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In [4] Janko describes the properties of a simple group of order 2#+33.5.7.
113.23-29-31-37-43 denoted by J,. It has exactly one conjugacy class of ele-
ments of order 3 and if z is one of them, then the centralizer of z in J, is iso-
morphic to the 6-fold cover of the Mathieu group M,. We show in this
paper that these properties characterize the group J,, we prove namely the

Theorem A. Let G be a finite group containing an element = of order 3
such that Cg(m) is isomorphic to the 6-fold cover My, If G is not 3-normal then
G is isomorphic to J,.

In the first section we shall list some properties of the 6-fold cover of
My, which will be needed in the proof. The second section is then devoted
to the proof of Theorem A. In the last section we remark that the following
holds:

Theorem B There exists no simple group G which is not 3-normal and
contains an element m such that Cq(w) 15 isomorphic to the triple cover of M.

The Frattini subgroup of a group X is denoted by D(X). The other no-
tation is hopefully standard.

In the whole paper with the exception of the last section G denotes a simple
group satisfying the assumptions of Theorem A and 7 is an element of G of
order 3 such that Cy(z) is isomorphic to the 6-fold cover of Mp,.

1. Some known results and structure of Ng({7))

We first list some well known results which will be used in the proof of our
theorems.

Lemma 1.1 (Gaschiitz). Let A be an abelian normal subgroup of the group
X contained in the subgroup B of X with (| X: B|, |A|)=1. Then if A has a com-
plement in B, A has a complement in X.

Proof. See [1].
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Lemma 1.2 (Thompson). If the group X admits a fixed-point-free automor-
phism of prime order then X is nilpotent.

Proof. See [2; 10.2.1].

Lemma 1.3 (Thompson). Let T, be a maximal subgroup of an S,-subgroup
of the group X. If X does not have a subgroup with index two then all involutions
of X are conjugate to elements of T, in X.

Proof. See [10. Lemma 5.38].

Lemma 1.4 (Burnside). Let P be an S,-subgroup of the group X and assume
that Ny(P)=Cx(P). Then X has a normal p-complement.

Proof. See [2;7.4.3].

Lemma 1.5. Let P be a p-group and let Q be a noncyclic abelian q-group of
automorphisms of P, q a prime distinct from p. Then P={Cp(x)|1+xEQ).

Proof. See [2; 5.3.16].

Lemma 1.6. Any involution t of the group X which does not lie in the max-
tmal normal 2-subgroup of X inverts a nontrivial element of X of odd order.

Proof. Let t be an involution of X with #&0,(X). Then there exists a
conjugate ¢, of ¢ in X such that the dihedral group <¢, ¢,> is not a 2-group by
[2;3.8.2]. Since the index of the cyclic subgroup <#> has index two in ¢, ¢,>
we see that 0(<z,2)>) is nontrivial and is inverted by ¢ since ¢ inverts #,¢.

The following three lemmas are taken from [4; (2.1), (2.3), (2.4)].

Lemma 1.7. Let X=M,, and let T be an S,-subgroup of X. Then T pos-
sesses precisely two distinct elementary abelian subgroups E, and E, of order 16 and
they are both normal in T. We have N4(E)) is a splitting extension of E, by A,
Ny(E,) is a splitting extension of E, by S5 and Ny(E,) acts transitively on Ef, i=
1,2. The group X has the order 27-32-5-7-11 and exactly one conjugacy class of
involutions with the representative e E, and we have Cy(e)=C(e) N N4(E,). An
Sy-subgroup P of X is elementary abelian of order 9 and we have Cyx(P)=P and
Ny (P)=PQ where Q is quaternion aud acts regularly on P. The group X has
exactly onme comjugacy class of elements of order 3 and if o is one of them, then
Cx(o)={o> X A, and Nx({c))=<{o)B where B=S,.

Lemma 1.8. Let X=<Aut(M,,) so that X'=M,, and |X: X'|=2. The
group X possesses exactly two conjugacy classes of involutions which are contained
in X — X' with the representatives t, and t,. If E, and E, are the only elementary
abelian subgroups of rank 4 of an S,~subgroup of X' as discribed in (1.7) then t,
and t, can be chosen to lie in Cx(E,)=A=<E,, t,> which is elementary abelian of
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order 32. Then Ny(A)=AB where BC X', B=S; and B operates transitively
on E} and operates on A— E, in two orbits of sizes 10 and 6 represented respectively
by t, and t,, We have N(E,) is a sphitting and faithful extension of E, by S,.

