

Title	A characterization of the simple group J ₄
Author(s)	Gülouglu, Ismail Suayip
Citation	Osaka Journal of Mathematics. 1981, 18(1), p. 13-24
Version Type	VoR
URL	https://doi.org/10.18910/5813
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A CHARACTERIZATION OF THE SIMPLE GROUP J.

ISMAIL SUAYIP GÜLOĞLU

(Received June 12, 1979) (Revised March 19, 1980)

In [4] Janko describes the properties of a simple group of order $2^{21} \cdot 3^3 \cdot 5 \cdot 7 \cdot 11^3 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 43$ denoted by J_4 . It has exactly one conjugacy class of elements of order 3 and if π is one of them, then the centralizer of π in J_4 is isomorphic to the 6-fold cover of the Mathieu group M_{22} . We show in this paper that these properties characterize the group J_4 , we prove namely the

Theorem A. Let G be a finite group containing an element π of order 3 such that $C_G(\pi)$ is isomorphic to the 6-fold cover M_{22} . If G is not 3-normal then G is isomorphic to J_4 .

In the first section we shall list some properties of the 6-fold cover of M_{22} , which will be needed in the proof. The second section is then devoted to the proof of Theorem A. In the last section we remark that the following holds:

Theorem B There exists no simple group G which is not 3-normal and contains an element π such that $C_G(\pi)$ is isomorphic to the triple cover of M_{22} .

The Frattini subgroup of a group X is denoted by D(X). The other notation is hopefully standard.

In the whole paper with the exception of the last section G denotes a simple group satisfying the assumptions of Theorem A and π is an element of G of order 3 such that $C_G(\pi)$ is isomorphic to the 6-fold cover of M_{22} .

1. Some known results and structure of $N_G(\langle \pi \rangle)$

We first list some well known results which will be used in the proof of our theorems.

Lemma 1.1 (Gaschütz). Let A be an abelian normal subgroup of the group X contained in the subgroup B of X with (|X:B|, |A|)=1. Then if A has a complement in B, A has a complement in X.

Proof. See [1].

Lemma 1.2 (Thompson). If the group X admits a fixed-point-free automorphism of prime order then X is nilpotent.

Proof. See [2; 10.2.1].

Lemma 1.3 (Thompson). Let T_0 be a maximal subgroup of an S_2 -subgroup of the group X. If X does not have a subgroup with index two then all involutions of X are conjugate to elements of T_0 in X.

Proof. See [10. Lemma 5.38].

Lemma 1.4 (Burnside). Let P be an S_p -subgroup of the group X and assume that $N_X(P) = C_X(P)$. Then X has a normal p-complement.

Proof. See [2;7.4.3].

Lemma 1.5. Let P be a p-group and let Q be a noncyclic abelian q-group of automorphisms of P, q a prime distinct from p. Then $P = \langle C_P(x) | 1 \pm x \in Q \rangle$.

Proof. See [2; 5.3.16].

Lemma 1.6. Any involution t of the group X which does not lie in the maximal normal 2-subgroup of X inverts a nontrivial element of X of odd order.

Proof. Let t be an involution of X with $t \in 0_2(X)$. Then there exists a conjugate t_1 of t in X such that the dihedral group $\langle t, t_1 \rangle$ is not a 2-group by [2;3.8.2]. Since the index of the cyclic subgroup $\langle t_1 t \rangle$ has index two in $\langle t, t_1 \rangle$ we see that $0(\langle t_1 t \rangle)$ is nontrivial and is inverted by t since t inverts $t_1 t$.

The following three lemmas are taken from [4; (2.1), (2.3), (2.4)].

- Lemma 1.7. Let $X \cong M_{22}$ and let T be an S_2 -subgroup of X. Then T possesses precisely two distinct elementary abelian subgroups E_1 and E_2 of order 16 and they are both normal in T. We have $N_X(E_1)$ is a splitting extension of E_1 by A_6 , $N_X(E_2)$ is a splitting extension of E_2 by S_5 and $N_X(E_i)$ acts transitively on E_i^* , i=1,2. The group X has the order $2^7 \cdot 3^2 \cdot 5 \cdot 7 \cdot 11$ and exactly one conjugacy class of involutions with the representative $e \in E_1$ and we have $C_X(e) = C(e) \cap N_X(E_1)$. An S_3 -subgroup P of X is elementary abelian of order P and we have P and P and P and P and P are P and P and P and P are P are P and P and P are P are P are P are P and P are P and P are P and P are P are P and P are P and P are P are P and P are P are P and P are P are P are P and
- **Lemma 1.8.** Let $X \cong Aut(M_{22})$ so that $X' \cong M_{22}$ and |X: X'| = 2. The group X possesses exactly two conjugacy classes of involutions which are contained in X-X' with the representatives t_1 and t_2 . If E_1 and E_2 are the only elementary abelian subgroups of rank 4 of an S_2 -subgroup of X' as discribed in (1.7) then t_1 and t_2 can be chosen to lie in $C_X(E_2) = A = \langle E_2, t_2 \rangle$ which is elementary abelian of

- order 32. Then $N_X(A) = AB$ where $B \subseteq X'$, $B \cong S_5$ and B operates transitively on E_2^* and operates on $A E_2$ in two orbits of sizes 10 and 6 represented respectively by t_1 and t_2 , We have $N_X(E_1)$ is a splitting and faithful extension of E_1 by S_6 .
- **Lemma 1.9.** Every maximal subgroup of the simple group M_{24} is isomorphic to one of the following groups:

 $PSL(2, 23), M_{23}, Aut(M_{22}), Aut(M_{12}), PSL(2, 7),$

The holomorph of an elementary abelian group of order 16,

An extension of M_{21} by S_3 ,

A splitting and faithful extension of an elementary abelian group of order 64 by a subgroup Y where $|0_3(Y)|=3$, $Y/0_3(Y) \cong S_6$, |Y:Y'|=2, Y''=Y' and $C_Y(0_3(Y))=Y'$,

A splitting and faithful extension of an elementary abelian group of order 64 by $S_3 \times PSL(2, 7)$.

In the next lemma we list some properties of $N_G(\langle \pi \rangle)$ which can be easily deduced from (1.7) and (1.8) and are essentially proved in [4]. Throughout the paper we shall fix the notation which will be introduced in the following lemma.

