

Title	On Galois extension with involution of rings
Author(s)	Kanzaki, Teruo
Citation	Osaka Journal of Mathematics. 1975, 12(3), p. 691–702
Version Type	VoR
URL	https://doi.org/10.18910/5850
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Kanzaki, T. Osaka J. Math. 12 (1975), 691-702

ON GALOIS EXTENSION WITH INVOLUTION OF RINGS

Dedicated to Professor Kiiti Morita on his 60th birthday

TERUO KANZAKI

(Received December 3, 1974)

1. Introduction

For a Galois extension field L of a field K with Galois gruop G, A. Rosenberg and R. Ware [9] proved that if [L:K] is odd then the Witt ring W(K) is isomorphic to $W(L)^{c}$. The proof was simplified by M. Knebusch and W. Scharlau [5], and the theorem was generalized by M. knebusch, A. Rosenberg and R. Ware [6] to the case of commutative semilocal rings. In this note, concerning with sesqui-linear forms over a non commutative ring defined in [2], we want to extend the theorem to a case of non commutative rings. In $\S2$ and $\S3$, we difine a Galois extension with involution of a ring and an odd type Galois extension with involution. From the theorem of Scharlau (cf. [11], [7]), we know that for a Galois extension with involution $L \supset K$ of fields, $L \supset K$ is an odd type Galois extension with involution if and olnly if [L:K] is odd. If $A \supset B$ is a G-Galois extension with involution of rings, then we can prove the isomorphism $i^* \circ t_{\sigma^*}(q) = \sum_{\sigma = \sigma} \perp \sigma^*(q)$ for any sesqui-linear left A-module q = (M, q). This isomorphism is a generalization of the case of fields [4], semilocal rings [6]. If A is an algebra over a commutative ring R, and if $A \supset R$ is an odd type G-Galois extension with involution, then it is obtained that the inclusion map $i: R \rightarrow A$ induces a group monomorphism $i^*: W(R) \rightarrow W(A)$ of Witt groups of hermitian left modules, and its image is $T_{C^*}(W(A))$. Throughout this paper, we assume that every ring has identity element and module is unitary. Furthermore, ring homomorphisms are assumed to correspond identity element to identity element.

2. Sesqui-linear forms

DEFINITION 1. Let A be a ring with involution $A \rightarrow A$; $a \leftrightarrow a$, i.e. $\overline{a+b} = a + \overline{b}$, $\overline{ab} = \overline{b} a$ and $\overline{a} = a$ for every a, b in A. For a subring B and a finite group G of ring-automorphisms of A, $A \supset B$ is called a G-Galois extension with involution if every element in G is compatible with the involution, i.e. $\overline{\sigma(a)} = \sigma(\overline{a})$ for all $a \in A$, $\sigma \in G$, and if $A \supset B$ a G-Galois extension, i.e. $A^G = B$ and there exist

elements $x_1, x_2, \dots x_n$ and $y_1, y_2, \dots y_n$ in A, called a G-Galois system, such that $\sum x_i y_i = 1$ and $\sum x_i \sigma(y_i) = 0$ for $\sigma \neq I$ in G.

DEFINITION 2. (cf. [2]) Let A be a ring with involution, and M a left Amodule. A form $q: M \times M \rightarrow A$ is called a sesqui-linear form if it satisfies

$$q(a(m+m'), n) = aq(m, n) + aq(m', n)$$
 and
 $q(m, b(n+n')) = q(m, n)\bar{b} + q(m, n')\bar{b}$

for every $a, b \in A$ and $m, m', n, n' \in M$.

DEFINITION 3. Let $A \supset B$ be a *G*-Galois extension with involution, *C* the center of *A* and C_0 the fixed subring of *C* by the involution, i.e. $C_0 = \{c \in C; c = \overline{c}\}$. For any $u \in C_0$ let us denote by $t_{\sigma}^u: A \to B$ a *B*-linear map defined by $t_{\sigma}^u(a) = \sum_{\sigma \in \mathcal{G}} \sigma(ua)$ for $a \in A$, particularly, when u=1, it is denoted by t_{σ}^u . For a sesquilinear left *A*-module q=(M, q), a sesqui-linear left *B*-module $t_{\sigma*}^u(q)=(_BM, t_{\sigma}^uq)$ and a sesqui-linear left *A*-module $\sigma^*(q)=(_{\sigma}M, \sigma q)$, for $\sigma \in G$, are defined as follows;

where ${}_{\sigma}M$ is a left A-module defined by a new operation *; $a*m=\sigma^{-1}(a)m$, for $a \in A, m \in M$. For a sesqui-linear left B-module h=(N, h) and the inclusion map $i: B \to A$, a sesqui-linear left A-module $i^*(h)=(A \otimes_B N, ih)$ is defined by $ih: (A \otimes_B N) \times (A \otimes_B N) \to A$; $ih(a \otimes n, a' \otimes n') = ah(n, n')\bar{a}'$ for $a \otimes n, a' \otimes n' \in A \otimes_B N$.

Lemma 1. Let $A \supset B$ be a G-Galois extension with involution. For any left B-module N there is an A-isomorphism $\Phi: A \otimes_B \operatorname{Hom}_B(N, B) \to \operatorname{Hom}_A(A \otimes_B N, A)$ defined by $\Phi(a \otimes f)$ $(a' \otimes n) = a'f(n)a$ for $a \otimes f \in A \otimes_B \operatorname{Hom}_B(N, B)$ and $a' \otimes n \in A$ $\otimes_B N$, where the operations by A and B are as follows: $(bf)(x) = f(x)\overline{b}$, for $f \in \operatorname{Hom}_B(N, B)$, $b \in B$, $x \in N$, and $(ag)(y) = g(y)\overline{a}$ for $g \in \operatorname{Hom}_A(A \otimes N, A)$, $a \in A$, $y \in A \otimes_B N$.

Proof. If $\sum a_i \otimes f_i$ is in Ker Φ , then $\sum f_i(n)\bar{a}_i = \Phi(\sum a_i \otimes f_i)$ $(1 \otimes n) = 0$ for all n in N. Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be a G-Galois system of A. Then we have $\sum a_i \otimes f_i = \sum_{i,j} x_j t_G(y_j a_i) \otimes f_i = \sum_{i,j} x_j \otimes t_G(y_j a_i) f_i = 0$, since $\sum_i t_G(y_j a_i) f_i$ =0 is obtained by $(\sum_i t_G(y_j a_i) f_i)$ $(n) = \sum_i f_i(n) \overline{t_G(y_j a_i)} = \sum_i t_G(f_i(n) \overline{y_j a_i}) =$ $t_G(\sum_i f_i(n) \overline{a}_i \overline{y}_j) = 0$ for all $n \in N$. Hence Ker $\Phi = 0$. If g is any element in Hom_A($A \otimes_B N$, A), we put $f_i \colon N \to B$; $f_i(n) = t_G(g(1 \otimes n) x_i)$ for every $n \in N$, i =1, 2, \dots n. Then f_i is in Hom_B (N, B) and so $\sum \overline{y}_i \otimes f_i$ is an element in $A \otimes_B$ Hom_B(N, B) such that $\Phi(\sum \overline{y}_i \otimes f_i) = g$, because $\Phi(\sum \overline{y}_i \otimes f_i)(a \otimes n) = \sum af_i(n) y_i$ $= \sum a t_G(g(1 \otimes n) x_i) y_i = ag(1 \otimes n) = g(a \otimes n)$ for all $a \otimes n \in A \otimes_B N$.

