

\[
(a) \quad \lim sup_{b \to \infty} \sup_{\theta \in U_n} J_n(s; \theta, \theta_n^*) < \infty,
\]

\[
(b) \quad \sup_{\theta \in U_n} \beta_n(\theta, \theta_n^*) = o(n^{-\gamma}).
\]

For a sub-\(\sigma \)-field \(\mathcal{C} \) of \(\mathcal{A}_n \) we denote by \(\Phi(\mathcal{C}) \) the family of \(\mathcal{C} \)-measurable statistical test functions on \(\mathcal{X} \). For each \(\theta, \theta' \in \Theta \) and each real number \(c \geq 0 \) we define

\[
r^C(c; \theta, \theta') = \inf (1 + c)^{-1}\{1 - E_{P_{\theta,n}} (\phi) + c E_{P_{\theta,n}} (\phi); \phi \in \Phi(\mathcal{C})\}.
\]

Let \(\{\mathcal{B}_n\} \) be a sequence of sub-\(\sigma \)-fields of \(\{\mathcal{A}_n\} \) (\(\mathcal{B}_n \subseteq \mathcal{A}_n \)). For each \(\theta \in \Theta \) define \(\bar{p}_{\theta,n}(x, \theta) = E_{P_{\theta,n}} [p_{\theta,n}(x, \theta) | \mathcal{B}_n] \) the conditional expectation of \(p_{\theta,n}(x, \theta) \) given \(\mathcal{B}_n \) with respect to \(\mu_n \) and put \(S_n^*(\theta) = \{x; \bar{p}_{\theta,n}(x, \theta) > 0\} \). For \(\theta, \theta' \in \Theta \) define \(g_n(x; \theta, \theta') = \bar{p}_{\theta,n}(x, \theta) / \bar{p}_{\theta,n}(x, \theta') \) if \(x \in S_n^*(\theta') \), \(+\infty\) if \(x \in S_n^*(\theta)^c \cap S_n^*(\theta) \), \(-1\) if \(x \in S_n^*(\theta)^c \cap S_n^*(\theta') \). For \(c > 0 \) and \(\delta > 0 \) let

\[
E_n(c, \theta, \delta) = \{x; g_n(x; \theta, \theta_n^*) < c + \delta \leq h_n(x; \theta, \theta_n^*)\} \quad \text{and} \quad E_n^*(c, \theta, \delta) = \{x; g_n(x; \theta, \theta_n^*) > c - \delta > h_n(x; \theta, \theta_n^*)\}.
\]
Proposition. Suppose that for some positive number \(\alpha \) and a sequence \(\{ \theta_n^* \}_{n \in \mathbb{N}} \) \((\theta_n^* \in U_n) \)

\[
(2.1) \quad \sup_{c > 0} \sup_{\theta \in U_n} \{ r_{\mathcal{B}_n}(c; \theta, \theta_n^*) - r_{\mathcal{A}_n}(c; \theta, \theta_n^*) \} = o(n^{-\alpha}) .
\]

Then we have

\[
(2.2) \quad \sup_{c > 0, \delta > 0} \delta (1 + c)^{-1} \lambda_n(c, \delta) = o(n^{-\alpha}) , \quad \text{and} \quad \sup_{c > 0, \delta > 0} \delta (1 + c)^{-1} \lambda'_n(c, \delta) = o(n^{-\alpha})
\]

where \(\lambda_n(c, \delta) = \sup_{\theta \in U_n} P_{\mathcal{B}_n}(E_n(c, \theta, \delta)) \) and \(\lambda'_n(c, \delta) = \sup_{\theta \in U_n} P_{\mathcal{A}_n}(E_n(c, \theta, \delta)) \).

This proposition can be proved in the same way as the proof of the first and second steps of Theorem 1 in Suzuki [3]. So we shall omit the proof of the proposition.

