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1. Introduction

In this paper we shall discuss the interpolation of operations on intermediate

spaces. Our method is the so-called real method. Our purpose is to treat the

critical case which appears in singular integral operators. If we consider for

example the Hubert transform / of function/ of the class L log+ //(di00,00), /
exist a.e. but the only local integrability holds. Then we shall discuss their inte-

gral estimation on the whole space.

The intermediate space between two Banach spaces was introduced by

W.A.J. Luxemburg [6, 7]. This is defined as follows. Given a topological vector

space V and two Banach spaces Al and A2 which are contained and con-

tinuously embedded in V. If /is an element of A{ (/=!, 2), we denote its norm

by I |/ 1 I [Af] (/=!, 2). We shall consider the space Al-\-A2 and introduce in
it the norm

I I/I \[At+AJ = »ι/(| \g\ |[Λ]+I \h\ \[A2])

where the infimum is taken over all pairs g£ΞAl and h^A2 such that f=g-\-h,
then Al-}-A2 also becomes a Banach space. Since A1 and A2 are continuously

embedded in V, it is evident that Aλ+A2 is also continuously embedded in V.

In what follows we shall consider totally σ-finite measure space (R, μ) and

the space V of equivalent classes of real valued measurable functions on R.

The equivalent relation here is that of coincidence almost everywhere. If in V

we introduce a topology of convergence in measure on sets of finite measure, V

becomes a topological vector space. If we take as the interpolation pair

A1=Lμ,9 A2=L^(l<p<°°) then these are continuously embedded in V. We

shall also consider another measure space (S, v).

Let us consider operation T which transforms measurable functions on R

to those on R. The operation T is called quasi-linear if

( i) 71(/ι+/2) is uniquely defined whenever Tfλ and Tf2 are defined and
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where K is a constant independent of/x and/2,
(ii) T(cf) is uniquely defined whenever Tf is defined and

\T(cf)\ = \c\ \Tf\

for all scalars c.
We say that the operation T is of type (β, έ), l^a<zb^°°, if J1/ is defined

for each/eL£(Λ) and belongs to L$(S) such that

(1.1) | |Γ/||[L;]^M||/| |[Lί]

where M is a constant independent of/. The least admissible value of M in ( 1 . 1 )
is called the (α, έ)-norm of operation T. Next we shall define the weak type
(0, b) of operations. Suppose first that l<;i<oo. Given any r>0, denote by
Er=Er[Tf] the set of points of the space S where | Tf \ >r, and write v(Er} for
the z>-measure of the set Er. We say that the operation T is of weak type
(α, i) if

(1-2) v(

where M is a constant independent of/. The least admissible value of M in (1 . 2)
is called the weak (#, i)-norm of operation T. It is clear that being of type
(a, b) implies being of weak type (#, b). We shall define weak type (a, °°) as
identical with type (β, °o). Hence T is of weak type (β, °°) if

(1.3) en.sup\\Tf\\^M\\f\\ [Lfl

Beside the space L£ we shall need the space £μ(log+ Lμ)
c which consist of

functions to be /^-measurable and such that

I / 1 I [L l̂og- L,Y] = ( ( I / 1 "(1 + (lσg+ | / 1 )β

J R

This is not a Banach space but we shall use conveniently the same notations

Lμi(log+ Lμ.)aι/bι+Lfe as in the preceding case, which consist of functions to
be /^-measurable and such that

I I / I |[L?1(log+LI1)V»ί+L^] = mf(\ \h\ [L^(log+L)i)V*1]+ | \g \ |[L

where the infimum is taken over all pairs h^Lfc(log+ Lμ)
aι/bι and g^Lfc such

In our preceding paper [4] we proved that

Theorem A. Suppose that a quasi-linear operation T is of weak type (1,1)
and of type (p, p) for some 1 <p< °o . Then we have
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j \Tf\*dv+ j \ T f \ d v
\Tf\>l

\f\'dμ+ j \f\(l+lθg+\f\)dμ)

l/l>ι

where K is a constant independent off.

We can grow it up to the following form

Theorem 1. Under the hypotheses of theorem A, we have Tf^L^+L* for
μ, log+ Lμ+Lj£ and

where K is a constant depending on py K but not on Mly M2 and /; M=

max (M19 M2, 1)

Furthermore we shall prove the following theorem which gives an answer
to the conjecture of [4: p. 148~9].