Lemma 2. Let $A \supset B$ be a G-Galois extension with involution. If M is a left A-module, then for any element u in the unit group $U(C_0)$ of the fixed subring C_0 of the center of A by the involution, a map

$$\theta: \operatorname{Hom}_{A}(M, A) \to \operatorname{Hom}_{B}(M, B); f \lor \to t_{g}^{u} \circ f$$

is a B-isomorphism as left B-modules defined by $(bf)(m)=f(m)\overline{b}$ for $b\in B$, $m\in M$ and $f\in \operatorname{Hom}_A(M, A)$ or $\operatorname{Hom}_B(M, B)$.

Proof. If f is in $\operatorname{Hom}_A(M, A)$ and $t_{\mathfrak{G}}^u \circ f=0$, then for any $m \in M$ we have $uf(m) = \sum x_i t_{\mathfrak{G}}(y_i u f(m)) = \sum x_i (t_{\mathfrak{G}}^u \circ f(y_i m)) = 0$, hence f=0. If g is in $\operatorname{Hom}_B(M, B)$, an A-homomorphism f: $M \to A$ defined by $f(m) = \sum u^{-1} x_i g(y_i m)$ for $m \in M$, satisfies $t_{\mathfrak{G}}^u \circ f(m) = \sum t_{\mathfrak{G}}(x_i g(y_i m)) = \sum t_{\mathfrak{G}}(x_i) g(y_i m) = g(\sum t_{\mathfrak{G}}(x_i) y_i m) = g(m)$ for all $m \in M$, therefore $t_{\mathfrak{G}}^u \circ f = g$ and so θ is a B-isomorphism.

Proposition 1. Let $A \supset B$ be a G-Galois extension with involution, and C_0 the subring of the center of A whose element is fixed by the involution.

1) If a sesqui-linear left B-module h=(N, h) is non degenerate i.e. $\phi: N \rightarrow \text{Hom}_B(N, B)$; $n \leftrightarrow \to h(-, n)$ and $\psi: N \rightarrow \text{Hom}_B(N, B)$; $n \leftrightarrow \to \overline{h(n, -)}$ are B-isomorphisms, then $i^*(h)=(A \otimes_B N, ih)$ is also non degenerate, where $i: B \rightarrow A$ is the inclusion map.

2) If a sesqui-linear left A-module q=(M, q) is non degenerate, then $t^u_{\sigma^*}(q)=({}_{B}M, t^u_{\sigma}q)$ and $\sigma^*(q)=({}_{\sigma}M, \sigma q)$ are also non degenerate for every $u \in U(C_0)$ and $\sigma \in G$.

Proof. 1) Let h=(N, h) be a non degenerate sesqui-linear left *B*-module. Since $\phi: N \to \operatorname{Hom}_B(N, B); n \to h(-, n)$ and $\Phi: A \otimes_B \operatorname{Hom}_B(N, B) \to \operatorname{Hom}_A(A \otimes_B N, A)$ are *B*-isomorphisms, the composition $\Phi \circ (I \otimes \phi); A \otimes_B N \to \operatorname{Hom}_A(A \otimes_B N, A)$ is an *A*-isomorphism. And, it is obtained that $\Phi \circ (I \otimes \phi)(a \otimes n) = ih(-, a \otimes n)$ for $a \otimes n \in A \otimes_B N$, because $\Phi \circ (I \otimes \phi)(a \otimes n)(a' \otimes n') = \Phi(a \otimes h(-, n))(a' \otimes n') = a'h(n', n)\overline{a} = ih(a' \otimes n', a \otimes n)$ for every $a' \otimes n' \in A \otimes_B N$. For $\psi: N \to \operatorname{Hom}_B(N, B); n \to h(n, -)$, similarly, we obtain the isomorphism $\Phi \circ (I \otimes \psi); A \otimes_B N \to \operatorname{Hom}_A(A \otimes_B N, A); a \otimes n \to ih(a \otimes n, -)$. Therefore, $i^*(h) = (A \otimes_B N, ih)$ is non degenerate. 2) Let q = (M, q) be a non degenerate sesqui-linear left *A*-module. From the following diagram and Lemma 2, we can conclude that $t^a_{a*}(q)$ is non degenerate;

$$\begin{array}{c} M \xrightarrow{\phi, (\psi)} & \text{Hom}_{A}(M, A) \\ \downarrow \phi', (\psi') & \checkmark_{\theta} \\ & \text{Hom}_{B}(M, B) \end{array}$$

where $\phi', (\psi'), : M \to \operatorname{Hom}_B(M, B); m \to t^u_G q(-, m), (m \to t^u_G q(m, -)). \sigma^*(q)$ is obviously non degenerate. T. KANZAKI

Theorem 1. Let $A \supset B$ be a G-Galois extension with involution. For any sesqui-linear left A-module q=(M, q), we have an isometry