Lemma 1.9. Every maximal subgroup of the simple group M,, is isomorphic
to one of the following groups:

PSL(2, 23), My, Aut(My), Aut(M,,), PSL(2, 7),

The holomorph of an elementary abelian group of order 16,

An extension of My, by S,,

A splitting and faithful extension of an elementary abelian group of order 64
by a subgroup Y where |0(Y)|=3, Y/04(Y)=S,, |Y:Y’|=2, Y'=Y' and
Cy(Os( Y))= Y/,

A splitting and faithful extension of an elementary abelian group of order 64
by S;x PSL(2, 7).

In the next lemma we list some properties of Ng(<z>) which can be easily
deduced from (1.7) and (1.8) and are essentially proved in [4]. Throughout
the paper we shall fix the notation which will be introduced in the following
lemma.

Lemma 1.10. The following hold in G:

(i) Let H=Ny<%)>). Then |H: H'|=2, H'=H'=Cy(n), Z(H') is cyckc
of order 6, H'|Z(H")==M,, and H|Z(H')=<Aut(My). Let us denote the invo-
lution in Z(H') by 2.

(i) Let T be an S,-subgroup of H and let T(=TNH’. Then T, contains
exactly two elementary abelian subgroups E, and E, of rank 5. These are normal
in T and we have Cp/(E)=ELn>, i=1, 2 and

Ny/(E,\)=E\B, where B, is isomorphic to the triple cover of As,

Cy(E))=E%>, Ny(E,)|Cr(E;)=Ss,

Ny/(E,)=E,({n> X B,) where B,==S5 and acts transitively on (E,/<z))},

Ny(E;)=<n>E¥B, where E¥ is an abelian group of order 64, B, normalizes E¥,
{2>>D(E¥), E¥ is elementary abelian if and only if there exist involutions in
H —H’ and if so then E¥ is the only elementary abelian subgroup of T of order
64. Furthermore E¥NH'=E, and E¥<T.

(iii) Let P be an Sy-subgroup of B,. Then P is an Ss-subgroup of G. P=
{r, o, T) is extraspecial of order 27 and exponent 3, where the generators of P are
chosen in such a way that Cg(7)=<2> and Cy(c)=E, is of order 8. We have
Ny/(P)=<2>X PQ where Q is quaternion and acts regularly on P[{z). There
exists exactly ome comjugacy class of elements of order 3 in H—< x> and exactly
one conjugacy class of subgroups of order 9 in H' represented by M=<{m, o). We
have Co(M)=M X E, and N y/(M)|Cy(M)==S,.

(iv) We have Cy/(E,)=E,M.

(v) E,NE, is of order 8 and we have Cy/(E,NE,)=<n>XE.E, and
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Ny(E,NE)=Cy(E,NE;)U where U =S, and Oy(U) acts regularly on E\E,|{z)>.
Eurthermore E,NE,CT'=<{T'NE,, T'"NE,> and T'NE,, i=1, 2, are the only
elementary abelian subgroups of T’ of rank four. So E,NE, is normal in Ny(T).
We have C(E\)NEF¥=E,NE,.

Proof. Cy(x) is isomorphic to the 6-fold cover My, i.e. Cy(r)'=Cgq(r),
Z(Cg(m)) is cyclic of order 6 and Cy(x)/Z(Cg(r))=x My,

Let P be an S;-subgroup of Cg(7). Then <{z>ZZ(P) and P does not split
over by {z> (1.1). So D(P)=<z) by (1.7) and hence P is an S;-subgroup of
G. Let R be an S,-subgroup of N(P)NC(r). Since R operates transitively
on (P/D(P))} by (1.7) we see that P is extraspecial of order 27 and exponent 3.
Furthermore we have R/{(z>==(Q, where z is the involution in Z(C¢(z)). So
R must split over (2> and we get N(P)N Cq(w)=<2> X PQ where Q=0Q; and
acts regularly on P/D(P). In particular there exists exactly one conjugacy class
of elements of order 3 in Cg(z)—<z> and hence exactly one conjugacy class of
subgroups of order 9.