Theorem 1. Suppose that Assumption 1 is satisfied with a sequence \(\{ \theta_n^* \}_{n \in \mathbb{N}} \) and \(\gamma > 0 \), and that \(\{ \mathcal{B}_n \} \) has the property (2.1) with \(\beta > 0 \). Then for every \(\beta \) satisfying \(0 < \beta < 3^{-1}\alpha \) and \(\beta \leq \gamma \), \(\{ \mathcal{B}_n \} \) is asymptotically sufficient for \(\{ \mathcal{A}_n \} \) with order \(o(n^{-\beta}) \) in the following sense: For each \(n \in \mathbb{N} \) there exists a family \(\{ q_n(x; \theta, \theta_n^*) ; \theta \in \Theta \} \) of probability density functions on \((\mathcal{X}, \mathcal{A}_n) \) relative to \(\mu_n \) such that

(i) each \(q_n \) can be factorized as follows:

\[
q_n(x; \theta, \theta_n^*) = r_n(x; \theta, \theta_n^*) p_n(x, \theta_n^*)
\]

where \(r_n \) is a \(\mathcal{B}_n \)-measurable function, and

(ii) \(\sup_{\theta \in U_n} \int_{\mathcal{X}} | p_n(x, \theta) - q_n(x; \theta, \theta_n^*) | d\mu_n = o(n^{-\beta}) \).

Proof. We shall divide the proof into several steps.

The first step. Suppose that Assumption 1 is satisfied with a sequence \(\{ \theta_n^* \}_{n \in \mathbb{N}} \) and \(\gamma > 0 \), and that \(\{ \mathcal{B}_n \}_{n \in \mathbb{N}} \) has the property (2.1) with \(\alpha > 0 \). Let \(\beta \) be any number satisfying \(0 < \beta < 3^{-1}\alpha \) and \(\beta \leq \gamma \). Take \(\varepsilon_1 \) be any number satisfying \(0 < \varepsilon_1 < 3^{-1}(\alpha - 3\beta) \). Let \(\alpha_n = n^{-\beta}(\log n)^{-1} \), \(m_n = n^{\varepsilon_1} \) and \(i_n = [m_n \alpha_n^{-1}] + 1 \) where \([a]\) means the maximum integer not exceeding \(a \). Put \((\gamma_n =) \gamma_n(x; \theta, \theta_n^*) = | h_n(x; \theta, \theta_n^*) - g_n(x; \theta, \theta_n^*) | , (\gamma'_n =) \gamma'_n(x; \theta, \theta_n^*) = | h_n(x; \theta, \theta_n^*) - I_{W_n}(x) g_n(x; \theta, \theta_n^*) | \) and

\[
\rho_n(\theta, \theta_n^*) = \int_{\mathcal{X}} \gamma'_n(x; \theta, \theta_n^*) dP_{\mathcal{B}_n}
\]

where \(W_n = W_n(\theta, \theta_n^*) = \{ x ; g_n(x; \theta, \theta_n^*) \leq m_n \} \) and \(I_{W_n} \) means the indicator function of \(W_n \).

We have
\[
\sup_{\theta \in U_n} \rho_n(\theta, \theta^*) \leq \sup_{\theta \in U_n} \int_{W_n^*} \gamma_n dP_{\theta^*} + \sup_{\theta \in U_n} \int_{W_n^*} h_n(x; \theta, \theta^*) dP_{\theta^*} = J_n^* + J_n^{**},
\]
(2.3) and
\[
J_n^* = \sup_{\theta \in U_n} \int_{W_n^*} \gamma_n dP_{\theta^*} \leq \alpha_n + \sup_{\theta \in U_n} \int_{D_n \cap W_n^*} \gamma_n dP_{\theta^*} = \alpha_n + I_n
\]
\[
(D_n = \{x; \gamma_n \leq \alpha_n\}).
\]

Furthermore we have
\[
I_n = \sup_{\theta \in U_n} \int_{D_n \cap W_n^*} \gamma_n dP_{\theta^*} \leq \sup_{\theta \in U_n} \int_{D_n \cap \tilde{W}_n} \gamma_n dP_{\theta^*} + \sup_{\theta \in U_n} \int_{\tilde{W}_n^*} \gamma_n dP_{\theta^*}
\]
where \(W'_n = \{x; h_n(x; \theta, \theta^*) \leq m_n\} \), \(\tilde{W}_n = W_n \cap W_n^*\) and \(W_n^* = W_n \cap (W_n')^c\).