$$i^* \circ t_{G^*}(q) \cong \sum_{\sigma \in G} \bot \sigma^*(q)$$

Proof. Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be a G-Galiois system of A. For each $\sigma \in G$, we can define an A-homomorphism $e_{\sigma}: A \otimes_B M \to A \otimes_B M$; $a \otimes m \land \to A \otimes_B M$ $\sum a\sigma(x_i) \otimes y_i m$. Because, for any $c \in A$, we have $e_{\sigma}(ac \otimes m) = \sum_i ac\sigma(x_i) \otimes y_i m = b$ $\sum_{i,j} a\sigma(x_i t_{\sigma}(y_j \sigma^{-1}(c)x_i)) \otimes y_i m = \sum_{i,j} a\sigma(x_j) \otimes t_{\sigma}(y \sigma^{-1}(c)x_i) y_i m = \sum_{i,j} a\sigma(x_j) \otimes y_j$ $\sigma^{-1}(c)m = e_{\sigma}(a \otimes \sigma^{-1}(c)m)$, particularly, if c is in B, we obtain $e_{\sigma}(a \otimes m) = e_{\sigma}(a \otimes cm)$, therefore e_{σ} is well defined. Since $e_{\sigma}(a \otimes m) = e_{\sigma}(1 \otimes \sigma^{-1}(a)m)$ for $a \otimes m \in A \otimes B_{B}M$, the image of e_{σ} is equal to $e_{\sigma}(1 \otimes M)$. Now, we check identities $e_{\sigma} \circ e_{\tau} =$ $\begin{cases} e_{\sigma}, \text{ for } \sigma = \tau \\ 0, \text{ for } \sigma \neq \tau \end{cases}, (\sigma, \tau \in G), \text{ and } \sum_{\sigma \in G} e_{\sigma} = I. \text{ For any } a \otimes m \in A \otimes_{B} M, \text{ we have } f(\sigma, \tau) = 0 \end{cases}$ $e_{\sigma} \circ e_{\tau}(a \otimes m) = \sum_{i} e_{\sigma}(a\tau(x_{i}) \otimes y_{i}m) = \sum_{i} e_{\sigma}(a \otimes \sigma^{-1}\tau(x_{i})y_{i}m) = \begin{cases} e_{\sigma}(a \otimes m), & \text{for } \sigma = \tau \\ 0, & \text{for } \sigma = \tau \end{cases}$, for $\sigma \neq \tau$ and $\sum_{\sigma \in G} e_{\sigma}(a \otimes m) = \sum_{i, \sigma \in G} a\sigma(x_i) \otimes y_i m = \sum_i at_G(x_i) \otimes y_i m = a \otimes \sum t_G(x_i) y_i m = a \otimes \sum t_G(x_i) \otimes y_i m = a \otimes \sum t_G(x_$ $a \otimes m$. Accordingly, $A \otimes_B M = \sum_{\sigma \in G} \oplus e_{\sigma}(1 \otimes M)$ is obtained. Further, $e_{\sigma}(1 \otimes M)$ and $_{\sigma}M$ are A-isomorphic by an A-homomorphism $\zeta_{\sigma}: {}_{\sigma}M \rightarrow e_{\sigma}(1 \otimes M); m \wedge \to \infty$ $e_{\sigma}(1 \otimes m)$. Because, $\zeta_{\sigma}(a * m) = \zeta_{\sigma}(\sigma^{-1}(a)m) = e_{\sigma}(1 \otimes \sigma^{-1}(a)m) = e_{\sigma}(a \otimes m) = ae_{\sigma}(1 \otimes m)$ $=a\zeta_{\sigma}(m)$, and if $\zeta_{\sigma}(m)=e_{\sigma}(1\otimes m)=\sum_{i}\sigma(x_{i})\otimes y_{i}m=0$ then by a canonical homomphism $A \otimes_B M \to M$; $a \otimes m \leftrightarrow \sigma^{-1}(a)m$, $\zeta_{\sigma}(m) = 0$ is sent to $m = \sum_i x_i y_i m = 0$ 0. Thus, $A \otimes_B M = \sum_{\sigma \in G} \oplus e_{\sigma}(1 \otimes M) \cong \sum_{\sigma \in G} \oplus_{\sigma} M$ as left A-modules. Now, we shall show that the subspaces $\{e_{\sigma}(1 \otimes M); \sigma \in G\}$ of $i^*t_{\sigma*}(q) = (A \otimes_B M, it_{\sigma}q)$ are orthogonal each other and $e_{\sigma}(1 \otimes_B M)$ is isometric to $\sigma^*(q) = (\sigma M, \sigma q)$ for each $\sigma \in G$. For $m, n \in M$ and $\sigma, \tau \in G$, we have $it_{\sigma}q(e_{\sigma}(1 \otimes m), e_{\tau}(1 \otimes n)) = it_{\sigma}q$ $\left(\sum_{i}\sigma(x_{i})\otimes y_{i}m, \sum_{j}\tau(x_{j})\otimes y_{j}n\right) = \sum_{i,j}\sigma(x_{i})t_{G}q(y_{i}m, y_{j}n)\tau(x_{j}) = \sum_{i,j,\gamma\in G}\sigma(x_{i})\gamma$ $(q(y_im, y_jm))\overline{\tau(x_j)} = \sum_{\gamma \in G} \sigma(\sum_i x_i \sigma^{-1} \gamma(y_i)) \gamma(q(m, n)) \overline{\tau(\sum_j x_j \tau^{-1} \gamma(y_j))}) = \begin{cases} \sigma q(m, n) \\ 0 \end{cases}$ for $\sigma = \tau$. Accordingly, we obtain $(A \oplus_B M, it_{\sigma} q) = \sum_{\sigma \in G} \perp e_{\sigma}(1 \otimes M)$ and an isometry $\zeta_{\sigma}: ({}_{\sigma}M, \sigma q) \rightarrow (e_{\sigma}(1 \otimes M), it_{\sigma}q); m \land \lor \rightarrow e_{\sigma}(1 \otimes m)$ for each $\sigma \in G$, hence $i^* \circ t_{G^*}(q) \cong \sum_{\sigma \in G} \perp \sigma^*(q).$

3. Witt groups

Let A be a ring with involution.

DEFINITION 4. (cf. [2]) A sesqui-linear left A-module q=(M, q) is called hermitian, if $q(m, n)=\overline{q(n, m)}$ is satisfied for every $m, n \in M$. And, a hermitian left A-module (M, q) is called metabolic, if there exists a hermitian left A-module $(V \oplus V^*, h_g)$ defined by $h_g(v+f, v'+f')=\overline{f(v')}+f'(v)+g(v, v'), v, v' \in V, f, f' \in V^*$ $= \operatorname{Hom}_A(V, A)$ for some hermitian left A-module (V, g), and if (M, q) is isometric to $(V \oplus V^*, h_g)$. We shall call that a hermitian left A-module (M, q) is

reflexive, (finitely generated projective), if M is reflexive i.e. the map $\xi: M \to \text{Hom}_A(\text{Hom}_A(M, A), A); \xi(m)(f) = \overline{f(m)}, f \in \text{Hom}_A(M, A), m \in M$, is an A-isomorphism, (M is finitely generated projective).

Let $\mathfrak{F}_r(A)$, $(\mathfrak{F}_p(A))$, denote the category of non degenerate and reflexive, (finitely generated projective), hermitian left A-modules and their isometries, and $\mathfrak{M}_r(A)$, $(\mathfrak{M}_p(A))$, the subcategory of $\mathfrak{F}_r(A)$, $(\mathfrak{F}_p(A))$, consiting of metabolic left A-modules.¹⁾ Since $\mathfrak{F}_r(A)$ and $\mathfrak{M}_r(A)$, $(\mathfrak{F}_p(A))$ and $\mathfrak{M}_p(A))$, have the product \bot , we can construct the Witt-Grothendieck group $GW_r(A)$, $(GW_p(A))$, and the Witt group $W_r(A)$, $(W_p(A))$. We can check that from the inclusion map $i: B \to A$, the trace map $t_q^u: A \to B$ and σ in G,

$$\begin{split} i^* \colon W_r(B) \to W_r(A), & (W_p(B) \to W_p(A)), \\ t^u_{\sigma^*} \colon W_r(A) \to W_r(B), & (W_p(A) \to W_p(B)), \text{ and} \\ \sigma^* \colon W_r(A) \to W_r(A), & (W_p(A) \to W_p(A)), \end{split}$$

are induced, where $u \in U(C_0)$ and $A \supset B$ is a G-Galois extension with involution.

Lemma 3. Let $A \supset B$ be a G-Galois extension with involution. If M is a reflexive left B-module, then $A \otimes_B M$ is also a reflexive A-module.