Lemma 1.10. The following hold in G:

- (i) Let $H=N_G(\langle \pi \rangle)$. Then |H:H'|=2, $H''=H'=C_H(\pi)$, Z(H') is cyclic of order 6, $H'/Z(H') \cong M_{22}$ and $H/Z(H') \cong \operatorname{Aut}(M_{22})$. Let us denote the involution in Z(H') by z.
- (ii) Let T be an S_2 -subgroup of H and let $T_0 = T \cap H'$. Then T_0 contains exactly two elementary abelian subgroups E_1 and E_2 of rank 5. These are normal in T and we have $C_{H'}(E_i) = E_i \langle \pi \rangle$, i=1, 2 and

 $N_{H'}(E_1) = E_1 B_1$ where B_1 is isomorphic to the triple cover of A_6 ,

 $C_H(E_1) = E_1 \langle \pi \rangle, N_H(E_1) / C_H(E_1) \cong S_6,$

 $N_{H'}(E_2) = E_2(\langle \pi \rangle \times B_2)$ where $B_2 \cong S_5$ and acts transitively on $(E_2/\langle z \rangle)^{\sharp}$,

 $N_H(E_2) = \langle \pi \rangle E_2^* B_2$ where E_2^* is an abelian group of order 64, B_2 normalizes E_2^* , $\langle z \rangle \geq D(E_2^*)$, E_2^* is elementary abelian if and only if there exist involutions in H-H' and if so then E_2^* is the only elementary abelian subgroup of T of order 64. Furthermore $E_2^* \cap H' = E_2$ and $E_2^* \leq T$.

- (iii) Let P be an S_3 -subgroup of B_1 . Then P is an S_3 -subgroup of G. $P = \langle \pi, \sigma, \tau \rangle$ is extraspecial of order 27 and exponent 3, where the generators of P are chosen in such a way that $C_{E_1}(\tau) = \langle z \rangle$ and $C_{E_1}(\sigma) = E_0$ is of order 8. We have $N_{H'}(P) = \langle z \rangle \times PQ$ where Q is quaternion and acts regularly on $P/\langle \pi \rangle$. There exists exactly one conjugacy class of elements of order 3 in $H = \langle \pi, \sigma \rangle$ and exactly one conjugacy class of subgroups of order 9 in H' represented by $M = \langle \pi, \sigma \rangle$. We have $C_G(M) = M \times E_0$ and $N_{H'}(M)/C_{H'}(M) \cong S_3$.
 - (iv) We have $C_{H'}(E_0) = E_1 M$.
 - (v) $E_1 \cap E_2$ is of order 8 and we have $C_{H'}(E_1 \cap E_2) = \langle \pi \rangle \times E_1 E_2$ and

 $N_{H'}(E_1 \cap E_2) = C_{H'}(E_1 \cap E_2)U$ where $U \cong S_3$ and $O_3(U)$ acts regularly on $E_1E_2/\langle z \rangle$. Furthermore $E_1 \cap E_2 \subseteq T' = \langle T' \cap E_1, T' \cap E_2 \rangle$ and $T' \cap E_i$, i=1, 2, are the only elementary abelian subgroups of T' of rank four. So $E_1 \cap E_2$ is normal in $N_G(T)$. We have $C(E_1) \cap E_2^* = E_1 \cap E_2$.

Proof. $C_G(\pi)$ is isomorphic to the 6-fold cover M_{22} , i.e. $C_G(\pi)' = C_G(\pi)$, $Z(C_G(\pi))$ is cyclic of order 6 and $C_G(\pi)/Z(C_G(\pi)) \cong M_{22}$.

Let P be an S_3 -subgroup of $C_G(\pi)$. Then $\langle \pi \rangle \subseteq Z(P)$ and P does not split over by $\langle \pi \rangle$ (1.1). So $D(P) = \langle \pi \rangle$ by (1.7) and hence P is an S_3 -subgroup of G. Let R be an S_2 -subgroup of $N(P) \cap C_G(\pi)$. Since R operates transitively on $(P/D(P))^{\frac{1}{2}}$ by (1.7) we see that P is extraspecial of order 27 and exponent 3. Furthermore we have $R/\langle z \rangle \cong Q_8$ where z is the involution in $Z(C_G(\pi))$. So R must split over $\langle z \rangle$ and we get $N(P) \cap C_G(\pi) = \langle z \rangle \times PQ$ where $Q \cong Q_8$ and acts regularly on P/D(P). In particular there exists exactly one conjugacy class of elements of order 3 in $C_G(\pi) = \langle \pi \rangle$ and hence exactly one conjugacy class of subgroups of order 9.

Since G is not 3-normal, π must be conjugate to an element in $P-\langle\pi\rangle$ and hence to π^{-1} . So $|N_G(\langle\pi\rangle): C_G(\pi)|=2$. Let $H=N_G(\langle\pi\rangle)$. Then $H'=C_G(\pi)$ and H/Z(H') is isomorphic to $\operatorname{Aut}(M_{22})$ or $Z_2\times M_{22}$ since $|\operatorname{Aut}(M_{22}):M_{22}|=2$ by (1.8). But the second case is not possible since otherwise there would exist a 2-element in H-H' which operates trivially on P/D(P) and inverts D(P) and this is absurd. So $H/Z(H')\cong\operatorname{Aut}(M_{22})$.

Let T be an S_2 -subgroup of H. Then all assertions of (ii) are proved in [4; Proposition 1 and 3] and we shall use them in the following.

Since an S_3 -subgroup of $B_1 \subseteq H$ is also an S_3 -subgroup of H we can assume that $P \subseteq B_1$. By the action of the non-cyclic abelian 3-group P/D(P) on the 2-group E_1 we see that there is an element σ in P with $E_0 = E_1 \cap C(\sigma)$ is elementary abelian of order 8 and an element τ in P with $\langle z \rangle = E_1 \cap C(\tau)$. Let $M = \langle \pi, \sigma \rangle$. Then $C_G(M) = E_0 \times M$ and $N_{H'}(M)/C_{H'}(M) \cong S_3$ by (1.7). This completes the proof of the first three assertions of the lemma.