The second step. It holds that
\[
I_n = \sup_{\theta \in U_n} \int_{D_n \cap \tilde{W}_n} \gamma_n dP_{\theta^*} \leq \sum_{i=1}^{2n} \sup_{\theta \in U_n} \int_{B_i} \gamma_n dP_{\theta^*}
\]
(2.4)
\[
= I_{n,1}^* + I_{n,2}^*
\]
where \(B_j = \tilde{W}_n \cap \{x; h_n(x; \theta, \theta^*) \geq 2^{-1}(i+1) \alpha_n, g_n(x; \theta, \theta^*) < 2^{-1} i \alpha_n\} \) and \(C_i = \tilde{W}_n \cap \{x; h_n(x; \theta, \theta^*) < 2^{-1}(i+1) \alpha_n, g_n(x; \theta, \theta^*) \geq 2^{-1}(i+2) \alpha_n\}.\) Using the property (2.2) in Proposition we can evaluate \(I_{n,i}^*(i=1,2)\) as follows. Taking account of \(3\varepsilon_n \leq \alpha - 3\beta\) we have
\[
I_{n,1}^* = \sum_{i=1}^{2n} \sup_{\theta \in U_n} \int_{B_i} \gamma_n dP_{\theta^*}
\]
\[
\leq 2i_n m_n \sup_{1 \leq i \leq 2n, 2} \sup_{\theta \in U_n} P_{\theta^*}(x; h_n(x; \theta, \theta^*) \geq 2^{-1}(i+1) \alpha_n, g_n(x; \theta, \theta^*) < 2^{-1} i \alpha_n)
\]
(2.5)
\[
\leq 4i_n m_n \sup_{1 \leq i \leq 2n} \alpha_n(1+2^{-1} i \alpha_n) n^{-\varepsilon} \eta_n (\eta_n = o(1))
\]
\[
\leq 24i_n m_n n^{-\varepsilon} \eta_n
\]
\[
\leq A_1 n^{-\varepsilon} (\log n)^2 \eta_n (A_1 is a constant)
\]
\[
= o(n^{\varepsilon}).
\]

Similarly we have
(2.6)
\[
I_{n,2}^* = o(n^{\varepsilon}).
\]

Thus from (2.4) and (2.5) we have
(2.7)
\[
I_n^* = o(n^{\varepsilon}).
\]
The third step. Next we evaluate I'_n as follows. For every $s > 1$ we have

$$I'_n = \sup_{\theta \in U_n} \int_{\mathcal{W}_n} \gamma_n dP_{\theta_{n+1}^*} \leq \sup_{\theta \in U_n} \int_{\{h_n > m_n\}} h_n(x; \theta, \theta_{n+1}^*) dP_{\theta_{n+1}^*} \leq (m_n)^{-1-s} \sup_{\theta \in U_n} J_n(s; \theta, \theta_{n+1}^*).$$

Hence we have

$$I'_n \leq A_2(s) (m_n)^{1-s} = A_2(s) n^{\alpha - \alpha_1},$$

where $A_2(s)$ is some constant depending only on s. We can choose $s > 1$ large enough so that

$$I'_n \approx o(n^{-\theta}).$$

From (2.7) and (2.8) we have

$$I_n = o(n^{-\theta}).$$

Hence from (2.3) we have

$$J^*_n = o(n^{-\theta}).$$

Put $W'_n = \{x; h_n(x; \theta, \theta_{n+1}^*) < 2^{-1} m_n\}$. Then we have

$$J^**_n = \sup_{\theta \in U_n} \int_{W'_n} h_n(x; \theta, \theta_{n+1}^*) dP_{\theta_{n+1}^*} \leq \sup_{\theta \in U_n} \int_{W'_n} h_n(x; \theta, \theta_{n+1}^*) dP_{\theta_{n+1}^*} + \sup_{\theta \in U_n} \int_{W'_n \setminus (W'_n \cup W_n)} h_n(x; \theta, \theta_{n+1}^*) dP_{\theta_{n+1}^*} \leq 2^{-1} m_n \lambda_n(m_n, m_n/2) + (m_n/2)^{1-s} \sup_{\theta \in U_n} J_n(s; \theta, \theta_{n+1}^*).$$