Theorem 2. Let us write ai=l/aiί βi=l/bi (i=\yΐ). Let (a^ β^ and

(<%2> /32) be any two point of the triangle

Δ; 0<β^a^l

such that ySjΦ/Jo. Let us suppose that a quasi-linear operation f=Tf is of weak
type (l/al} l//?ι) and of type (l/α2, l//52) with norms Ml and M2 respectively.
Then if a,>a2 and β,>β2 we have Tf eLJi+L^ for any /eL^(log+ Lμ)*ι'bι+
Lfa and

I I T / I \^κM*2fΊ\ i / i |(i+(iog

+ 1 ι/ι nv'O1"1

where K is a constant depending on alf a2ί βίt β2, K and not on M1} M2 andf\ M
=max(Ml,M2 1).

Corollary 1. Let us write

aθ=(l-θ)a1+θa2Γ aθ=(l-θ)a1

( bθ = (l-θ)bl

Then under the hypotheses of theorem 2, we have 2/eL*ι+Lξ> for any
jί* and

I 7/1 \^KJΛW\ I/I

where Kθ is a constant depending on θ, aly a2ί β1} β2J but not on Mlf M2, f.

Since by the Marcinkiewicz-Zygmund theorem it follows that the operation
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T is of type (aθ, bθ) by the hypotheses of theorem 2 and so we can derive corollary
1 immediately.

Next T. Kawata [3] proved the following theorem

Theorem B. Let f(x) be a measurable function of the class L(— oo, co).
Then its Hillbert transform

)-°°x—y

exists and satisfies the following inequality

dx<M \ x \ d x
~ 1

where 6 is any positive number and M is a constant independent of f.

Furthermore the £ >0 can not be omitted as a counter example shows.
Here we introduce the space LJi/(log+ Lv)

1+ε which consist of functions such
that

I I / 1 I [L?ι/(log+ Lv)
1+ε] = ( ( - I /Ml*1 - <fιΛVdl< oo

7 L / V * W J \ J s l + l o + | * 1 + 8 /

and also the space L*ι/(log+ Lv)
1+ε+£?2 which consist of functions

I I / 1 I [Lί./(log+ Lv)
1+8+L?2] = inf { \ \ h \\ [L?1/(log+ Lv)

1+s]+ | | g \ \ [L^]} <

where the infimum is taken over all pairs AeLξι/(log+ Lv)
1+8 and g^Lfy such

that /=£+/*.
Then if we discuss his result from the stand point of views of the theory of

interpolation of operation, we shall prove

Theorem 3. Under the hypotheses of theorem 2, we have
(log+ Lv)

1+8+£?2/^ anyf<=Lfi+Lft and

\\τf\\^ KMW \\f\\ {i +(iog

+ 1 1 / 1 1 -y^i}

where 8 is any positive real number, K is a constant independent of f and
M-max (Mί9 M2, 1).

Corollary 2. Under the hypotheses of theorem Z, we have
ft and

\\τf\\^ KMb^ 1 1 / 1 1 {i +(iog

+ 1 1 / 1 1 -y^} .
Furthermore we shall study the case 0=0. Let us denote by LJι/(log+

the set of functions such that / is ^-measurable and
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I I/I I [«./(!«* + A-'Π = (

Then we have

Theorem 4. Let us suppose that the operation T is of weak type (aly bj,
\^alf b,<oo then we have T/ <Ξ L£ι/(log+ LJl+*+L»ι/(\og+ L~lγ+* for any

and

\\Tf\\ [J^/(log+ Lv)
1+ε+L;V(log+ ̂ ΓΊ ̂ KM,\\f\\ [Lfl

where K is a constant independent of f and £ is any positive number.

The case al=b1=l and 0=0 corresponds to the theorem of T. Kawata.
Finally we shall prove another type of theorems which correspond to the theorem
of N. Kolmogoroff [5] about conjugatae functions and the theorem of A.P.
Calderon-A. Zygmund [1] about singular integral operators.

Theorem 5. Under the hypothese of theorem 2, we have Tf&L\*~* -\-Lfy far
fc and

\\Tf\\ [L».-+LM £KMW- \ \ f \ \ [Lfi+Lfl

where £ is any positive number y K is a constant independent of f and

x, M2, 1).

Corollary 3. Under the hypothese of theorem 5, we have Tf ^ L*ι~* -\- Lfy for
and

Corresponding to the case 0=0, we have

Theorem 6. Under the hypothese of theorem 4, we have
for any f^Lfc and

\ \ T f \ \ [Ll

where K is a constant independent of f.