For the proof of (iv) let $\overline{H}'=H'/Z(H')$, which is isomorphic to M_{22} . By (1.7) we have $C_{\overline{H}}(\overline{\sigma})=\langle \overline{\sigma}\rangle x\overline{E}_0\langle \overline{\tau}\rangle$ where $\overline{E}_0\langle \overline{\tau}\rangle$ is isomorphic to A_4 and $N_{\overline{H}'}(\langle \overline{\sigma}\rangle)/\langle \overline{\sigma}\rangle$ is isomorphic to S_4 . This gives that $C_{\overline{H}}(\overline{E}_0)\cap N_{\overline{H}'}(\langle \overline{\sigma}\rangle)=\overline{E}_0\langle \overline{\sigma}\rangle$ By Burnside's transfer theorem we get $C_{\overline{H}'}(\overline{E}_0)=0_{3'}(C_{\overline{H}'}(\overline{E}_0))\langle \overline{\sigma}\rangle$. By the structure of M_{22} , $\overline{K}=0_{3'}(C_{\overline{H}}(\overline{E}_0))$ is a 2-group containing \overline{E}_1 .

Suppose that $\overline{K} \neq \overline{E}$. Then the non-trivial group $\overline{K}/\overline{E}_1$ is normalized by $\overline{P} = \langle \overline{\sigma}, \overline{\tau} \rangle$. Since P is not cyclic there is by (1.5) a non-trivial element \overline{x} in \overline{P} such that $C_{\overline{K}/\overline{E}_1}(\overline{x}) = C_{\overline{K}}(\overline{x})\overline{E}_1/\overline{E}_1 + 1$. As $\overline{\sigma}$ operates regularly on $\overline{K}/\overline{E}_1$ and normalizes $C_{\overline{K}/\overline{E}_1}(\overline{x})$ we get that $\overline{K}/\overline{E}_1 = C_{\overline{K}/\overline{E}_1}(\overline{x})$ is elementary abelian of order four since $|\overline{K}/\overline{E}_1| \leq 8$. By the structure of the centralizer of an element of order three in M_{22} we get that $C_{\overline{K}}(\overline{x})$ is four group and that $\overline{K} = \overline{E}_1 C_{\overline{K}}(\overline{x})$.

 $\bar{S} = C(C_{\overline{K}}(\bar{x})) \cap \bar{E}_1$ is non-trivial and is normalized by \bar{x} which operates

regularly on it. This yields that $|\bar{S}| \ge 4$. So $\bar{D} = C_{\bar{K}}(\bar{x})\bar{S}$ is elementary abelian of rank at least four. Since an S_2 -subgroup of M_{22} contains exactly two elementary abelian subgroups of rank four by (1.7) we see that \bar{D} is conjugate in \bar{H}' to \bar{E}_2 . But \bar{D} is normalized by \bar{P} whereas an S_3 -subgroup of $N_{\bar{H}}(\bar{E}_2)$ is of order 3. This contradiction shows that $\bar{K} = \bar{E}_1$ and hence $C_{H'}(E_0) = E_1 M$.

For the proof of (v) observe that E_1E_2/E_1 is a non-trivial elementary abelian 2-group of $N_{H'}(E_1)/E_1 = \bar{B}_1$ which is isomorphic to the triple cover of A_6 . Since an S_2 -subgroup of \bar{B}_1 is dihedral of order 8 there exists a four group \bar{V} of \bar{B}_1 containing \bar{E}_2 . By the structure of \bar{B}_1 and by (1.1) we get that $N(\bar{V}) \cap \bar{B}_1 =$ $\langle \bar{\pi} \rangle x \bar{V} U$ where $\bar{U} \cong S_3$ and operates faithfully on \bar{V} . Let U_0 be an S_3 -subgroup of the inverse image of \bar{U} . By (1.6) we can assume that U_0 is inverted by an involution x in $T_0 - E_1 E_2$ such that $\langle U_0, x \rangle$ maps into \bar{U} and $\langle U_0, x \rangle \cong S_3$. U_0 normalizes the inverse image V of \overline{V} . Since $E_1E_2\subseteq V$ and E_1 and E_2 are the only elementary abelian 2-groups of T_0 hence of V of rank 5 we see that U_0 normalizes both E_1 and E_2 and hence E_1E_2 . This implies that $\bar{V}=\bar{E}_2$ and $E_1\cap E_2$ is of order 8. Furthermore $U_{\scriptscriptstyle 0}$ maps onto an $S_{\scriptscriptstyle 3}$ -subgroup of $N_{\scriptscriptstyle H'}\!(E_{\scriptscriptstyle 2})/E_{\scriptscriptstyle 2}$ Since B_2 operates transitively on $(E_2/\langle z \rangle)^{\sharp}$ by (ii) we obtain that U_0 operates regularly on $E_1/\langle z \rangle$. Since T_0 does not split over $\langle z \rangle$ we see that $\langle z \rangle$ is properly contained in $(E_1E_2)' = [E_1, E_2] \subseteq E_1 \subset E_2$ by (ii). Since U_0 operates regularly on $E_1 \cap E_2 \langle z \rangle$ we get that $(E_1 E_2)' = E_1 \cap E_2$ and hence $D(E_1 E_2) =$ $E_1 \cap E_2$. Since U_0 acts regularly on $E_1 \cap E_2 / \langle z \rangle$ we see that $E_1 \cap E_2$ is not centralized by x and hence $C_{H'}(E_1 \cap E_2) = \langle \pi \rangle \times E_1 E_2$. By (iv) we get that $E_1 \cap E_2$ is not normalized by an S_3 -subgroup of H', because otherwise it would be centralized by a subgroup of order 9 and would be conjugate to E_0 by (iii). This implies that U_0 operates regularly also on $E_1/\langle z \rangle$, because otherwise an S_3 -subgroup of B_1 containing $\langle \pi, U_0 \rangle$ would normalize $\langle [E_1, U_0], z \rangle = E_1 \cap E_2$. So U_0 acts regularly on $E_1E_2/\langle z \rangle$ and we have $C(E_1) \cap E_2 = E_1 \cap E_2$.