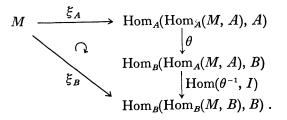
Proof. If $\xi: M \to \operatorname{Hom}_B(\operatorname{Hom}_B(M, B), B); m \to (f \to \overline{f(m)})$ is a *B*-isomorphism, $I \otimes \xi: A \otimes_B M \to A \otimes_B \operatorname{Hom}_B(\operatorname{Hom}_B(M, B), B)$ is an *A*-isomorphism. Since $\Phi: A \otimes_B \operatorname{Hom}_B(M, B) \to \operatorname{Hom}_A(A \otimes_B M, A); a \otimes f \to (a' \otimes m \to a'f(m)a)$ is an *A*-isomorphism, the composition $\Phi' = \operatorname{Hom}(\Phi^{-1}, I) \circ \Phi: A \otimes_B \operatorname{Hom}_B(\operatorname{Hom}_B(M, B), B) \to \operatorname{Hom}_A(\operatorname{Hom}_A(M, A), A)$ is also an *A*-isomorphism, and so is $\Phi' \circ (I \otimes \xi): A \otimes_B M \to \operatorname{Hom}_A(\operatorname{Hom}_A(A \otimes_B M, A), A)$. We can check $\Phi' \circ (I \otimes \xi)$ $(a \otimes m)$ $(f) = \overline{f(a \otimes m)}$ for $f \in \operatorname{Hom}_A(A \otimes_B M, A)$ and $a \otimes m \in A \otimes_B M$; For $f \in \operatorname{Hom}_A(A \otimes_B M, A)$, we put $\Phi^{-1}(f) = \sum b_i \otimes g_i$ in $A \otimes_B \operatorname{Hom}_B(M, B)$, then we have $\Phi' \circ (I \otimes \xi) (a \otimes m) (f) = \Phi(a \otimes \xi(m)) (f) = \operatorname{Hom}(\Phi^{-1}, I) \circ (a \otimes \xi(m)) (f) = \Phi(a \otimes \xi(m)) (\Phi^{-1}(f)) = \Phi(a \otimes \xi(m)) (\Sigma b_i \otimes g_i) = \sum b_i \xi(m) (g_i)a = \sum b_i g_i(m)a = \overline{\sum ag_i(m)b_i} = \overline{f(a \otimes m)}$. Thus, $A \otimes_B M$ is reflexive over A.

Lemma 4. Let $A \supset B$ be a G-Galois extension with involution. If M is a reflexive left A-module, then M is also reflexive over B.

Proof. Since by Lemma 2, $\theta: \operatorname{Hom}_A(M, A) \to \operatorname{Hom}_B(M, B); f \to t_{G^\circ} f$ is a *B*-isomorphism, the lemma is obtained from the following commutative diagram;

¹⁾ In order that $\mathfrak{F}_r(A)$ becomes a set, we need to do an restriction on the cadinal number of module, for example, $\mathfrak{F}_r(A) \subset \{(M, q); \text{ cardinal number of } M \leq \aleph\}$.

T. Kanzaki



The commutativity is as follows; for any $m \in M$ and $f \in \operatorname{Hom}_B(M, B)$, setting $g = \theta^{-1}(f)$ in $\operatorname{Hom}_A(M, A)$, we have $\operatorname{Hom}(\theta^{-1}, I) \circ \theta \circ \xi_A(m)(f) = \operatorname{Hom}(\theta^{-1}, I)$ $(t_{\sigma} \circ \xi_A(m))(f) = t_{\sigma} \circ \xi_A(m)(\theta^{-1}(f)) = t_{\sigma}(\overline{g(m)}) = \overline{t_{\sigma} \circ g(m)} = \overline{f(m)} = \xi_B(m)(f).$

Lemma 5. Let $A \supset B$ be a G-Galois extension with involution, C_0 the fixed subring of the center of A by the involution, and u an element of the unit group $U(C_0)$. If q=(M, q) is in $\mathfrak{M}_r(A)$, $(\mathfrak{M}_p(A))$, then $i^*(q)=(A\otimes_B M, iq)$, $t^u_{\sigma^*}(q)=(_BM, t^u_{\sigma}q)$ and $\sigma^*(q)=(M, \sigma q)$, for $\sigma \in G$, are in $\mathfrak{M}_r(A)$, $(\mathfrak{M}_p(A))$.

Proof. This is easily obtained from Lemma 3 and Lmma 4.

Thus, group-homomorphisms of Witt groups i^* , $t^u_{G^*}$ and σ^* , for $\sigma \in G$, are well defined. From now on, we shall denote by W(A) one of $W_r(A)$ and $W_p(A)$. We put $G^* = \{\sigma^* \colon W(A) \to W(A); \sigma \in G\}$, $T_{G^*} = \sum_{\sigma^* \in G^*} \sigma^*$ and $W(A)^{G^*} = \{[q] \in W(A); \sigma^*([q]) = [q] \text{ for all } \sigma^* \in G^*\}$.

From Theorem 1 we have

Theorem 2. Let $A \supset B$ be a G-Galois extension with involution. Then, we have

$$i^* \circ t_{G^*} = T_{G^*}$$
 on $W(A)$.

Let $A \supset B$ be a G-Galois extension with involution, C_0 the fixed subring of the center of A by the involution. Then easily we have

Lemma 6. For any $u \in U(C_0)$, a sesqui-linear left B-module (A, b_i^u) defined by $b_i^u: A \times A \rightarrow B$; $(a, a') \leftrightarrow t_{\sigma}(aua')$ is non degenerate and hermitian.

DEFINITION 5. $A \supset B$ is called an odd type G-Galois extension with involution, if there exists u in $U(C_0)$ such that $(A, b_t^u) \cong \langle 1 \rangle \perp h_m, \langle 1 \rangle = (B, I); I(b, b') = b\bar{b}'$, for b, $b' \in B$, and h_m is a metabolic left B-module.

Proposition 2. Let A be an algebra over a commutative ring R, and $A \supset R$ an odd type G-Galois extension with involution. We suppose that u is in the fixed subring of the center of A by the involution such that u is unit in A and $(A, b_t^u) \cong$ $\langle 1 \rangle \perp h_m$ for a metabolic left R-module $h_m = (N, h_m)$. Then we have $t_{g*}^u \circ i^* = I$ on W(R) and $\sum_{\sigma \in G} \perp \sigma^* \langle u \rangle \cong \langle 1 \rangle \perp i^*(h_m)$ as hermitian left A-modules, where $\langle u \rangle$ denotes a hermitian left A-module defined by a form $A \times A \rightarrow A$; $(x, y) \land \to xu\bar{y}$.