Furthermore we shall prove

Theorem 7. Under the hypotheses of theorem 2 except that a^>a2 and
j& and

\\Tf\\ [Lv

δι+s+LM ̂ KM I I / 1 I [L

where £ is any positive number, K is a constant independent of f and M=
max (Mj, M2, 1).
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Corollary 4. Let us write

e = (l-θ)bl+θb2

Then under the hypotheses of theorem 7, we have Tf^L^+*+L*e for any

fo and

I \Tf I \[W+Ly\£KJΛ\ \f I \[Lf>+Lfl .

As an application we shall consider some singular integral operators. One
of them is that of the Hilbert-Calderon-Zygmund which is defined as follows.

where the kernel K(x) has the form

K(x)= I* Γ

Let us denote by Σ the unit sphere on which the Ω(x') is defined. Let us
also denote by ω(δ) the modulus of continuity of Ω(x')y

Let us suppose that

(i) ί Ω(x')dx = 0

(ii) Ω(#')eL(Σ) and its modulus of continuity ω(δ) satisfy the Dini condi-
tion:

Then they proved that the operation Tf=f is linear and type (/>, p) for every

p>l, weak type (1,1) respectively.
Another one is that of Hardy-Littlewood-Sobolev and they considered the

singular integral operator of potential type

y, (0<λ<l).
[ ΛΛ Λ l *»Λ

I i/v y I

If we write l<r<ί<oo, l/r—l/s=l — \, then it is proved that this operator is
of type (r, s) in the one-dimensional case by G.H. Hardy-J.E. Littlewood [2]
in the n-dimensional case by S.L. Sobolev [8] respectively. A. Zygmund [10]
also proved that it is of werk type (1, 1/λ) in the //-dimensional case.

From now on, if no confusion arises we shall omit the symbols of spaces and
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measures μ and v for norms. The author thanks to Prof. H. Tanabe for his

sincere advices as a referee.

2. Proof of Theorem 2. We shall begin to prove auxiliary result.

Proposition 1. Under the hypotheses of theorem 2, if h e Lμi(log+ Lμ)
aι/bι we

have

( 1 ) ( f I Th I b2dv)1/b2^KMbΛ( \ \ h \ \ [L£i])V*2

and

( 2 ) ( J I Th I *ι dv)l/b^KMb^( \ \ h \ \ [L£ι(log
\Th\>l

where K is a constant independent of Mlt M2 and fy M—max(M1J M2, 1) and γ
equals to min (1, ajbjajb^ or max (1, afijajb^) according to \ \h\ \ ̂ 1 or \ \h\ \ >1
respectively.

Proof of Proposition 1. Let us denote by n(y) the distribution function of
Thy then we have

5 \τh\ dv= -

* +b2 \ yb2~ln(y)dy
y=Q Jo

>b*-\ ̂ \\h\\ [Lfl Ϋidy = -^-M^( \ \ h \ \ [LM)»ι.
o V y ' L L

Next we have

+b1\ ybι~ln(y)dy ,

and

Now we shall run on lines of A. Zygmund[10]. Let us decompose h into
hl-\-h2 such that

A, if \h\£z
h, = h—hz.

eίarshz, if \h\>z

Here 5r is a positive number greater than 1 and will be determined later. Since

A2eL^2 and A1eL£i(log+ LμJV^ici^, if we denote by ,̂-(3;) (ί=l, 2) the distri-

bution function of TA,- (ι=l, 2), then we have
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I A, I |[Lί.])»ι+Mf»Ky/2«)-Ml I A.

therefore

1 l I A, I

/2/2, say .

Let us also denote by m(y) and JW, (^) the distribution function of h and A, (i=l, 2)
respectively. Since m2(t)=m(t) if 0<ί^^, =m(s:) if t>z, we have

ί-o o

and

for

sup

where 1/A2+1 /*/=!. If we put s;=jί, f >0, we get

') dt)x(y)dy

If ί^l, we have

If we write α2— 1— (ό2— b1)/ξk2=a1— 1 and solve with respect to

k2(a2—aί) bz(a2—a^

thus we get
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«2 J V
1"*1"1 ( Γ t"2'1 m(0 dt]

1*1 I

and so

Next, since m1(ί)=m(ί+^) for all ί^O, we have

and

/^i ̂  sup a, JV^ j" Λ'1 ιif(ί) Λ

ί
oo
y^ω^^Jέίy^l, where l/^+l/^/— 1. Since ^=^ξ, f >0 we get

1

and since

<(ίαι(log<)1/*ι)') if t>\

The last formula does not exceed the following,

ί=~ - ΓίΊ(log t)1/kιdm(t)\
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Therefore we get

/I^r ι(iiAii[££0og+Mv*'])*'
where ζ=a2(b2 — bl)/b2(a2 — α1)>0. Summing up these estimations we get

;*,-*,)-'(iiAi
We shall need the following lemma

Lemma 1. Let us suppose the inequality A<^κ(B+C) between three non-
negative number A, B and C. Then we have the following inequalities:

(i) ifQ^A^l,

κ(B+C), if O^C^l

κ(B+Cp), if C>\

(ii) ifA>\,

Bq+C\ if O^C^l

B«+C, if C>\

where p=bjb2 and q=b2/b1 respectively.