So we have seen that the elementary abelian group $E_1E_2/E_1\cap E_2$ of rank 4 is normalized by $\langle U_0,x\rangle\cong S_3$ such that U_0 operates regularly on it. This shows that $T_0'/E_1\cap E_2=C(x(E_1\cap E_2)\cap (E_1E_2/E_1\cap E_2))$ and hence that $T_0'=\langle T_0'\cap E_1,T_0'\cap E_2\rangle$ where $T_0'\cap E_1$, i=1,2, is of order 16. Since $T/E_1\cong Z_2xD_8$ we see that there exists an element t in $(T-T_0)\cap E_2^*$ such that $T/E_1=\langle tE_1\rangle x(T_0/E_1)$. Thus $[t,T_0]\subseteq E_1\cap E_2^*=E_1\cap E_2$. This implies that $T'=T_0'$. Since T_0 contains exactly two elementary abelian subgroups of order 32, T' is not abelian. This yields that $T'\cap E_i$, i=1,2, are the only elementary abelian subgroups of T' of order 16. Since T' is normal in $N_G(T)$ we get that $E_1\cap E_2=(T'\cap E_1)\cap (T'\cap E_2)$ is normal in $N_G(T)$.

This completes the proof of the lemma.

2. Proof of Theorem A

In this section we prove Theorem A in a sequence of lemmas. We shall

use the notation introduced in (1.10).

Lemma 2.1. We have $N_G(M)/C_G(M) \cong GL(2,3)$ and $N_G(M)$ is contained in $N_G(E_0)$.

Proof. Since G is not 3-normal and there exists precisely one conjugacy class of elements of order 3 in $H-\langle \pi \rangle$ represented by σ we have that $\pi \sim \sigma$ in G. So there exists an element g in G such that $\sigma^g = \pi$ and $C_P(\sigma)^g = M^g \subseteq P$. Since there exists in H' exactly one conjugacy class of subgroups of order 9 we can assume that $M^g = M$. So $\pi \sim \sigma$ in $N_G(M)$.

Since M^{\sharp} is the union of $N_{H'}(M)$ -orbits of sizes 1, 1 and 6 represented by π , π^{-1} , σ respectively we get that $|N_G(M)/C_G(M)| = |GL(2,3)|$ and hence $N_G(M)/C_G(M) \cong GL(2,3)$.

Since $E_0 = 0_2(C_G(M))$ by (1.10.iii) we see that $E_0 \triangleleft N_G(M)$.

Lemma 2.2. We have $C_G(E_1) = O_2(C_G(E_1)) \langle \pi \rangle$ where $O_2(C_G(E_1))$ is either equal to E_1 or is an elementary abelian group of order 2^{11} .

Proof. By (1.10.ii) we have $C_H(E_1) = E_1 \langle \pi \rangle$. Burnside's transfer theorem yields then that $C_G(E_1) = 0_{3'}(C_G(E_1)) \langle \pi \rangle$ since $\langle \pi \rangle$ is an S_3 -subgroup of $C_G(E_1)$ by (1.10.iii).

Let $K = 0_{3'}(C_G(E_1))$. Since $C_H(E_1) = E_1 \langle \pi \rangle$ we see that π operates regularly on K/E_1 . Thus K/E_1 is nilpotent by (1.2). As $E_1 \subseteq Z(K)$ we get that K is nilpotent. Furthermore K is normalized by P and hence we have $K = \langle C_K(x) | 1 \pm x \in M \rangle$, by (1.5).

We have $E_0=C(x)\cap E_1\subseteq Z(C_K(x))$ for any $x\in M-\langle \pi\rangle$. Since $N_G(M)$ is contained in $N_G(E_0)$ by (2.1) we see that $C(E_0)\cap C_G(x)=0_2(C(E_0)\cap C_G(x))M$ for any $1\neq x\in M$, where the maximal normal 2-subgroup of $C(E_0)\cap C_G(x)$ is elementary abelian of order 32 by (1.10.iv). So $C_K(x)$ is an elementary abelian 2-group of order at most 32. On the other hand π operates regularly on $C_K(x)E_0$ for $x\in M-\langle \pi\rangle$. This implies that we have either $C_K(x)=0_2(C(E_0)\cap C_G(x))$ or $C_K(x)=E_0$ for $x\in M-\langle \pi\rangle$. Since all elements of the set $\{C_K(x)\mid x\in M-\langle \pi\rangle\}$ are conjugate to each other via τ we have either

$$C_K(x) = E_0$$
 for all $x \in M - \langle \pi \rangle$, i.e. $K = E_1$,

or

$$C_K(x) = 0_2(C(E_0) \cap C_G(x))$$
 for all $1 \neq x \in M$, i.e.
$$K = \langle 0_2(C(E_0) \cap C_G(x)) | 1 \neq x \in M \rangle$$

where $0_2(C(E_0) \cap C_G(x))$ is elementary abelian of order 32 for all $1 \neq x \in M$. We can assume that we are in the second case.

Let S be an S_2 -subgroup of $N_G(M)$. Then S acts transitively on M^* and normalizes E_0 . So S acts transitively on the set $\{0_2(C(E_0) \cap C_G(x)) | 1 \neq x \in M\}$

and hence normalizes K. Since $E_1 = 0_2(C(E_0) \cap C_G(\pi)) \subseteq Z(K)$ we get that $K \subseteq Z(K)$ and hence that K is elementary abelian of order 2^{11} since

$$ar{K} = K/E_1 = C_{\overline{K}}(\sigma) \times C_{\overline{K}}(\sigma\pi) \times C_{\overline{K}}(\sigma\pi^{-1})$$

is of order 26.

Lemma 2.3. If $0_2(C_G(E_1))=E_1$, then T is an S_2 -subgroup of G.

Proof. By (2.2) and the assumption of this lemma we have $C_G(E_1) = E_1 \times \langle \pi \rangle$. Then $N_G(E_1)$ normalizes $\langle \pi \rangle$ and hence we get $N_G(E_1) = N_H(E_1)$. Thus T is an S_2 -subgroup of $N_G(E_1)$.

Suppose that T is not an S_2 -subgroup of G. Then there exists a 2-group $T\langle x\rangle$ in G with $|T\langle x\rangle$: T|=2. If $E_1^x\subseteq T_0$ we get $E_1^x=E_1$ by (1.10.ii). This contradicts the fact that T is an S_2 -subgroup of $N_G(E_1)$. So $E_1^x\subseteq T_0$ and thus $T-T_0$ contains involutions. Then E_2^* is the only elementary abelian subgroup of T of order 64 by (1.10.ii) and hence x normalizes E_2^* .