Since G is not 3-normal, 7 must be conjugate to an element in P--{z> and
hence to #71.  So |[N4(Kn)): Cy(m)|=2. Let H=N<=>). Then H'=Cy()
and H|Z(H') is isomorphic to Aut(My) or Z,X My, since |Aut(My): M| =2
by (1.8). But the second case is not possible since otherwise there would
exist a 2-element in H—H' which operates trivially on P/D(P) and inverts D(P)
and this is absurd. So H/Z(H')=<Aut(M,,).

Let T be an S,-subgroup of H. Then all assertions of (ii) are proved in
[4; Proposition 1 and 3] and we shall use them in the following.

Since an S;-subgroup of B,C H is also an S;-subgroup of H we can assume
that PCB,. By the action of the non-cyclic abelian 3-group P/D(P) on the
2-group E, we see that there is an element ¢ in P with E;=E,NC(s) is
elementary abelian of order 8 and an element 7 in P with <z>=E,NC(7). Let
M=<{=, o)>. Then Co(M)=E,xM and Ngy(M)/Cy(M)==S,; by (1.7). This
completes the proof of the first three assertions of the lemma.

For the proof of (iv) let H'=H'/Z(H'), which is isomorphic to M,,.
By (1.7) we have Cg(s)=<a>xE7> where E (> is isomorphic to A4, and
Nu(<a>)[{5> is isomorphic to S,. This gives that Cg(E,) N Ng(<{a>)=E<5>
By Burnside’s transfer theorem we get Cq/(E,)=0,(Cg/(E,))<c>. By the struc-
ture of My, K=0,(Cg(E,)) is a 2-group containing E.

Suppose that K=E. Then the non-trivial group K/E, is normalized by
P={z,7>. Since P is not cyclic there is by (1.5) a non-trivial element & in
P such that Cg/z,(®)=Cx(®)E,/E\*1. As & operates regularly on K/E, and
normalizes Cg/z (x) we get that K/El_Cymg (®) is elementary abelian of order
four since IK/EII <8. By the structure of the centralizer of an element of
order three in M,, we get that Cg(®) is four group and that K=E,Ck(x).

S= C(Cx(®)) YJNE, is non-trivial and is normalized by & which operates
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regularly on it. This yields that |S|>4. So D—=C%(%)S is elementary abe-
lian of rank at least four. Since an S,-subgroup of M,, contains exactly two
elementary abelian subgroups of rank four by (1.7) we see that D is conjugate in
H' to E,. But D is normalized by P whereas an S;-subgroup of Nz(E,) is of
order 3. This contradiction shows that K=E, and hence Cy/(E;)=E,M.

For the proof of (v) observe that E\E,/E, is a non-trivial elementary ab-
elian 2-group of Ny/(E,)/E,=B, which is isomorphic to the triple cover of 4.
Since an S,-subgroup of B, is dihedral of order 8 there exists a four group V
of B, containing E,. By the structure of B, and by (1.1) we get that NTV)nB,=
<#yxVU where U=S, and operates faithfully on 7. Let U, be an S;-subgroup
of the inverse image of U. By (1.6) we can assume that U, is inverted by an
involution x in Ty,—E\E, such that <U,, > maps into U and <U, x>=S,. U,
normalizes the inverse image V of V. Since E,E,CV and E, and E, are the
only elementary abelian 2-groups of T, hence of V of rank 5 we see that U,
normalizes both E; and E,and hence E\E,. This implies that V=FE, and E,N E,
is of order 8. Furthermore U, maps onto an S;-subgroup of Ny/(E,)/E,
Since B, operates transitively on (E,/{z>)! by (ii) we obtain that U, operates
regularly on E,/{z>. Since T, does not split over {z> we see that (2> is
properly contained in (E,E,)'=[E,, E,] € E,CE, by (ii). Since U, operates
regularly on E,NExX2> we get that (E\E,)’ =E, NE, and hence D(E\E,)=
E.NE, Since U, acts regularly on E,NE,/[<2> we see that E,NE, is not
centralized by x and hence Cy/(E,NE,)=<z)>X E\E,. By (iv) we get that E,N E,
is not normalized by an S,-subgroup of H’, because otherwise it would be
centralized by a subgroup of order 9 and would be conjugate to E, by (iii).
This implies that U, operates regularly also on E,/<{z>, because otherwise an
S;-subgroup of B, containing <{z, Uy> would normalize {[E,, U], 2>=E,NE,.
So U, acts regularly on E\E,/<{z> and we have C(E)) N E,=E,NE,.