Proof. If q=(M, q) is in $\mathfrak{F}_r(R)$, $(\mathfrak{F}_p(R))$, then $t^u_{\mathfrak{G}*}\circ i^*(q)=(A\otimes_R M, t^u_{\mathfrak{G}}iq)$ is also in $\mathfrak{F}_r(R)$, $(\mathfrak{F}_p(R))$. We can check $t^u_{\mathfrak{G}}iq=b^u_t\otimes q$ as follows; for any $a\otimes m$, $a'\otimes m'$ in $A\otimes_R M$, we have $t^u_{\mathfrak{G}}iq(a\otimes m, a'\otimes m')=t_{\mathfrak{G}}(uaq(m, m')a')=t_{\mathfrak{G}}(uaa')q(m, m')$ $=b^u_t(a, a')q(m, m')=b^u_t\otimes q(a\otimes m, a'\otimes m')$. Since R is commutative and A is an R-algebra, the tensor product $(A, b^u_t)\otimes(M, q)=(A\otimes_R M, b^u_t\otimes q)=(A\otimes_R M, t^u_{\mathfrak{G}}iq)$ is well defined in $\mathfrak{F}_r(R)$, $(\mathfrak{F}_p(R))$, and so we have $t^u_{\mathfrak{G}*}\circ i^*(q)=b^u_t\otimes q\cong(\langle 1\rangle\perp h_m)$ $\otimes q\cong(\langle 1\rangle\otimes q)\perp(h_m\otimes q)=q\perp(h_m\otimes q)$. But, by Lemma 3 and Lemma 4, if M is reflexive over R then $A\otimes_R M\cong(R\oplus N)\otimes_R M=M\oplus(N\otimes_R M)$ is also reflexive over R, and hence so is $N\otimes_R M$. Accordingly, $h_m\otimes q=(N\otimes_R M, h_m\otimes q)$ is in $\mathfrak{F}_r(R)$, $(\mathfrak{F}_p(R))$. On the other hand, $h_m\otimes q$ is also metabolic, z^2 (cf. [5], Lemma 1.2 and Lemma 1.5). Therefore, we have $t^u_{\mathfrak{G}*}\circ i^*([q])=[q]$ for all [q] in W(R). Since we have easily $(A, b^u_t)=t_{\mathfrak{G}*}(\langle u\rangle)$ and $(A, b^u_t)\cong\langle 1\rangle\perp h_m$ as hermitian left R-modules, we obtain $i^*(b^u_t)=i^*\circ t_{\mathfrak{G}*}(\langle u\rangle)\cong\sum_{\sigma\in G}\perp\sigma^*\langle u\rangle$ by Theorem 1. Therefore $\sum_{\sigma\in G}\perp\sigma^*\langle u\rangle\cong\langle 1\rangle\perp i^*(h_m)$.

Theorem 3. Let A be an algebra over a commutative ring R, and $A \supset R$ an odd type G-Galois extension with involution. Then we have

1) $i^*: W_r(R) \rightarrow W_r(A)$ and $i^*: W_p(R) \rightarrow W_p(A)$ are injective,

2) $t_{\sigma*}: W_r(A) \to W_r(R)$ and $t_{\sigma*}: W_p(A) \to W_p(R)$ are sujective and split, and so $W_r(A) \simeq i^*(W_r(R)) \oplus Ker t_{\sigma*}, W_p(A) \simeq i^*(W_p(R)) \oplus Ker t_{\sigma*},$

3) Ker $t_{\sigma*}$ =Ker T_{G^*} , Im i^* =Im T_{G^*} , i.e. i^* : $W_r(R) \rightarrow T_{G^*}(W_r(A))$ and i^* : $W_p(R) \rightarrow T_{G^*}(W_p(A))$ are isomorphisms.

Furthermore, if A is commutative, then we have $T_{G^*}(W_r(A)) = W_r(A)^{G^*}$ and $T_{G^*}(W_p(A)) = W_p(A)^{G^*}$, i.e. $i^* \colon W_r(R) \to W_r(A)^{G^*}$ and $i^* \colon W_p(R) \to W_p(A)^{G^*}$ are isomorphisms.

Proof. Let C_0 be the fixed subring of the center of A by the involution. For any $u \in U(C_0)$ and a sesqui-linear left A-module q=(M, q), the scaling "q=(M, "q) by u is defined to be " $q: M \times M \to A$; $(m, n) \land u \to uq(m, n)$. If q=(M, q) is non degenerate, or hemitian, then so is "q=(M, "q), respectively. If q is metabolic then so is "q. Therefore, a scaling $[q] \land u \to ["q]$ defines a group-automorphism μ of the Witt group W(A). Take u in $U(C_0)$ such that $(A, b_i^*) \cong \langle 1 \rangle \perp h_m$. Since by Proposition 2 $t_{G*}^u \circ i^* = I$, we have that $i^*: W(R) \to W(A)$ is injective and $I = t_{G*}^u \circ i^* = t_{G*} \circ \mu \circ i^*$. Therefore, it is obtained that $t_{G*}: W(A) \to W(R)$ is surjective and split, and $W(A) = \operatorname{Ker} t_{G*} \oplus \mu \circ i^*(W(R)) \cong \operatorname{Ker} t_{G*} \oplus i^* = T_{G^*} \circ \mu \circ i^*$, and so $i^*: W(R) \to T_{G*}(W(A))$ is an isomorphism and $\operatorname{Ker} t_{G*} = \operatorname{Ker} T_{G^*}$. If A is a commutative ring, then W(A) becomes a commutative ring with identity [$\langle 1 \rangle$]. $T_{G^*}: W(A) \to W(A)^{G^*}$ is a ring-homomorphism, and $T_{G*}(W(A))$ is an ideal of $W(A)^{G^*}$. But by Proposition 2 $T_{G^*}(\langle u \rangle) = \langle 1 \rangle \perp i^*(h_m)$ and $i^*(h_m)$ is a metabolic

2) See Appendix.

T. Kanzaki

left A-module. Therefore, $[\langle 1 \rangle] = T_{G^*}([\langle u \rangle])$ is in $T_{G^*}(W(A))$, and so $T_{G^*}(W(A)) = W(A)^{G^*}$.

4. Examples

In this section, we expose some examples of Galois extension with involution.

EXAMPLE 1. Let L, K be fields and $L \supset K$ a G-Galois extension with non trivial involution. Put $L_0 = \{a \in L; a = a\}$ and $K_0 = L_0 \cap K$. Then we have two cases;

Case I; $K \neq K_0$, then $L \supset L_0$ and $K \supset K_0$ are quadratic extensions, G induces the Galois group of $L_0 \supset K_0$, and $L = L_0 K = L_0 \otimes_{K_0} K$.

Case II; $K = K_0$, then $L \supset L_0 \supset K$ and [L : K] = |G| is even.

Proposition 3. (cf. [11]) Let L, K be fields and $L \supset K$ a G-Galois extension with involution. Then $L \supset K$ odd type if and only if |G| = [L:K] = odd.