Since x normalizes $T' \cap E_2^* = T' \cap E_2$ and since T' contains exactly two elementary abelian subgroups of rank four, namely $T' \cap E_i$, i=1, 2, we see that x also normalizes $T' \cap E_1$. Since $E_1 \cap E_2 \triangleleft N_G(T)$ by (1.10.v) we get that $E_1 E_2^* = C_T(E_1 \cap E_2) \triangleleft N_G(T)$ and hence $X = E_1 E_2^* \cap C(T' \cap E_1) = E_1 C_{E_2^*}(T' \cap E_1)$ is normalized by x. (1.10.v) gives then that $Z(X) = T' \cap E_1$ and that E_1 and $(T' \cap E_1) \times (E_2^* \cap C(T' \cap E_1))$ are the only elementary abelian subgroups of X of rank five. Since $E_2^* \cap C(T' \cap E_1)$ is normalized by x we get that $E_1^* = E_1$ which is a contradiction. Thus T is a Sylow 2-subgroup of G.

Lemma 2.4. If T is an S_2 -subgroup of G then the centralizer of the involution z in G is H.

Proof. Let $C=C_G(z)$ and denote the homomorphic image of any subset X of C in $C/\langle z \rangle$ by \overline{X} . Obviously H is contained in C.

Then T is an S_2 -subgroup of C by our assumption and \overline{T} is isomorphic to an S_2 -subgroup of $\operatorname{Aut}(M_{22})$. Since $H \subseteq C$ all involutions in \overline{T}_0 are conjugate to $\overline{e} \in Z(\overline{T})$ in \overline{C} and all involutions in $\overline{T} - \overline{T}_0$ are conjugate to involutions in $\overline{E}_2^* - \overline{E}_2$ in \overline{C} where $\overline{E}_2^* = C_T(\overline{E}_2)$ is the only elementary abelian subgroup of \overline{T} of order 32 by (1.7) and (1.8). Furthermore we have $N_{\overline{H}}(\overline{E}_2^*) = \overline{E}_2^* \overline{B}_2$ where $\overline{B}_2 \cong S_5$ and $(\overline{E}_2^*)^*$ splits into \overline{B}_2 -orbits of sizes 15, 6 and 10 represented respectively by \overline{e} , \overline{t}_1 and \overline{t}_2 where \overline{t}_1 and \overline{t}_2 are in $\overline{E}_2^* - \overline{E}_2$ by (1.8).

If \bar{C} has no subgroups of index two then \bar{t}_i , i=1,2, must be conjugate to an element of \bar{T}_0 hence to \bar{e} in \bar{C} by (1.3), Thompson's transfer lemma. But this conjugation must take place in $N_{\bar{C}}(\bar{E}_2^*)$ since \bar{E}_2^* is the only elementary abelian subgroup of \bar{T} of rank 5. So we get by the above paragraph that all involutions of \bar{E}_2^* are conjugate to each other in $N_{\bar{C}}(\bar{E}_2^*)$. In particular 31 divides the order of the group $N_{\bar{C}}(\bar{E}_2^*)/C_{\bar{C}}(\bar{E}_2^*)$.

Let $\tilde{N} = N_{\overline{c}}(\bar{E}_2^*)/C_{\overline{c}}(\bar{E}_2^*)$. Then \tilde{N} is isomorphic to a subgroup of GL(5, 2), has dihedral S_2 -subgroups of order 8 and contains a subgroup \tilde{B}_2 which is isomorphic to S_5 . So $\tilde{N}/0(\tilde{N})$ is either isomorphic to A_7 or to a subgroup of $P\Gamma L(2, q)$ containing PSL(2, q) where q is an odd prime power by [3].

Assume first that $31 \mid |0(\tilde{N})|$. Let \tilde{S} be an S_{31} -subgroup of $0(\tilde{N})$. Since 31^2 does not divide the order of GL(5,2) and since \tilde{N} is isomorphic to a subgroup of GL(5,2) we see that \tilde{S} is cyclic of order 31. By Frattini's argument we get that $N_{\tilde{N}}(\tilde{S})$ covers $\tilde{N}/0(\tilde{N})$ and hence that $N_{\tilde{N}}(\tilde{S})/N_{0(\tilde{N})}(\tilde{S})$ contains a subgroup isomorphic to S_5 by the above paragraph. Since $\operatorname{Aut}(\tilde{S})$ is cyclic we conclude that \tilde{S} is centralized by an element \tilde{a} of order 5. But $C(\tilde{a}) \cap \tilde{E}_2^*$ is nontrivial and is normalized by \tilde{S} . But this is not possible since \tilde{S} operates regularly on \tilde{E}_2^* . Thus $31 \not | |0(N)|$ and hence $31 \mid |N/0(N)|$.

So $\tilde{N}/0(\tilde{N})$ is isomorphic to a subgroup of $P\Gamma L(2,q)$ containing PSL(2,q). Since \tilde{N} is isomorphic to a subgroup of GL(5,2) and $|GL(5,2)|=2^{10}\cdot 3^2\cdot 5\cdot 7\cdot 31$ this is possible only if q=31. But $|PSL(2,31)|=2^5\cdot 3\cdot 5\cdot 31$ whereas $|\tilde{N}|_2=8$. This contradiction shows that \bar{C} contains a subgroup \bar{C}_0 with index 2.

We have $1 \neq \overline{C}_0 \cap \overline{T}$. Thus $Z(\overline{T}) = \langle \overline{e} \rangle$ is contained in \overline{C}_0 . Since all involutions of \overline{T}_0 are conjugate to \overline{e} in $\overline{H}' \subseteq \overline{C}$ and since \overline{T}_0 is generated by its involutions we get $\overline{T}_0 \subseteq \overline{C}_0$. In particular \overline{T}_0 is an S_2 -subgroup of \overline{C}_0 and $\overline{H}' \subseteq \overline{C}_0$.

Let now \overline{Y} be a minimal normal subgroup of \overline{C}_0 . Since $O(\overline{Y})$ is characteristic in \overline{Y} we get either $O(\overline{Y}) = \overline{Y}$ or $O(\overline{Y}) = 1$.