So we have seen that the elementary abelian group E\E,/E,NE, of rank 4
is normalized by <U,, x>=<S; such that U, operates regularly on it. This shows
that T4/E,NE,=C(x(E,NE,)N(E,E,JE,NE;) and hence that T(=<T{NE,
TiNE, where T{NE;, i=1, 2, is of order 16. Since T/E,=ZxDy we see
that there exists an element ¢ in (T—7T)NE¥ such that T/E,=E >x(T,/E)).
Thus [t, T)SE,NE¥=E,NE, This implies that T'=T¢. Since T, contains
exactly two elementary abelian subgroups of order 32, T” is no: abelian. This
yields that "N E;, i=1, 2, are the only elementary abelian subgroups of 7" of
order 16. Since 7" is normal in N(T') we get that E,N E,=(T"NE,)N(T'NE),)
is normal in Ng(T).

This completes the proof of the lemma.

2. Proof of Theorem A

In this section we prove Theorem A in a sequence of lemmas, We shall
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use the notation introduced in (1.10).

Lemma 2.1. We have Ny(M)|Co(M)==GL(2,3) and Ny(M) is contained
in No(E,).

Proof. Since G is not 3-normal and there exists precisely one conjugacy
class of elements of order 3 in H—<x) represented by o we have that z~¢ in G.
So there exists an element g in G such that ¢¥*== and Cp(c)*=M*CP. Since
there exists in H' exactly one conjugacy class of subgroups of order 9 we can
assume that M*=M. So mw~qc in Ng(M).

Since M*is the union of N/(M)-orbits of sizes 1, 1 and 6 represented by
m, w7, o respectively we get that |Ng(M)/Ce(M)|=|GL(2,3)| and hence
No(M)|Co(M)=GL(2, 3).

Since Ey=0,(Cg(M)) by (1.10.iii) we see that E,<INg(M).

Lemma 2.2. We have C4(E,)=0,(C(E,))<n)> where 0,(C.(E,)) is either
equal to E, or is an elementary abelian group of order 2".

Proof. By (1.10.ii) we have Cy(E,)=E{z)>. Burnside’s transfer theorem
yields then that Cg(E,)=04(Cg(E,))<z> since {z) is an S;-subgroup of Cy(E,)
by (1.10.ii1).

Let K=04(Cg(E))). Since Cy(E,)=E m)> we see that = operates regularly
on K/E,. Thus K/E, is nilpotent by (1.2). As E,CZ(K) we get that K is
nilpotent. Furthermore K is normalized by P and hence we have K=<{Cg(x)|
1&xeM>, by (1.5).

We have Ey=C(x)NE,SZ(Ck(x)) for any x&M—<x)>. Since Ny(M) is
contained in Ng(E,) by (2.1) we see that C(E,) N C¢(x) = 0,(C(E,) N Ce(x))M
for any 1#=x=M, where the maximal normal 2-subgroup of C(E,)N C¢(x) is
elementary abelian of order 32 by (1.10.iv). So Ck(x) is an elementary abelian
2-group of order at most 32. On the other hand = operates regularly on
Ck(x)E, for x& M—<z>. This implies that we have either Cyx(x)=0,(C(E,)N
Cs(x)) or Ck(x)=E, for x&M—<{z>. Since all elements of the set {Cx(x)|
xEM—<x>} are conjugate to each other via T we have either

Ck(x) = E, for all xeM —<{n>, i.e. K=E,,
or

Ck(x) = 0(C(E,) N Cy(x)) for all 1+xEM, i.e.

K = O(C(E) N Cof#)) |13 M

where 0,(C(E,) N Cy(x)) is elementary abelian of order 32 for all 1=xeM. We
can assume that we are in the second case.

