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1. Introduction

In this paper we shall discuss the interpolation of operations on intermediate
spaces. Our method is the so-called real method. Our purpose is to treat the
critical case which appears in singular integral operators. If we consider for
example the Hilbert transform f of function f of the class L log* L(4-o00,0), f
exist a.e. but the only local integrability holds. Then we shall discuss their inte-
gral estimation on the whole space.

The intermediate space between two Banach spaces was introduced by
W.A.J. Luxemburg [6, 7]. This is defined as follows. Given a topological vector
space V' and two Banach spaces A, and A4, which are contained and con-
tinuously embedded in V. Iffis an element of 4; (=1, 2), we denote its norm
by || f11[4;] ((=1,2). We shall consider the space 4,+4, and introduce in
it the norm

HFTAAA,] = inf (| 18] [[A]+ ] -] 1[4,])

where the infimum is taken over all pairs g€ A4, and A€ 4, such that f=g-h,
then 4,44, also becomes a Banach space. Since 4, and 4, are continuously
embedded in V, it is evident that 4,44, is also continuously embedded in V.

In what follows we shall consider totally o-finite measure space (R, u) and
the space V' of equivalent classes of real valued measurable functions on R.
The equivalent relation here is that of coincidence almost everywhere. Ifin V'
we introduce a topology of convergence in measure on sets of finite measure, V
becomes a topological vector space. If we take as the interpolation pair
A,=L}, A,=L3(1<p<<oo) then these are continuously embedded in V. We
shall also consider another measure space (S, v).

Let us consider operation T which transforms measurable functions on R
to those on R. The operation 7 is called quasi-linear if

(1) T(f,+f.) is uniquely defined whenever Tf, and Tf, are defined and
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'T(fl+f2)| §K(|Tf1|+‘Tf2‘)

where « is a constant independent of f, and f,,
(i) T(cf) is uniquely defined whenever Tf is defined and

| T(ef)| = lel | TS|
for all scalars c.
We say that the operation T is of type (a, b), 1 <a<b=< oo, if Tf is defined
for each f = L%(R) and belongs to L%(S) such that

(1.1) HTFIHL=M] | f1I[LE]

where M is a constant independent of f. The least admissible value of M in (1. 1)
is called the (a, b)-norm of operation 7. Next we shall define the weak type
(a, b) of operations. Suppose first that 1 <b<<co. Given any >0, denote by
E,=E,[Tf] the set of points of the space S where | Tf | >r, and write »(E,) for

the v-measure of the set E,. We say that the operation T is of weak type
(a, b) if

(1.2) w&11)=(M11711a)

where M is a constant independent of f. 'The least admissible value of M in (1. 2)
is called the weak (@, b)-norm of operation 7. It is clear that being of type
(a, b) implies being of weak type (a, b). We shall define weak type (@, o) as
identical with type (a, ). Hence T is of weak type (a, o) if

(1.3) ess. sup| | Tf | | <M | f]] [LZ]

Beside the space Lj we shall need the space Li(log™ L,)° which consist of
functions to be y-measurable and such that

I fI[La(log* L)) = (SR | £12(1-+(log* | 1) dp) e <oo .

This is not a Banach space but we shall use conveniently the same notations
Li(log* L,)*/*1+Lg2 as in the preceding case, which consist of functions to
be u-measurable and such that

|11 [L&(log" Luys+-Ls] — inf(] k| |[Lixlog* L)1+ | |g || [LaD)<eo

where the infimum is taken over all pairs A& Lii(log™ L,)**: and gL such
that f=g+h
In our preceding paper [4] we proved that

Theorem A. Suppose that a quasi-linear operation T is of weak type (1, 1)
and of type (p, p) for some 1<<p<<oo. Then we have
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|Tf17dvt | 17f 1

ITf1=1 ITf1>1

<K( [ 1717dp+ | 171 (1+10g" 1 71)dn)

1f1st 1f1>1

where K is a constant independent of f.
We can grow it up to the following form

Theorem 1. Under the hypotheses of theorem A, we have TfE L,+ L% for
any feLylog® L.+ L} and

HTfI I =KM?| | fI1{l+1og" [ f117}

where K is a constant depending on p, x but not on M,, M, and f; M=
max (M,, M,, 1)

Furthermore we shall prove the following theorem which gives an answer
to the conjecture of [4: p. 148~9].