Suppose that $0(\bar{Y})=1$. Then $\bar{T}_0\cap \bar{Y}$ is nontrivial and hence $\bar{T}_0\leq \bar{Y}$ as above. Thus $\bar{H}'\subseteq \bar{Y}$. So \bar{Y} is a direct product of isomorphic, non-abelian simple groups. Since \bar{P} is an S_3 -subgroup of \bar{Y} and $Z(\bar{P})$ is cyclic we see that \bar{Y} is simple. \bar{T}_0 is an S_2 -subgroup of the simple group \bar{Y} and is isomorphic to an S_2 -subgroup of M_{22} . So we get by [6; Corollary 1.3] that \bar{Y} is isomorphic to one of the following groups: M_{22} , M_{23} , McL, PSL(4,q), $q\equiv 3\pmod{8}$, PSU(4,1), $q\equiv 5\pmod{8}$. An S_3 -subgroup of McL is of order 3^6 , M_{22} and M_{23} have abelian S_3 -subgroups, and PSL(4,q) and PSU(4,q) have S_3 -subgroups which are not isomorphic to P by [6; Lemma 2.1 and 2.2]. This contradiction shows that $0(\bar{Y})=\bar{Y}$.

If $\bar{Y} \cap \bar{H}' = 1$ then $\bar{\pi}$ acts regularly on \bar{Y} and hence \bar{Y} is nilpotent by (12). We have $\bar{Y} = \langle C_{\bar{Y}}(\bar{x}) | 1 + \bar{x} \in \bar{M} \rangle$ by (1.5). Since $C_{\bar{Y}}(\bar{x})$ is isomorphic to a subgroup of \bar{H}' for any $\bar{x} \in \bar{M}$ we get that $\pi(\bar{Y}) \subseteq \{5, 7, 11\}$ and $C_{\bar{Y}}(\bar{x})$ is cyclic of prime order or 1 by (1.7). Since $\bar{\pi}$ acts regularly on $C_{\bar{Y}}(\bar{x})$ we get that $C_{\bar{Y}}(x)$ is of order 7 for $\bar{x} \in \bar{M} - \langle \bar{\pi} \rangle$. Since \bar{P} operates nontrivially on \bar{M} and normalizes $Z(\bar{Y}) = 1$ we get by (1.5) $Z(\bar{Y}) = \langle C_{Z(\bar{Y})}(\bar{x}) | 1 + \bar{x} \in \bar{M} \rangle = \bar{Y}$. Thus \bar{Y} is elementary abelian of order 7³. Since $|GL(3,7)| = 2^6 \cdot 3^4 \cdot 7^3 \cdot 19$ we get that \bar{H}' cannot operate faithfully on \bar{Y} , i.e. \bar{H}' centralizes \bar{Y} . But this is not possible. Thus $\bar{Y} \cap \bar{H}' \neq 1$. Since \bar{Y} is of odd order and $\bar{Y} \cap \bar{H}'$ is normal in \bar{H}' we get

that $\bar{Y} \cap \bar{H}' = \langle \bar{\pi} \rangle$ and hence by (1.4) $\bar{Y} = 0_{3'}(\bar{Y}) \langle \bar{\pi} \rangle$ since $\bar{H}' = N(\langle \bar{\pi} \rangle) \cap \bar{C}_0$. Since \bar{Y} is a minimal normal subgroup of \bar{C}_0 we obtain $0_3(\bar{Y}) = 1$ and hence $\langle \bar{\pi} \rangle \lhd \bar{C}_0$. This yields that $\bar{C}_0 = \bar{H}'$ and thus $C_G(z) = H$.

Lemma 2.5. $0_2(C_G(E_1))$ is elementary abelian of order 2^{11} .

Proof. Assume that $0_2(C_G(E_1))$ is not of order 2^{11} . Then we get by (2.2) that $0_2(C_G(E_1))=E_1$ and hence by (2.3) and (2.4) that T is an S_2 -subgroup of G and $C_G(z)=H$.

Let $F=C_G(E_0)$ and $\overline{F}=F/E_0$. M is an S_3 -subgroup of F by (1.10.iii). We show first that $0_3(F)=E_0$.

Let $K=0_{3'}(F)$. Then K is a characteristic subgroup of F and hence normal in $N_G(E_0)$. Furthermore we have by (1.5) that $K=\langle C_K(x)|1\pm x\in M\rangle$. Since $N_G(M)\subseteq N_G(F_0)$ by (2.1) and $N_G(M)$ operates transitively on $M^{\$}$ we see that $N_G(M)$ operates transitively on the set $\{C_K(x)|1\pm x\in M\}$. Since $E_0\subseteq Z(C_K(x))$ for any $x\in M$ we get by (1.10.iv) as in the proof of (2.2) that K/E_0 is an elementary abelian group of order $2^{\$}$ if $K\pm E_0$. But this is not possible since T is an S_2 -subgroup of G. So $K=E_0$ and hence $0_{3'}(F)=1$.

We have $N_{\bar{F}}(\overline{M}) = \overline{M}\overline{Q}$ where \overline{Q} is a 2-group which acts regularly on \overline{M} by (2.1). Since $N_{\bar{F}}(\overline{M})$ is normalized by an element \overline{a} of order 3 contained in $N_G(E_0)/E_0$ we can assume by Frattini's argument that \overline{a} normalizes \overline{Q} . By the structure of $\operatorname{Aut}(M) \cong GL(2,3)$ we see that \overline{Q} is not of order 4 because otherwise \overline{a} would centralize \overline{Q} . So \overline{Q} is either isomorphic to the quaternion group is cyclic of order two. In the second case we get $F=0_{3'}(F)N_{\bar{F}}(\overline{M})$ by [9, II]. Since $0_{3'}(\overline{F})=1$ this implies that $F=N_{\bar{F}}(\overline{M})$ which is not possible since $\overline{E}_1\subseteq F$. So we have $N_{\bar{F}}(\overline{M})=\overline{M}\overline{Q}$ where \overline{Q} is quaternion and acts regularly on \overline{M} .

