

Title	On the BP_*-Hopf invariant
Author(s)	Hirashima, Yasumasa
Citation	Osaka Journal of Mathematics. 1975, 12(1), p. 187-196
Version Type	VoR
URL	https://doi.org/10.18910/5816
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Hirashima, Y.
 Osaka J. Math.
12 (1975), 187-196

ON THE BP_* -HOPF INVARIANT

YASUMASA HIRASHIMA

(Received December 13, 1973)

(Revised June 28, 1974)

In this paper we will consider the BP_* -Hopf invariant, $\pi_*(S^0) \rightarrow \text{Ext}_{BP_*(BP)}^1(BP_*, BP_*)$, i.e. the Hopf invariant defined by making use of the homology theory of the Brown-Peterson spectrum BP . The BP_* -Hopf invariant is essentially “the functional coaction character”. Similarly we will define the BP_{*-e} invariant (“the functional Chern-Dold character”) and show that the BP_* -Hopf invariant coincides with the BP_{*-e} invariant by the BP -analogue of Buhstaber-Panov’s theorem ([6], [7]). As applications we give a proof of the non-existence of elements of Hopf invariant 1, and detect α -series.

We will use freely notations of Adams [2], [3], [4]. For example, S , H , HZ_p and $HZ_{(p)}$ denote the sphere spectrum, the Eilenberg-MacLane spectrum, Z_p coefficient Eilenberg-MacLane spectrum and $Z_{(p)}$ coefficient Eilenberg-MacLane spectrum respectively, where $Z_{(p)}$ is the ring of integers localized at the fixed prime p .

We list some well known facts:

$$\begin{aligned} \pi_*(BP) &= BP_*(S^0) = BP_* = Z_{(p)}[v_1, v_2, \dots], \quad \deg v_k = |v_k| = 2(p^k - 1). \\ H_*(BP) &= HZ_{(p)}(BP) = Z_{(p)}[n_1, n_2, \dots], \quad \deg n_k = |n_k| = 2(p^k - 1). \end{aligned}$$

The Hurewicz map

$$h^H = (i^H \wedge 1_{BP})_* : \pi_*(BP) \rightarrow H_*(BP)$$

is decided by the formula [5]

$$h^H(v_k) = pn_k - \sum_{0 < s < k} h^H(v_{k-s})^{p^s} n_s.$$

$$BP_*(BP) = BP_*[t_1, t_2, \dots], \quad \deg t_k = |t_k| = 2(p^k - 1).$$

The Thom map $BP \xrightarrow{\mu} HZ$ induces

$$BP_*(BP) \xrightarrow{\mu} HZ_{(p)}(BP) = H_*(BP), \quad \mu(t_k) = n_k, \quad \mu(v_k \cdot 1) = 0$$

($k > 0$) and ([10])

$$HZ_{(p)*}(BP) \xrightarrow{\mu_*} (HZ_p)_*(HZ_p), \quad \mu_*(n_k) = c(\xi_k),$$

where c is the conjugation map of the Hopf algebra $(HZ_p)_*(HZ_p)$ and ξ_k ($k=1, 2, \dots$) are Milnor's basis of a polynomial subalgebra $Z_p[\xi_1, \xi_2, \dots] \subset (HZ_p)_*(HZ_p)$. $BP^*(BP) = BP_* \hat{\otimes} Z_{(p)}\{r_E\}$, where E runs through sequences of non-negative integers $E = (e_1, e_2, \dots)$ in which all but finite number of terms are zero and $\deg r_E = |E| = |r_E| = 2(\sum_{k \geq 1} e_k(p^k - 1))$.

1. *BP*-analogue of Panov's theorem

To compute $\text{Ext}_{BP_*(BP)}^{1,*}(BP_*, BP_*)$ we define some subquotient group of $H_*(BP)$ and compute this group and next relate this with $\text{Ext}_{BP_*(BP)}^{1,*}(BP_*, BP_*)$.

We may regard $\pi_*(BP)$ as a submodule of $H_*(BP)$ by the Hurewicz map h^H . Cohomology operations r_E act on $H_*(BP)$ so that we define

$$N = \bigcap_{E \neq 0} r_E^{-1}(\text{Im } h^H) \quad \text{and} \quad N/\text{Im } h^H.$$

We fix a prime p and discuss the Brown-Peterson spectrum associated with this prime, then for $n \neq 2k(p-1)$ $(N/\text{Im } h^H)_n = 0$ as $H_n(BP) = 0$, thus it remains to decide the groups $(N/\text{Im } h^H)_{2k(p-1)}$.