Proof. If $L \supset K$ is odd type then obviously [L:K] = odd. We shall show the converse. Firstly, we suppose that $L \supset K$ is a G-Galois extension with trivial involution and |G| = odd. Then there is an a in L such that L = K[a]. Put [L:K]=2m+1. From the proof of Scharlau's theorem (cf. [7], Th. 1.6, p. 195), we have that a K-linear map $f: L \rightarrow K$ defined by f(1)=1 and $f(a^i)=0$ for i=11, 2, ..., 2m, defines a non degenerate bilinear left K-module (L, b_i^*) by $b_i^u(x, y)$ =f(xy) for x, $y \in L$, where $u \in L$ is determined by $b_t^1(u, -) = f$. Then we have $(L, b_t^u) = K \perp (Ka \oplus Ka^2 \oplus \cdots \oplus Ka^{2m})$, where $K = \langle 1 \rangle$, and $Ka \oplus \cdots \oplus Ka^{2m}$ is a metabolic subspace, because $Ka \oplus \cdots \oplus Ka^m$ is a total isotropic subspace of it. Accordingly, $L \supset K$ is odd type. Secondaly, suppose that $L \supset K$ is a G-Galois extension with non trivial involution, and |G| = odd. By Case I, the involution is non trivial on K, i.e. $K \neq K_0$, and so $L = L_0 K \cong L_0 \otimes_{K_0} K$. Since $L_0 \supset K_0$ becomes a G-Galois extension with trivial involution, $L_0 \supset K_0$ is odd type, and so there is u in L_0 such that (L_0, b_t^u) is isometric to the orthogonal sum of $\langle 1 \rangle$ and some metabolic K_0 -subspace h_m . Then we have $(L, b_t^u) \simeq i^*(L_0, b_t^u) = (K \otimes_{K_0} L_0, b_t^u)$ $ib_i^u \cong i^*(\langle 1 \rangle) \perp i^*(h_m) = \langle 1 \rangle \perp i^*(h_m)$ as hermitian K-modules, and $i^*(h_m)$ becomes a metabolic K-module. Thus, $L \supset K$ is odd type.

Corollary 1. Let $L \supset K$ be fields and a G-Galois extension with involution. If |G| = odd, then the inclusion map $i: K \rightarrow L$ induces an isomorphism of hermitian Witt groups; $i^*: W(K) \rightarrow T_{G^*}(W(L)) = W(L)^{G^*}$.

EXAMPLE 2. Let R be a commutative ring, (V, q) a non degenerate quadratic R-module having a orthogonal base; $(V, q) = Rv_1 \perp Rv_2 \perp \cdots \perp Rv_n$. Then 2 and $q(v_i) i=1, 2, \cdots n$ are invertible in R. Let ρ_{v_i} be a symmetry defined by

 v_i , i.e. $\rho_{v_i}(x) = x - \frac{B_q(x, v_i)}{q(v_i)} v_i$ for $x \in V$. The Clifford algebra $C(V, q) = C_0(V, q)$ $\oplus C_1(V, q)$ is a separable and Z/(2)-graded *R*-algebra (cf. [1], [8]). Each ρ_{v_i} is extended to an algebra-automorphism $\hat{\rho}_i$ of C(V, q), for $i=1, 2, \cdots n$, and $\hat{\rho}_i$ is homogeneous i.e. $\hat{\rho}_i(C_j(V, q)) = C_j(V, q), j=0,1$. C(V, q) has an involution defined by $\overline{(x_1x_2\cdots x_r)} = x_r\cdots x_2x_1$ for $x_i \in V$. Then $\hat{\rho}_i$ is compatible with this involution. Let G be a group of automorphisms of C(V, q) generated by $\hat{\rho}_1, \hat{\rho}_2, \cdots \hat{\rho}_n$. Then, we can show that $C(V, q) \supset R$ is a G-Galois extension with involution.

Proposition 4. Let C(V, q), β_1 , β_2 , $\cdots \beta_n$ and G be as above. Then C(V, q) $\supset R$ is a G-Galois extension with involution, and $G = (\beta_1) \times (\beta_2) \times \cdots \times (\beta_n)$.

Proof. If n=1, $C(Rv_1, q) \cong R[X]/(X^2-q(v_1))$ is a separable quadratic extension of R, and so $C(Rv_1, q) \supset R$ is a Galois extension with Galois group $(\hat{\rho}_1)$ (cf. [8]). Suppose that n > 1 and $C(Rv_1 \oplus \cdots \oplus Rv_{n-1}, q) \supset R$ is a Galois extension with Galois group $(\beta_1) \times (\beta_2) \times \cdots \times (\beta_{n-1})$. Since $Rv_1 \oplus \cdots \oplus Rv_n = (Rv_1 \oplus \cdots \oplus Rv_{n-1})$ $\perp Rv_n$, it is well known that $C(Rv_1 \oplus \cdots \oplus Rv_n, q) = C(Rv_1 \oplus \cdots \oplus Rv_{n-1}, q) \otimes$ $C(Rv_n, q)$, where \bigotimes denotes the graded tensor product over R. Let x_1, \dots, x_s and y_1, \dots, y_s be a $(\beta_1) \times \dots \times (\beta_{n-1})$ -Galois system of $C(Rv_1 \oplus \dots \oplus Rv_{n-1}, q)$ and $u_1, \dots u_t$ and $w_1, \dots w_t$ a (β_n) -Galois system of $C(Rv_n, q)$. x_i, y_i and u_j, w_j are chosen as homogeneous elements in $C(Rv_1 \oplus \cdots \oplus Rv_{n-1}, q)$ and $C(Rv_n, q)$, respectively. Then, $\{(-1)^{\partial y_i \partial u_j} x_i \otimes u_j; 1 \leq i \leq s, 1 \leq j \leq t\}$ and $\{y_i \otimes w_j; 1 \leq i \leq s, 1 \leq s\}$ $j \leq t$ } are a $(\hat{\rho}_1) \times \cdots \times (\hat{\rho}_{n-1}) \times (\hat{\rho}_n)$ -Galois system of $C(Rv_1 \oplus \cdots \oplus Rv_n, q) = C(Rv_1 \oplus \cdots \oplus Rv_n, q)$ $\oplus \cdots \oplus Rv_{n-1}, q) \bigotimes C(Rv_n, q)$, where ∂u_i and ∂y_i denete the degree of u_i and y_i . Because, $\sum_{i,j} (-1)^{\partial y_i \partial u_j} x_i \otimes u_j \cdot \sigma \times \tau(y_i \otimes w_j) = \sum_{i,j} x_i \sigma(y_i) \otimes u_j \tau(w_j) = \begin{cases} 1 \otimes 1; \\ 0 \end{cases}$ $\sigma \times \tau = I \times I$ $\sigma \times \tau \neq I \times I$, for $\sigma \in (\hat{\rho}_1) \times \cdots \times (\hat{\rho}_{n-1})$ and $\tau \in (\hat{\rho}_n)$. Since $C(Rv_1 \oplus \cdots \oplus Rv_{n-1}, q) \otimes$ $C(Rv_n, q) = C(Rv_1 \oplus \cdots \oplus Rv_{n-1}, q) \otimes C(Rv_n, q)$ as R-modules and $(C(Rv_1 \oplus \cdots \oplus Rv_n))$ $Rv_{n-1}, q) \otimes C(Rv_n, q))(\hat{\rho}_1)^{(\hat{\rho}_1) \times \cdots \times (\hat{\rho}_n)} = C(Rv_1 \oplus \cdots \oplus Rv_{n-1}, q)^{(\hat{\rho}_1) \times \cdots \times (\hat{\rho}_{n-1})} \otimes C(Rv_n, q)^{(\hat{\rho}_1) \times \cdots \times (\hat{\rho$ $(q)^{(\hat{\rho}_n)} = R \otimes R = R$, we have that $C(Rv_1 \oplus \cdots \oplus Rv_n, q) \supset R$ is a Galois extension with Galois group $(\beta_1) \times \cdots \times (\beta_n)$. Thus, the proposition is obtained by induction.