Theorem 2. Let us write a;=1/a;, B;=1[b; (1=1,2). Let (a,, 8,) and
(ay, B,) be any two point of the triangle

A; 0<B=as1

such that 3, 3,. Let us suppose that a quasi-linear operation f=Tf is of weak
type (1/ay, 1/8,) and of type (1/a,, 1/B,) with norms M, and M, respectively.
Then if a,>a, and 3,> 3, we have Tf € L1+ L3z for any fe Li(log* L,)*/%1+
L and

T = KM% | fI1(A+(log™ || f117)%/)%

where K is a constant depending on a,, o,, 8,, 3,, # and not on M,, M, and f; M
=max (M,, M, 1).

Corollary 1. Let us write

ay = (1—6)a,+6a,
{ by = (1—0) b,-+-0b, (0<O=1).

Then under the hypotheses of theorem 2, we have Tf & L+ Ll for any fe L
(log*Ly)*:/%+Liie and

LTI < KMo | | f || {14+(log" | | f]]7)"/ou} .
where K, is a constant depending on 0, a,, a,, B,, 3,, but not on M,, M,, f.

Since by the Marcinkiewicz-Zygmund theorem it follows that the operation
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T is of type (a4, bs) by the hypotheses of theorem 2 and so we can derive corollary
1 immediately.

Next T. Kawata [3] proved the following theorem

Theorem B. Let f(x) be a measurable function of the class L(— oo, o).
Then its Hillbert transform

Foy = {" 2

exists and satisfies the following inequality

S"" | f(x)]
-« 14 |log | f(x)| |+

where € is any positive number and M is a constant independent of f.

dngSl]f(xn dx

Furthermore the £>0 can not be omitted as a counter example shows.
Here we introduce the space L}1/(log* L,)"** which consist of functions such
that

b (log™ 1+e] If( )Ibl v 1 00
710" Ly = (§ g HP )<

and also the space L3:/(log™ L,)***+ L% which consist of functions
Lf UL (log™ L)+ L32] = dnf {[ | A1 |[L3/(log" L) ]+ | [g] | [Li]} <oo

where the infimum is taken over all pairs A= L}i/(log™ L,)"** and ge L% such

that f=g+h.
Then if we discuss his result from the stand point of views of the theory of
interpolation of operation, we shall prove

Theorem 3. Under the hypotheses of theorem 2, we have Tfe& Ly
log™ L,)"**+ L% for any f € L1+ L and
Ly

|VTF 1| < KM || {1+(log" | |£1 1)}

where & is any positive real number, K is a constant independent of f and
M=max (M,, M,, 1).

Corollary 2. Under the hypotheses of theorem 3, we have Tfe Ll
(log™ L,)***+L%e for any f € Li1+-Lge and

|ITF 1| < Koo | | f[]{1+(log* | | f] 7).

Furthermore we shall study the case §#=0. Let us denote by L%/(log™ L;*)'**
the set of functions such that f is v-measurable and
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A 0g * L)) = ([ ol ) <o

Then we have

Theorem 4. Let us suppose that the operation T is of weak type (a,, b,),
1<a, b,<co then we have Tfe<L3/(log™ L,)**+L%/(log* L;7*)'** for any
feLliand

I Tf 11 [L3/(log™ L)+ Lix[(log" L) 1< KM, | | f||[Li]
where K is a constant independent of f and € is any positive number.

The case a,=b,=1 and =0 corresponds to the theorem of T. Kawata.
Finally we shall prove another type of theorems which correspond to the theorem
of N. Kolmogoroff [5] about conjugatae functions and the theorem of A.P.
Calderon-A. Zygmund [1] about singular integral operators.

Theorem 5. Under the hypothese of theorem 2, we have Tf & L3:~*+ L% for
any fEe L+ Lz and

HTf L+ Lie] S KM/ || f | | [Lint- L]

where & 1is any positive number, K is a constant independent of f and
M=max (M,, M,, 1).