Theorem 1.1. *For odd prime p $(N/\text{Im } h^H)_{2k(p-1)} = Z_{p^{\nu_p(k)+1}}$ with generator $v_1^k/p^{\nu_p(k)+1}$ where $\nu_p(k)$ denotes the exponent of highest power of p dividing k . For $p=2$ $(N/\text{Im } h^H)_{2k} = Z_2$ (k : odd), Z_4 ($k=2$) and $Z_{2^{\nu_2(k)+2}}$ ($k>2$, even) with generators $v_1^k/2$, $v_1^k/4$ and $v_1^k/2^{\nu_2(k)+2} + v_1^{k-3}v_2/2$ respectively.*

Similar theorem for MU spectrum was first computed by Panov [7], and Landweber [6] gave a shortened proof of which BP -analogue we follow faithfully.

Exponent sequences $E = (e_1, e_2, \dots)$, $F = (f_1, f_2, \dots)$ are ordered as follows: $E > F$ if

- (1) $|E| > |F|$, or
- (2) $|E| = |F|$, and $n(E) = \sum_{k \geq 1} e_k < n(F)$, or
- (3) $E = F$, $n(E) = n(F)$ and there exist a k such that $e_k > f_k$, $e_i = f_i$ ($i > k$).

We have that if $E > E'$ and $F > F'$ then $E + F > E' + F'$, where the sum is componentwise. We say that an element a of N has type E if $r_E(a) \in (p) = p \cdot \text{Im } h^H$ and $r_F(a) \in (p)$ for any $F > E$, especially a has type 0 if a has type $(0, 0, \dots)$. If a has type E , such a E is denoted by $t(a)$.

Lemma 1.2.

- (1) v_{k+1} has type $p\Delta_k$ ($k \geq 1$) and v_1 has type 0 (i.e. $t(v_{k+1}) = p\Delta_k$, $t(v_1) = 0$).

(2) $r_{\Delta_{k+1}}(v_{k+1})=p$.
 (3) $t(v^E)=(pe_1, pe_2, \dots)$ where $E=(e_1, e_2, \dots)$

and v^E means $v_1^{e_1}v_2^{e_2}\dots$.

Using the formula ([10])

$$r_E(n_k) = \begin{cases} n_i, & E = p^i \Delta_j (i+j = k); \\ 0, & \text{otherwise,} \end{cases}$$

and

$$v_k = pn_k \sum_{0 < s < k} v_k^{p^s} n_s,$$

the lemma can be proved by a routine induction on k , so we omit it.

By the above lemma we get $t(v^E) \neq t(v^F)$ for $E \neq F$, $|E| = |F|$.

Theorem 1.1 is divided into three lemmas as Landweber did in MU case.

Lemma 1.3. $(N/\text{Im } h^H)_{2k(p-1)}$ is cyclic (i.e., has one generator).

Lemma 1.4.

(1) $v_1^k/p^{v_{p^k}+1} \in N_{2k(p-1)}$, and
 (2) if p is odd, or $p=2$ and k is odd, or $p=2$ and $k=2$, then $v_1^k/p^{v_{p^k}+1}$ represents the generator of $(N/\text{Im } h^H)_{2k(p-1)}$.

Lemma 1.5. If $p=2$ and $k > 2$, then $v_1^k/2^{v_2(p^k)+2} + v_1^{k-3}v_2/2$ represents the generator of $(N/\text{Im } h^H)_{2k}$.