Let S be an S,-subgroup of Ng(M). Then S acts transitively on M* and
normalizes E,. So .S acts transitively on the set {0,(C(E,) N Cy(x))|1x=M}
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and hence normalizes K. Since E,=0,(C(E))NC4n))SZ(K) we get that
K CZ(K) and hence that K is elementary abelian of order 2" since

R = KJE, = Cx(c) X Cx(om) X Cx(on™)
is of order 28,

Lemma 2.3. If 0(Cy(E)))=E,, then T is an S,-subgroup of G.

Proof. By (2.2) and the assumption of this lemma we have Cg4(E))=
E,x<x>. Then Ng(E,) normalizes (x> and hence we get Ng(E,)==Ny(E,).
Thus T is an S,-subgroup of Ny(E)).

Suppose that T is not an S,-subgroup of G. Then there exists a 2-group
T<x> in G with |T<{x)>: T'|=2. If EiCT, we get Ei=E, by (1.10.ii). 'This
contradicts the fact that T is an S,-subgroup of Ny(E)). So E{<:T, and thus
T—T, contains involutions. Then E¥ is the only elementary abelian sub-
group of T of order 64 by (1.10.ii) and hence x normalizes E¥.

Since x normalizes T'NE¥=T'NE, and since T’ contains exactly two
elementary abelian subgroups of rank four, namely TN E;, =1, 2, we see that
x also normalizes 7' N E,. Since E,N E,<INy(T) by (1.10.v) we get that E,Ef=
CH(E,NE)<INg(T) and hence X=E,E¥NC(T'NE)=E,Cgs(T'NE,) is nor-
malized by x. (1.10.v) gives then that Z(X)=T'NE, and that E, and (T' N E,) X
(EF¥NC(T'NE,) are the only elementary abelian subgroups of X of rank five.
Since E¥ NC(T'NE)) is normalized by x we get that E{=F, which is a con-
tradiction. Thus T is a Sylow 2-subgroup of G.

Lemma 2.4. If T is an Sy-subgroup of G then the centralizer of the involu-
tion zin G is H.

Proof. Let C=Cgx(2) and denote the homomorphic image of any subset
X of C in C/<{z> by X. Obviously H is contained in C.

Then T is an S,-subgroup of C by our assumption and T is isomorphic to
an S,-subgroup of Aut(My). Since HSC all involutions in T, are conjugate
to €€ Z(T) in C and all involutions in T— T, are conjugate to involutions in
E$—E, in C where E¥=Cr(E,) is the only elementary abelian subgroup of T
of order 32 by (1.7) and (1.8). Furthermore we have Nz(E¥)=E¥B, where
B, S; and (E¥)! splits into B,-orbits of sizes 15, 6 and 10 represented respec-
tively by &, ¥, and 7, where 7, and 7, are in Ef—E, by (1.8).

If C has no subgroups of index two then #;, i=1, 2, must be conjugate to an
element of T, hence to € in C by (1.3), Thompson’s transfer lemma. But this
conjugation must take place in N¢(E¥) since E¥ is the only elementary abelian
subgroup of T of rank 5. So we get by the above paragraph that all involutions
of E¥ are conjugate to each other in N¢(E¥). In particular 31 divides the
order of the group N¢(E$)/Co(E¥).
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Let N=Nz(E¥)/C<(E¥). Then N is isomorphic to a subgroup of GL(5, 2),
has dihedral S,-subgroups of order 8 and contains a subgroup B, which is
isomorphic to S;.  So N/O(N) is either isomorphic to A4, or to a subgroup of
PT'L(2, q) containing PSL(2, q) where ¢ is an odd prime power by [3].

Assume first that 31 ‘IO(N) |. Let S be an Sy-subgroup of O(N). Since 31?
does not divide the order of GL(5, 2) and since NN is isomorphic to a subgroup
of GL(5, 2) we see that S is cyclic of order 31. By Frattini’s argument we get
that Ny(S) covers N/O(V) and hence that Nx(S)/Nyw(S) contains a subgroup
isomorphic to S5 by the above paragraph. Since Aut(S) is cyclic we conclude
that S is centralized by an element @ of order 5. But C(@)NE¥ is nontrivial
and is normalized by S. But this is not possible since S operates regularly on
E¥. Thus 31,/ |0(N)| and hence 31 “N/O(N)I.