The first term on the right hand side is of order $o(n^{-\theta})$ by Proposition. The similar consideration as the evaluation of I'_n implies that the second term of (2.9) is also of order $o(n^{-\theta})$ for sufficiently large number s. Thus we have

$$J^**_n = o(n^{-\theta}).$$

Hence it follows from (2.3) that

$$\sup_{\theta \in U_n} \rho_n(\theta, \theta_{n+1}^*) = o(n^{-\theta}).$$

The fourth step. Let $a_n(\theta, \theta_{n+1}^*) = [\int_{\mathcal{X}} I_{W_n}(x) g_n(x; \theta, \theta_{n+1}^*) dP_{\theta_{n+1}^*}]^{-1} (\leq \infty)$ and let $r_n(x; \theta, \theta_{n+1}^*) = a_n(\theta, \theta_{n+1}^*) I_{W_n}(x) g_n(x; \theta, \theta_{n+1}^*)$ if $a_n(\theta, \theta_{n+1}^*) < \infty$, $= 1$ otherwise. Define $g_n(x; \theta, \theta_{n+1}^*) = r_n(x; \theta, \theta_{n+1}^*) \rho_n(x; \theta, \theta_{n+1}^*)$ and let Q_{n+1}^* be the probability distribution on $(\mathcal{X}, \mathcal{A}_n)$ with density $g_n(x; \theta, \theta_{n+1}^*)$ relative to μ_n. We note that \mathcal{B}_n is suf-
cient σ-field for the family $\{Q^\Theta_n; \theta \in \Theta\}$ by the factorization theorem. It follows from (2.10) that there exists n_0 such that $a_n(\theta, \theta^*) < \infty$ for every $n \geq n_0$ and every $\theta \in U_n$. Therefore we can assume without loss of generality that $a_n(\theta, \theta^*) < \infty$ for every $\theta \in U_n$ and every $n \geq 1$.

Under this circumstances we have

$$\|P_{\theta, n} - Q^\Theta_n\|_{\mathcal{A}_n} = \int_{\mathcal{X}} |p_n(x, \theta) - q_n(x; \theta, \theta^*)| \, d\mu_n$$

$$\leq \int_{S_n(n^*)} |h_n(x; \theta, \theta^*) - a_n(\theta, \theta^*) I_n(x) g_n(x; \theta, \theta^*)|$$

$$\cdot p_n(x, \theta^*) d\mu_n + \beta_n(\theta, \theta^*)$$

$$= \rho_n(\theta, \theta^*) + |1 - a_n(\theta, \theta^*)| + \beta_n(\theta, \theta^*)$$

$$\leq 2 \rho_n(\theta, \theta^*) + 2 \beta_n(\theta, \theta^*).$$

Here $\|\nu\|_{\mathcal{A}_n}$ means the total variation norm of a signed measure ν on \mathcal{L}, \mathcal{A}_n. From Assumption 1, (b) and (2.10) we have

$$\sup_{\theta \in U_n} \|P_{\theta, n} - Q^\Theta_n\|_{\mathcal{A}_n} = o(n^{-\beta}).$$

This completes the proof of the theorem.