Corollary 3. Under the hypothese of theorem 5, we have Tf & Lx™*+ L3 for
any fEeLi+Lie and

HTF L L] < KM | f | [Lin+Lize]  (0<0<1)
Corresponding to the case §=0, we have

Theorem 6. Under the hypothese of theorem 4, we have Tf € L2*+ L%**
for any f €L and

HWIf | Lo+ L] S KMs e || f | | [Li]
where K is a constant independent of f.
Furthermore we shall prove

Theorem 7. Under the hypotheses of theorem 2 except that o,>a, and
B.1<<B,, we have Tf € L:1**+ L% for any f € Lir+L» and

[T || [Lat+ L] <KM| | f| | [La+ L

where & is any positive number, K is a constant independent of f and M=
max (M,, M,, 1).
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Corollary 4. Let us write
{ ay = (1—0)a,+0a,
by = (1—0)b,+6b, (0<O=1)
Then under the hypotheses of theorem 7, we have TfeLh**+ Ll for any
feLli+Lie and
T | [L2* L) < KoM | |1 |[Li+Ls]

As an application we shall consider some singular integral operators. One
of them is that of the Hilbert-Calderon-Zygmund which is defined as follows.

) =PV.|_ Ka—y)
where the kernel K(x) has the form
K(x) = |%|7"Qx), & = «/|»] .
Let us denote by 3 the unit sphere on which the Q(x’) is defined. Let us
also denote by (8) the modulus of continuity of Q(x"),
1Q(*)—Q(y) | So(x'—y").

Let us suppose that

(i) S Q)dx = 0
=
(i) Q(x)eL(Z) and its modulus of continuity (8) satisfy the Dini condi-
tion:

S1®d8<oo R
o §

Then they proved that the operation Tf=f is linear and type (p, p) for every
p>1, weak type (1, 1) respectively.

Another one is that of Hardy-Littlewood-Sobolev and they considered the
singular integral operator of potential type

Fu(@) = S S _agy 0<n<1).
R* ’ x— y | nA
If we write 1<r<<s<Coo, 1fr—1/s=1—2, then it is proved that this operator is
of type (7, s) in the one-dimensional case by G.H. Hardy-J.E. Littlewood [2]
in the n#-dimensional case by S.L. Sobolev [8] respectively. A. Zygmund [10]
also proved that it is of werk type (1, 1/\) in the #-dimensional case.

From now on, if no confusion arises we shall omit the symbols of spaces and
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measures x and v for norms. The author thanks to Prof. H. Tanabe for his
sincere advices as a referee.

2. Proof of Theorem 2. We shall begin to prove auxiliary result.

Proposition 1.  Under the hypotheses of theorem 2, if he Li(log* L,)*/* we
have
(1) « S | Th | %2dv)/%2 < KM®/%(| | B | | [L])"

IThl=1

and

(2) ([ 17hIsaym< KMo 1] [LEG0g™ Loy
1Al >1
where K is a constant independent of M,, M, and f, M=max(M,, M,, 1) and v
equals to min (1, a,b,/ab,) or max (1, a,b,/ab,) according to | |h|| <1 or | |k]]|>1
respectively.

Proof of Proposition 1. Let us denote by n(y) the distribution function of
Th, then we have

| Th|%dy = — S:y”zdn(y)

1T hl =1

y=1 1
= —y" n(y)]y:0+bz Ly”f‘n(y) dy

b

1
-1 M a. a.
SbJ (P LR RY ey = % M]3

Next we have

| Th|®dy = —~ry”1dn(y)
IThl>1 !

b 7= ~ b -1
_ 1n(y)Jy=1 +,( "y n(ndy.

1
and

n(1) =M (| h]|[Li])s

Now we shall run on lines of A. Zygmund[10]. Let us decompose % into
h,+h, such that

h,=h—h,.

eghy  if |h| >z

B, — {h, if |h|=z

Here z is a positive number greater than 1 and will be determined later. Since
h,e Lz and h,e Li(log™ L,)**: L, if we denote by n,(y) (7=1, 2) the distri-
bution function of Th; (i=1, 2), then we have
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n(y)=n,(y|26)+ny(y[2x)
<M 2(y[2e)" (] [ By | [ [LE])14-M " y[20) (| | ho] | [Liz])

therefore
bls "in(y)dy
<b,@epaM [y ] By, ey M2 | T ] 1y
= b,(26)2:M 211 |+ b,(26)*2M P21, say .