End of proof of Theorem 2. We shall use a constant K depending only on
#ι> α2, /?ι, β2 and K and use the same letter at each occurence. We shall also
denote by M the maximam value of M19 M2 and 1. If /eL£i(log+ Lμ.)aι/bι+
Lfe, for any positive number -η there exists a decomposition of f=g-\-h with
g^Lfe, AeLjϊι(log+ L^V*! such that | \g\ \ + \ \h\ \ ̂  | |/| | -\-η. Here if

1 1 / 1 1 <1 then we should take the η so small that | |/| | +η^l.
From now on we shall denote simply | | /1 |, | | g \ \ and | | h \ \ respectively.
Let us denote by S1 and S2 the set of points \Tf\>l and \Tf\^l respectively.
Let us also denote by Su and 5^2 the set of points |7%|>1 and |TA |^1
respectively. Then applying the first part of lemma 1 with A=\Tf\y B=\Tg\,
C=\Th\ and integrating over S2ί we get

\l/b9

Vb9

£2κ( \\Tg\"tdvJ'^+K^ \\Th\^dιλ1/t>2+κ( (\Th\
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by the Minkowsky inequality. Since g^Lfc we have by hypotheses

( 3 ) \ \ T g \ \ [ L t]£Mt\\g\\\Lft.

If we substitute estimations (1), (2) and (3), we get

where the index fyί equals to min (bjb39 aja2) or 1 according to | | / 1 | < 1 or
I I/ 1 1^1 respectively. Next if we apply the second part of lemma 1, we get
by repetitions of the same discussion

^( 5

where the index γ3 equals to min (1, ajb2lajb^) or b2/b1 according to | |/| | <1 or
| | / | |^1 respectively.

Let us first suppose that | |/| | =1, then by the above estimations we have

if η tends to zero,

\Tf\>l

thus we have proved

(4) \\Tf\\^KMW\\f\\, M=max(M 1,M ϊ,l).

Now we shall exclude the assumption | |/| | =1. We use the properties as for
1 1 / 1 1 which is neither norm nor quasi-norm and so we shall prove these for

the sake of completeness.

Lemma 2. The pseudo-norm \ \ f \ \ [L^(log+ L^i^+L^] has the follow-

ing properties:

( i ) if \ is any positive real number, it is satisfied

2 -v»lλ{l+(log+ λ-y^K1^! I/I I ̂  II λ/l I ̂ 21^\{l+(log+\)"^Y/a

l\ I/I I

(ii) The pesudo-norm | |λ/| | is a continuous function o/λ.
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Proof of Lemma 2. (i) Since for any positive number λ

we have by the decomposition off—g-\-h,

I Iλ/l I ̂  I \\g\ \ + I | λΛ | I :Sλ| |*| |+2^λ{l+(log+ λ)V*ι}^ι| \h\
λ)V*ι}^ι(| I/I 1+17) .

If we let 77 tend to 0, the second inequality of (i) has proved. Next in this

inequality, let us put λ"1/ instead of/.

I I/I I ̂ 21/»ιλ{l+(log+ λ)V*ι}^ι| Iλ-1/! I

and write \~1=μ, we have

This is just the first inequality of (i).

(ii) Let us suppose that λw-^λ. The case λ=0 is trivial from the inequality
(i). We suppose that λ>0. For any given positive number, there exists a

decomposition \f=G+H, GeLfo #eL£ι(log+Lμ)Vι such that | | G | | +

\\H\\^\\\f\\+rι. If we put G=λ^, H=\h, then g+h=f and os | | λw/| | ̂

I I λ»£ I I + I I λ«A I I . Both I I λ£ I I and | | \h \ \ are continuous with respect to
λ, therefore

Next we shall prove that | |λ/| | ^lim [ |λn/| | . Since | |λ/| | is a monotone
»̂ .oo

non-decreasing function with respect to λ>0, we can assume that λw<λ. We

have a similar decomposition \nf=Gn

JrHn such that Gn^Lfay Hn^

Lχiog+Lμ)
ΛΛ and \ \Gn\\ + \ \ H n \ \ ^\\\nf\\+η. If we write Gn=\Λgm

Hn=\Jιn, thengn+hn=f for all n.