Proof of Lemma 1.3. Let $a \in N_{2k(p-1)}$ represent an element of order p in $(N/\text{Im } h^H)_{2k(p-1)}$, then $pa \in \text{Im } h^H$. Write $pa = \lambda_1 v_1^k + \lambda_2 v^{E_1} + \lambda_3 v^{E_2} + \dots + \lambda_i v^{E_i}$ with $\lambda, \lambda_j \in Z_{(p)}$, $|E_j| = 2k(p-1)$ and $t(v^{E_1}) < t(v^{E_2}) < \dots < t(v^{E_i})$. Apply $r_{t(v^{E_i})}$ to the element pa . We get $\lambda_i \equiv 0 \pmod{p}$ since $\lambda_i r_{t(v^{E_i})}(v^{E_i}) \equiv 0 \pmod{p}$. Next apply $r_{t(v^{E_{i-1}})}$. By the same argument we have $\lambda_{i-1} \equiv 0 \pmod{p}$. Continue these argument, then we get $\lambda_1 \equiv \lambda_2 \equiv \dots \equiv \lambda_i \equiv 0 \pmod{p}$. So we conclude

$$pa \equiv \lambda v_1^k \pmod{p}$$

and hence

$$a = \lambda \cdot (v_1^k/p) \quad \text{in } (N/\text{Im } h^H)_{2k(p-1)}.$$

This implies Lemma 1.3.

Proof of Lemma 1.4. (1) We get by induction

$$r_E(v_1^k) = \begin{cases} \binom{k}{e} p^e v_1^{k-e}, & E = e\Delta_1; \\ 0, & \text{otherwise,} \end{cases}$$

Using the formula ([6], [7])

$$\nu_p\left(\binom{k}{e}\right) = \nu_p(k) - \nu_p(e) \quad \text{for } e \leq p^{\nu_p(k)},$$

we have

$$\nu_p\left(\binom{k}{e} p^e\right) \geq \nu_p(k) + 1.$$

The equality holds for $e=1$. Hence

$$v_1^k/p^{\nu_p(k)+1} \in N_{2k(p-1)} \quad \text{and} \quad v_1^k/p^{\nu_p(k)+2} \notin N_{2k(p-1)}.$$

(2) For odd prime p , or $p=2$ and k : odd, or $p=2$ and $k=2$, $v_1^k/p^{\nu_p(k)+1}$ has type $\Delta_1 (< t(v^E), |E|=2k(p-1), E \neq k\Delta_1)$ by the above argument.

If $a = \lambda \cdot v_1^k/p^{\nu_p(k)+2} + \sum_{\substack{E=2k(p-1) \\ E \neq k\Delta_1}} \lambda_E \cdot v^E \in N_{2k(p-1)}$, $\lambda, p\lambda_E \in \mathbb{Z}_{(p)}$,

then pa has type 0 so that $p \mid \lambda, p \mid \lambda_E$ by the same type-argument as the proof of Lemma 1.3. This shows that there is no element a such that $v_1^k/p^{\nu_p(k)+1} = pa$ in $(N/\text{Im } h^H)_{2k(p-1)}$. This implies Lemma 1.4.

Proof of Lemma 1.5. In case $p=2$ and $k > 2$,

$$\nu_2\left(\binom{k}{e} 2^e\right) = \nu_2(k) + 1 \quad (e = 1, 2)$$

and

$$\nu_2\left(\binom{k}{e} 2^e\right) > \nu_2(k) + 1 \quad (e > 2).$$

These imply that $v_1^k/2^{\nu_2(k)+1}$ has type $2\Delta_1$. After routine computations we obtain

$$\begin{aligned} r_{\Delta_1}(v_1^k/2^{\nu_2(k)+1}) &= v_1^{k-1} \equiv r_{\Delta_1}(v_1^{k-3}v_2) \pmod{2} \\ r_{2\Delta_1}(v_1^k/2^{\nu_2(k)+1}) &= v_1^{k-2} \equiv r_{2\Delta_1}(v^{k-3}v_2) \pmod{2}. \end{aligned}$$

So we conclude that $v_1^k/2^{\nu_2(k)+1} + v_1^{k-3}v_2$ has type 0, and thus $v_1^k/2^{\nu_2(k)+2} + v_1^{k-3}v_2/2 \in N_{2k}$. Put $P = v_1^k/2^{\nu_2(k)+2} + v_1^{k-3}v_2/2$. We decide the type of P in several steps. $t(P) = \Delta_2$ or $t(P) > \Delta_2$ by $r_{\Delta_2}(P) = v_1^{k-3}$. The Cartan formula implies $r_E(P) \equiv 0 \pmod{2}$ for $E > \Delta_2$ and $E \neq i\Delta_1$, so that $t(P) = \Delta_2$ or $i\Delta_1$ ($i \geq 4$). For $i \geq 4$