Let \overline{Y} be a minimal normal subgroup of \overline{F} . Since $0_{3'}(\overline{F})=1$ we have $\overline{M} \cap \overline{Y} \neq 1$. Since \overline{Q} operates transitively on M^{\sharp} we obtain $\overline{M} \subseteq \overline{Y}$. As \overline{M} not normal in \overline{F} , \overline{Y} is not solvable. Furthermore \overline{Y} is the unique minimal normal subgroup of \overline{F} . Thus \overline{Y} is normal in $N_G(E_0)/E_0$. So there exists an element \overline{a} of order 3 in $N_G(E_0)/E_0$ which normalizes $N_{\overline{Y}}(M)$. The argument we used above to show that an S_2 -subgroup of $N_{\overline{F}}(\overline{M})$ is quaternion applies also to this situation and we get that $N_{\overline{Y}}(M)=N_{\overline{F}}(M)$. Since \overline{Q} is quaternion we see that \overline{Y} must be simple. By Frattini's argument we get furthermore that $\overline{Y}=\overline{F}$.

We have $C_{\overline{F}}(\overline{\pi}) = \overline{L}_1 \overline{M} \cong Z_3 x A_4$ and all elements of \overline{M}^{\sharp} are conjugate to $\overline{\pi}$ in \overline{F} . So [7] gives that \overline{F} is isomorphic to one of the following groups: PSL(3,7), $PSU(3,5^2)$, M_{22} , M_{23} , HS, PSL(5,2), PSp(4,4), M_{24} , R, J_2 . The last three of these groups have S_3 -subgroups of order 27 but \overline{F} has an S_3 -subgroup of order 9. PSL(5,2), PSp(4,4), M_{22} , M_{23} , HS have 2-subgroups of order $\geq 2^7$. But T is an S_2 -subgroup of G and is of order 2^9 . We have $19 \mid PSL(3,7) \mid$ and $5^3 \mid PSU(3,5^2) \mid$ but $F \subseteq C_G(z) = H$ and $|H| = 2^9 \cdot 3^3 \cdot 5 \cdot 7 \cdot 11$. This is a

contradiction.

This contradiction completes the proof of the lemma.

Lemma 2.6. G is isomorphic to J_4 .

Proof. By (2.2) and (2.5) we have $C_G(E_1) = K \langle \pi \rangle$ where K is elementary abelian of order 2^{11} and is normal in $C_G(E_1)$. Let $N = N_G(K)$. Then we have

- (i) $C_G(K) = K$ since $C_G(K) \subseteq C_G(E_1) = K \langle \pi \rangle$.
- (ii) $N_G(E_1) \subseteq N$ where $N_{H'}(E_1)/E_1$ is isomorphic to the triple cover of A_6 and $N_H(E_1)/E_1 \langle \pi \rangle \simeq S_6$ by (1.10.11).
- (iii) $C_N(M) = MxE_0$ and $N_N(M) = N_G(M)$ as we have seen in the proof of (2.2).

We first show that $0_{3'}(N) = K$. Since $0_{3'}(N)$ is normalized by M we get by (1.5) that $0_{3'}(N) = \langle C(x) \cap 0_{3'}(N) | 1 \neq x \in M \rangle$. We have $C_K(\pi) = E_1$ and $C(\pi) \cap 0_{3'}(N)/C_K(\pi) \subseteq 0_{3'}(N_{H'}(E_1)/E_1) = 1$. Thus $C(\pi) \cap 0_{3'}(N) = C_K(\pi)$. By (iii) this yields that $C_K(x) = C(x) \cap 0_{3'}(N)$ for all $1 \neq x \in M$ and hence $0_{3'}(N) = K$.

Let $\overline{N}=N/K$ and let \overline{Y} be a minimal normal subgroup of \overline{N} . Since $0_{3'}(\bar{N})=1$ we see that $\bar{P}\cap \bar{Y}=1$. Thus $Z(\bar{P})$ is contained in \bar{Y} which implies that $\overline{M} \subseteq \overline{Y}$ by (iii). By (ii) we see that \overline{Y} is not solvable. Since $C_{\overline{N}}(\overline{\pi})$ is isomorphic to the triple cover of A_6 by (ii) and $\langle \pi \rangle \subseteq C_{\bar{Y}}(\bar{\pi}) \subseteq C_{\bar{N}}(\bar{\pi})$ we get that $C_{\bar{Y}}(\bar{\pi}) = C_{\bar{N}}(\bar{\pi})$. In particular \bar{Y} is simple since \bar{P} is an S_3 -subgroup of \bar{Y} and $Z(\bar{P})$ is cyclic. Since $C_{\bar{N}}(\bar{\pi}) \subseteq \bar{Y}$ we get $N(\bar{M}) \cap C_{\bar{N}}(\bar{\pi}) \subseteq N_{Y}(M)$ where $N(M) \cap C_{\bar{N}}(\bar{\pi})/\bar{M}$ is isomorphic to S_3 by (1.10.iii). Since $N_{\bar{N}}(\bar{M})/\bar{M}$ is isomorphic to GL(2,3) by (iii) and (2.1) and since $N_{\bar{Y}}(\bar{M}) \leq N_{\bar{N}}(\bar{M})$ we get by the sructure of GL(2,3) that $N_{\bar{Y}}(\bar{M}) \leq N_{\bar{N}}(\bar{M})$. So we have seen that \bar{Y} is a simple group containing an element $\bar{\pi}$ of order 3 such that $C_{\bar{Y}}(\bar{\pi})/\langle \bar{\pi} \rangle$ is isomorphic to $A_6 \cong PSL(2,9)$ and an elementary abelian subgroup \overline{M} of order 9 all identity elements of which are conjugate to $\bar{\pi}$ in \bar{Y} . So [7] gives that \bar{Y} is isomorphic to M_{24} or R or J_2 . But J_2 is 3-normal by [5] and R cannot operate faithfully on an elementary abelian 2-group of order 2^{11} since 29 | |R| and $29 \cancel{(}(2^k-1))$ for $1 \le k \le 11$. So $\bar{Y} \cong M_{24}$. On the other hand \bar{P} is an S_3 -subgroup the normal subgroup \bar{Y} of \bar{N} and hence $N_{\bar{N}}(\bar{P})$ covers \bar{N}/\bar{Y} . Since $N_{\bar{N}}(\bar{P}) \subseteq N_{\bar{N}}(Z(\bar{P}))$ and $N_{\bar{H}}(\bar{P})/\bar{P}$ is a 2-group we get that \bar{N}/\bar{Y} is a 2-group. Since $\mathrm{Aut}(M_{24})=M_{24}$ we obtain then that $\bar{N} = \bar{Y}$, for otherwise every element in $\bar{N} - \bar{Y}$ would induce a nontrivial outer automorphism of M_{24} by the structure of $N_{\bar{N}}(P)$.