EXAMPLE 3. Let $A \supset B$ be a *G*-Galois extension with involution. The $n \times n$ -matrix ring A_n over *A* has an involution $A_n \rightarrow A_n$; $(a_{ij}) \longrightarrow^t (a_{ij})$, where t() denotes the transpose matrix. Then, $A_n \supset B_n$ is also a *G*-Galois extension with involution. Furthermore, if $A \supset B$ is odd type, then so is $A_n \supset B_n$. Because, we suppose that u is a unit in the fixed subring C_0 of the center of *A* by the involution, and (A, b_i^n) is a orthogonal sum of $\langle 1 \rangle$ and a metabolic *B*-left module $h_g = (N, h_g)$. Then $A_n \cong B_n \otimes_B A$ as B_n -left modules and C_0 is the fixed subring

T. KANZAKI

of the center of A_n by the involution. Therefore, we have $(A_n, b_t^u) \simeq (B_n \otimes_B A, i b_t^u) \simeq i^* \langle 1 \rangle \perp i^* h_g = \langle 1 \rangle \perp i^* h_g$ as sesqui-linear B_n -left modules, and $i^* h_g$ is a metabolic B_n -module, where $i: B \subseteq B_n$.

Using the Morita context, Example 3 is extended as follows;

EXAMPLE 4. (cf. [2], Chap. I, 8.) Let $A \supset B$ be a G-Galois extension with involution, $\Delta(A, G) = \sum_{\sigma \in G} \bigoplus Au_{\sigma}$ a crossed product of A and G with a trivial factor set, and M a faithful left $\Delta(A, G)$ -module. We may assume that u_I is the identity element in $\Delta(A, G)$, and A is a subring of $\Delta(A, G)$. We suppose that M has a non degenerate hermitian form [,]: $M \times M \rightarrow A$ satisfying $[u_{\sigma}(m),$ $u_{\sigma}(n) = \sigma([m, n])$ for every $\sigma \in G$ and $m, n \in M$. Put $\Lambda^{\circ} = \operatorname{Hom}_{A}(M, M)$ and $\Gamma^{0} = \operatorname{Hom}_{\Delta(A,G)}(M, M)$, then M is regarded as right Λ -module and so as A- Λ bimodule. We can define an involution $\Lambda \rightarrow \Lambda$; $\lambda \wedge \lambda \rightarrow \overline{\lambda}$ by $[m, n\lambda] = [m\overline{\lambda}, n]$ for every $m, n \in M$ (cf. [2], p. 61). For each $\sigma \in G$, a ring-automorphism $\sigma' \colon \Lambda \to \Lambda$ is defined by $m\sigma'(\lambda) = u_{\sigma}((u_{\sigma}^{-1}(m))\lambda)$ for $m \in M$ and $\lambda \in \Lambda$. Put $G' = \{\sigma'; \sigma \in G\}$. Since $u_{\sigma}u_{\tau} = u_{\sigma\tau}$ in $\Delta(A, G)$, the map $G \rightarrow G'$; $\sigma \wedge \to \sigma'$ is a group homomorphism. We can easily check $\Lambda^{G'} = \Gamma$. For any $\lambda \in \Lambda$, $\sigma' \in G'$, $\sigma'(\overline{\lambda}) = \overline{\sigma'(\lambda)}$ is satisfied; for any $m, n \in M$, we have $[m\sigma'(\overline{\lambda}), n] = [u_{\sigma}(u_{\sigma}^{-1}(m)\overline{\lambda}), n] = \sigma([u_{\sigma}^{-1}(m)\overline{\lambda}, u_{\sigma}^{-1}(n)] =$ $\sigma([u_{\sigma}^{-1}(m), u^{-1}(n)\lambda]) = [m, n\sigma'(\lambda)] = [m\sigma'(\lambda), n].$ Put $M^{G} = \{m \in M; u_{\sigma}(m) = m \text{ for } m \in M\}$ all $\sigma \in G$, then M^G becomes a left B-module. We can show that if M^G is finitely generated projective and generator over B, then $\Lambda \supset \Gamma$ is also a G'-Galois extension with involution and $G' \simeq G$. Now, we shall prove this. We denote by (,) a sesqui-linear form $M \times M \rightarrow \Lambda$ defined by [m, m']m'' = m(m', m'') for every m, m' and $m'' \in M$ (see [2], p. 61).

Lemma 7. Under above conditions, we have $M = AM^G \cong A \otimes_B M^G$, and [,] induces a non degenerate hermitian form [,] $|M^G \times M^G$ over B.

Proof. Let $x_1, \dots x_n$ and $y_1, \dots y_n$ be a *G*-Galois system of *A*. For any $m \in M$, *m* is written as $m = \sum_{i,\sigma \in G} x_i \sigma(y_i) u_\sigma(m) = \sum_{i,\in G} x_i u_\sigma(y_im) = \sum_i x_i t_G(y_im)$, and is contained in AM^G , where $t_G(y_im) = \sum_{\sigma \in G} u_\sigma(y_im)$ is in M^G . If $\sum_i a_i \otimes m_i$ is an element in $A \otimes_B M^G$ such that $\sum a_i m_i = 0$, then we have $\sum a_i \otimes m_i = \sum_{i,j} x_j t_G(y_ja_i) \otimes m_i = \sum_{i,j} x_j \otimes t_G(y_ja_i) m_i = \sum_j x_j \otimes t_G(y_j\sum a_im_i) = 0$. Therefore, $M = AM^G \cong A \otimes_B M^G$ is obtained. Since $\sigma([m, n]) = [u_\sigma(m), u_\sigma(n)]$ for every $\sigma \in G$ and $m, n \in M$, $[,]' = [,]|M^G \times M^G$ defines a hermitian *B*-form $[,]': M^G \times M^G \to B$. By $M = AM^G$, $[M^G, m]' = 0$ implies m = 0. If *f* is any element in Hom_B(M^G , B), then $I \otimes f$ is in Hom_A(M, A), hence there is an element *m* in *M* such that f = [-, m]. But, f(n) is in *B* for all $n \in M^G$, then we have $[n, m] = f(n) = \sigma([n, m]) = [u_\sigma(n), u_\sigma(m)] = [n, u_\sigma(m)]$ for all $n \in M^G$, $\sigma \in G$, and so $m = u_\sigma(m)$ for all $\sigma \in G$, i.e. $m \in M^G$. Therefore, [,]' is non degenerate.

Proposition 5. If M^{G} is finitely generated projective and generator over B,

then $\Lambda \supset \Gamma$ is a G'-Galois extension with involution, and $G' \cong G$.