$$r_{i\Delta_1}(P) \equiv \left(\binom{k}{i} 2^i/2^{\nu_2(k)+2}\right) v_1^{k-i} \pmod{2},$$

thus

$$\left(\binom{k}{i} 2^i/2^{\nu_2(k)+2}\right) \equiv 0 \pmod{2} \quad \text{if } \nu_2(k) = 1,$$

and if $\nu_2(k) \geq 2$

$$\binom{k}{i} 2^i / 2^{\nu_2(k)+2} \equiv \begin{cases} 2^{i-2-\nu_2(i)}, & i \leq \nu_2(k)+2; \\ 0 \pmod{2}, & i > \nu_2(k)+2. \end{cases}$$

This implies that $t(P) = \Delta_2$ if $\nu_2(k) = 1$ and $t(P) = 4\Delta_1$ if $\nu_2(k) \geq 2$.

There is no element $a \in \text{Im } h^H$ such that $r_E(P) \equiv r_E(a) \pmod{2}$ for any E . If not, a is represented by a linear combination of $v_1^k, v_1^{k-3}v_2$ and $v_1^{k-6}v_2^2$, then $r_{\Delta_2}(a) \equiv 0 \pmod{2}$ which contradicts the assumption. This implies Lemma 1.5 and also completes the proof of Theorem 1.1.

Next we lift the group $(N/\text{Im } h^H)$ to a subquotient group of $BP_*(BP)$ by Thom map $BP_*(BP) \xrightarrow{\mu} H_*(BP)$. We denote by $(r_E)_*$ the right action of r_E on $BP_*(BP)$ which is compatible under Thom map μ with the action on $H_*(BP)$. We consider the groups

$$N^{BP} = \bigcap_{E \neq 0} (r_E)_*^{-1}(\text{Im } h^{BP}) \text{ and } N^{BP}/\text{Im } h^{BP} + BP_* \cdot 1,$$

on which Thom map induces the group homomorphism

$$N^{BP}/\text{Im } h^{BP} + BP_* \cdot 1 \xrightarrow{\hat{\mu}} N/\text{Im } h^H.$$

Theorem 1.6. $\hat{\mu}$ is isomorphic.

Proof. In $BP_*(BP) \otimes Q = BP_* \otimes Q[n_1, n_2, \dots]$

$$\bigcap_{E \neq 0} (r_E)_*^{-1}(0) = BP_* \otimes Q$$

so that in $BP_*(BP)$

$$\bigcap_{E \neq 0} (r_E)_*^{-1}(0) = BP_* \cdot 1 \quad (= BP_* \otimes 1).$$

We get easily

$$\text{Ker } \mu \cap N^{BP} \subset \bigcap_{E \neq 0} (r_E)_*^{-1}(0) = BP_* \cdot 1$$

and

$$\begin{aligned} \text{Ker } \hat{\mu} &= \{(\text{Im } h^{BP} + \text{Ker } \mu) \cap N^{BP} + \text{Im } h^{BP} + BP_* \cdot 1\} / \text{Im } h^{BP} + BP_* \cdot 1 \\ &= 0 \end{aligned}$$

so that $\hat{\mu}$ is monomorphic.

For any prime p , $h^{BP}(v_i) = v_i = v_i \cdot 1 + pt_i$, and thus

$$v_1^k - v_1^k \cdot 1 = \sum_{1 \leq e \leq k} \binom{k}{e} p^e v_1^{k-e} t_1^e.$$

We get

$$(v_1^k - v_1^k \cdot 1) / p^{\nu_p(k)+1} \in BP_{2k(p-1)}(BP)$$

and

$$(v_1^k - v_1^k \cdot 1) / p^{v_p(k)+1} \in N_{2k(p-1)}^{BP}.$$

In case of $p=2$ and $k \geq 2$,

$$h^{BP}(v_2) = v_2 = v_2 \cdot 1 - 3v_1^2 t_1 - 5v_1 t_1^2 + 2t_2 - 4t_1^3, \quad ([3]).$$