Let us also denote by m(y) and m,(y) the distribution function of / and &, (=1, 2)
respectively. Since m,(t)=m(t) if 0<t<z, =m(z) if t>z, we have

L
5

I;/kz <supa, Sm_ybsz_l( Sz taz'lm(t) dt) 'X(y)dy
X 1 0

( S t2dm2(t)) dy, k, — b,ja,
b < 2m(t)‘ —}—azs t“Z"m(t)dt)
7l ‘(azg 72" m(t)dt)

and

for Swy”l"”z"x”/(y)dyg 1, where 1/k,+1/k,’=1. If we put z=y%, £>0, we get

af yooe( | erm a)xay
1
= S 195" ‘m(t)dts | PETX(y) dy
+a2g 12" m(2) dtry”z“bz"X( »dy.
[} 1
If t=1, we have
“ b =Byl = bt g ) (T bmbp-tyky kS
[ x ([ e ) ([ o))
< (by—b,) ke =G00Ik,
If we write a,—1—(b,—b,)/Ek,—=a,—1 and solve with respect to &,

bz_b1 — az(bz—'bl) >0
k2(a2—al) bz(az_al)

thus we get

E:




THEORY OF INTERPOLATION OF OPERATIONS II

1

a,|“yon ([ miyae) x()dy
gaz(b,—b,)"/"’zrt“l“m(t) dt = % (b,—b,) % | | k| | [Li])™
0 a,
and so
L=(%)"G.—b)" )k
2=\ " (2_ 1) (||h||[L“1])12
al
Next, since m,(f)=m(t+z) for all =0, we have
1= S“’y—l(- Smt“xdml(t)>k1dy, k, = byfa,
o0 t=oo oo ky
= S y"(—t“xml(t)] —}—a,S t”l'lml(t)dt) dy
1 t=0 0
oo o kl
Sl y"(al S (t—2)" " m(t) dt) dy

= S?y“(al Y: 17 m(t) dt)k1 dy

and
rmzsup |y (| mie)de) o) ay

for |yt ok dy<1, where 1/k,41/k’=1. Since z=y%, £>0 we get
Y y y g

ar y"(S:t“l"‘m(t)dt)w( y)dy — art m(t)dtS:llgy‘lw( y)dy

o 1/¢ 1/k. 1/¢ 1k,
ga,gl t“x“m(t)dt( S: y"dy) 1( S: y“w’ﬁ’(y)dy) =
= algwt"l“(log tE rm(t) dt = a,E7H R rt“:“(log t)*1m(t) dt
and since

a7 (log 1)1 = (t*:(log 1) —(1/k,) ™ (log 1)!"4:~
<(t(log ty/my, if >1

The last formula does not exceed the following,
gk Sm (#*1(log t)"/*1) m(t) dt
= E“”‘l(i"l(log 2)'/%1 m(2) ’tw —rt"l(log t)/* dm(t))
t=1 1

=gm [ 1hleog 1k dy .

1Al >1

139
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Therefore we get
I, <&7(| || |[Lis(log* L)"')
where £=a,(b,—b,)/b,(a,—a,)>0. Summing up these estimations we get
| Th{ody <M o] ] |[L])0o+-b, ()M B E
(1131 |[Z(log* L]}
RACORA RO (T2

We shall need the following lemma

Lemma 1. Let us suppose the inequality A <wx(B+C) between three non-
negative number A, B and C. Then we have the following inequalities:

(i) fO0<A=I,

A

IA

k(B+C), if 0=C=<1
{4B+cq if C>1
(i) if A>1,
<{Bt+ca if 0=C<1
=| Betrc, i c>1

where p=D>,[b, and q=b,[b, respectively.

End of proof of Theorem 2. We shall use a constant K depending only on
a,, d, B, B, and « and use the same letter at each occurence. We shall also
denote by M the maximam value of M,, M, and 1. If feLi(log™ L.)V%+
L, for any positive number 7 there exists a decomposition of f=g-+h with
g€Li heLi(log® L)% such that ||g||+||k||<||f||+2 Here if
|1 f11<1 then we should take the 7 so small that || f||+7<1.
From now on we shall denote simply ||f]|], ||g|| and ||A]|| respectively.
Let us denote by S, and S, the set of points | 7f | >1 and |Tf| =1 respectively.
Let us also denote by S,, and S,, the set of points |Th|>1 and |Th| <1
respectively. 'Then applying the first part of lemma 1 with A=|Tf|, B=|Tg|,
C=|Th| and integrating over .S,, we get