Proof. Let $x_1, \dots x_n$ and $y_1, \dots y_n$ be G-Galois system of A. Since M^G is a finitely generated projective and generator B-module, and $[,]|M^G \times M^G$ is non degenerate, hence there exist $m_1, \dots m_r$ and $n_1, \dots n_r, u_1, \dots u_s$ and $v_1, \dots v_s$ in M^G such that $\sum_i [m_i, n_i] = 1$, $I = \sum_i [-, u_i] v_i = \sum_i (u_i, v_i)$. Put $m'_{ij} = \bar{x}_j u_i n'_{ij}$ $= y_j v_i$. Then we have $\sum_{i,j} (m'_{ij}, u_\sigma(n'_{ij})) = \sum_{i,j} (x_j u_i, u_\sigma(y_j v_i)) = \sum_{i,j} [-, x_j u_i]$ $\sigma(y_j) u_\sigma(v_i) = \sum_{i,j} [-, u_i] x_j \sigma(y_j) v_i = \begin{cases} \sum_j [-, u_i] v_i; \text{ for } \sigma = I \\ 0; \text{ for } \sigma \neq I \end{cases}$ for $\sigma = I$. Since n'_{ij} is expressed as $n'_{ij} = \sum_k [m_k, n_k] n'_{ij} = \sum_k m_k (n_k, n'_{ij})$, we have $\sum_{i,j,k} (m'_{ij}, m_k) \sigma'((n_k, n'_{ij})) = \sum_{i,j,k} (m'_{ij}, u_\sigma(m_k(n_k, n'_{ij}))) = \sum_{i,j} (m'_{ij}, u_\sigma(n'_{ij}))$ $= \begin{cases} 1; \text{ for } \sigma = I \\ 0; \text{ for } \sigma \neq I \end{cases}$ Therefore, $\{(m'_{ij}, m_k); 1 \leq i \leq s \leq 1 \leq j \leq n, 1 \leq k \leq r\}$ and $\{(n_k, n'_{ij}); 1 \leq i \leq s, 1 \leq j \leq n, 1 \leq k \leq r\}$ are G'-Galois system of Λ and $G \cong G'$. Thus $\Lambda \supset \Gamma$ is a G'-Galois extension with involution.

Corollary 2. Let A be an algebra over a commutative ring R, and $A \supset R$ a G-Galois extension with involution. If M is a faithful left $\Delta(A, G)$ -module such that M is finitely generated projective over A and M has a non degenerate hermitian form $[,] M \times M \rightarrow A$ satisfying $\sigma([m, n]) = [u_{\sigma}(m), u_{\sigma}(n)]$ for all $n, m \in M$ and $\sigma \in G$, then $\Lambda = \operatorname{Hom}_{A}(M, M) \supset \Gamma = \operatorname{Hom}_{\Delta(A,G)}(M, M)$ is a G-Galois extension with involution.

Proof. Since, under the condition of the corollary, we have $t_{G}(A) = R$ and $M = AM^{G} \cong A \otimes_{B} M^{G}$, we conclude that M^{G} is a direct summand of M as R-module. Therefore M^{G} is finitely generated projective and generator over R, and by Proposition 5 $\Lambda \supset \Gamma$ is a G'-Galois extension with involution and $G \cong G'$.

Appendix

Let R be a commutative ring.

Lemma A. ([5], Lemma 1.2) Let (M, q) be a non degenerate hermitian *R*-module. Then (M, q) is metabolic if and only if there is an *R*-direct summand N of M such that $N^{\perp}=N$.

Lemma B. (cf. [5], Lemma 1.5) Let (M, q) be any non-degenerate hermitian *R*-module and (N, h_m) a metabolic *R*-module such that *N* is a projective *R*-module. If $(N, h_m) \otimes (M, q) = (N \otimes_R M, h_m \otimes q)$ is non degenerate, then $(N, h_m) \otimes (M, q)$ is also metabolic.

Proof. Suppose $(N, h_m) \simeq (U \oplus U^*, h_g)$, where $U^* = \operatorname{Hom}_R(U, R)$ and (U, g)is a hermitian *R*-module. By Lemma *A*, it is sufficient to show $(U^* \otimes M)^{\perp} = U^* \otimes M$ in $(U \otimes M \oplus U^* \otimes M, h_g \otimes q)$. If $\sum u_i \otimes m_i$ is in $(U^* \otimes M)^{\perp} \cap (U \otimes M)$, then we have $h_g \otimes q(\sum u_i \otimes m_i, f \otimes x) = \sum h_g(u_i, f) q(m_i, x) = \sum f(u_i) q(m_i) q(m_i, x) = \sum f(u_i) q(m_i) q(m_$ T. KANZAKI

 $q(\sum f(u_i)m_i, x)=0$, for every $x \in M$ and $f \in U^*$, hence $\sum f(u_i)m_i=0$ for every $f \in U^*$. Since U is projective over R, there exist $\{f_j \in U^*; j \in I\}$ and $\{v_j \in U; j \in I\}$ such that $x=\sum_{j\in I}v_jf_j(x)$ for all $x\in U$. Accordingly, $\sum u_i \otimes m_i=\sum_{i,j\in I}v_jf_j(x)$ for all $x\in U$. Accordingly, $\sum u_i \otimes m_i=\sum_{i,j\in I}v_jf_j(x)$ for all $x\in U$. We obtain that $(U^*\otimes M)^{\perp}\cap (U\otimes M)$ =0 and so $(U^*\otimes M)^{\perp}=U^*\otimes M$.

OSAKA CITY UNIVERSITY

References

- [1] H. Bass: Topics in Algebraic K-theory, Tata Institute Notes, 41, Bombay, 1967.
- [2] H. Bass: Unitary K-theory, Springer lecture notes, 343, 1973.
- [3] T. Kanzaki: Non-commutative quadratic extension of a commutative ring, Osaka J. Math. 10 (1973), 597–605.
- [4] M. Knebusch and W. Scharlau: Über das Verhalten der Witt-Gruppe bei galoischen Körpererweiterungen, Math. Ann. 193 (1971), 189–196.
- [5] M. Knebusch, A. Rosenberg and R. Ware: Structure of Witt rings and quotient of aberian group rings, Amer. J. Math. 94 (1972), 119-155.
- [6] M. Knebusch, A. Rosenberg and R. Ware: Signatures on semilocal rings, J. Algebra 26 (1973), 208-250.
- [7] T.Y. Lam: The Algebraic Theory of Quadratic Forms, Benjamin 1973.
- [8] A. Micali and O.E. Villamayor: Sur Les algebras de Clifford. II, J. Reine Angew. Math. 242 (1970), 61–90.
- [9] A. Rosenberg and R. Ware: The zero-dimensional Galois cohomology of Witt ring, Invent. Math. 11 (1970), 65-72.
- [10] T.A. Springer: Sur les formes d'indices zero, C.R. Acad. Sci. 234 (1952), 1517– 1519.
- [11] W. Scharlau: Quadratic reciprocity law, J. Number Theory 4 (1972), 78-97.
- [12] W. Scharlau: Zur Pfistersch Theorie der quadratischen Formen, Invent. Math. 6 (1969), 327-328.