Now we can apply [8; Theorem A] and obtain that K splits into two N-classes of involutions the sizes of which are either 759 and 1288 or 1771 and 276. Since $z \in K$ is centralized by an S_3 -subgroup of N the number of conjugates of z in N is either $1288 = 2^3 \cdot 7 \cdot 23$ or $1771 = 7 \cdot 11 \cdot 23$. In the first case we have $|C_N(z)/K| = 2^4 \cdot 3^3 \cdot 5 \cdot 11$. By (1.9) we get then that $C_N(z)/K \cong \operatorname{Aut}(M_{12})$. We have $(C_N/(z)/K)' \cong M_{12}$ and $N_{H'}(E_1)K/K$ is contained in $(C_N(z)/K)'$. This implies that M_{12} contains an element of order 3 which centralizes a dihedral

group of order 8. But M_{12} has exactly two classes of involutions the centralizers of which in M_{12} are isomorphic to a faithful extension of Q_8*Q_8 by S_3 or to $Z_2 \times S_5$. So there exists no dihedral subgroup of M_{12} of order 8 which is centralized by an element of order 3. This contradiction shows that K splits into two N-orbits of sizes 1771 and 276.

So z lies in the center of an S_2 -subgroup of N. We shall show that $0(C_G(z))=W$ is trivial. Since $H\subseteq C_G(z)$ and $W\cap H\subseteq 0(H)=\langle\pi\rangle$ we have either $W\cap H=1$ or $W\cap H=\langle\pi\rangle$. In the second case we get by (1.4) that $W=0_{3'}(W)\langle\pi\rangle$ and hence $C_G(z)=WH$ by the Frattini's argument. But this is not possible since $2^{21}||C_G(z)||$. So $W\cap H=1$. Then W is nilpotent by (1.2) and we have $W=\langle C_W(x)|1\pm x\in M\rangle$ by (1.5). Since G has exactly one conjugacy class of elements of order 3, $C_W(x)$ is conjugate to a subgroup of H. Since π operates regularly on $C_W(x)$ for any $x\in M^{\frac{n}{2}}$ we get that $C_W(x)$ is cyclic of order 7 or 1. Since P normalizes W and acts nontrivially on $M-\langle\pi\rangle$ we get that Z(W)=W is elementary abelian of order Z(W)=W is elementary abelian of order Z(W)=W. In any case Z(W)=W is implies that Z(W)=W is implied that Z(W)=W implies that Z(W)=W imp

So we can apply [8; Theorem B] and see that either |G| = |M(24)'| or $G \cong J_4$. But the first case is not possible since $3^{16} ||M(24)'|$. So G is isomorphic to J_4 . This completes the proof of the lemma and the proof of Theorem A.

3. Proof of Theorem B

A slight modification of the proof of Theorem A gives Theorem B. We shall only indicate where differences are to be made.

Let G be a simple group which is not 3-normal and contains an element π such that $C_G(\pi)$ is isomorphic to the triple cover of M_{22} . Then Lemma (1.10) is valid for G where H is to be replaced by $H/\langle z \rangle$. We shall use the same notation as in the second section which was introduced in (1.10) with their corresponding new meanings. Then we have

Lemma 3.1. We have $N_G(M)/C_G(M) \cong GL(2,3)$ and $N_G(M)$ is contained in $N_G/(E_0)$ where $E_0=0_2(C_G(M))$ is a four group.

Proof. The same as in (2.1).

Lemma 3.2. We have $C_G(E_1) = 0_2(C_G(E_1)) \langle \pi \rangle$ where either $0_2(C_G(E_1)) = E_1$ or $0_2(C_G(E_1))$ is elementary abelian of order 2^{10} .

Proof. The same as in (2.2).

Lemma 3.3. If $0_2(C_G(E_1))=E_1$ then T is an S_2 -subgroup of G.

Proof. The same as in (2.3).

Lemma 3.4. T is not an S_2 -subgroup of G and hence $O_2(C_G(E_1))$ is of order 2^{10} .

Proof. The argument we have used in (2.4) to show that $C_G(z)$ contains a subgroup C_0 with index two applies also to this case and yields that G has a subgroup with index two. But this is a contradiction since G is simple.

Conclusion 3.5. G does not exist.

Proof. Otherwise we get as in (2.6) that $N_G(K)/K$ is isomorphic to J_2 or M_{24} or R, where $K=0_2(C_G(E_1))$ is elementary abelian of order 2^{10} . But M_{24} and R cannot operate faithfully on a 2-group of order 2^{10} . Since J_2 is 3-normal by [5] we obtain a contradiction since we can see that $N_G(K)$ is not 3-normal as in (2.6).

This completes the proof of Theorem B.

References

- [1] W. Gaschütz: Zur Erweiterungstheorie endlicher Gruppen, J. Reine Angew. Math. 190 (1952), 93-107.
- [2] D. Gorenstein: Finite groups, Harper and Row, New York, 1968.
- [3] D. Gorenstein and J. Walter: The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra 2 (1965), 85-151.
- [4] Z. Janko: A new finite simple group of order 86.775.571.046.077.562.880 which possesses M₂₄ and the full covering group of M₂₂ as subgroups, J. Algebra 42 (1976), 564-596.
- [5] Z. Janko: Some new simple groups of finite order, Ist. Naz. Alta Math., Symposia Mathematica vol. I., Odensi, Gubbio (1968), 25-64.
- [6] D.R. Mason: Finite simple groups with Sylow 2-subgroups of type PSL(4,q), q odd,
 J. Algebra 26 (1973), 75-97.
- [7] M.E. O'Nan: Some characterizations by centralizers of elements of order 3, J. Algebra 48 (1977), 113-141.
- [8] A Reifart: Some simple groups related to M24, J. Algebra 45 (1977), 199-209.
- [9] S. Smith and A.P. Typer: On finite groups with a certain Sylow normalizer I, II, J. Algebra 26 (1973), 343-367.
- [10] J.G. Thompson: Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc. 74 (1968), 383-438.

Department of Mathematics Middle East Technical University Ankara, Turkey