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This thesis has two themes related to the eccentricity, namely, the maximal distance

from a vertex to all the other vertices in a connected graph. One of those themes is to answer
a problem presented by Pelayo et al. ( J. A. Bondy, J. Fonlupt, J-L. Fouquet, Jean—Claude Fournier
and Jorge L. Ramirez Alfonsin, Graph theory in Paris: , Basel ; Boston : Birkhauser Verlag,
2007. see also J. Caceres, A. Marquez, 0. R. Oellermann, M. L. Puertas, Rebuilding convex sets
in graphs, “Discrete. Appl. Math. 297 (2005) 26-37.). The other one is to determine the degree
sequences of the trees which have extreme value of a topological index with fixed méximum(or
minimum) eccentricity. Chapter 2 has an origin in the theory of convexity spaces. The
Minkowski-Krein-Milman property is a remarkable concept in this field. It was translated into
the graph theory as follows:every convex set coincides with the convex hull of all its simplicial
vertices. This property does not hold generally in the graph theory. However, a simular property
has been verified(J. Caceres, A. Marquez, 0. R. Oellermann, M. L. Puertas, Rebuilding convex
sets in graphs, Discrete. Appl. Math. 297 (2005) 26-37.), replacing ’ simplicial’  to ’ maximal
eccentricity’ . The vertex set of a graph is a convex set, and it is constructed by iteration
of closure operations from its vertices of maximal eccentricity. A single step can not achieve
it, in general, but a triangle appeared in such examples. So it was rather believed that a single
step suffices at least for a bipartite graph. This property was studied also in other classes
of graphs. In each of almost those classes, the property was clarified affirmatively or
negatively. And the bipartite case remained unsolved. Our purpose of Chapter 2 is to determine

whether or not a single step suffices for all the bipartite graphs, if the maximum eccentricity

d is given. The conclusion is as follows:
Theorem. For every d exceeding 7, there exists a counterexample.
Theorem. For any integer d <7, a single step suffices.

Chapter 3 has an origin in chemistry. In this field, some sorts of compounds are regarded as
graphs. People desired to predict the physical or chemical behaviors of compounds, by calculating
simple invariants of graphs. A positive or negative order power of degrees or of the distances,
such were summed up over vertices or over edges..., and so on. The simplest among them is to

sum the power of degrees. The chemical interest suggests us to minimize the relevant sum when

the order a of the power satisfies 0 < @ <1, and otherwise (except the two border values of
order) to maximize it. We restrict our discussion to trees. The degree types were determined
to minimize / maximize this value, if the numbers are given of all the vertices and of

vertices whose degrees coincide with 1(B. Zhang, B. Zhou, On zeroth-order general Randi ~c
indices of trees and unicyclic graphs, MATCH Commun. Math. Comput. Chem. 58 (2007) 139-146).
Chapter 3 gives analogies of this result, where the latter number is replaced to the maximum

eccentricity or the minimum eccentricity. The conclusion is as follows:

Theorem. Fix the number n of all the vertices and the maximum eccentricity

d. Then the first three minimum / maximum values are attained just by the following
degree types D(I): '
(1) first:2(D) =[n-d+1, 292 1" for n-12>d2
@) second:D(D = [n-d, 3, 2 1" for n -3 2 d
() third: (1) = [3°, 2"° 157 for d = n4, and (D = [n-d-, 4, £ 7

for n -5 2d23.

—d+1

Theorem. Fix the number n of all the vertices and the minimum eccentricity

r. Then the first three minimum / maximum values are attained just by the following

degree types D(D):

(1) tirst:D(D) = [n —2r+2, 22 1" for n2 2> r 22

(@) second: (D = [n —2r+1, 3, 2% %2 tor (n-2)/2 > r >2.

(3) third:o(n) = [8*, 2%, 1°] for r= (n-3)/2 23, and D(D = [n2r, 4, F°F 17572
for (n=3)/2 > r 22. :
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UMIETIRAEZERL, RKBEAKORDY CERRPDLEREBELZHAICbE L S 2
MNEONDZ EERLEZ. HEim S THRbNE 2 OB OB T D RMREE T
HD. WHRDHEREST T THREAESIMOESEK R RORTEHSES,D TRER
HEDERZBMTS) LW FEERVIET L TERINDZEBMbA TN, 25
T MRERE EOEZBMT S LVIRER 1 BTHYROME VI MEE#RTHY, £
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