We get

$$\begin{aligned} (v_1^k - v_1^k \cdot 1) / 2^{v_2(k)+2} &= (1/2)v_1^{k-1} t_1 + (1/2)v_1^{k-2} t_1^2 + A, \\ (v_1^{k-3} v_2 - (v_1^{k-3} v_2) \cdot 1) / 2 &= (-1/2)v_1^{k-1} t_1 + (-1/2)v_1^{k-2} t_1^2 + B, \end{aligned}$$

where $A, B \in BP_*(BP)$, and thus

$$(v_1^k - v_1^k \cdot 1) / 2^{v_2(k)+2} + (v_1^{k-3} v_2 - (v_1^{k-3} v_2) \cdot 1) / 2 \in BP_{2k}(BP).$$

We have easily

$$(v_1^k - v_1^k \cdot 1) / 2^{v_2(k)+2} + (v_1^{k-3} v_2 - (v_1^{k-3} v_2) \cdot 1) / 2 \in N_{2k}^{BP}.$$

These conclude that $\hat{\mu}$ is epimorphic and complete the proof of Theorem 1.6.

The conjugation map c of the Hopf algebra $BP_*(BP)$ induces the isomorphism

$$\hat{c}: N^{BP} / \text{Im } h^{BP} + BP_* \cdot 1 \rightarrow \bigcap_{B \neq 0} r_E^{-1}(BP_* \cdot 1) / \text{Im } h^{BP} + BP_* \cdot 1,$$

but \hat{c} preserves the generators given in Theorem 1.6 up to sign, so that we obtain

Corollary 1.7.

$$N^{BP} / \text{Im } h^{BP} + BP_* \cdot 1 = \bigcap_{B \neq 0} r_E^{-1}(BP_* \cdot 1) / \text{Im } h^{BP} + BP_* \cdot 1.$$

We next show that

$$\begin{aligned} \text{Ext}_{BP_*(BP)}^1(BP_*, BP_*) &= \bigcap_{B \neq 0} r_E^{-1}(BP_* \cdot 1) / \text{Im } h^{BP} + BP_* \cdot 1 \\ &\cong N / \text{Im } h^H. \end{aligned}$$

Let $S \xrightarrow{i} BP \xrightarrow{p} I$ be the cofibration obtained from the unit $S \xrightarrow{i} BP$, $I^{(k)} = I \wedge I \wedge \dots \wedge I$ (k -factors) and d_k be the composition $BP \wedge I^{(k)} \xrightarrow{p \wedge 1} I^{(k+1)} \rightarrow BP \wedge I^{(k+1)}$ (or equivalently $BP \wedge I^{(k)} \xrightarrow{B} BP \wedge BP \wedge I^{(k)} \xrightarrow{1 \wedge p \wedge 1} BP \wedge I^{(k+1)}$). Then we obtain the geometric resolution of Adams [4]

$$BP \xrightarrow{d_0} BP \wedge I \xrightarrow{d_1} BP \wedge I^{(2)} \xrightarrow{d_2} BP \wedge I^{(3)} \xrightarrow{d_3} \dots,$$

which defines a chain complex of a spectrum X

$$BP_*(X) \xrightarrow{(d_0)_*} (BP \wedge I)_*(X) \xrightarrow{(d_1)_*} (BP \wedge I^{(2)})_*(X) \rightarrow \dots$$

and

$$\mathrm{Ext}_{BP^*(BP)}^{k,*}(BP_*, BP_*(X)) = \mathrm{Ker} (d_k)_*/\mathrm{Im} (d_{k-1})_*.$$

For $X=S^0$, $(d_0)_*=p_*h^{BP}$ and $(d_1)_*=(p_*\otimes 1)\Psi_I$ where $BP_*(BP) \xrightarrow{p_*} BP_*(I) = BP_*(BP)/BP_* \cdot 1$ is the canonical projection, $BP_*(I) \xrightarrow{\Psi_I} BP_*(BP) \otimes_{BP_*} BP_*(I)$ is the coaction map of I for which

$$\Psi_I(x) = \sum_E t^E \otimes r_E(x).$$

REMARK. This coaction map is twisted by the conjugation map c of $BP_*(BP)$ from the one defined by Adams [2].

$$\begin{aligned} \mathrm{Ker} (d_1)_* &= \{x \in BP_*(BP)/BP_* \cdot 1 \mid r_E(x) = 0, E \neq 0\} \\ &= \bigcap_{E \neq 0} r_E^{-1}(BP_* \cdot 1)/BP_* \cdot 1, \end{aligned}$$

$$\mathrm{Im} (d_0)_* = \mathrm{Im} h^{BP}/\mathrm{Im} h^{BP} \cap BP_* \cdot 1 = \mathrm{Im} h^{BP} + BP_* \cdot 1/BP_* \cdot 1.$$