So N/O(N) is isomorphic to a subgroup of PT'L(2, g) containing PSL(2, ¢).
Since N is isomorphic to a subgroup of GL(5, 2) and |GL(5, 2)| =2%-3%.5-7-31
this is possible only if g=31. But |PSL(2, 31)| =25-3-5-31 whereas |N|,=8.
This contradiction shows that C contains a subgroup C, with index 2.

We have 1C,NT. Thus Z(T)=<&> is contained in C, Since all
involutions of 7T, are conjugate to & in H’CC and since T, is generated by its
ir_lvolu_tions we get T,cC,. In particular T, is an S,-subgroup of C, and
H'cC,

Let now Y be a minimal normal subgroup of C, Since 0(Y) is charac-
teristic in ¥ we get either 0(¥)=¥ or 0(¥)=1.

Suppose that 0(¥)=1. Then T,N Y is nontrivial and hence T,<Y as
above. Thus H'CY. So Y is a direct product of isomorphic, non-abelian
simple groups. Since P is an S;-subgroup of ¥ and Z(P) is cyclic we see that
Yis simple. 7 is an S,-subgroup of the simple group Y and is isomorphic to
an S,-subgroup of M, So we get by [6; Corollary 1.3] that Y is isomorphic
to one of the following groups: My, My, McL, PSL(4,q), ¢g=3 (mod 8),
PSU(4,1), g=5 (mod 8). An S,-subgroup of McL is of order 3%, My, and My
have abelian S;-subgroups, and PSL(4,¢) and PSU(4,q) have S;-subgroups
which are not isomorphic to P by [6; Lemma 2.1 and 2.2]. This contradic-
tion shows that 0(¥)=7.

If YNH'=1 then 7 acts regularly on ¥ and hence Y is nilpotent by (12).
We have Y=<{Cy(®)|1+x=M> by (1.5). Since Cy(%) is isomorphic to a
subgroup of H’ for any &M we get that z(Y)<S {5, 7, 11} and Cy(%) is cyclic
of prime order or 1 by (1.7). Since 7 acts regularly on Cy(%) we get that Cy(x)
is of order 7 for =& M—<z)>. Since P operates nontrivially on M and normal-
izes Z(Y)=*1 we get by (1.5) Z(Y)=={Cyp(&)|1F2€M>=Y. Thus Y is
elementary abelian of order 7%. Since |GL(3,7)| =2%-34-73-19 we get that A’
cannot operate faithfully on Y, i.e. A’ centralizes ¥. But this is not possible.
Thus YNH'+1. Since ¥ is of odd order and ¥ N A’ is normal in A’ we get
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that YNH'=<{#> and hence by (1.4) Y—~03/(Y)<7z'> since H’—N((n})nC
Since ¥ is a minimal normal subgroup of C, we obtain 0 5(Y)=1 and hence
<z><JC,. This yields that C;=H’ and thus Cg(z)=H.

Lemma 2.5. 0,(Cy(E))) is elementary abelian of order 2",

Proof. Assume that 0,(C4(E;)) is not of order 2"'. Then we get by (2.2)
that 0,(Cg(E,))=E, and hence by (2.3) and (2.4).that T is an S,-subgroup of
G and Cy(2)=H.

Let F=C(E,) and F=F/E,. M is an S;-subgroup of F by (1.10.iii). We
show first that 0;(F)=E,.

Let K=0y4(F). Then K is a characteristic subgroup of F and hence
normal in Ng(E,). Furthermore we have by (1.5) that K=<Cx(x)|1=x= M.
Since Ng(M)SNg(F,) by (2.1) and Ny(M) operates transitively on M* we see
that Ng(M) operates transitively on the set {Cx(x)|l=x=M}. Since E,C
Z(Cx(x)) for any x& M we get by (1.10.iv) as in the proof of (2.2) that K/E, is
an elementary abelian group of order 2° if K=#F, But this is not possible
since T is an S,-subgroup of G. So K=E, and hence 0;(F)=1.