(§1r1%a0 )™

Sy

< | Azelt1mmipay) i | (1Te1+1TRI2a0) "™

SN 8q, SaNnSyy

gzx(5|1g[%dg)wp+x(s|7%|%du‘”ﬁ+x(§|1%|hd»y”2

s 12 1u
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by the Minkowsky inequality. Since g& L2 we have by hypotheses
(3) NTgl L =M,||g]|[Li].
If we substitute estimations (1), (2) and (3), we get
1/5,
(§172 190 ) ™ * < EM(1 1711471
S

where the index v, equals to min (b,/b,, a,/a;,) or 1 according to ||f||<1 or
[1f11=1 respectively. Next if we apply the second part of lemma 1, we get
by repetitions of the same discussion

({12710 a0)™

Sy

<( | azererimmioma) +( § Qzerer 1 mhna, )™
§1N 82 83N 8y
176 /s, /6,
§2<§|Tg|bzdv) ‘+<§2|Th|bzdy> +<S§1|Th|bldu)

KM (|| f||+n)"

where the index v, equals to min (1, a,b,/a,b,) or b,/b, according to || f||<1 or
[1f1]=1 respectively.

Let us first suppose that || f||=1, then by the above estimations we have
if % tends to zero,

1/b, 1/b,
le|”zdu> +( | | Tf o) S KMo
ITfIS1 ITfi>1
thus we have proved
(4) ITfII=KM**"||fll, M= max(M, M,]1).

Now we shall exclude the assumption || f||=1. We use the properties as for
[ 1f|| which is neither norm nor quasi-norm and so we shall prove these for
the sake of completeness.

Lemma 2. The pseudo-norm ||f||[Li(log* L.)**1+ L 2] has the follow-
ing properties:
(1) #f N is any positive real number, it is satisfied
2 7 {14(log" M) WEF AL I < | I S 27200 {14 (log* )™} ] | £

(i) The pesudo-norm | |\ f|| is a continuous function of .
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Proof of Lemma 2. (i) Since for any positive number A

14-(log* | M| )41 <1+ (log* A+log* |k |)/%
§2a1/b1{1+(10g+ X)allbl} {1 +(10g+ | h|)“1”’1}

we have by the decomposition of f=g-h,

HIAFITSTIng TN SN] g 2000 {1 +(log* N)*/oi} | || |
<20 {1+ (log* M) 2} (| | f1 1 +m) .

If we let 7 tend to 0, the second inequality of (i) has proved. Next in this
inequality, let us put A7'f instead of f.

£ 1T <20 {14-(log* Ny | 7' ||
and write A"'=y, we have

274 p {14 (log* p )"0} 4] | f1I < | | pf]

This is just the first inequality of (i).

(if) Let us suppose that A,—\. The case A=0 is trivial from the inequality
(i). We suppose that A>0. For any given positive number, there exists a
decomposition A f=G-+H, GE L, HeLi(logt L,)%% such that ||G||+
[H[|<|INfl|47n If weput G=Ag, H=\h, then g+h=fandos | [A,f|| =
[IXag||+|IN||. Both ||rg|| and ||AA]|]| are continuous with respect to
A, therefore

Ellhnflléﬁ{llMg||+l|7~,.h|I}
= [Ingll+ 1M I=1IGII+IIHI=[INMfl]+7.

Next we shall prove that | [Af||<lim||x,f||. Since ||Af[[ is a monotone
iy

non-decreasing function with respect to A>0, we can assume that »,<\. We
have a similar decomposition A,f=G,+H, such that G,eLg, H,c
Lis(log™ Lu)** and | |G| |+ | [Hal | STINfI 47 If we write Gu=Nugm
H,=2x\,h,, then g,+h,=f for all n.

Therefore we get

HAFIT=1IAgal |4 [ NM,] |
S UG FTH A THINgal | = TINagal D+ NG| = [ [XGR] 1)
S IMf T IAES T = TN gl DA I T— 1IN )47

where we can prove easily

Nl =Nk, |0 (n—>c0)
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by the use of ||G,||<||Nf||+7% and ||H,||<||rf||+7n for sufficiently
large n. Thus we obtain | [Af||<Lm||\,f]].