3. The order of local asymptotic sufficiency. In this section the index set Θ is assumed to be a subset of p-dimensional Euclidean space \mathbb{R}^p. We denote by $| \cdot |$ the usual Euclidean norm in \mathbb{R}^p. For $\theta \in \Theta$ and $b > 0$ let $U_n(\theta, b) = \{\theta' \in \Theta; n^{1/2} |\theta' - \theta| \leq b\}.$

Let $\{\mathcal{B}_n\}_{n \in \mathbb{N}}$ be the sequence of sub σ-fields $\mathcal{B}_n \subset \mathcal{A}_n$ as in the previous section. We consider the following assumption which will be used to prove our main theorem, Theorem 2.

Assumption 2. For every compact subset K of Θ and $b > 0$

(a) $\limsup_{n \to \infty} \sup_{\theta \in U_n(\theta, b)} \int_{\mathcal{X}} j_n(s; \theta, \theta^*) < \infty$ (for $s > 1$), and

(b) $\sup_{\theta^* \in K} \beta_n(\theta, \theta^*) = o(n^{-\gamma}).$

Let α be a given positive number. We state a result about higher order locally asymptotic sufficiency of $\{\mathcal{B}_n\}$ for $\{\mathcal{P}_n\}$.

Theorem 2. Suppose that Assumption 2 is satisfied with $\gamma > 0$, and that for every compact subset K of Θ and every $b > 0$

$$\sup_{c > 0} \sup_{\theta^* \in K} \sup_{\theta \in U_n(\theta^*, b)} \{r_n(c; \theta, \theta^*) - r_n(\mathcal{A}_n(c; \theta, \theta^*))\} = o(n^{-\alpha}).$$

Then for every positive number β satisfying $\beta < 3^{-1}\alpha$ and $\beta \leq \gamma$ $\{\mathcal{B}_n\}_{n \in \mathbb{N}}$ is locally asymptotically sufficient for $\{\mathcal{P}_n\}$ with order $o(n^{-\beta})$ in the following sense: For each
n ∈ N and each θ ∈ Θ there exists a family $Q_{	heta} = \{Q_{\theta}^n; \theta \in \Theta\}$ of probability distributions on (X, A_n) such that

(i) B_n is sufficient for Q_{θ}^n, and

(ii) for every compact subset K of Θ and every $b > 0$

$$\sup_{\theta \in K} \sup_{\theta' \in U_n(\theta, b)} ||P_{\theta, n} - Q_{\theta, n}||_{A_n} = o(n^{-b}).$$

Since the above result follows directly from Theorem 1 we shall omit the proof.

It is open problem whether non-local version of Theorem 2 still holds or not, i.e., whether any conditions such as in Theorem 2 imply the followings or not: There exists a sequence $Q_{\theta} = \{Q_{\theta, n}; \theta \in \Theta\}$ of probability distributions on (X, A_n) such that B_n is sufficient for $Q_{\theta, n}$, and that for every compact subset K of Θ

$$\sup_{\theta \in K} ||P_{\theta, n} - Q_{\theta, n}||_{A_n} = o(n^{-b}).$$

The case of $\alpha = \beta = 0$ has been discussed in Suzuki [3] in such a non-local situation.

It is well known that under some regularity conditions there exist a sequence $\{\theta_n\} \subset \mathbb{N}$ of estimators of θ, a positive number γ and a number $\nu \geq 1$ having the following property: For every compact subset K of Θ there corresponds $a(K)$ such that

$$\sup_{\theta \in K} \{n^{1/2}|\hat{\theta}_n(x) - \theta| \geq a(K) (\log n)^{\nu/2}\} = o(n^{-\gamma})$$

(c.f. Matsuda [2], Chap. 3).

Using such an estimator $\{\hat{\theta}_n\}$ we may be able to construct $\{Q_{\theta, n}; \theta \in \Theta\}$ satisfying the property (3.2), and for which B_n is sufficient.

Acknowledgement. The author wishes to express his hearty thanks to the referee for many helpful comments. The evaluations of (2.3) and (2.9) have been much simplified following the suggestion of the referee.

References

Department of Mathematics
School of Science and Engineering
Waseda University
3–4–1 Ohkubo, Shinjuku-ku
Tokyo 160, Japan