We have Nz(M)=MQ where O is a 2-group which acts regularly on M by
(2.1). Since N. #(M) is normalized by an element @ of order 3 contained in
N(E,)|E, we can assume by Frattini’s argument that & normalizes Q. By
the structure of Aut(M)=GL(2,3) we see that Q is not of order 4 because
otherwise @ would centralize Q. So Q is either isomorphic to the quaternion
grouy is cyclic of order two. In the second case we get F=0;(F)Nr(M) by
[9, IT]. Since Oy(F)=1 this implies that F=N#(M) which is not poosible since
E,cF. Sowehave Ns(M)=MQ where Q is quaternion and acts regularly on M.

Let Y be a minimal normal subgroup of F. Since 0,(F)=1 we have
MNY=+1. Since Q operates transitively on M* we obtain MCY. As M
not normal in F, ¥ is not solvable. Furthetmore Y is the unique minimal
normal subgroup of F. Thus Y is normal in Ng(E,)/E,. So there exists an
element a@ of order 3 in Ng(E,)/E, which normalizes Ng(M). The argument
we used above to show that an S,-subgroup of Nz(M) is quaternion applies
also to this situation and we get that Ny(M)=Nz(M). Since O is quaternion
we see that ¥ must be simple. By Frattini’s argument we get furthermore
that Y=F. B _

We have Cr(7)=EM=ZxA, and all elements of M* are conjugate to 7 in
F. So[7] gives that F is isomorphic to one of the following groups: PSL(3, 7),
PSU@3, 5%, My, My, HS, PSL(5, 2), PSp(%,4), My, R, J,. The last three
of these groups have S;-subgroups of order 27 but F has an S;-subgroup of
order 9. PSL(5,2), PSp(4,4), My, My, HS have 2-subgrougs of order >27.
But T is an S,-subgroup of G and is of order 2°. We have 19]|PSL(3, ]
and 53‘|P~S'U(3, 53| but FCCy(2)=H and |H|=2°-3%5-7-11. This is a
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contradiction.
This contradiction completes the proof of the lemma.

Lemma 2.6. G is isomorphic to J,.

Proof. By (2.2) and (2.5) we have Cy4(E,)=K<{z)> where K is elementary
abelian of order 2" and is normal in C4(E;). Let N=NXK). Then we have

(i) Cu(K)=K since Co(K)SCy(E)=K<x).

(i) Ng(E))SN where Ny/(E))/E, is isomorphic to the triple cover of A
and Ny(E))/E <{n)>=S; by (1.10.1i).

(i) Cy(M)=MxE, and Ny(M)=Ny(M) as we have seen in the proof of
(2.2).

We first show that 0(N)=K. Since 0;(V) is normalized by M we get by
(1.5) that 0;/(N)=<C(x) N 0z/(N)|1=xEM>. We have Cy(z)=E, and C(z)N
0y(N)/Cx(w) S03(Ny/(E,)[E))=1. Thus C(z)N0y(IN)==Ck(x). By (iii) this
yields that Cg(x)=C(x) N 0y(NN) for all 1f=x= M and hence 0;(N)=K.

Let N=N/K and let ¥ be a minimal noimal subgroup of N. Since
0,(N)=1 we see that PN Y=+1. Thus Z(P) is contained in ¥ which implies
that M C Y by (iii). By (ii) we see that ¥ is not solvable. Since Cy(%) is
isomorphic to the triple cover of Ag by (ii) and <{7)>SCy¢(7)<ICx(7) we get
that Cy(7z)=Cx(7). In particular Y is simple since P is an Sy-subgroup of ¥
and Z(P) is cyclic. Since Cy(z)SY we get N(M)N Cx(7)SNy(M) where
N(M) N Cx(7)/M is isomorphic to S, by (1.10.iii). Since Nx(M)/M is isomorphic
to GL(2, 3) by (iii) and (2.1) and since Ng(M)<INx(M) we _get by the sructure
of GL(2, 3) that Ny(M)<INyx(M). So we have seen that ¥ is a simple group
containing an element 7 of order 3 such that Cy(%)/{#) is isomorphic to
Ag=PSL(2,9) and an elementary abelian subgroup M of order 9 all identity
elements of which are conjugate to # in ¥. So [7] gives that ¥ is isomorphic
to My or R or J,. But J, is 3-normal by [5] and R cannot operate faithfully
on an elementary abelian 2-group of order 2" since 29 ‘IR | and 29 4 (2*—1) for
1<k<11. So Y==M,,. On the other hand P is an S;-subgroup the normal
subgroup ¥ of N and hence Ny(P) covers N/Y. Since Ny(P)S Ny(Z(P)) and
Ng(P)/P is a 2-group we get that N|Y isa 2-group. Since Aut(M,)=M,, we
obtain then that N=7, for otherwise every element in N—¥ would induce a
nontrivial outer automorphism of M,, by the structure of Nx(P).