Therefore we get

^| |GJ l + l \Hn\ |+(| |λ^| l - l |λ^J |)+(| |λΛJ | - |
^ I |λ«/l l+( l Iλ^.l I- 1 \\^n\ !)+(! IλAJ I- 1 I^AI

where we can prove easily
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by the use of | |GJ | ̂  | |λ/| | + ?? and | \Hn\ \ ̂  \ |λ/| | +η for sufficiently
large n. Thus we obtain | | λ/ 1 | ^lim | | \nf \ \ .

n+oo

From lemma 2, we can conclude that if | |/| | Φl, there exist a positive
real number λ such that | |λ/| |=1. If | |/| |>1, then theλto make | |/| | = 1
is less than 1 and on the contrary if | |/| |<1 then the λ is greater than 1.
Since f=Tf is a quasi-linear operation and L^+Lfy is a Banach space, we have

( s ) ι ι r(x/) 1 1 [L?2+LΉ = x 1 1 ιy 1 1 [LΪ+LW .
If I If I I>1> then we use the inequality (4) with respect to λ/ such that

I |χ/| |— 1 and applying the second part of lemma 2 (i) and (5), we can

derive that the inequality (4) is also true. If | | / 1 | < 1 then we use the inequality
(4) with respect to λ/ such that | | λ/ 1 | = 1 again and applying the second part
of lemma 2, (i) and (5) we have

\ \ T f \ \ ^21/*ιMV*ι{l+(log

+ λ)V*ι}^ι| I/I I .

Since 2'l/bι λ | | / 1 | ̂  | | λ/ 1 | = 1 by the first part of lemma 2, (i) we can derive
that

( 6 ) \\τf\\ ^KMW\ i / i i {i+(iog+ 1 i / i rw1^ .
Thus theorem 2 has proved completely.

3. Proofs of Theorems 3 and 4. Since the method of proofs of theo-
rems 3 and 4 is just the same as the preceding section, we only sketch the
outlines.

Proposition 2. Let us suppose that the quasi-linear operatin T is of weak
type (a19 bj, 1 <Za19 bλ< oo . Then ifh^Lft we have

(7) ( ( ^̂  dv}l/bl<KM,\\h\\[Laj],^ J \ _ J mioe\τh\γ+* ) - 1M M L J

|ΓA|>1

and

8) ( \ . .. |J"±' -dvY^KMAW

α Atfrtf 6 is any positive number.

Proof of Proposition 2. We have by the same way as the proof of proposi-

tion 1,

-dn(y)
ir*ι>ι

n(y) n(y)dy
y y
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If y>l, we have

and therefore

ί l T/f I bΛ
- !̂ J-̂  - dv<(M,\\h\
l l o Γ A « -^

£(M,\ \h\ \γ^b,M^ ——-—-\\h\ \"^KM^\ \h\

The remaining part is proved by the same way.
For the proof of theorem 3, we need the following lemmas.

Lemma 3. From an inequality A^κ(B-\-C) between three non-negative
numbers A, B and C, we can derive the following

(i) ifQ^A^l,

κ(B+C), if O^C^l

const. (-B+ί ) ), if
\ \ Vl+(log C)1+^ /

(ii) ifA>l,

r (2Λ)*<fi*»+C*»), if O^C^l.

Lemma 4. The pseudo-norm \ \ f \ \ [Lίι](log+ Lv)
1+8+L?2] ί«^/y the follow-

ing inequality : there exists a constant C such that

l I/I l £ l Iλ/| |^Cλ{i+(iog+ xr^MI I/I I -

If we repeat the discussion of the proof of theorem 2, we can prove theorem 3.
The theorem 4 is an immediate consequence of proposition 2.

4. Proofs of Theorem 5, 6 and 7. We shall need the following proposi-
tion and lemma.

Proposition 3. Let us suppose that the quasi-linear operation T is of weak
type (a1} it), l^a^b^oo. Then ίfh^Lfcwe have

ί C
(9) (̂  J

\Th\>l
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and

( Γ \ l/bΛ +8

J I Th I b^dv \ ^KM^/b^( \\h\
\Th\£l

where 6 is any positive number.

Lemma 5. From an inequality A^κ(B+C) between three non-negative
numbers A, B and Cy we can derive the following

(i) if Org^l,

κ(B+C), if 0<C<1\ /' j — —
Ώ_\_/^bι-2/b0 if C**^»\jD-pU 1 2, IJ (_χ^>l

(ii) if A>\,

A^ . ._.

Now proofs of these theorems are repetitions of those of preceding section and
need not be gone into the details.
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