From lemma 2, we can conclude that if ||f||31, there exist a positive
real number A such that | [N f||=1. If || f]|>1, then the A to make || f||=1
is less than 1 and on the contrary if ||f||<1 then the A is greater than 1.
Since f=TY is a quasi-linear operation and L%+ L2z is a Banach space, we have

(5) HTONNLE+Ly] = MITS | [La+L] -

If ||f]]>1, then we use the inequality (4) with respect to Af such that
[INf||=1 and applying the second part of lemma 2 (i) and (5), we can
derive that the inequality (4) is also true. If || f||<1 then we use the inequality
(4) with respect to A f such that | |[Af||=1 again and applying the second part
of lemma 2, (i) and (5) we have

TS || <240 Mo {14 (log* A)*op /] | f] ]
Since 275\ | | f|| Z|IAf]||=1 by the first part of lemma 2, (i) we can derive
that
(6) [ITfII<KM* " || fI1{l+(og* [ |f]]7)"W/} /.
Thus theorem 2 has proved completely.

3. Proofs of Theorems 3 and 4. Since the method of proofs of theo-
rems 3 and 4 is just the same as the preceding section, we only sketch the
outlines.

Proposition 2. Let us suppose that the quasi-linear operatin T is of weak
type (a,, b,), 1<a,, by<<oco. Then if he L we have

Th|% /s, .
(1) (§ TR <k, b1 L3,
m1>11+(1°g | Th| )+ )
and
8 | Th|* d)llblsKMl B [La],
) ( § [ (log | Thi=ye ) SEMAAIEA

ITh <1

where € is any positive number.

Proof of Proposition 2. We have by the same way as the proof of proposi-
tion 1,

| Th|® dv o ybl a’n(
142 = - 148 y)
s 1 (log | ThI) S 1+(log y)™*
M

n(y) T:-F Sj(ﬁ)ln(y)dy

14 (log 3y
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If y>1, we have
( P ) = by’ {14 (log y)*} —(14-6)y"*(log y)°
14 (log y)*** {1+(log y)"*7}*
< b,y 7 {1 +(log y)'*}

and therefore

TR sy (M 1]t b | 2ty dy
ionss 1+ (log | ThI)™ 1 14-(log y)**
<) dy
=M, ||k )r4-b,M" ——=—— | |h| |"<KM | |h| |
: S y{l+(log »)"*} |

T'he remaining part is proved by the same way.
For the proof of theorem 3, we need the following lemmas.

Lemma 3. From an inequality A<wx(B+C) between three non-negative
numbers A, B and C, we can derive the following

(i) f0=4<],
#(B+C), if 0=C<1

const. (B—[—(l—_ﬁblc)l;)wz), if C>1

A=

(i) i A>1,
o { (2c)’s(B%+Ct%), if 0<C<I.

A ch :
1+ (log A)* = N g oc<t
+(log 4) 1-|—(IogC)1+’> f

Lemma 4. The pseudo-norm || f||[L3](log™ L,)"**+ L%] satisfy the follow-
ing inequality: there exists a constant C such that

const. <B”z+

A
C{I+(log™ n)™ 7%}

HAT=S M T =CA{1+(log™ M)/} [ |11
If we repeat the discussion of the proof of theorem 2, we can prove theorem 3.
The theorem 4 is an immediate consequence of proposition 2.

4. Proofs of Theorem 5,6 and 7. We shall need the following proposi-
tion and lemma.

Proposition 3. Let us suppose that the quasi-linear operation T is of weak
type (a,, b,), 1=<a,, by<<oco. Then if he L} we have

bt 1/, -2 e -
(9) ( S | Th® dv) < KM 27| | k| | [Li])/

1TH>1
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and
(10) ( S | Th |5+ dy )1/b1+z§KM11,1/bl+e(| | ] | [L )2
ITRISI

where € is any positive number.

Lemma 5. From an inequality A=<«(B+C) between three non-negative
numbers A, B and C, we can derive the following

(i) i 0<4=l,
A<{ k(B+C), if 0=C<l
=\ Bcom, if C>1
(i) if A>1,
_ { (26)b/0 " (Bo/0 - Clt™), if 0<C<1
= (2r)rmt(Bra 1 C), if C>1.

Now proofs of these theorems are repetitions of those of preceding section and
need not be gone into the details.
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