Hence we obtain

Theorem 1.8.

$$\mathrm{Ext}_{BP^*(BP)}^{1,*}(BP_*, BP_*) = \bigcap_{E \neq 0} r_E^{-1}(BP_* \cdot 1)/\mathrm{Im} h^{BP} + BP_* \cdot 1.$$

Corollary 1.9.

$$\mathrm{Ext}_{BP^*(BP)}^{1,*}(BP_*, BP_*) \xrightarrow{\hat{\mu}} N/\mathrm{Im} h^H.$$

2. The BP_* -Hopf invariant

Since $BP_*(BP)$ is flat over BP_* , $BP_*(BP)$ comodules and $BP_*(BP)$ co-module homomorphisms form a relative abelian category so that similar construction of Adams [1] is valid for BP_* homology theory. We review the construction of the BP_* -Hopf invariant quickly; for a morphism $f: X \rightarrow Y$ of CW-spectra in homotopy category such that $f_* = 0$, we have a short exact sequence

$$E(f): 0 \rightarrow BP_*(Y) \rightarrow BP_*(C_f) \rightarrow BP_*(SX) \rightarrow 0,$$

which is regarded as an element of $\mathrm{Ext}_{BP^*(BP)}^{1,*}(BP_*(X), BP_*(Y))$. This is the BP_* -Hopf invariant of f .

For $X=S^{kq-1}$ ($q=2(p-1)$), $Y=S^0$ the BP_* -Hopf invariant is defined on the whole group $\pi_{kq-1}(S^0)$. For a short exact sequence $E(f)$ we apply the Adams

resolution $BP \rightarrow BP \wedge I \rightarrow BP \wedge I^{(2)} \rightarrow \dots$ then we obtain a short exact sequence of chain complexes

$$\begin{array}{ccc}
 0 & 0 & 0 \\
 \downarrow & \downarrow & \downarrow \\
 0 \rightarrow BP_*(S^0) \rightarrow (BP \wedge I)_*(S^0) \rightarrow (BP \wedge I^{(2)})_*(S^0) \rightarrow \dots & & \\
 \downarrow & \downarrow i_* & \downarrow \\
 0 \rightarrow BP_*(C_f) \rightarrow (BP \wedge I)_*(C_f) \rightarrow (BP \wedge I^{(2)})_*(C_f) \rightarrow \dots & & \\
 \downarrow j_* & \downarrow & \downarrow \\
 0 \rightarrow BP_*(S^{kq}) \rightarrow (BP \wedge I)_*(S^{kq}) \rightarrow (BP \wedge I^{(2)})_*(S^{kq}) \rightarrow \dots & & \\
 \downarrow & \downarrow & \downarrow \\
 0 & 0 & 0
 \end{array}$$

Let $\sigma_{kq} \in BP_{kq}(S^{kq})$ be a generator and $\delta(\sigma_{kq}) = [i_*^{-1}(d_0)_* j_*^{-1}(\sigma_{kq})] \in \text{Ext}_{BP_*(BP)}^{1, kq}(BP_*, BP_*)$ then the element $\delta(\sigma_{kq}) = E(f)_*(\sigma_{kq})$ is just the element $E(f)$ by well known technique of homological algebra. This construction is considered as follows; let $\sigma_0 = i_*(\sigma_0)$, μ_{kq} are generators of $BP_*(C_f)$ of dimension 0, dimension kq respectively so that $j_*(\mu_{kq}) = \sigma_{kq}$, and let $\eta_R: BP \simeq S \wedge BP \rightarrow BP \wedge BP$ be the Boardman map and put $\eta_R(\mu_{kq}) = A_f \sigma_0 + \mu_{kq}$ ($A_f \in BP_*(BP)$). Then A_f represents $E(f)$. Replacing $BP \rightarrow BP \wedge BP$ by $BP \rightarrow H \wedge BP$, we have the BP_* -e invariant (or the functional Chern-Dold character) and is equivalent to the BP_* -Hopf invariant by Corollary 1.9.