Now we can apply [8; Theorem A] and obtain that K splits into two N-
classes of involutions the sizes of which are either 759 and 1288 or 1771 and
276. Since € K is centralized by an S;-subgroup of N the number of conjuga-
tes of z in N is either 1288=23.7-23 or 1771=7-11:23. In the first case we
have |Cy(2)/K|=2%-3%-5-11. By (1.9) we get then that Cy(2)/K ==Aut(M,,).
We have (Cy/(2)/K)'=M,, and Ny(E,)K/K is contained in (Cy(2)/K)’. This
implies that M,, contains an element of order 3 which centralizes a dihedral
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group of order 8. But M), has exactly two classes of involutions the centrali-
zers of which in M), are isomorphic to a faithful extension of Qg*Q, by S; or to
Z,X Ss. - So there exists no dihedral subgroup of M), of order 8 which is cen-
tralized by an element of order 3. This contradiction shows that K splits
into two N-orbits of sizes 1771 and 276.

So z lies in the center of an Sj,-subgroup of N. We shall show that
0(Cy(2))=W is trivial. Since H SCg4(2) and W N H SO0(H)=<=)> we have either
WNH=1 or WNH=<z)>. In the second case we get by (1.4) that W=
0y (W)<z> and hence Cy(2)=WH by the Frattini’s argument. But this is not
possible since ZZIIIACG(z)I. So WNH=1. Then W is nilpotent by (1.2) and
we have W={Cy(x)|1=x&M) by (1.5). Since G has exactly one conjugacy
class of elements of order 3, Cy(x) is conjugate to a subgroup of H. Since =
operates regularly on Cy(x) for any x& M?* we get that Cy(x) is cyclic of order
7 or 1. Since P normalizes W and acts nontrivially on M—<z)> we get that
Z(W)=W is elementary abelian of order 7> or 1. In any case H’ centralizes
W. This implies that W=1.

So we can apply [8; Theorem B] and see that either |G|=|M(24)'| or
G=],. But the first case is not possible since 316||M(24)'l. So G is iso-
morphic to J,. This completes the proof of the lemma and the proof of
Theorem A.

3. Proof of Theorem B

A slight modification of the proof of Theorem A gives Theorem B. We
shall only indicate where differences are to be made.

Let G be a simple group which is not 3-normal and contains an element
7 such that Cg(w) is isomorphic to the triple cover of M,. Then Lemma
(1.10) is valid for G where H is to be replaced by H/<{z>. We shall use the
same notation as in the second section which was introduced in (1.10) with
their corresponding new meanings. Then we have

Lemma 3.1. We have Ny(M)|Ce(M)==GL(2, 3) and Ng(M) is contained in
Ng/(E,) where Ey=0,(C(M)) is a four group.

Proof. The same as in (2.1).

Lemma 3.2. We have Cy(E,)=0,C4(E,))<{m> where either 0,(C¢(E,))=E,
or 0,(C4(E,)) is elementary abelian of order 2°.

Proof. The same as in (2.2).
Lemma 3.3. If 0,(C4(E)))=E, then T is an S;-subgroup of G.

Proof. The same as in (2.3).
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Lemma 3.4. T is not an S,-subgroup of G and hence 0,(C4(E,)) s of order
21,

Proof. The argument we have used in (2.4) to show that Cy(2) contains a
subgroup C, with index two applies also to this case and yields that G has a
subgroup with index two. But this is a contradiction since G is simple.

Conclusion 3.5. G does not exist.

Proof. Otherwise we get as in (2.6) that Ny(K)/K is isomorphic to J, or
M,, or R, where K=0,(C¢(E))) is elementary abelian of order 2. But M,
and R cannot operate faithfully on a 2-group of order 2'°. Since J, is 3-normal
by [5] we obtain a contradiction since we can see that Ny(K) is not 3-normal
as in (2.6).

This completes the proof of Theorem B.
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