3. Applications

For an element $f \in \pi_{kq-1}(S^0)$ ($q=2(p-1)$) we get a short exact sequence $0 \rightarrow (HZ_p)_*(S^0) \rightarrow (HZ_p)_*(C_f) \rightarrow (HZ_p)_*(S^{kq}) \rightarrow 0$ and can choose generators σ'_0 and μ'_{kq} of $(HZ_p)_*(C_f)$ such that $\sigma'_0 = i_*(\sigma_0')$ and $j_*(\mu'_{kq}) = \sigma'_{kq}$ where σ'_0 is a canonical generator of $(HZ_p)_*(S^0)$. Let $\Psi: (HZ_p)_*(C_f) \rightarrow A_* \otimes (HZ_p)_*(C_f)$ be the coaction, then the definition of the Hopf invariant in the sense of Steenrod is described as follows; $f \in \pi_{kq-1}(S^0)$ is said to have mod p Hopf invariant 1 if $\langle P^k, H_f \rangle \neq 0$, where P^k is the Steenrod reduced power (interpreted as Sq^{2k} if $p=2$) and $\Psi(\mu'_{kq}) = H_f \sigma'_0 + \mu'_{kq}$ ($H_f \in A_*$).

Theorem 3.1 (Adams, Liulevicius, Shimada-Yamanoshita.) *If f has mod p Hopf invariant 1 then*

- (2) $k=1, 2$ or 4 for $p=2$;
- (2) $k=1$ for odd prime p .

Proof. Consider the following diagram

$$\begin{array}{ccccc}
 BP_*(C_f) & \xrightarrow{\rho_{\mathbf{p}}\mu} & & (HZ_p)_*(C_f) & \\
 \downarrow B_* & & \searrow \eta_{R^*} & & \downarrow \Psi \\
 H_*(BP) \otimes H_*(C_f) & \xrightarrow{\mu_* \otimes 1} & A_* \otimes (HZ_p)_*(C_f) & \xrightarrow{c \otimes 1} & A_* \otimes (HZ_p)_*(C_f)
 \end{array}$$

then

$$\begin{aligned}
 \Psi(\mu'_{kq}) &= \Psi\mu(\mu_{kq}) = (c \otimes 1)(\mu_* \otimes 1)(A_f\sigma_0' + \mu'_{kq}) \\
 &= H_f\sigma_0' + \mu'_{kq}.
 \end{aligned}$$

Since A_f is a multiple of $v_1^k/p^{v_p(k)+1} = p^{k-v_p(k)-1}n_1^k$ or $v_1^k/2^{v_2(k)+2} + v_1^{k-3}v_2 \times 2^{k-v_2(k)-2}n_1^k \bmod 2 \cdot H_{kq}(BP)$ by Theorem 1.1, H_f is a multiple of $p^{k-v_p(k)-1}\xi_1^k$ or $2^{k-v_2(k)-2}\xi_1^{2k}$. In case of an odd prime p $H_f=0$ for $k>1$, in case of $p=2$ and odd number k $H_f=0$ for $k>1$, in case of $p=2$ and even k $H_f=0$ for $k>4$. This completes the proof of Theorem 3.1.

Let $V(0) = \bigcup_p S^0 \cup e^1$ then there exists a map $\phi_k: S^{kq} \rightarrow S^{kq}V(0) \rightarrow V(0)$ such that $\phi_k(\sigma_{kq}) = v_1^k \cdot \gamma_0$ where $\sigma_{kq} \in BP_{kq}(S^{kq})$ and $\gamma_0 \in BP_0(V(0))$ are generators ([8]). α -series elements $\alpha_k (k=1, 2, \dots)$ of $\pi_{kq-1}(S^0)$ are defined by $\alpha_k = j\phi_k$ where $j: V(0) \rightarrow S^1$ is the canonical projection. We detect these elements by means of the BP_* -Hopf invariant. We have the following diagram of cofibrations;

$$\begin{array}{ccccccc}
 S^0 & \xlongequal{\quad} & S^0 & & & & \\
 \downarrow i & & \downarrow & & & & \downarrow \\
 S^{kq} & \xrightarrow{\phi_k} & V(0) & \xrightarrow{a} & C_{\phi_k} & \xrightarrow{b} & S^{kq+1} \longrightarrow SV(0) \\
 \parallel & & \downarrow j & & \downarrow & & \parallel \\
 S^{kq} & \xrightarrow{\alpha_k} & S^1 & \xrightarrow{c} & C_{\alpha_k} & \xrightarrow{d} & S^{kq+1} \longrightarrow S^2 \\
 & & \downarrow & & \downarrow & & \downarrow \\
 & & S^1 & \xlongequal{\quad} & S^1 & &
 \end{array}$$

Considering the above diagram following results are obtained;

$$\begin{aligned}
 BP_*(S'') & \left\{ \begin{array}{l} \text{generator; } \sigma_n \\ \text{relations; none,} \end{array} \right. \\
 BP_*(V(0)) & = BP_*/(p) \left\{ \begin{array}{l} \text{generator; } \gamma_0 \\ \text{relations; } p\gamma_0 = 0, \end{array} \right. \\
 BP_*(C_{\phi_k}) & \left\{ \begin{array}{l} \text{generators; } a_*(\gamma_0), \lambda_{kq+1} \\ \text{relations; } (p, v_1^k) \cdot a_*(\gamma_0) = 0 \\ \text{formula; } b_*(\lambda_{kq+1}) = p\sigma_{kq+1}, \end{array} \right.
 \end{aligned}$$

$$BP_*(C_{\alpha_k}) \begin{cases} \text{generators; } c_*(\sigma_1), \mu_{kq+1} \\ \text{relations; } \text{none} \\ \text{formula; } d_*(\mu_{kq+1}) = \sigma_{kq+1}, \end{cases}$$

and the formula

$$h_*(\lambda_{kq+1}) = p\mu_{kq+1} - v_1^k c_*(\sigma_1).$$

The coefficient v_1^k of $c_*(\sigma_1)$ is decided up to a multiple of a unit of $Z_{(p)}$. The image of these generators of Thom homomorphism are denoted by $\sigma_n', \gamma_n', \lambda_n'$ and μ_n' respectively.

Theorem 3.2.

$$e(\alpha_k) = v_1^k/p \quad \text{in} \quad N/\text{Im } h^H \cong \text{Ext}_{BP_*(BP)}^{1, kq}(BP_*, BP_*).$$

Proof. By applying the Chern-Dold character $BP_*(C_{\alpha_k}) \xrightarrow{B_*} (H \wedge BP)_*(C_{\alpha_k})$ to μ_{kq+1} we get $B_*(\mu_{kq+1}) = A_{\alpha_k} c_*(\sigma_1') + \mu'_{kq+1}$. A_{α_k} represents BP_* -invariant of α_k in $N/\text{Im } h^H$. The computation

$$\begin{aligned} p\mu'_{kq+1} &= h_* B_*(\lambda_{kq+1}) = B_*(p\mu_{kq+1} - v_1^k c_*(\sigma_1)) \\ &= p\mu'_{kq+1} + (pA_{\alpha_k} - v_1^k) c_*(\sigma_1') \end{aligned}$$

implies $pA_{\alpha_k} = v_1^k$ and this completes the proof.

OSAKA CITY UNIVERSITY

References

- [1] J.F. Adams: *On the groups $J(X)$ -IV*, Topology **5** (1966), 21–71.
- [2] J.F. Adams: Lectures on Generalized Cohomology, Lecture Note in Mathematics 99, Springer-Verlag, 1969, 1–138
- [3] J.F. Adams: Quillen's Work on Formal Groups Lows and Complex Cobordism, University of Chicago, 1970.
- [4] J.F. Adams: Stable Homotopy and Generalized Homology, University of Chicago, 1971.
- [5] S. Araki: Typical Formal Groups in Complex Cobordism and K-theory, Kyoto University, 1973.
- [6] P.S. Landweber: *On Panov's theorem*, (to appear).
- [7] N.V. Panov: *Characteristic numbers in U-theory*, Izv. Akad. Nauk. SSSR Ser. Mat. **35** (1971), Math. USSR Izv. **5** (1971), 1365–1385.
- [8] L. Smith: *On realizing complex bordism modules I*, Amer. J. Math. **92** (1970), 793–856.
- [9] L. Smith and R. Zahler: *Detecting stable homotopy classes by primary BP cohomology operations*, Math. Z. **129** (1972), 137–156.
- [10] R. Zahler: *The Adams-Novikov spectral sequence for spheres*, Ann. of Math. **96** (1972), 480–504,